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ABSTRACT

Multi-Step-Ahead Prediction of MPEG-Coded Video Source

Traffic Using Empirical Modeling Techniques. (December 2004)

Deepanker Gupta, B. Tech., Indian Institute of Technology, Kharagpur, India

Chair of Advisory Committee: Dr. Alexander G. Parlos

In the near future, multimedia will form the majority of Internet traffic and

the most popular standard used to transport and view video is MPEG. The MPEG

media content data is in the form of a time-series representing frame/VOP sizes.

This time-series is extremely noisy and analysis shows that it has very long-range

time dependency making it even harder to predict than any typical time-series. This

work is an effort to develop multi-step-ahead predictors for the moving averages of

frame/VOP sizes in MPEG-coded video streams.

In this work, both linear and non-linear system identification tools are used to

solve the prediction problem, and their performance is compared. Linear modeling is

done using Auto-Regressive Exogenous (ARX) models and for non linear modeling,

Artificial Neural Networks (ANN) are employed. The different ANN architectures

used in this work are Feed-forward Multi-Layer Perceptron (FMLP) and Recurrent

Multi-Layer Perceptron (RMLP).

Recent researches by Adas (October 1998), Yoo (March 2002) and Bhattacharya

et al. (August 2003) have shown that the multi-step-ahead prediction of individual

frames is very inaccurate. Therefore, for this work, we predict the moving average

of the frame/VOP sizes instead of individual frame/VOPs. Several multi-step-ahead

predictors are developed using the aforementioned linear and non-linear tools for

two/four/six/ten-step-ahead predictions of the moving average of the frame/VOP

size time-series of MPEG coded video source traffic.
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The capability to predict future frame/VOP sizes and hence the bit rates will

enable more effective bandwidth allocation mechanism, assisting in the development

of advanced source control schemes needed to control multimedia traffic over wide

area networks, such as the Internet.



v

To my parents



vi

ACKNOWLEDGMENTS

It is with deep sense of gratitude that I express my sincere thanks to Dr. Alexan-

der G. Parlos for his valuable guidance, kind cooperation and timely suggestions dur-

ing my stay at Texas A&M University. I would like to thank my parents Ravinder

and Kiran, and sister Sonali for always being there for me. Thanks are also due to

my friends Aninda, Dan, Lin, Tolis, Vivek and Ram for helping me understand things

and encouraging me to do better throughout my MS degree. Last, but not the least, I

am grateful to the faculty members of Mechanical Engineering Department at Texas

A&M for introducing me to new depths of knowledge.



vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

B. MPEG Standards . . . . . . . . . . . . . . . . . . . . . . . 3

C. Literature Review . . . . . . . . . . . . . . . . . . . . . . . 4

D. Research Objectives and Proposed Approach . . . . . . . . 14

1. Research Objectives . . . . . . . . . . . . . . . . . . . 14

2. Proposed Approach . . . . . . . . . . . . . . . . . . . 15

E. Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 15

F. Organization of the Thesis . . . . . . . . . . . . . . . . . . 16

II OVERVIEW OF MPEG-4 . . . . . . . . . . . . . . . . . . . . . 17

A. MPEG-4 Video Hierarchy . . . . . . . . . . . . . . . . . . 18

B. VOP Types in MPEG-4 . . . . . . . . . . . . . . . . . . . 19

C. Scalability in MPEG-4 . . . . . . . . . . . . . . . . . . . . 20

D. Visual Profiles of MPEG-4 . . . . . . . . . . . . . . . . . . 21

1. Profiles for Natural Video Content . . . . . . . . . . . 21

2. Profiles for Synthetic and Synthetic/Natural Video

Content . . . . . . . . . . . . . . . . . . . . . . . . . . 23

E. Scene Modeling and Interactivity . . . . . . . . . . . . . . 24

F. Chapter Summary . . . . . . . . . . . . . . . . . . . . . . 25

III EMPIRICAL MODELING TECHNIQUES . . . . . . . . . . . . 26

A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 26

B. Linear Techniques . . . . . . . . . . . . . . . . . . . . . . . 26

1. Auto-Regressive Exogenous (ARX) Model Structure . 27

2. Auto-Regressive Exogenous Parameter Estimation . . 28

C. Non-linear Techniques . . . . . . . . . . . . . . . . . . . . 29

1. FMLP Networks . . . . . . . . . . . . . . . . . . . . . 30

2. RMLP Networks . . . . . . . . . . . . . . . . . . . . . 32

D. Predictor Algorithms Using NNs . . . . . . . . . . . . . . . 32

1. Single-Step-Ahead Prediction . . . . . . . . . . . . . . 32

a. SSP with FMLP Networks . . . . . . . . . . . . . 33

b. SSP with RMLP Networks . . . . . . . . . . . . . 34



viii

CHAPTER Page

2. Multi-Step-Ahead Prediction . . . . . . . . . . . . . . 34

a. MSP with FMLP Networks . . . . . . . . . . . . 35

b. MSP with RMLP Networks . . . . . . . . . . . . 36

E. Learning Algorithms in Neuro-predictors . . . . . . . . . . 36

1. Learning Algorithm for FMLP Networks . . . . . . . . 36

2. Learning Algorithm for RMLP Networks . . . . . . . . 38

F. Chapter Summary . . . . . . . . . . . . . . . . . . . . . . 41

IV ANALYSIS OF MPEG-4 VIDEO TRACES . . . . . . . . . . . . 42

A. Generation of Video Data Traces . . . . . . . . . . . . . . 42

B. MPEG-4 Video Data Traces . . . . . . . . . . . . . . . . . 43

C. Statistical Analysis of MPEG-4 Traces . . . . . . . . . . . 44

D. Long Term Dependency of the VOPs . . . . . . . . . . . . 46

E. Moving Average Time-series of VOP Sizes of Video

Data Traces . . . . . . . . . . . . . . . . . . . . . . . . . . 48

F. Chapter Summary . . . . . . . . . . . . . . . . . . . . . . 56

V PREDICTION OF MPEG-CODED VIDEO TRACES . . . . . . 57

A. Definitions and Descriptions . . . . . . . . . . . . . . . . . 57

1. Performance Metrics . . . . . . . . . . . . . . . . . . . 57

2. External Indicators . . . . . . . . . . . . . . . . . . . 58

3. Scaling of the Data . . . . . . . . . . . . . . . . . . . 59

4. Post Processing . . . . . . . . . . . . . . . . . . . . . 60

B. Single-step-ahead Prediction . . . . . . . . . . . . . . . . . 61

1. Prediction of I-VOPs . . . . . . . . . . . . . . . . . . 61

a. SSP Using ARX Models . . . . . . . . . . . . . . 61

b. SSP Using ESN Models . . . . . . . . . . . . . . 64

2. Prediction of Moving Average of VOPs . . . . . . . . 64

a. SSP Using AR Models . . . . . . . . . . . . . . . 67

b. SSP Using ARX Models . . . . . . . . . . . . . . 67

c. SSP Using ESN Models . . . . . . . . . . . . . . 70

C. Two-step-ahead Prediction . . . . . . . . . . . . . . . . . . 73

1. Prediction of I-VOPs . . . . . . . . . . . . . . . . . . 73

a. Two-step-ahead Prediction Using ARX Models . . 73

b. Two-step-ahead Prediction Using ESN Models . . 76

2. Prediction of Moving Average of VOPs . . . . . . . . 82

a. Two-step-ahead Prediction Using AR Models . . 82

b. Two-step-ahead Prediction Using ARX Models . . 84



ix

CHAPTER Page

c. Two-step-ahead Prediction Using FMLP Models . 88

d. Two-step-ahead Prediction Using ESN Models . . 91

D. Four-step-ahead Prediction . . . . . . . . . . . . . . . . . . 94

1. Prediction of I-VOPs . . . . . . . . . . . . . . . . . . 94

a. Four-step-ahead Prediction Using ARX Models . 94

b. Four-step-ahead Prediction Using ESN Models . . 94

2. Prediction of Moving Average of VOPs . . . . . . . . 100

a. Four-step-ahead Prediction Using AR Models . . 100

b. Four-step-ahead Prediction Using ARX Models . 102

c. Four-step-ahead Prediction Using FMLP Models . 106

d. Four-step-ahead Prediction Using ESN Models . . 109

E. Six-step-ahead Prediction . . . . . . . . . . . . . . . . . . 112

1. Prediction of I-VOPs . . . . . . . . . . . . . . . . . . 112

a. Six-step-ahead Prediction Using ARX Models . . 112

b. Six-step-ahead Prediction Using ESN Models . . . 112

2. Prediction of Moving Average of VOPs . . . . . . . . 118

a. Six-step-ahead Prediction Using AR Models . . . 118

b. Six-step-ahead Prediction Using ARX Models . . 120

c. Six-step-ahead Prediction Using FMLP Models . 124

d. Six-step-ahead Prediction Using RMLP Models . 127

e. Six-step-ahead Prediction Using ESN Models . . . 130

F. Ten-step-ahead Prediction . . . . . . . . . . . . . . . . . . 133

1. Prediction of I-VOPs . . . . . . . . . . . . . . . . . . 133

a. Ten-step-ahead Prediction Using ARX Models . . 133

b. Ten-step-ahead Prediction Using ESN Models . . 133

2. Prediction of Moving Average of VOPs . . . . . . . . 139

a. Ten-step-ahead Prediction Using AR Models . . . 139

b. Ten-step-ahead Prediction Using ARX Models . . 141

c. Ten-step-ahead Prediction Using FMLP Models . 145

d. Ten-step-ahead Prediction Using RMLP Models . 148

e. Ten-step-ahead Prediction Using ESN Models . . 150

G. Chapter Summary . . . . . . . . . . . . . . . . . . . . . . 154

VI SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . 155

A. Comparison of the Models . . . . . . . . . . . . . . . . . . 155

1. Single-step-ahead Prediction Models . . . . . . . . . . 155

a. Prediction Models for I-VOPs . . . . . . . . . . . 155

b. Prediction Models for Moving Average . . . . . . 157



x

 Page

2. Two-step-ahead Prediction Models . . . . . . . . . . . 160

a. Prediction Models for I-VOPs . . . . . . . . . . . 160

b. Prediction Models for Moving Average . . . . . . 160

3. Four-step-ahead Prediction Models . . . . . . . . . . . 164

a. Prediction Models for I-VOPs . . . . . . . . . . . 164

b. Prediction Models for Moving Average . . . . . . 166

4. Six-step-ahead Prediction Models . . . . . . . . . . . . 169

a. Prediction Models for I-VOPs . . . . . . . . . . . 169

b. Prediction Models for Moving Average . . . . . . 171

5. Ten-step-ahead Prediction Models . . . . . . . . . . . 173

a. Prediction Models for I-VOPs . . . . . . . . . . . 173

b. Prediction Models for Moving Average . . . . . . 175

B. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 177

C. Recommendations for Future Work . . . . . . . . . . . . . 178

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185



xi

LIST OF TABLES

TABLE Page

I VOP statistics of MPEG-4 traces . . . . . . . . . . . . . . . . . . . 45

II Peak/mean and mean bit rate (MBR) of MPEG traces . . . . . . . 45

III Performance metrics of the I-VOP for SSP for ARX models . . . . . 64

IV Performance metrics of the I-VOP for SSP for ESN models . . . . . 67

V Performance metrics of the SSP for AR models . . . . . . . . . . . . 70

VI Performance metrics of the SSP for ARX models . . . . . . . . . . . 73

VII Performance metrics of the SSP for ESN models . . . . . . . . . . . 76

VIII Performance metrics of the I-VOP for the two-SP for ARX models . 79

IX Performance metrics of the I-VOP for the two-SP for ESN models . 81

X Performance metrics of the two-SP for AR models . . . . . . . . . . 85

XI Performance metrics of the two-SP for ARX models . . . . . . . . . 87

XII Performance metrics of the two-SP for FMLP models . . . . . . . . 90

XIII Performance metrics of the two-SP for ESN models . . . . . . . . . 93

XIV Performance metrics of the I-VOP for the four-SP for ARX models . 97

XV Performance metrics of the I-VOP for the four-SP for ESN models . 99

XVI Performance metrics of the four-SP for AR models . . . . . . . . . . 103

XVII Performance metrics of the four-SP for ARX models . . . . . . . . . 105

XVIII Performance metrics of the four-SP for FMLP models . . . . . . . . 108

XIX Performance metrics of the four-SP for ESN models . . . . . . . . . 111



xii

TABLE Page

XX Performance metrics of the I-VOP for the six-SP for ARX models . 115

XXI Performance metrics of the I-VOP for the six-SP for ESN models . . 117

XXII Performance metrics of the six-SP for AR models . . . . . . . . . . . 121

XXIII Performance metrics of the six-SP for ARX models . . . . . . . . . . 123

XXIV Performance metrics of the six-SP for FMLP models . . . . . . . . . 126

XXV Performance metrics of the six-SP for RMLP models . . . . . . . . . 129

XXVI Performance metrics of the six-SP for ESN models . . . . . . . . . . 132

XXVII Performance metrics of the I-VOP for the ten-SP for ARX models . 136

XXVIII Performance metrics of the I-VOP for the ten-SP for ESN models . 138

XXIX Performance metrics of the ten-SP for AR models . . . . . . . . . . 142

XXX Performance metrics of the ten-SP for ARX models . . . . . . . . . 144

XXXI Performance metrics of the ten-SP for FMLP models . . . . . . . . . 147

XXXII Performance metrics of the ten-SP for RMLP models . . . . . . . . 151

XXXIII Performance metrics of the ten-SP for ESN models . . . . . . . . . . 153

XXXIV MSE of the single-step-ahead prediction of I-VOPs . . . . . . . . . . 156

XXXV MSE of single-step-ahead prediction for all models . . . . . . . . . . 158

XXXVI MSE of the two-step-ahead prediction of I-VOPs . . . . . . . . . . . 161

XXXVII MSE of the two-step-ahead prediction for all models . . . . . . . . . 162

XXXVIII MSE of the four-step-ahead prediction of I-VOPs . . . . . . . . . . . 165

XXXIX MSE of the four-step-ahead prediction for all models . . . . . . . . . 167

XL MSE of the six-step-ahead prediction of I-VOPs . . . . . . . . . . . 169

XLI MSE of the six-step-ahead prediction for all models . . . . . . . . . 171



xiii

TABLE Page

XLII MSE of the ten-step-ahead prediction of I-VOPs . . . . . . . . . . . 173

XLIII MSE of the ten-step-ahead prediction for all models . . . . . . . . . 175



xiv

LIST OF FIGURES

FIGURE Page

1 Block diagram of the predictive control scheme. . . . . . . . . . . . . 3

2 Spatially scalable encoder for a single enhancement layer [Ref. 2,

p. 208]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Schematic diagram of the FMLP network. . . . . . . . . . . . . . . . 30

4 Schematic diagram of the RMLP network. . . . . . . . . . . . . . . . 31

5 Single-step-ahead predictor [Ref. 34, p. 44]. . . . . . . . . . . . . . . 33

6 Multi-step-ahead predictor [Ref. 34, p. 44]. . . . . . . . . . . . . . . 35

7 Autocorrelation of VOPs of Aladdin, ARD Talk, Die Hard III,

and Jurassic Park. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8 Autocorrelation of VOPs of Lecture Room, Silence of the Lambs,

Skiing, and StarWars. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

9 Autocorrelation of the moving average or mean VOPs of Aladdin,

ARD Talk, Die Hard III, and Jurassic Park. . . . . . . . . . . . . . . 50

10 Autocorrelation of the moving average or mean VOPs of Lecture

Room, Silence of the Lambs, Skiing, and StarWars. . . . . . . . . . . 51

11 Moving average time-series of Aladdin. . . . . . . . . . . . . . . . . . 52

12 Moving average time-series of ARD Talk. . . . . . . . . . . . . . . . . 52

13 Moving average time-series of Die Hard III. . . . . . . . . . . . . . . 53

14 Moving average time-series of Jurassic Park. . . . . . . . . . . . . . . 53

15 Moving average time-series of Lecture Room. . . . . . . . . . . . . . . 54

16 Moving average time-series of Silence of the Lambs. . . . . . . . . . . 54



xv

FIGURE Page

17 Moving average time-series of Skiing. . . . . . . . . . . . . . . . . . . 55

18 Moving average time-series of StarWars. . . . . . . . . . . . . . . . . 55

19 SSP sizes of the I-VOPs of Aladdin using ARX models. . . . . . . . 62

20 SSP errors of I-VOP sizes of Aladdin using ARX models. . . . . . . 62

21 SSP sizes of the I-VOPs of StarWars using ARX models. . . . . . . 63

22 SSP errors of I-VOP sizes of StarWars using ARX models. . . . . . 63

23 SSP sizes of the I-VOPs of Aladdin using ESN models. . . . . . . . 65

24 SSP errors of I-VOP sizes of Aladdin using ESN models. . . . . . . 65

25 SSP sizes of the I-VOPs of StarWars using ESN models. . . . . . . 66

26 SSP errors of I-VOP sizes of StarWars using ESN models. . . . . . 66

27 SSP sizes of the moving average VOPs of Aladdin using AR mod-

els. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

28 SSP errors of moving average VOP sizes of Aladdin using AR

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

29 SSP sizes of the moving average VOPs of StarWars using AR

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

30 SSP errors of moving average VOP sizes of StarWars using AR

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

31 SSP sizes of the moving average VOPs of Aladdin using ARX

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

32 SSP errors of moving average VOP sizes of Aladdin using ARX

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

33 SSP sizes of the moving average VOPs of StarWars using ARX

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



xvi

FIGURE Page

34 SSP errors of moving average VOP sizes of StarWars using ARX

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

35 SSP sizes of the moving average VOPs of Aladdin using ESN

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

36 SSP errors of moving average VOP sizes of Aladdin using ESN

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

37 SSP sizes of the moving average VOPs of StarWars using ESN

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

38 SSP errors of moving average VOP sizes of StarWars using ESN

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

39 Two-SP sizes of the I-VOPs of Aladdin using ARX models. . . . . . 77

40 Two-SP errors of I-VOP sizes of Aladdin using ARX models. . . . . 77

41 Two-SP sizes of the I-VOPs of StarWars using ARX models. . . . . 78

42 Two-SP errors of I-VOP sizes of StarWars using ARX models. . . . 78

43 Two-SP sizes of the I-VOPs of Aladdin using ESN models. . . . . . 79

44 Two-SP errors of I-VOP sizes of Aladdin using ESN models. . . . . 80

45 Two-SP sizes of the I-VOPs of StarWars using ESN models. . . . . 80

46 Two-SP errors of I-VOP sizes of StarWars using ESN models. . . . 81

47 Two-SP sizes of the moving average VOPs of Aladdin using AR

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

48 Two-SP errors of moving average VOP sizes of Aladdin using AR

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

49 Two-SP sizes of the moving average VOPs of StarWars using AR

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

50 Two-SP errors of moving average VOP sizes of StarWars using

AR models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



xvii

FIGURE Page

51 Two-SP sizes of the moving average VOPs of Aladdin using ARX

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

52 Two-SP errors of moving average VOP sizes of Aladdin using ARX

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

53 Two-SP sizes of the moving average VOPs of StarWars using

ARX models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

54 Two-SP errors of moving average VOP sizes of StarWars using

ARX models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

55 Two-SP sizes of the moving average VOPs of Aladdin using FMLP

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

56 Two-SP errors of moving average VOP sizes of Aladdin using

FMLP models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

57 Two-SP sizes of the moving average VOPs of StarWars using

FMLP models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

58 Two-SP errors of moving average VOP sizes of StarWars using

FMLP models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

59 Two-SP sizes of the moving average VOPs of Aladdin using ESN

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

60 Two-SP errors of moving average VOP sizes of Aladdin using ESN

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

61 Two-SP sizes of the moving average VOPs of StarWars using ESN

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

62 Two-SP errors of moving average VOP sizes of StarWars using

ESN models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

63 Four-SP sizes of the I-VOPs of Aladdin using ARX models. . . . . . 95

64 Four-SP errors of I-VOP sizes of Aladdin using ARX models. . . . . 95

65 Four-SP sizes of the I-VOPs of StarWars using ARX models. . . . . 96



xviii

FIGURE Page

66 Four-SP errors of I-VOP sizes of StarWars using ARX models. . . . 96

67 Four-SP sizes of the I-VOPs of Aladdin using ESN models. . . . . . 97

68 Four-SP errors of I-VOP sizes of Aladdin using ESN models. . . . . 98

69 Four-SP sizes of the I-VOPs of StarWars using ESN models. . . . . 98

70 Four-SP errors of I-VOP sizes of StarWars using ESN models. . . . 99

71 Four-SP sizes of the moving average VOPs of Aladdin using AR

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

72 Four-SP errors of moving average VOP sizes of Aladdin using AR

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

73 Four-SP sizes of the moving average VOPs of StarWars using AR

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

74 Four-SP errors of moving average VOP sizes of StarWars using

AR models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

75 Four-SP sizes of the moving average VOPs of Aladdin using ARX

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

76 Four-SP errors of moving average VOP sizes of Aladdin using

ARX models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

77 Four-SP sizes of the moving average VOPs of StarWars using

ARX models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

78 Four-SP errors of moving average VOP sizes of StarWars using

ARX models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

79 Four-SP sizes of the moving average VOPs of Aladdin using FMLP

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

80 Four-SP errors of moving average VOP sizes of Aladdin using

FMLP models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

81 Four-SP sizes of the moving average VOPs of StarWars using

FMLP models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



xix

FIGURE Page

82 Four-SP errors of moving average VOP sizes of StarWars using

FMLP models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

83 Four-SP sizes of the moving average VOPs of Aladdin using ESN

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

84 Four-SP errors of moving average VOP sizes of Aladdin using ESN

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

85 Four-SP sizes of the moving average VOPs of StarWars using ESN

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

86 Four-SP errors of moving average VOP sizes of StarWars using

ESN models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

87 Six-SP sizes of the I-VOPs of Aladdin using ARX models. . . . . . . 113

88 Six-SP errors of I-VOP sizes of Aladdin using ARX models. . . . . . 113

89 Six-SP sizes of the I-VOPs of StarWars using ARX models. . . . . . 114

90 Six-SP errors of I-VOP sizes of StarWars using ARX models. . . . . 114

91 Six-SP sizes of the I-VOPs of Aladdin using ESN models. . . . . . . 115

92 Six-SP errors of I-VOP sizes of Aladdin using ESN models. . . . . . 116

93 Six-SP sizes of the I-VOPs of StarWars using ESN models. . . . . . 116

94 Six-SP errors of I-VOP sizes of StarWars using ESN models. . . . . 117

95 Six-SP sizes of the moving average VOPs of Aladdin using AR

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

96 Six-SP errors of moving average VOP sizes of Aladdin using AR

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

97 Six-SP sizes of the moving average VOPs of StarWars using AR

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

98 Six-SP errors of moving average VOP sizes of StarWars using AR

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



xx

FIGURE Page

99 Six-SP sizes of the moving average VOPs of Aladdin using ARX

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

100 Six-SP errors of moving average VOP sizes of Aladdin using ARX

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

101 Six-SP sizes of the moving average VOPs of StarWars using ARX

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

102 Six-SP errors of moving average VOP sizes of StarWars using

ARX models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

103 Six-SP sizes of the moving average VOPs of Aladdin using FMLP

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

104 Six-SP errors of moving average VOP sizes of Aladdin using FMLP

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

105 Six-SP sizes of the moving average VOPs of StarWars using FMLP

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

106 Six-SP errors of moving average VOP sizes of StarWars using

FMLP models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

107 Six-SP sizes of the moving average VOPs of Aladdin using RMLP

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

108 Six-SP errors of moving average VOP sizes of Aladdin using RMLP

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

109 Six-SP sizes of the moving average VOPs of StarWars using RMLP

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

110 Six-SP errors of moving average VOP sizes of StarWars using

RMLP models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

111 Six-SP sizes of the moving average VOPs of Aladdin using ESN

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

112 Six-SP errors of moving average VOP sizes of Aladdin using ESN

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



xxi

FIGURE Page

113 Six-SP sizes of the moving average VOPs of StarWars using ESN

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

114 Six-SP errors of moving average VOP sizes of StarWars using

ESN models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

115 Ten-SP sizes of the I-VOPs of Aladdin using ARX models. . . . . . 134

116 Ten-SP errors of I-VOP sizes of Aladdin using ARX models. . . . . 134

117 Ten-SP sizes of the I-VOPs of StarWars using ARX models. . . . . 135

118 Ten-SP errors of I-VOP sizes of StarWars using ARX models. . . . 135

119 Ten-SP sizes of the I-VOPs of Aladdin using ESN models. . . . . . . 136

120 Ten-SP errors of I-VOP sizes of Aladdin using ESN models. . . . . . 137

121 Ten-SP sizes of the I-VOPs of StarWars using ESN models. . . . . . 137

122 Ten-SP errors of I-VOP sizes of StarWars using ESN models. . . . . 138

123 Ten-SP sizes of the moving average VOPs of Aladdin using AR

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

124 Ten-SP errors of moving average VOP sizes of Aladdin using AR

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

125 Ten-SP sizes of the moving average VOPs of StarWars using AR

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

126 Ten-SP errors of moving average VOP sizes of StarWars using

AR models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

127 Ten-SP sizes of the moving average VOPs of Aladdin using ARX

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

128 Ten-SP errors of moving average VOP sizes of Aladdin using ARX

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

129 Ten-SP sizes of the moving average VOPs of StarWars using ARX

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143



xxii

FIGURE Page

130 Ten-SP errors of moving average VOP sizes of StarWars using

ARX models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

131 Ten-SP sizes of the moving average VOPs of Aladdin using FMLP

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

132 Ten-SP errors of moving average VOP sizes of Aladdin using

FMLP models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

133 Ten-SP sizes of the moving average VOPs of StarWars using

FMLP models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

134 Ten-SP errors of moving average VOP sizes of StarWars using

FMLP models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

135 Ten-SP sizes of the moving average VOPs of Aladdin using RMLP

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

136 Ten-SP errors of moving average VOP sizes of Aladdin using

RMLP models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

137 Ten-SP sizes of the moving average VOPs of StarWars using

RMLP models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

138 Ten-SP errors of moving average VOP sizes of StarWarsusing

RMLP models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

139 Ten-SP sizes of the moving average VOPs of Aladdin using ESN

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

140 Ten-SP errors of moving average VOP sizes of Aladdin using ESN

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

141 Ten-SP sizes of the moving average VOPs of StarWars using ESN

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

142 Ten-SP errors of moving average VOP sizes of StarWars using

ESN models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

143 SSP sizes of the I-VOPs of Aladdin. . . . . . . . . . . . . . . . . . . . 156

144 SSP sizes of the I-VOPs of StarWars. . . . . . . . . . . . . . . . . . . 157



xxiii

FIGURE Page

145 SSP sizes of the moving average VOPs of Aladdin for all models. . . 158

146 SSP sizes of the moving average VOPs of StarWars for all models. . 159

147 Two-SP sizes of the I-VOPs of Aladdin. . . . . . . . . . . . . . . . . 161

148 Two-SP sizes of the I-VOPs of StarWars. . . . . . . . . . . . . . . . 162

149 Two-SP sizes of the moving average VOPs of Aladdin for all mod-

els. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

150 Two-SP sizes of the moving average VOPs of StarWars for all

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

151 Four-SP sizes of the I-VOPs of Aladdin. . . . . . . . . . . . . . . . . 165

152 Four-SP sizes of the I-VOPs of StarWars. . . . . . . . . . . . . . . . 166

153 Four-SP sizes of the moving average VOPs of Aladdin for all mod-

els. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

154 Four-SP sizes of the moving average VOPs of StarWars for all

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

155 Six-SP sizes of the I-VOPs of Aladdin. . . . . . . . . . . . . . . . . . 170

156 Six-SP sizes of the I-VOPs of StarWars. . . . . . . . . . . . . . . . . 170

157 Six-SP sizes of the moving average VOPs of Aladdin for all models. 172

158 Six-SP sizes of the moving average VOPs of StarWars for all mod-

els. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

159 Ten-SP sizes of the I-VOPs of Aladdin. . . . . . . . . . . . . . . . . . 174

160 Ten-SP sizes of the I-VOPs of StarWars. . . . . . . . . . . . . . . . . 174

161 Ten-SP sizes of the moving average VOPs of Aladdin for all mod-

els. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

162 Ten-SP sizes of the moving average VOPs of StarWars for all

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176



1

CHAPTER I

INTRODUCTION

In the present age the Internet has emerged as the primary source for information

exchange around the world. It has come a long way since the time of its introduction

as a network connecting different sections of the United States Department of Defense.

Today, nearly all organizations, irrespective of whether they are academic, business

or any other, use the Internet to send and receive information. Along with that, the

Internet has also become a major source of entertainment. It is because of this fact

that in the near future the audio-visual media will form the majority of the traffic

transferred over the internet.

A video is a set of images shown at a certain specified speed. The encoder encodes

these images into a bit stream. The server transmits these bits over the Internet to

the client. The client’s side decoder decodes the bits and regenerates the images. The

images are then displayed to the user at a predetermined rate [1]. The encoding of

audio is done in a similar fashion.

A. Motivation

The motivation of this research comes from the problem of dynamic bandwidth allo-

cation of encoded real-time multimedia streams over wide area networks. The impor-

tance of the problem of dynamic allocation of network resources has attracted a large

number of researchers. The need of dynamic bandwidth allocation arises because not

all users of the network require the same bandwidth. If the available bandwidth is

allocated equally among the end users, irrespective of the utilization statistics, much

The journal model is IEEE Transactions on Automatic Control.



2

of the bandwidth goes unused and hence gets wasted. Since all network users do not

send and receive data over the network at the same time, it does not make sense to

provide then with equal resources at a given time. Thus a regulated dynamic band-

width allocation scheme will increase the efficiency of network resource utilization.

This scheme will also ease network congestion. In order to regulate the bandwidth

allocation among network end users dynamically, it is necessary to predict the traffic

generated by end users. Since multimedia traffic will form a majority of the total net-

work traffic, a scheme for the prediction of traffic generated by source of multimedia

streams will significantly aid in design of an efficient dynamic bandwidth allocation.

An important fact to keep in mind is that most of the multimedia applications

over the network are time sensitive. When a real-time multimedia application sends

time dependent information over the network, if some of the packets are delayed or

get lost in the network, it could lead to a significant deterioration in the quality of the

video as seen by the end user at the receiver side. This decline in quality might not be

acceptable for the application. The quality of the multimedia stream as perceived by

the end user is very sensitive to network congestion. One popular method to improve

the quality of real time multimedia applications over the Internet is to have a receiver

side buffer. The decoder at the receiver side does not start the playback until the

receiver buffer is filled up to a certain specified level. This scheme tries to provide

uninterrupted multimedia packets to the decoder in the correct sequence. It also tries

to maintain the quality of the video. But this scheme fails to provide acceptable

quality for a live broadcast over the Internet.

Lately, a lot of work is being done to develop a controller on the source side that

can control the flow of multimedia packets over the Internet. This controller along

with the existing schemes at the receiver side will try to provide better video quality

to the end user. One of the important inputs to this controller will be the prediction
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of the traffic generated by multimedia sources. This predicted traffic combined with

other inputs will assist the controller to vary the send-rate and packet sizes of the

multimedia stream over the networks. Figure 1 shows the block diagram of the

scheme. The scope of this work is limited to the design of the predictor.

Fig. 1. Block diagram of the predictive control scheme.

B. MPEG Standards

The most widely used video format is the MPEG, which stands for Motion Pictures

Experts Group. MPEG has its own standards which dictate the encoding and de-

coding of audio-visual/multimedia data. Many video standards have been released

since the time MPEG was first introduced. The first of these standards MPEG-1,

was a protocol to encode/decode the media which could be transferred over the T1

lines and could be played on a CD–ROM. This standard was designed for a bit rate

of about 1.5 Mbits/sec. MPEG dictates the rules which are used to encode the media
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files. These rules define the syntax in which the media bit streams must be encoded

in order to be compliant with the decoder [2]. The encoder for MPEG-1 is much more

complex than the decoder. Therefore it can be used with a large number of decoders.

Next MPEG-2 was developed which unlike MPEG-1 had tools for interlace, scalable

syntax and a range of profiles to include a wide range of applications.

MPEG-4 is the next in the series of MPEG standards. MPEG-1 and MPEG-2

mainly address compression of audio and video, focusing much less on communication

and transport issues. MPEG-4, in addition to improved audio and video compres-

sion, also enables interactive presentations. MPEG still continues to upgrade its

standards with the newer versions being MPEG-7 which addresses content descrip-

tion and indexing, and MPEG-21 which focuses on content management, protection

and transactions [3]. The most widely used format at present is the MPEG-4, which

is the reason for focusing the present research on this standard.

C. Literature Review

A significant amount of literature has been devoted for the analysis of video source

traffic in the past. Most of the work is related to the derivation of the statistical

source models. These statistical models are primarily autoregressive models. They

are tested by matching model parameters against the real data statistics. The paper

by Bae and Suda [4] is a good survey of such video models.

Frost and Melamed [5] review a few commonly used traffic models for the purpose

of simulation. The traffic models which they discuss are generalized in nature and

in some cases fail to represent the dynamics of multimedia streams over high-speed

transport networks like ATM. A survey of models based on Poisson and Bernoulli pro-

cesses along with fluid, autoregressive, and self-similar traffic models is also presented
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in [5].

Krunz and Hughes [6] describe the statistical behavior of the VBR streams using

histograms and autocorrelation functions. Their algorithm determines the instants of

a scene change based on the changes in the size of successive I− frames. The length

of the scene is modeled by a geometric distribution. Lognormal distributions with

varying µ and σ were used to model the size of I−, P−, and B−frames separately

in a video stream coded using MPEG. The parameters of the proposed models were

obtained by matching some statistical characteristics of an actual video sequence and

the model under consideration.

Heyman, and Lakshman [7] propose a model for video conferences, based on three

parameters – mean, variance of the bit rate and the correlation of the number of bits

in adjacent frames. They follow a modeling strategy that first identifies scene changes

and then constructs different models for changing lengths of the scenes and number

of cells in a scene change frame. Finally, models for the number of cells per frame for

frames within scenes are developed. The decision to identify scene changes are taken

after it is found that scene changes precipitate spikes in the bit rate and these spikes

are the dominant cause of cell losses. Scaled second order difference of the frame

sizes is used to identify the scene changes. Gamma, Weibull and Generalized Pareto

distributions are selected as candidates for describing scene lengths and scene-change

frames.

Wang, Jung, and Meditch [8] propose a VBR broadcast video traffic modeling

technique based on wavelet decomposition approach. Their method decomposes video

traffic into two parts via wavelet transformation, and models each part separately.

In the first part, they attempt to capture the long-term trend of the traffic. This

part is modeled by an Auto-Regressive (AR) process. In the second part, classified by

vector quantization, they address the short-term behavior of the video traffic. This
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part preserves the periodic coding structure in traffic data and provides an unified

approach for frame and slice level traffic modeling.

Rožić and Vojnović [9] present an extensive statistical analysis of a 2 hour long

MPEG empirical trace. The model proposed in this paper is based on a statistical

decomposition procedure. Each of the components are modeled by an Autoregressive

Integrated Moving Average (ARIMA) process. This model also incorporates the effect

of scene changes. Due to strong evidence of seasonal and trend components, the video

stream is decomposed into three components: seasonal, trend, and stochastic. The

seasonal component is included into overall model as a deterministic process with a

period of length 12.

Krunz and Tripathi [10] present a comprehensive model for variable-bit-rate video

streams. The model proposed by them captures long-term variations by incorporating

scene changes, detected by the fluctuations of I−frames. The size of I−frames is

modeled as the sum of two random components: a scene-related component and an

AR component that accounts for the fluctuations in the scene. Two other random

processes are used to model the sizes of P− and B−frames. Liu, Sara, and Sun

[11] extend the work of Krunz and Tripathi to come up with a model that captures

the autocorrelation structure between the sizes of frames by using two second order

Auto-Regressive (AR) processes nested within each other.

To estimate a model of video traffic in a more efficient manner, Krunz and

Makowski [12] suggest a compromise between Markovian and Long Range Dependent

(LRD) models. They argue that the autocorrelation function ρ(k)(k = 0, 1, . . .) of

a compressed video sequence is better captured by ρ(k) = e−β
√

k than by ρ(k) =

k−β = e−βlogk (long range dependence) or ρ(k) = e−βk (Markovian). The authors

introduce a video model with the above mentioned correlation structure. This model

is based on M/G/∞ input process. By varying G, many forms of time dependence
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can be displayed. For video traffic, appropriate G is derived according the correlation

function e−β
√

k. This model exhibits short-range dependence.

Feng and Lo [13] present their work on a hierarchical model for MPEG video.

This model represents the bit-rate variations of MPEG video at two different levels:

scene level and frame level. It is believed that scene lengths in MPEG video streams

are uncorrelated. The authors advocate the use of Gamma distribution to represent

the scene length. They concur with other researchers about the distribution of the

scene lengths in MPEG video streams. They endorse the fact that the scene length

is dependent on the motion content of the video scene. In this paper, the authors

present three autoregressive models, one each for I−, P−,and B−frames.

Chiruvolu et al. [14] derive a modulating Markov chain model. Each state in

the model represents the I−, B−, P−frames of a Group of Pictures (GOP). Based

on the average number of bits generated during the scenes, they can be classified into

high- and low-activity scenes. An auxiliary Markov chain models the scene activity.

Transitions of the auxiliary Markov chain represent scene changes of a video sequence.

The bit generation during low-activity scene is modeled by independent AR processes

each for I−, P−, B−frames.

Liu, Ansari, and Shi [15] propose Markov modulated self-similar processes to

model MPEG video sequences. These processes are able to capture Long Range

Dependency (LRD) characteristics of video Auto-Correlation Function (ACF). Like

previous research papers dealing with the same modeling processes, they decompose

an MPEG compressed video sequence into three parts according to different mo-

tion/change complexity and model them individually by a self-similar process.

Manzoni, Cremonesi, and Serazzi [16] model the I−frame sequence only. They

argue that I−frame sequence captures the dynamic characteristics of video traffic at

higher granularity and the decisions based on I−frame size values are also valid for P−
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and B−frames. They characterize a Frame Size Sequence (FSS) by a tuple of eight

variables. They use multivariate analysis to identify the parameters corresponding to

the eight variables. This technique is used for static characterization of VBR streams.

Dynamic characterization is also performed on the video streams. The research paper

also describes some of the forecasting models developed after performing the required

analysis.

A survey of traffic characteristics of multiplexed VBR MPEG-1 encoded video

sources transmitted over ATM B-ISDN networks is done by Doulamis et al. [17].

After analyzing the results obtained from the survey, they propose some traffic models.

Their work concentrates on three layers: the frame layer, GOP layer, and Intermediate

layer. In the first layer, the aggregate MPEG-1 stream, which constitutes the frame-

layer signal is examined, and a correlated AR model of high order is introduced to

estimate the network resources. Reduction of the required parameter is achieved by

analyzing the MPEG-1 video sources at a higher layer (GOP layer). In order to

maintain accurate approximation of the MPEG-1 traffic behavior and simultaneously

reduce the number of required parameters, an intermediate layer, which efficiently

combines properties of other layers is introduced.

Chandra and Reibman [18] explain how a traffic model can incorporate features

and changes in the encoding process and correspondingly influence the network per-

formance while simultaneously matching the statistical descriptors of the measured

data. Markov chain model discussed in [18] is accurate enough to model video of vary-

ing activity levels. The model derived in this paper concentrates on I− and P−frames

only. From the state space representation of video frame rates, frames can be divided

into three regions: PP−frames that are self-similar in nature, PI−frames that man-

age the periodic transition from P−frames to the next I−frame, and IP−frames that

manage the transition from I−frame to the subsequent P−frames. Frames in the PP
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region of the state-space are segmented into K states for better characterization of

Short Range Dependency (SRD) among them. This segmentation is carried out using

K-means cluster detection algorithm [19]. A Markov chain with K states is used to

model the transitions between the states. A first order autoregressive model is used

to represent the observed correlation structure. The single layer model is adapted in

a suitable manner to model a two-layer video source.

He et al. [20] study the statistical model of MPEG video over wireless networks.

A real-time MPEG video traffic workload was generated and transmitted over a wire-

less network. The model parameters of I−, P− and B−frames were measured before

and after wireless transmission. The parameters associated with the model remained

virtually unchanged irrespective of the kind of errors that were introduced within the

network.

Adas [21] proposes the use of an adaptive linear predictor for the GOP size

prediction. The paper claims that the order of the adaptive linear predictor is small

(12 or less) and that it does not increase with the size of variable bit rate (VBR) video

traffic trace. A study of the performance of dynamically allocating bandwidth based

on linear prediction using Renegotiated Constant Bit Rate (RCBR) service model is

presented. The author advocates the use of normalized least mean square (NLMS)

algorithm instead of least mean square (LMS) for adaptation. A k−step–ahead linear

predictor is given by

x̂(n + k) =
p−1∑

l=0

ω(l)x(n − l) (1.1)

where ω(l), for l = 0, 1, ..., p − 1 are prediction filter coefficients. Adas proposes the

following NLMS update equation:

ω(n + 1) = ω(n) +
µe(n)x(n)

||x(n)||2
(1.2)
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The use of NLMS makes the adaptation less sensitive to the step size µ. These

modifications are used to develop a scheme to predict the next GOP size.

Yoo [22] develops an adaptive traffic prediction scheme for VBR MPEG videos

that includes an analysis of the effects of scene changes and traffic variations on the

prediction errors. The research paper only provides a methodology to predict the sizes

of I− and P−frames and ignores the prediction of B−frames. The author contends

that a dynamic resource allocation method for networks is required. A dynamic

approach uses a real-time measurement to adaptively determine the bandwidth share

for each user. With dynamic resource allocation, a high network utilization can be

achieved without any prior knowledge of the video traffic. Yoo selects an adaptive

time domain prediction using the LMS algorithm. This scheme does not require any

prior knowledge of the video statistics. It also does not assume the contents to be

stationary. A pth-order, 1 -step linear predictor is described by equation 1.3. It uses

the linear combination of the current and previous values of X(n). Wn is the time

varying coefficient vector that minimizes the mean square error.

x̂(n + 1) =
p∑

l=0

ωn(l)x(n − l) = W T
n X(n) (1.3)

The author also proposes algorithms for the prediction of the I− and P−frames in

his work. The research paper also contains a prediction scheme for multiplexed video

streams. Multiplexed video streams have completely different statistical properties in

comparison to single stream.

Chodorek and Chodorek [23] develop a linear predictor of the MPEG video traffic

based on partitioning of the phase space into sub-regions. Phase-space trajectory

describes the temporal evolution of the state of the analyzed system. They can

be treated as geometrical illustration of the dynamic information contained in the

measured signal. For many systems, points plotted in the phase space are collected
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in clusters. The geometrical properties of the clusters provide information about the

global state of the system. The central task of the phase space analysis of the MPEG

video traffic is estimation of embedding parameters. These parameters define the

trajectories of the series in an m-dimensional phase space. In the research paper [24],

Chodorek proposes the use of six different linear regressive models for predicting the

frame size time-series. These models are implemented one at a time depending on

the type of the frame(I, B or P).

While a majority of the literature on modeling of MPEG video source traffic

advocate the use stochastic models based on autoregressive modeling techniques, re-

searchers have also used non-linear modeling tools such as neural networks to model

MPEG video source traffic. Though the simplicity of autoregressive models make

them the obvious choice, the thrust behind the use of neural networks is their ca-

pability to model inherent non-linear dynamics of the complex systems. Tarraf et

al. [25] propose an approach to characterize and model multimedia traffic in ATM

networks using Neural Networks (NNs). They make use of a multilayer perceptron

neural network to predict the statistical variations of i-th packet arrival process re-

sulting from the superposition of N packetized video and M packetized audio sources.

They show that NNs can be successfully utilized to characterize various aspects of

multimedia traffic prediction.

Moh et al. [26] adopt a neural network methodology to predict VBR traffic

represented by a continuous autoregressive (AR) Markov model. They suggest a

1 − 5 − 1 perceptron neural network model for prediction of VBR traffic. Based

on the predictions obtained from the neural network, they also propose a dynamic

bandwidth allocation scheme for ATM networks.

Chang and Hu [27] investigate the application of a Pipelined Recurrent Neural

Network (PRNN) to the adaptive traffic prediction of MPEG video signal over dy-
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namic ATM networks. A general Nonlinear Autoregressive Moving Average (NARMA)

process characterizes the traffic signal of each picture type (I, P, and B) of MPEG

video. A mean-squared error predictor based on NARMA model is developed to

provide the best prediction for the video traffic signal.

Two research papers presented by Doulamis, Doulamis, and Kollias [28] and [29]

investigate neural networks for non-linear online traffic prediction of VBR MPEG

coded video sources. In these papers [28] and [29], Doulamis et al. develop three

Non-linear Autoregressive Models (NAR) to model the aggregate MPEG-2 video se-

quence, each of which corresponds to one of the three types of frames (I−, P−,

and B−frames). The optimal mean-squared error predictor of the NAR model is

implemented using a feed-forward neural network with a Tapped Delay Line (TDL)

filter. A new algorithm handles the significant effect of correlation among I−, P−

and B−frames on the estimation of network resources. A new mechanism is proposed

to improve the modeling accuracy based on a generalized regression neural network.

Bhattacharya et al. [30] proposes a novel approach to model I−, B− and

P−frames separately using neural networks. In the past researchers have developed

predictors for the frame sizes. In this paper, the authors also develop predictors for

the moving average or mean bit rate. In their research paper, Bhattacharya et al.

[30] go a step further and develop multi-step-ahead predictors for the mean bit rate.

They develop separate predictor for single, two and four-step-ahead predictions us-

ing feed-forward multilayer perceptron (FMLP) and recurrent multilayer preceptron

(RMLP) neural networks. An important concept that they introduce in this paper

is the use of indicators as external inputs. Instead of predicting the mean bit rate

as a time-series, they use indicators, for example the size of the I−frame, which are

derived from the time-series as external inputs. The authors advocate that the use

of these indicators improves the accuracy of the predictors. A 11 − 22 − 1 structure
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FMLP model is suggested for single-step-ahead prediction of the mean bit rate. For

two-step-ahead prediction, the authors suggest an RMLP neural network model with

11−22−1 structure. For four-step-ahead prediction, the authors present a 14−22−1

structure RMLP model. These predictors are tested on a number of MPEG-4 video

traces and are shown to perform consistently for varying video qualities.

The research papers which are most relevant to this research are the ones by Adas

[21], Yoo [22], Doulamis, Doulamis, and Kollias [28] and [29], Chang and Hu [27] and

Bhattacharya et al. [30]. Out of these papers, the first two use linear techniques to

model MPEG-coded video source traffic. The others use neural networks to design

the predictors. All these papers, with the exception of [30], propose single-step-ahead

prediction (SSP) schemes. In the papers [28] and [29], the authors do not show

the prediction errors while performing SSP of different traces. Chang and Hu [27]

do not show results of models being tested on a wide array of video data traces.

Adas also shows the prediction errors for only a few video traces. Yoo presents a

comprehensive prediction of I− and P−frames of a number of video traces. These

traces can be obtained from a public archive [31]. A detailed information about the

prediction errors is presented by Yoo. The paper by Bhattacharya et al. [30] is by

far the most suited reference for this research. In this paper, the authors present SSP

for I−, B− and P−frames separately. They also propose models for prediction of

mean bit rates of MPEG-coded video data traces for up to four-steps-ahead. The

MPEG-coded video traces used in this work can be found at http://www-tkn.ee.tu-

berlin.de/research/trace/trace.html.

The prediction of MPEG-coded video source traffic, as seen from the literature,

has not been very good. This is because the time-series to be predicted has a long-

range time dependency and is extremely noisy and this leads to high prediction errors.

Additionally, most of the models proposed by the researchers involve designing of a
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simulator which generates synthetic MPEG data that statistically matches the real

data. These models can not be implemented online to predict this traffic. In the

past, empirical models have been used to model complex dynamic systems. In this

research, both linear and non-linear techniques of empirical modeling are used to

model the mean bit rate. A comparison of these models based on certain standard

performance metrics is also presented.

D. Research Objectives and Proposed Approach

1. Research Objectives

The objective of this work is to design several multi-step predictors which can be used

to predict the moving average of frame/VOP sizes of an MPEG-coded video trace for

a specified time horizon, using different methods and compare the results. In order

to predict the source traffic of any encoded movie irrespective of the quantization

parameters, the designed predictor needs to be robust and capture the dynamics

of the MPEG encoding process as much as possible. If predicted accurately, this

information can be used by a source controller for dynamic bandwidth allocation and

congestion control. This controller would regulate the rate at which source traffic is

entering the network. The objective of this controller will be to maintain the QoS,

irrespective of the delay variations over the network. This will be done in conjunction

with admission control. For a connection on the Internet, the round trip time (RTT)

between the source and the destination can be up to a few seconds. Thus it may take

some time for the controller to receive network information in order to implement

the control. In order to compensate for the dead-time of the controller, one must

predict the source traffic a few seconds ahead in time. Thus the need for multi-step-

ahead prediction. This work focuses only on the prediction of the MPEG-coded video
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source. The design of the relevant source controller is not within the scope of this

research.

2. Proposed Approach

The MPEG-coded video stream data used for the present research is encoded using the

MPEG-4 standard. The encoded data traces have fixed-size GOVs with deterministic,

regular GOV patterns. The temporal dependency of the frame/VOP sizes of the in

an encoded MPEG stream cannot be modeled effectively using statistical techniques

because they fail to predict the source traffic in real-time.

For multi-step-ahead prediction using linear models, the ARX models give best

results. Hence ARX models are used extensively for linear modeling in this work. For

multi-step-ahead prediction using non-linear models, FMLP, RMLP and ESN models

are employed. In case of FMLP and RMLP, the algorithm developed by Parlos, Rais

and Atiya [32] is used. This algorithm has been proven to be very robust for multi-

step-ahead prediction by Bhattacharya et al. [30]. For ESN, the algorithm developed

by Jaeger [33] is used. This algorithm has been successfully used for other time-series

predictions.

E. Contribution

The contributions of the current research work are:

1. Development of multi-step-ahead prediction schemes for predicting MPEG-

coded video source traffic using empirical modeling techniques for up to ten-

steps-ahead.

2. Performance comparison of different linear and non-linear empirical modeling

techniques developed to predict MPEG-coded video source traffic.
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F. Organization of the Thesis

This thesis is divided into six chapters. In Chapter II, a brief introduction to MPEG-

4 video coding standards is presented. The concept of I−, B− and P−VOPs is also

explained in this chapter. Chapter III introduces the linear and non-linear empirical

modeling techniques used in this research. The training algorithms for the non-linear

modeling neural networks are also presented. In Chapter IV, a detailed analysis of

the VOP size time-series is presented. This chapter also explains the need to predict

the moving average of the VOP sizes and presents the mathematical formula used

to calculate the moving average time-series. In Chapter V, the different prediction

models developed in this research are presented. This chapter also presents the re-

sults obtained in the prediction of I-VOPs. The results are tabulated in terms of

the performance metrics which are introduced at the beginning of this chapter. In

Chapter VI, the models developed in this research and the ones published in litera-

ture are compared and conclusions are made based on this comparison. Finally some

recommendations for future work are made.
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CHAPTER II

OVERVIEW OF MPEG-4

MPEG stands for Moving Pictures Experts Group. This group was formed in 1988

under the Joint Committee of ISO (International Standards Organization) and IEC

(International Electrotechnique Commission). Of all the existing MPEG standards,

MPEG-4 is the most widely used standard. This chapter provides a brief overview of

MPEG-4. The description of MPEG-4 which follows is extracted from [1] and [34].

MPEG coding utilizes both the spatial and the temporal redundancy of the video

stream. The concept of video objects and their temporal instances, Video Object

Planes (VOPs), is central to MPEG-4 video. The main objective for the formulation

of MPEG-4 was encoding video and audio at very low rates. Another objective was to

increase error resilience to packet losses. MPEG-4 architecture has made it possible

for the generation of many new types of applications which were not possible in the

earlier versions of MPEG. MPEG-4 was optimized for three bit rate ranges -

1. Below 64 kbits/s

2. 64 kbits/s to 384 kbits/s

3. 384 kbits/s to 4 Mbits/s

Introduction of objects is one of the significant contribution of this standard.

Different parts of the final scene can be coded and transmitted separately as video

objects and audio objects, to be brought together by the decoder. Separation of

objects allows interaction with the objects. This feature is very useful in games and

educational software. The three key characteristics of MPEG-4 streams are:

1. A picture can be separated into different objects. These objects can be en-

coded using different techniques. These object can again be joined to form the
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composite picture by the decoder.

2. The objects of a picture can be either an integral part of the picture or they

might be synthetic like computer generated shapes and captions.

3. Instructions encoded in the bit stream enables several different kinds of presen-

tations of the same bit stream.

A. MPEG-4 Video Hierarchy

The first level of hierarchy in MPEG-4 is based on the objects in the image. Each of

the object in the image is a Visual Object Plane (VOP). Therefore, each object in

the scene is represented by a series of VOPs in time. This is not true for the static

objects in the video images. The static objects can be represented by a single VOP.

A VOP contains texture and shape data associated with the respective object. VOPs

are analogous to frames in the earlier versions of MPEG standards and can be coded

using I-frames or motion compensation techniques.

Next level of hierarchy in the MPEG-4 standard is Group of Video Object Planes

(GOV). They provide points in the bit stream where the VOPs are coded indepen-

dently from each other. Video Object Layer (VOL) is used for providing the facility

of scalable coding of a sequence of VOPs or even GOVs. Scaling might be spatial or

temporal. Multiple VOLs correspond to multiple scaling of a sequence. The decision

on the various aspects of scaling are decided by the availability of resources like band-

width and computational power. Video Object includes all aspects of an object within

its definition. That means it includes all the VOLs associated with an object. Video

Session (VS) is the top video level of MPEG-4 standard. It comprises of all video

objects irrespective of their nature of origin in the scene. As in the earlier versions

of the MPEG standard, encoder syntax must support many coding possibilities. The
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blocks of the images can be coded as either I−, P− or B−VOP.

B. VOP Types in MPEG-4

The VOPs are encoded in three different ways.

1. Intra-coded (I−VOPs): An intra-coded VOP or I−VOP is encoded using only

information from within that VOP. These VOPs are independent of all other

VOPs preceding or succeeding them. The texture values in each macroblock

are Discrete Cosine Transform (DCT) coded. The DCT coefficients are then

quantized and variable-length-coded.

2. Non-intra VOPs (P−VOPs and B−VOPs): Non-intra VOPs use information

from outside the VOP, i.e., from the VOPs that have already been encoded.

In non-intra VOPs, motion-compensated information is used for a macroblock.

This results in less data than directly coding the macroblock. There are two

types of non-intra VOPs - predicted VOPs (P−VOPs) and bidirectional VOPs

(B−VOPs). The first step is to encode the first VOP comprising the clip as an

I−VOP without borrowing any information from any other VOP. This VOP is

sent to the respective decoder. The decoder decodes the VOP and stores the

reconstructed object in the memory. A copy of the encoded VOP is decoded by

the encoder itself and preserved in the memory of the encoder. Technically the

encoded VOP and the actual VOP should be the same but they are not as the

compression involved during encoding is lossy in nature. This I−VOP is going

to be used as a reference for getting B− and P−VOPs. To encode a P−VOP,

each macroblock in the P−VOP will search for a matching macroblock in the

I−VOP decoded by the encoder. In forward predicted VOPs, each macroblock

is predicted from the closest match in the precedent I− (or P−) VOP using
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motion vectors. Residuals of the macroblocks must be considered if they are

not identical. Thus, P−VOPs are predicted from the preceding I−VOPs and

P−VOPs. B−VOPs are encoded by using the information from I−VOPs as

well as P−VOPs. This is known as bidirectional encoding. In B−VOPs each

macroblock is predicted from the preceding I− (or P−) VOP and the succeeding

P− (or I−) VOP. The prediction errors are DCT coded, quantized and variable-

length-coded.

C. Scalability in MPEG-4

MPEG-4 provides both spatial and temporal scalability at the object level. In both

cases this technique is used to generate a base layer, representing the lowest quality to

be supported by the bit stream, and one or more enhancement layers. A single coding

operation may produce all the layers of enhancement. The decision to scale and send

information can be implemented in two ways. When the application in question

knows the bandwidth limitations, versions of the bit stream may be sent across the

network that include only the base layer along with some lower order enhancement

layers. The other way is to send all the layers and let the decoder decide which layer

it wants to accept for display. This decision will depend on the resolution of the

display device or the computational resources of the client machine.

Figure 2 depicts an encoder that implements spatial scalability. The input VOP

is down-converted to a lower resolution that forms the base layer. This layer is

encoded. A decoder constructs the base later VOP as it will appear at the decoder.

This decoded VOP is up-converted to the same resolution as input. A subtraction

process yields the differences from the original image. These residuals are separately

encoded in an enhancement layer encoder. Each stream of encoded VOPs form a
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video object layer. The base layer VOL uses both intra- and intercoding. However,

the enhancement layer uses only predictive coding. The base layer VOPs are used as

references. Temporal scalability is far easier to understand when compared to spatial

Fig. 2. Spatially scalable encoder for a single enhancement layer [Ref. 2, p. 208].

scalability. The stream of incoming VOPs is split. The required number of VOPs is

sent to the base layer encoder and the remainder are sent to one or more enhancement

layers.

D. Visual Profiles of MPEG-4

MPEG-4 provides a structure of profiles and levels for the coding of natural, synthetic,

and synthetic/natural hybrid visual content.

1. Profiles for Natural Video Content

1. Simple Visual Profile - It is used for coding of rectangular video objects, suitable

for applications on mobile networks. This type of coding is very efficient and
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error-resilient.

2. Simple Scalable Visual Profile - This profile supports coding of temporal and

spatial scalable objects to Simple Visual Profile. This is useful for applications

that provide services at more than one level of quality due to bit-rate or decoder

resource limitations.

3. Core Visual Profile - When arbitrary-shaped and temporally scalable objects

need to be coded to Simple Visual Profile, the Core Visual Profile steps in with

the required support. Applications like Internet multimedia applications that

provide simple content interactivity have found this profile very useful.

4. Main Visual Profile - It adds support for coding of interlaced, semi-transparent,

and sprite objects to the Core Visual Profile. This profile is used by applications

that are responsible for entertainment-quality broadcast and DVD applications.

5. N-Bit Visual Profile - Many applications require their video objects to have

pixel depths ranging from 4 to 12 bits. These objects need to be coded to the

Core Visual profile. N−Bit Visual Profile provides the necessary support to

accomplish this.

6. Advanced Real-Time Simple Profile - Real time coding applications like video-

phone, teleconferencing, and remote observation need far more error resilient

coding techniques of rectangular video objects. The coded objects should have

better temporal resolution stability with low buffering delay. This profile pro-

vides the support for achieving the above mentioned objectives.

7. Core Scalable Profile - It adds support for coding of temporal and spatial scal-

able arbitrarily shaped objects to the Core Profile. The main functionality of
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this profile is object based SNR and spatial/temporal scalability for regions or

objects of interest.

8. Advanced Coding Efficiency - This profile improves the coding efficiency for both

rectangular and arbitrary shaped objects. It is suitable for applications such as

mobile broadcast reception, acquisition of image sequences (camcorders), and

other applications where high coding efficiency is requested.

2. Profiles for Synthetic and Synthetic/Natural Video Content

1. Simple Facial Animation Visual Profile - It helps to animate a facial model.

2. Scalable Texture Visual Profile - Some applications need multiple scalability

levels. This profile provides spatial scalable coding of still image objects useful

for applications like mapping texture onto objects in games.

3. Basic Animated 2 − D Texture Visual Profile - This profile provides spatial

scalability, SNR scalability, and mesh-based animation for still image objects.

4. Hybrid Visual Profile - This profile combines the ability to decode arbitrary-

shaped and temporally scalable natural video objects with the ability to decode

several synthetic and hybrid objects, including simple face and animated still

image objects. It is suitable for various content rich multimedia applications.

5. Advanced Scalable Texture Profile - Applications that require fast random ac-

cess along with multiple scalability levels and arbitrary shaped coding of still

objects require many extra features. Decoding of arbitrary shaped texture and

still images including shape coding, wavelet tiling, and error resilience are few

of these features. This profile helps to support all these extra features.
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6. Advanced Core Profile - It combines the ability to decode arbitrary shaped video

objects with the ability to decode arbitrary shaped scalable still image objects.

It is suitable for various content-rich multimedia applications.

7. Simple Face and Body Animation Profile - This profile is a superset of the

Simple Face Animation profile with body animation.

E. Scene Modeling and Interactivity

MPEG-4 can handle multiple video objects. These objects can be transmitted inde-

pendently. The can be arranged together in the prescribed fashion at the decoder.

MPEG-4 can also handle audio objects similarly. BInary Format for Scenes (BIFS)

is the language that describes how objects should be brought together at the de-

coder to form a complete scene. BIFS is based on Virtual Reality Modeling Language

(VRML) with extensions that provide simpler constructs for 2 − D objects and co-

ordinate spaces. BIFS provides a hierarchical or tree structure where objects may

be combined into groups. Individual objects may be Manipulated within a group. If

necessary, a whole group can be manipulated. Nodes of the tree may be added or

removed any time.

Each object and each group has a local coordinate that describes its location

spatially as well as temporally. All these local coordinates are related to a set of

global coordinates describing the scene. BIFS data is sent in a separate stream or

multiplexed with video or audio sessions.

MPEG-4 is designed for use in applications where the end-user may interact with

the scenes being played by the multimedia application. The application must have

the ability to change the presentation based upon user requests. For interactivity,

any interactive device like mice, remote control, and keyboard is required to produce
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BIFs commands. These commands are combined with the BIFS content of the master

scene to change the order of objects that are to be decoded by the decoder at the

client side. The decoder need not be aware of the origin of BIFS commands.

F. Chapter Summary

This chapter provides a brief description of MPEG-4 video standards. MPEG-4 is

expected to be the most widely used format for video encoding in the future. The

video traces used in this work are all coded in accordance with the MPEG-4 standards.

As discussed earlier in this chapter, MPEG-4 introduces the concept of object-oriented

encoding of video into VOPs, followed by GOVs, VOLs, and VS subsequently in its

hierarchy. This enables further compression of the video without compromising the

quality. The next chapter provides an overview of the different empirical modeling

techniques that are used in this research.
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CHAPTER III

EMPIRICAL MODELING TECHNIQUES

A. Introduction

The research problem address in this work is the multi-step-ahead prediction of mov-

ing average of VOP size time-series of MPEG-coded video source traffic. In order

to predict future VOP sizes, one needs to model the system which generates these

VOPs. There are two types of models used in system modeling, physical models and

empirical models. In physical models, mathematical expressions are derived which

describe the relation between the input system variables and the output system vari-

ables. On the other hand, empirical models are derived from the observed data of

the system. Empirical models are also called ’black-box’ models. The system models

developed in this research are empirical models.

Empirical models are developed from the observed data of the system under con-

sideration. This type of modeling is necessary in cases where the dynamics of the

system becomes increasingly complex and uncertainties in data limit further math-

ematical analysis. The modeling of the system is crucial for the predictors to give

accurate results. In general, the empirical modeling techniques to be considered in

the research can be categorized as linear techniques and non-linear techniques.

B. Linear Techniques

These techniques assume that the system at hand can be represented using a linear

model. Linear models can be classified into two categories, the input-output models

and state-space models. The input-output models are used to represent the relation

between the system inputs and outputs in the form of a linear regression. The state-
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space models use intermediate states to represent the system. Some commonly used

linear models are Auto Regressive Exogenous (ARX) models, Auto Regressive Mov-

ing Average Exogenous (ARMAX) models, Output Error (OE) models, state-space

models, etc.

In this work, we use input-output models for linear modeling. This is because

the MPEG-coded video bit rate data is in the form of a time-series. Furthermore,

out of the commonly used input-output models, ARX models give best results for the

problem at hand. The following section provides a deeper insight of modeling using

ARX modeling technique.

1. Auto-Regressive Exogenous (ARX) Model Structure

ARX is the simplest of all linear system modeling techniques. The AR in ARX model

denotes the auto-regressive part and X denotes the extra input called exogenous vari-

able. The general Single-Input Single-Output (SISO) ARX model can be represented

by the following equation:

y(t) = a1y(t− 1) + ... + any
y(t− ny) + b1u(t− nk) + ... + bnu

u(t− nk − nu + 1) (3.1)

where y(t) is the output of the ARX model, ny is the number of past outputs also

called as the lag terms of the model, u(t) is the input to the ARX model, nu is

the number of past input lags used in the model and nk is the pure time delay (the

dead time) in the system. The coefficients a1, ..., any
and b1, ..., bnu

are assumed to be

known.

From the SISO ARX model represented in equation 3.1, the single-step-ahead

predictor (SSP), ŷ(t + 1/t), can be represented by the following equation:

ŷ(t+1/t) = a1y(t)+...+any
y(t−ny+1)+b1u(t−nk+1)+...+bnu

u(t−nk−nu+2) (3.2)
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Similarly, the multi-step-ahead predictor (MSP) can be represented by:

ŷ(t + 1/t − p + 1) = a1ŷ(t/t − p + 1) + ... + any
ŷ(t − ny + 1/t − p + 1) + (3.3)

b1u(t − nk + 1) + ... + bnu
u(t − nk − nu + 2)

The above equation represents a p-step-ahead predictor.

2. Auto-Regressive Exogenous Parameter Estimation

The predictor form of the ARX model is discussed in the previous section. The

parameters of the ARX model, a1, ..., any
and b1, ..., bnu

must be determined from the

measurement data, y(t) and u(t). The estimation of these parameters is discussed in

this section. In the matrix form, the ARX predictor can be written as

ŷ(t + 1/t) = ϕT (t + 1)θ (3.4)

where, ϕ(t + 1) = [y(t), ..., y(t − ny + 1), u(t − nk + 1), ..., u(t − nk − nu + 2)]T and

θ = [a1, ..., any
, b1, ..., bnu

]T .

Here, the ARX predictor form is written as a scalar product between the data

vector ϕ(t + 1) and the parameter vector θ. This is in the form of a linear regression

with the parameter vector θ as the regression vector and hence the least square method

can be used to solve for θ.

In order to solve for the parameters of the ARX predictor using least-squares

algorithm, the mean-square of the prediction error, VN(θ, ZN) is defined as

VN(θ, ZN) =
1

N

N∑

t=1

[y(t) − ŷ(t/t − 1; θ)]2 (3.5)

where ZN is the data set of N input-output samples u(t) and y(t) for t = 1, ..., N. The

above equation is also be interpreted as the objective function of the least-squares

problem. The objective function, VN(θ, ZN), is minimized with respect to θ. The
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solution to this least-squares problem is the value of θ̂N that minimizes VN(θ, ZN).

This is given by

θ̂N = [
N∑

t=1

ϕ(t)ϕT (t)]−1
N∑

t=1

ϕ(t)y(t) (3.6)

In case of a time-series there is no exogenous part. Hence in this case the model

becomes an Auto-Regressive (AR) model.

C. Non-linear Techniques

One of the most frequently used tools for non-linear system modeling is a multilayer

perceptron (MLP) neural network. By selecting properly the training sets, which

represent most of the operating conditions of the system, neural networks (NNs)

can be used to model the disturbances as well. The robustness to the uncertainties

of the plant is due to the fact that these are empirical models that do not require

specific system parameters. The use of NNs for modeling therefore helps in generating

predictions of outputs, that are insensitive to disturbances. The description of the

NNs which follows is extracted from [34].

A NN has multiple interconnected processing elements grouped into layers. Each

layer has several nodes. The inputs to one node in a layer are the outputs of all other

nodes in the previous layer. The nodes algebraically sum these weighted signals

and pass them through a nonlinear squashing function to produce a net output. The

function is usually a sigmoid function or a hyperbolic tangent. Based on the structure

of the network or the way the nodes are interconnected, there are two broad categories

of NNs; the feed-forward multi-layer perceptron (FMLP) and the recurrent multi-layer

perceptron (RMLP). FMLP is different from RMLP in the sense that there is no cross

talk between the nodes of a given layer. Figure 3 and Figure 4 show the structure of an
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FMLP and an RMLP network respectively. Each layer in a multilayer neural network

Feedforward
Links

Hidden
Layer

Hidden
Layer

Output
Layer

Input
Layer

Fig. 3. Schematic diagram of the FMLP network.

has its own specific function. The input layer accepts input signals from the outside

world and redistributes these signals to all neurons in the hidden layer. The input

layer rarely includes computing neurons, and thus does not process input patterns.

The output layer accepts output signals, a stimulus pattern, from the hidden layer

and establishes the output pattern of the entire network. Any continuous function

can be expressed with one hidden layer. Two hidden layers can predict discontinuous

functions too.

1. FMLP Networks

FMLP is a static NN, and in the NN literature such networks are called feed-forward

or non-recurrent. The network is composed of an input layer, a series of hidden layers

and an output layer. In this network, the signals from each node are transmitted

to all the nodes in the next layer, and only the hidden layers have a sigmoid-type
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Fig. 4. Schematic diagram of the RMLP network.

discriminatory function. In this work, a hyperbolic tangent has been used as the

discriminatory function. The input and the output layers have linear discriminatory

functions and the input layer has no biases. FMLPs with appropriate signals in the

input layer are good at approximating static nonlinearities, i.e. memory-less nonlinear

functions. Each of the processing elements of an FMLP network is governed by the

following equation:

x[l,i] = σ[l,i]

(N[l−1]∑

j=1

w[l−1,j][l,i] x[l−1,j] + b[l,i]

)
, (3.7)

for i = 1, . . . , N[l] (the node index), and l = 1, . . . ,L (the layer index), where x[l,i] is

the ith node output of the lth layer for sample t, w[l−1,j][l,i] is the weight, the adjustable

parameter, connecting the jth node of the (l − 1)th layer to the ith node of the lth

layer, b[l,i] is the bias, also an adjustable parameter, of the ith node in the lth layer,

and σ[l,i](·) is the discriminatory function of the i-th node in the l-th layer.
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2. RMLP Networks

In RMLP networks, the cross talk adds memory to the network. Therefore, RMLP

can be used for approximating dynamic systems. Each of the processing elements of

the RMLP is governed by the following equations:

z[l,i](t) =

N[l]∑

j=1

w[l,j][l,i] x[l,j](t − 1) +

N[l−1]∑

j=1

w[l−1,j][l,i] x[l−1,j](t) + b[l,i], (3.8)

and

x[l,i](t) = σ[l,i]

(
z[l,i](t)

)
, (3.9)

where z[l,i](t) represents the internal state variable of the ith node at the lth layer

for sample t; x[l,i](t) is the ith node output of the lth layer for sample t, and b[l,i] is

the bias of the node ; w[l,j][l′,i] is the weight associated with the link between the jth

node of the lth layer to the ith node of the l′th layer. Furthermore, t represents the

discrete-time at which the node and network outputs are computed, with the node

index i = 1, . . . , N[l], and layer index l = 1, . . . , L, and with the σ[l,i](·) for the input

and output layers (l = 1 and l = L) being linear. The function σ[l,i](·) for the hidden-

layer nodes is a squashing function and in this study tanh(·) is used. The term b[l,i]

provides the bias for each node.

D. Predictor Algorithms Using NNs

1. Single-Step-Ahead Prediction

Figure 5 shows the schematic of a SSP predictor. In SSP, the predictions for the

output of the system at time t+1 are obtained using all the inputs and outputs

available up to time t. In case of a nonlinear system, the SSP of the system output,
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Fig. 5. Single-step-ahead predictor [Ref. 34, p. 44].

ŷ(t + 1|t), is expressed as

ŷi(t + 1|t) = fi(U(t)), i = 1, . . . , n, (3.10)

where

U(t) ≡ [y(t), . . . , y(t − ny + 1), u(t), . . . , u(t − nu + 1)], (3.11)

The SSP and MSP representations for the FMLP network as shown in [35] is given

in the following sub sections.

a. SSP with FMLP Networks

FMLP networks in SSP form represents a static set-up without recurrence. The

single-step-ahead prediction scheme using FMLP networks can be represented as

ŷNN(t + 1|t;W) = F
(
U(t);W

)
, (3.12)

where W is weight matrix which is to be determined by the learning algorithm, F

represents the nonlinear transformation of the input, and the vector is defined as

U(t) ≡ [y(t), . . . ,y(t − ny + 1),u(t), . . . ,u(t − nu + 1)] (3.13)
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where y(t) is the measured system outputs, ŷ(· | ·) is the system output predictions,

u(t) is the inputs, ny and nu are the maximum number of lags in the output and

input, respectively.

b. SSP with RMLP Networks

RMLP networks can be used for SSP. The single-step-ahead prediction scheme using

RMLP networks can be represented as

ŷNN(t + 1|t;W) = F(U(t), z[2](t), . . . , z[L−1](t);W), (3.14)

where W is weight matrix to be determined by the learning algorithm, F represents

the nonlinear transformation from the inputs and internal states to the outputs, z[l](t)

is the internal state vector of the lth layer, and L is the total number of layers. RMLP

in SSP form represents a static network with inherent recurrence.

2. Multi-Step-Ahead Prediction

Figure 6 shows the schematic of a MSP predictor. In MSP predictions of the output

at time t+1 is obtained using the inputs or their estimates up to time t and all the

past predictions up to time t which are generated using the measurements up to time

t-p+1, where p is greater than 1. The MSP of a nonlinear dynamic system output,

ŷ(t + 1|t − p + 1), is expressed as:

ŷi(t + 1|t − p + 1) = fi(Û(t)), i = 1, . . . , n, (3.15)

where

Û(t) ≡ [ŷ(t|t − p + 1), . . . , ŷ(t − ny + 1|t − p + 1), u(t), . . . , u(t − nu + 1)], (3.16)
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Fig. 6. Multi-step-ahead predictor [Ref. 34, p. 44].

where y(t) is the system outputs, u(t) is the inputs, ny and nu are the maximum

number of lags in the output and input, respectively, and fi(·) is a nonlinear function

that best describes the model. If the inputs u(t) for t > t − p + 1 are not available,

best estimates of these quantities can be used instead. The MSP representations for

FMLP and RMLP networks as shown in [35] is given in the following sub sections.

a. MSP with FMLP Networks

FMLP networks can be used for MSP. A MSP using FMLP can be represented by

the following equation:

ŷNN(t + 1|t − p + 1;W) = F
(
Û(t);W

)
, (3.17)

where W is weight matrix which is to be determined by the learning algorithm, F

represents the nonlinear transformation of the input, and the vector is defined as

Û(t) ≡ [ŷ(t|t − p + 1), . . . , ŷ(t − ny + 1|t − p + 1),u(t), . . . ,u(t − nu + 1)], (3.18)
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where ŷ(· | ·) is the system output predictions, u(t) is the inputs, ny and nu are the

maximum number of lags in the output and input, respectively. An FMLP network

in MSP form represents a dynamic system without recurrence.

b. MSP with RMLP Networks

MSP using RMLP represents a dynamic network. The following equation describes

a MSP with RMLP network

ŷNN(t + 1|t − p + 1;W) = F(Û(t), z[2](t), . . . , z[L−1](t);W), (3.19)

where W is weight matrix to be determined by the learning algorithm, F represents

the nonlinear transformation from the inputs and internal states to the outputs, z[l](t)

is the internal state vector of the lth layer, and L is the total number of layers. An

RMLP network in MSP form represents a dynamic system with recurrence.

E. Learning Algorithms in Neuro-predictors

Learning refers to adjusting the weights and biases so that the resulting network

best approximates the relationship between the input-output data. Back Propagation

(BP) algorithm is most commonly used algorithm for training perceptrons like FMLP.

The learning methods used for RMLPs is slightly different due to the cross-talk.

1. Learning Algorithm for FMLP Networks

Back Propagation (BP) algorithm is most commonly used algorithm for training

perceptrons like FMLP Let us consider a three-layer network with x[1,1], . . . , x[1,N[1]]

as inputs and ŷ[1], . . . , ŷ[N[L]] as outputs to explain the algorithm of training FMLP

networks for single-step-ahead prediction. N[l] is the number of nodes in layer l and
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the output layer is represented using the notation L. Input signals, are propagated

through the network from left to right. The symbol w[i,j][m,n] denotes the weight

for the connection between neuron j of layer i and neuron n of layer m. Error is

propagated from the output layer to the hidden layer. The error signal at the output

of FMLP network at iteration k is defined by

E(k) =

N[L]∑

j=1

(x[L,n](k) − yn(k))2 (3.20)

where, x[L,n](k)≡ŷn(k) and yn(k) denote the n − th network output (prediction) and

observed process output (measurement) respectively. Weight w[L−1,j][L,n] is updated

using a very straightforward procedure, as follows:

w[L−1,j][L,n](k + 1) = w[L−1,j][L,n](k) + ∆w[L−1,j][L,n](k) (3.21)

where ∆w[L−1,j][L,n](k) is the weight correction. The weight correction in the multi-

layer network is computed by:

∆w[L−1,j][L,n](k) = α×ŷn(k)×δ[L,n](k) (3.22)

where δ[L,n](k) is the error gradient at neuron n in the output layer at iteration k. To

calculate the weight correction for the hidden layer, the following equation is used:

∆w[1,i][L−1,j](k) = α×x[1,i](k) × δ[L−1,j](k) (3.23)

where δ[L−1,j](k) represents the error gradient at neuron j of layer L−1 (hidden layer).

For more information on the BP algorithm refer to [36] and [37]. In this thesis, this

algorithm is referred as the FMLP algorithm.
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2. Learning Algorithm for RMLP Networks

In this research we use two RMLP learning algorithms. The first learning algorithm

of SSP using RMLP networks has been discussed in detail by Parlos, Chong, and

Atiya [38]. A RMLP network can be used for both on-line as well as off-line training.

During the off-line training, a set of K pairs of input-output data is presented to the

neural network. After some fixed period of iterations the neural network reproduces

the results of input-output data set within a certain degree of error tolerance. The

network weights are updated using the steepest descent approach:

∆w[l−1,j][l,i] = −η
K∑

k=1

(
∂E(k)

∂w[l−1,j][l,i]

) (3.24)

where η is the learning rate, and E(k) is the squared error at time step k, given by

E(k) =

N[L]∑

j=1

(x[L,j](k) − yj(k))2 (3.25)

where, x[L,j](k)≡ŷj(k) and yj(k) denote the j − th network output (prediction) and

observed process output (measurement). For recurrent and cross-talk weights, as well

as for the bias terms, a similar update rule is used [38].

When using NNs as MSPs, these networks need to be trained using data sets

obtained under different operating conditions. Training requires a target value to

be given to the network to update it parameters. If latest measurements are used

as inputs to the NN, the approach is referred to as teacher forcing(TF), if the past

predictions are used as inputs, it is called Global Feedback (GF). Hence TF is used

for SSP and GF is used for MSP.

The learning algorithm for a RMLP structure with TF is based on gradient

descent method and minimizes the Mean Squared Error (MSE) between the outputs

predicted by the predictor and the measured values. In other words, the objective is
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to determine the change in the network parameters w[l−1,i][l,j], w[l,i][l,j] and b[l,i], for all

i, j and l, such that the following function is minimized:

E ≡
1

2

NP−1∑

t=0

E(t + 1) ≡
1

2

NP∑

t=1

N[L]∑

j=1

[ŷNN,j(t + 1|t) − yj(t + 1)]2 , (3.26)

where NP is the total number of data pairs in the estimation data set. The learning

algorithm for RMLP with GF is also a gradient descent method. It is slightly more

complicated due to dependency of the gradient on the previous values. The objective

function being minimized is as follows;

E ≡
1

2

NP−1∑

t=0

E(t + 1) ≡
1

2

NP∑

t=0

N[L]∑

j=1

[ŷNN,j(t + 1|t=0) − yj(t + 1)]2 , (3.27)

where, ŷNN,j(t+1|t=0) is the recursively predicted NN output, for t = 0, . . . , (NP−1),

and yj(t + 1) is the jth target (sensed output) in the training set. Training refers to

establishing the structure of the network along with the weights and biases, that

result in a minimum error for the predicted outputs. The mathematical equations

representing the learning algorithm for RMLP networks are too complex and numer-

ous to be listed in this thesis. Parlos, Rais, and Atiya [32] provide a mathematically

rigorous explanation of the learning algorithms for MSP using RMLP networks. In

this thesis, this algorithm is referred as the RMLP algorithm.

The second RMLP learning algorithm used in this research is discussed in de-

tail by Jaeger in [33]. This NNs trained using this algorithm are called Echo State

Networks (ESNs). ESNs look at the RMLP networks from a new angle. ESN has

an input layer, output layer and a bunch of neurons forming the hidden layer which

is also called as the Dynamic Reservoir (DR). Large recurrent neural networks are

interpreted as ’reservoirs’ capable of storing complex, excitable dynamics. The out-

put units can be considered as the outlets from these reservoirs. The key idea which

differentiates ESNs from the conventional recurrent neural networks is that during
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training, only the weights from the network to the outputs are updated. Other net-

work weights once initialized do not change during the course of the training.

Let us consider a network with K inputs, N internal nodes and L outputs.

Activation of inputs units is u(t) = (u1(t), ..., uK(t)), of internal nodes is x(t) =

(x1(t), ..., xN(t)) and of output nodes is y(t) = (y1(t), ..., yL(t)), where t represents

the time step. The internal nodes are updated using:

x(t + 1) = f(W inu(t + 1) + Wx(t) + Wbacky(t)) (3.28)

where W in is an N×K input weight matrix, W is an N×N internal weight matrix,

Wback is a N×L back weight matrix and f is the squashing function for the internal

nodes. These three weight matrices are generated randomly and are not updated

during the course of training. The prediction is done using the equation:

ŷNN(t + 1/t;Wout) = f out(Wout(u(t + 1), x(t + 1), y(t))) (3.29)

where Wout is a L×(K + N + L) output weight matrix and f out is the squashing

function for the output nodes. The training of ESN means the calculation of Wout

matrix. It is done using the TF technique. The weights matrices are generated

randomly and the network is allowed to run for the training data. The states of the

network while training are stored in a (T×(K + N + L)) size matrix (M), where T

is the length of the training data set. The teacher forced output, i.e. (f out)−1y(t) is

stored in a T×L size matrix T . The mean squared error at the output of ESN is

defined by

MSE =
1

t

t∑

i=1

(d(i) −Wout(x(i), u(i), y(i − 1))2 (3.30)

where the signal d is the teacher forced output. The output weight matrix Wout is
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given by the equation

(W out)T = (M)−1T (3.31)

Further details on the ESN can be obtained from [33]. In this thesis, this algorithm

is referred as the ESN algorithm.

F. Chapter Summary

The empirical modeling techniques used in this work are: ARX for linear modeling

and FMLP, RMLP and ESN for non-linear modeling. In the past, researchers have

used both linear and non-linear (mainly NNs) techniques to model MPEG-coded video

source traffic. In this work, all the above mentioned empirical modeling techniques

are used to develop multi-step-ahead predictors for the MPEG-coded video traces.

The next chapter provides an insight on the video data traces used in this work.

The statistical properties of these video traces is presented. The next chapter also

highlights the temporal properties of these traces and presents the moving average

calculations.
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CHAPTER IV

ANALYSIS OF MPEG-4 VIDEO TRACES

Before getting into the modeling of MPEG-coded video source traffic, it is impor-

tant to analyze the traffic data traces. In the past, researchers have used statistical

parameters to describe the characteristics of video source traffic. In this chapter, a

brief description of the data traces is provided. The video traces used in this research

were obtained from [39]. This public archive has a very good collection of MPEG-4

and H.263 video traces. This internet site is maintained by the Telecommunication

Networks Group of the Technical University of Berlin.

A. Generation of Video Data Traces

The procedure that was followed to generate the video trace data is explained in

detail in [40]. A brief description of this procedure is presented in the following lines.

The video was played from VHS tapes using an ordinary video cassette recorder.

Uncompressed YUV information of each video was grabbed using the tool bttvgrab

(version 0.15.10) [41] at a frame rate of 25 frames/sec in the QCIF format. The

luminance resolution was 176×144 picture elements (pels) and 4:1:1 chrominance

subsampling at a color depth of 8 bits. This information was stored on a disk. The

stored YUV frame sequences were used as input for both the MPEG-4 encoder and

the H.263 encoder. The encoding was not performed in real-time. All the traces used

in this research were generated using this procedure.
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B. MPEG-4 Video Data Traces

The repository in [39] has a large number of video traces ranging from very high

quality to a very low quality. The traces also cover a large range of bit rates. Each

video trace has been coded using three different quantization schemes. Depending on

the level of quantization, encoded sequences have been categorized into high, medium

and low quality. For this work, eight different video data traces were selected. These

are the same traces as used in [30]. Following is a description of the data traces used

in this research as presented in [34].

1. Aladdin (High Quality): Aladdin is an animated movie with lot of special effects.

It has lot of scenes that change quite frequently. Most of the initial training of

the neural networks described later in the current research have been performed

using the trace of Aladdin.

2. ARD Talk Show (High Quality): A talk show does not involve rapid scene

changes. A video trace of a talk show like ARD Talk is necessary to demonstrate

the efficacy of generalized model of video source traffic. ARD Talk helps in

simulating dynamics of video footage of a typical video conference. A very

significant scope of the present research is in the field of video conferences.

3. Die Hard III (Medium Quality): Die Hard III trace has been encoded with

medium quality. It belongs to the genre of action movies.

4. Jurassic Park I(High Quality): Jurassic Park I belongs to the genre of action

and drama movies. It contains a lot of computer generated special effects. The

model of the video traffic should be able to take care of the dynamics arising

out of high content of special effects.
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5. Lecture Room (Medium Quality): The trace of the Lecture Room encoded with

medium quality will be used to demonstrate the effectiveness of the designed

predictor to predict the traffic due to applications like video conference. It has

no special effects and relatively less scene changes.

6. Silence of the Lambs (Low Quality): All the above sequences belong to either

high quality or medium quality encoding. The devised model of video source

traffic should be able to model the dynamics of any type of video footage irre-

spective of the encoding parameters. Silence of the Lambs provides the trace

to validate the generated model in the case of different quantization parameter

used during encoding.

7. Skiing (Low Quality): A sports clipping with fast movements and encoded with

low quality effectively encompasses different kinds of data that will be used for

validating the performance of the designed prediction scheme.

8. StarWars (High Quality): The action sequences of StarWars provide a challenge

for modeling of VOP sizes accurately. Any model of the video source traffic

should be able to predict the size of the VOPs of Star Wars.

C. Statistical Analysis of MPEG-4 Traces

The statistics of all the frames/VOPs of the traces selected for this work is given in

Table I and Table II. It can be seen from the ratio of peak to mean bit rate that

all the MPEG-4 traces have a variable bit rate. Additionally the bit rates of video

traces used varies from 0.06 to 0.77 Mbps. This shows that the video traces used

in this work cover a sufficiently large range of bit rates. Comparing the statistics of

the trace of movies encoded with different qualities, it can be safely assumed that
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Table I. VOP statistics of MPEG-4 traces

Trace Compr. Ratio Mean Var CoV(Sx/X)

(Y UV : MP4) X (KB) (KB)2

Aladdin 17.5 2.2 3.0 0.8

ARD Talk 13.9 2.7 3.0 0.6

Die Hard III 30.8 1.2 1.1 0.8

Jurassic Park I 9.9 3.8 5.1 0.6

Lecture Room 131.7 0.3 0.2 1.6

Silence of the Lambs 72.0 0.5 0.8 1.7

Skiing 40.6 0.9 1.1 1.1

StarWars 27.6 1.4 0.8 0.7

Table II. Peak/mean and mean bit rate (MBR) of MPEG traces

Trace Peak/Mean(Xmax/X) MBR(Mbps)

Aladdin 7.1 0.44

ARD Talk 5.7 0.54

Die Hard III 6.6 0.25

Jurassic Park I 4.4 0.77

Lecture Room 11.9 0.06

Silence of the Lambs 21.4 0.11

Skiing 9.8 0.19

StarWars 6.8 0.28
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the dynamics of all the traces broadly covers the entire range of activities that are

captured using a video camera. It is this assumption that is used to generalize the

results obtained in this work to all MPEG-coded video data traces.

D. Long Term Dependency of the VOPs
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Fig. 7. Autocorrelation of VOPs of Aladdin, ARD Talk, Die Hard III, and Jurassic

Park.

Figures 7 and 8 plot the autocorrelation functions of the VOPs for the video

traces used in this research.
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Study of the autocorrelation plots of the VOPs for different video traces provide

useful insight into the nature of the data that is to be predicted. The rate at which

the autocorrelation falls with increase in the lags is an indication of the long-range

time dependency.
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Fig. 8. Autocorrelation of VOPs of Lecture Room, Silence of the Lambs, Skiing, and

StarWars.

It can be seen from the figures that the autocorrelation of these video traces is

significantly high even after 20 lags. Because of this slowly decaying slope, it can

be concluded that these video traces have a long-term temporal dependency. This is
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true in general for all the MPEG-coded video data traces.

The plots of the combined VOPs size autocorrelation functions in 7 and 8 also

demonstrate a periodic spike pattern. This pattern is because of the repetitive GOV

pattern of the data traces. The large positive spikes occur due to the I−VOPs. The

B−VOPs are the reason behind the negative spikes. The P−VOPs also cause positive

spikes but the magnitude of these spikes is much less than the ones caused due to the

I−VOPs.

After looking at the definition of the I−, B− and P− VOPs, one is tempted to

assume that the size of the I− VOPs is always larger than the associated P− and

B− VOPs. But this is not always the case. For videos with a high scene change rate,

the size of P− VOPs can exceed that of the neighboring I− VOPs. This was found

to be true in the case of the Jurassic Park video data trace used in this research.

E. Moving Average Time-series of VOP Sizes of Video Data Traces

It can be concluded from the available in the field of prediction of MPEG-coded video

source traffic [30], that the multi-step-ahead predictions of individual VOP sizes has

not been very successful. The errors in these predictions are significantly high making

them unsuitable for further use. This is because the original time-series is extremely

noisy. One way to solve this problem of excessive noise is to smooth the time-series

by taking the moving average of original VOP sizes to generate a mean VOP size

time-series.

The thrust behind this research work is the need to use the video coded time-

series prediction as an input to a controller that controls the send rate of the MPEG-

encoded video stream packets over the network in real-time. This controller would

send periodic control signals and hence would work in discrete time.
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The videos used in this work are encoded at a rate of 25 frames/sec. So if one

is able to predict the size of every frame with reasonable accuracy, it would require a

control signal every 40 ms. This would require a large bandwidth and would amount

to an increase in the cost due to the control effort. In order to keep the cost down, one

should have a low bandwidth and large control effort. Therefore, instead of using the

prediction of each and every VOP size as an input to the controller, one can use the

prediction of the moving average of the combined VOP size time-series. Moreover,

since the prediction of individual VOP sizes is not very accurate, it would be better

to work with an accurate multi-step-ahead prediction of the smoothed time-series.

An important thing to keep in mind is that the multi-step-ahead predictor is de-

signed to facilitate the controller to achieve as efficient bandwidth allocation scheme.

In case of multimedia networks, if the network receives the traffic from the output of

the encoder, it is necessary to have the size of each VOP in the time-series. But when

the controller is implemented between the encoder and the network, the bandwidth

control scheme will depend on the controller output and not the encoder output. In

this case, one no longer needs to predict each and every VOP size. In order to have a

low cost control effort, the moving average time-series is used. This will work fine as

long as the sampling frequency of the controller output is equal or higher than that

of the input signal.

The bit rate of the time-series can be calculated using the equation:

X(k) =
f

w

l+w−1∑

j=l

x(j) (4.1)

where l = 1, p, 2p, 3p, ..., np, such that np ≤ M , p is the period of shifting of window

and p ≤ w, M is the total number of VOPs in the series, f is frames per second,

X(k) is the k-th moving average of VOP source traffic rate in bytes/sec, and x(j) is

the j-th size of original VOP series. For this work, we predict the mean VOP size
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which is given by the equation

xMA(k) =
1

w

l+w−1∑

j=l

x(j) (4.2)

where xMA(k) is the k-th moving average or the mean VOP size in bytes. For this

work, w and p were selected to be 25 and 12 respectively.
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Fig. 9. Autocorrelation of the moving average or mean VOPs of Aladdin, ARD Talk,

Die Hard III, and Jurassic Park.

Figures 9 and 10 present the autocorrelation functions of the moving average or

mean VOP size time-series. The value of w = 25 corresponds to a time-frame of 1
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sec.

It can be seen from the figures that the autocorrelation does not fall significantly

after 20 lags, as in the case of the original VOP size time-series.
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Fig. 10. Autocorrelation of the moving average or mean VOPs of Lecture Room, Silence

of the Lambs, Skiing, and StarWars.

Figures 11 to 18 show the plots of the averaged time-series. The original time-

series is shown in discrete points.
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Fig. 11. Moving average time-series of Aladdin.
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Fig. 12. Moving average time-series of ARD Talk.
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Fig. 13. Moving average time-series of Die Hard III.
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Fig. 14. Moving average time-series of Jurassic Park.
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Fig. 15. Moving average time-series of Lecture Room.
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Fig. 16. Moving average time-series of Silence of the Lambs.
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Fig. 17. Moving average time-series of Skiing.
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Fig. 18. Moving average time-series of StarWars.
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F. Chapter Summary

This chapter provides a detailed analysis of the different video traces that are used

in this work. Because these video traces cover a reasonably broad range of bit rates,

the results of this analysis can be generalized to all MPEG-coded video data traces.

The key properties of these video traces that concern this research are:

1. These traces show a significant long-range temporal dependency.

2. The time-series is extremely noisy.

It is because of these two properties that the prediction of this time-series is very

difficult. One way to get across this problem it to predict the moving average of the

VOP sizes instead of the original VOP sizes. In this work, the moving average is used

because of two reasons:

1. The prediction of individual VOP sizes is not accurate.

2. Even in predicted accurately, the use of individual VOP size time-series as input

to the source traffic controller will substantially increase the cost of the control

effort.

In the following chapters, a detailed description of the predictors developed in

this work is presented and their performance is analyzed.
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CHAPTER V

PREDICTION OF MPEG-CODED VIDEO TRACES

In this chapter, the various predictor models developed in this research are presented.

These models are developed using the empirical modeling techniques introduced in

the earlier chapters. But first the definition and description of the terms, parameters

and processes used in this research are presented.

A. Definitions and Descriptions

1. Performance Metrics

Here we define the performance metrics used to compare the performance of the differ-

ent models developed in this research. Three types of errors were used as performance

metric for the prediction schemes developed in this work. Let xMA denote the mov-

ing average time-series which is to be predicted. The three performance metric are

defined as:

1. Mean Square Error (MSE): MSE is the ratio between the sum of the square

of the prediction error and the sum of the square of the input data. It is

represented by the following equation:

MSE =

∑N
j=1(xMA(j) − x̂MA(j))2

∑N
j=1 xMA(j)2

× 100 (5.1)

where N is the length of the moving average time-series, xMA is the actual size

of the j-th element of the moving average time-series and x̂MA is the prediction

of the j-th element. MSE is a indicator of the overall quality of the prediction.

2. Maximum Absolute Error (MAE): MAE is the maximum error between the

actual moving average of the VOP sizes and the predicted moving average of
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the VOP sizes. It is given by the following equation:

MAE = max
1≤j≤N

|xMA(j) − x̂MA(j)| (5.2)

MAE is the maximum prediction error and provides the information about the

worst case of failure of the prediction model.

3. Maximum Relative Error (MRE): MRE is the maximum of the ratio between

the prediction error and the actual input data and is given by the equation:

MRE = max
1≤j≤N

|xMA(j) − x̂MA(j)|

|xMA(j)|
(5.3)

MRE is a measure of the relative comparison between the prediction error and

the corresponding actual moving average value of the VOP size.

2. External Indicators

The present research deals with the prediction of a moving average time-series. But

research has shown that the use of some external indicators along with the time-series,

as inputs to the model improves the prediction process. For the problem at hand,

the indicators identified by Bhattacharya et al. [30] have shown to provide significant

improvement in the prediction of the moving average when the FMLP/RMLP algo-

rithm is used. Since each video is coded differently, these indicators provide a deeper

insight of the coding process. For example a large variation in the size of the I−VOPs

is an indication of scene change. In the case of the moving average, a large variation

of I−VOP size might not be noticed because of the averaging and hence the scene

change might not be identified. Thus using the I−VOP size as an external indicator

can improve the results. What follows next is the description of the indicators used

in this research.
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1. Size of the I−VOPs: For the video traces used in this work, each moving

window (w = 25) has three I−VOPs. For the k-th moving average value, the

three I−VOPs are denoted by I1(k), I2(k) and I3(k) respectively.

I︸︷︷︸
I3(k)

BBPBBPBBPBB I︸︷︷︸
I2(k)

BBPBBPBBPBB I︸︷︷︸
I1(k)

︸ ︷︷ ︸
xMA(k)

(5.4)

2. First order difference of the moving average δxMA: This parameter is an indi-

cation of the gradient of the values represented by the moving average and is

defined by:

δxMA(k) = xMA(k) − xMA(k − 1) (5.5)

3. Second order difference of the moving average ∆xMA: This parameter provides

knowledge about the direction of change in the gradient of the data points in

the moving average time-series and is defined by:

∆xMA(k) = δxMA(k) − δxMA(k − 1)

⇒ ∆xMA(k) = [xMA(k) − xMA(k − 1)] − [xMA(k − 1) − xMA(k − 2)]

⇒ ∆xMA(k) = xMA(k) − 2xMA(k − 1) + xMA(k − 2) (5.6)

3. Scaling of the Data

For the purpose of non-linear modeling using NNs, the input data must be scaled

to lie within certain bounds. The scaling of input data is a very important aspect

of training the network. In order to prevent the saturation of nodes in NNs, the

input data is forced to lie between −0.5 and 0.5. The activation function used in the
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development of NNs for this work is of the form:

σ(v) =
(1.0 − eav)

(1.0 + eav)
(5.7)

where a is the slope parameter of the hyperbolic tangent(tanh) function and v is the

internal activity level of a neuron. The values of σ(v) range from −1 to 1. It is this

sigmoid function which is responsible for the saturation of the nodes. The scaling of

the data should be independent of the encoding of the video traces [34]. The scaling

factor is determined using the following equation:

b̂ = α
Bmax

f
(5.8)

where b̂ is the scaling factor, Bmax is the maximum of the Mean Bit Rate of the

video traces used in this research, f is the frames rate in frames/sec and α is the

multiplicative factor determined by the size of the maximum of the moving average

of the VOP sizes in comparison with mean. The selection of α should be such that it

takes care of the entire range of bit rates of the MPEG-coded videos for which this

predictor is used.

4. Post Processing

For the non-linear models that were developed in this research, it was observed that

the predicted data could capture the trends of the moving average time-series to

some extent, but there was a significant offset from the original time-series. It was

found to be true for all non-linear models irrespective of the algorithm used. The

tweaking of modeling parameters also did not help. Therefore, the post processing

scheme developed in [34] was used. In this scheme, the average of the errors between

the predicted and the actual moving average time-series is added to all the predicted
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outputs. This is given by the following equation:

x̂MA(k|k − p) = x̂∗
MA(k|k − p) +

1

(k − p)

k−p∑

j=1

(xMA(j) − x̂MA(j)) (5.9)

where p is the number of time step predicted ahead in the future, i.e. the prediction

horizon, x̂MA(k|k − p) is the final predicted size of moving average of the VOPs at

time step k after the post processing, x̂∗
MA(k|k − p) is the output from the predictor,

and xMA(j) is the actual size of moving average VOPs at time step j.

B. Single-step-ahead Prediction

1. Prediction of I-VOPs

The single-step-ahead prediction (SSP) of individual I-VOPs means predicting 0.48

seconds ahead. The training was done using the first 1500 points of the I-VOP size

time-series of video trace Aladdin. The next 500 points were used for the validation

of the model. The developed model was then used to generate SSP for the entire

length for all the eight video traces.

a. SSP Using ARX Models

In the design of ARX models, external indicators were used as inputs to the predictor.

The indicators used were I−VOPs, δI, ∆I and the P−VOPs [34]. Figures 19 to 22

show the performance of the designed predictor for a time window of 100 seconds and

errors for the entire lengths of the video traces Aladdin and StarWars respectively.

Table III shows the performance of the ARX predictor for the video traces used

in this research in terms of the three performance metrics.
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Fig. 19. SSP sizes of the I-VOPs of Aladdin using ARX models.
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Fig. 20. SSP errors of I-VOP sizes of Aladdin using ARX models.
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Fig. 21. SSP sizes of the I-VOPs of StarWars using ARX models.
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Fig. 22. SSP errors of I-VOP sizes of StarWars using ARX models.
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Table III. Performance metrics of the I-VOP for SSP for ARX models

Video Trace MSE (%) MAE (in bytes) MRE

Aladdin 3.1 9216.9 16.1

ARD Talk 0.8 5605.5 2.1

Die Hard III 3.4 5040.7 11.4

Jurassic Park I 1.1 9570.2 8.2

Lecture Room 0.2 703.6 0.6

Silence of the Lambs 3.3 8070.5 11.2

Skiing 2.2 4716.2 2.5

StarWars 1.7 7042.8 7.8

b. SSP Using ESN Models

The network structure which gave the best results was 8 − 30 − 1. The inputs were

I−VOPs, δI, ∆I and the P−VOPs [34]. Figures 23 to 26 show the performance of

the designed predictor for a time window of 100 seconds and errors for the entire

lengths of the video traces Aladdin and StarWars respectively.

Table IV shows the performance of the ESN predictor for all the video traces in

terms of the three performance metrics.

2. Prediction of Moving Average of VOPs

The single-step-ahead prediction (SSP) represents a time horizon of 0.48 seconds.In

this work, three separate prediction models are developed for SSP. The training was

done using the first 1500 points of the moving average time-series of VOP sizes of

video trace Aladdin. The next 500 points were used for the validation. The developed
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Fig. 23. SSP sizes of the I-VOPs of Aladdin using ESN models.

0 500 1000 1500 2000 2500 3000 3500
−8000

−6000

−4000

−2000

0

2000

4000

6000

8000

10000
Prediction Errors : Aladdin SSP

Time (sec)

by
te

s/f
ra

m
e

Fig. 24. SSP errors of I-VOP sizes of Aladdin using ESN models.
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Fig. 25. SSP sizes of the I-VOPs of StarWars using ESN models.
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Fig. 26. SSP errors of I-VOP sizes of StarWars using ESN models.
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Table IV. Performance metrics of the I-VOP for SSP for ESN models

Video Trace MSE (%) MAE (in bytes) MRE

Aladdin 3.0 9358.8 13.3

ARD Talk 1.6 8714.4 1.9

Die Hard III 3.0 4699.8 11.7

Jurassic Park I 3.8 10763 7.3

Lecture Room 0.1 1162.3 0.8

Silence of the Lambs 3.8 6765.9 10.6

Skiing 1.9 5183.5 2.6

StarWars 1.5 4403.6 6.5

model was then used to generate SSP for the entire length for all the eight video traces.

a. SSP Using AR Models

The AR model that gives the best results for SSP is the one with 17 lags. Figures

27 to 30 show the performance of the designed predictor for a time window of 100

seconds and errors for the entire lengths of the video traces Aladdin and StarWars

respectively.

Table V shows the performance of the AR predictor for the video traces used in

this research in terms of the performance metrics defined earlier in the chapter.

b. SSP Using ARX Models

In the design of ARX models, external indicators were used as inputs to the predictor.

The inputs that were used are xMA, δxMA, ∆xMA and I−VOPs respectively. The

ARX model which gave the best results for SSP had the following structure: ny = 2,
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Fig. 27. SSP sizes of the moving average VOPs of Aladdin using AR models.
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Fig. 28. SSP errors of moving average VOP sizes of Aladdin using AR models.
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Fig. 29. SSP sizes of the moving average VOPs of StarWars using AR models.
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Fig. 30. SSP errors of moving average VOP sizes of StarWars using AR models.
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Table V. Performance metrics of the SSP for AR models

Video Trace MSE (%) MAE (in bytes) MRE

Aladdin 3.2 3476.9 4.3

ARD Talk 0.8 2416.5 1.5

Die Hard III 2.3 2508.7 1.5

Jurassic Park I 1.2 4643.6 1.2

Lecture Room 0.8 272.9 0.4

Silence of the Lambs 3.2 1665.6 2.9

Skiing 2.1 777.2 1.4

StarWars 1.5 1404.0 1.6

nu = [1111] and nk = [1111]. Figures 31 to 34 show the performance of the designed

predictor for a time window of 100 seconds and errors for the entire lengths of the

video traces Aladdin and StarWars respectively.

Table VI shows the performance of the ARX predictor for the video traces used

in this research in terms of the three performance metrics.

c. SSP Using ESN Models

For the ESN model, the moving average time-series xMA along with the external

indicators δxMA, ∆xMA and I−VOPs were given as inputs. The network structure

which gave the best results was 4 − 40 − 1. In order to predict the moving average

of the VOP sizes at time step k the four inputs were xMA(k − 1), δxMA(k − 1),

∆xMA(k − 1) and I1(k − 1). Figures 35 to 38 show the performance of the designed

predictor for a time window of 100 seconds and errors for the entire lengths of the

video traces Aladdin and StarWars respectively.
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Fig. 31. SSP sizes of the moving average VOPs of Aladdin using ARX models.
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Fig. 32. SSP errors of moving average VOP sizes of Aladdin using ARX models.
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Fig. 33. SSP sizes of the moving average VOPs of StarWars using ARX models.
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Fig. 34. SSP errors of moving average VOP sizes of StarWars using ARX models.
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Table VI. Performance metrics of the SSP for ARX models

Video Trace MSE (%) MAE (in bytes) MRE

Aladdin 3.5 3984.1 4.8

ARD Talk 1.1 2514.3 1.5

Die Hard III 2.4 2827.5 1.8

Jurassic Park I 1.8 4633.1 1.0

Lecture Room 0.9 262.7 0.5

Silence of the Lambs 3.3 1903.6 2.7

Skiing 2.2 880.2 2.0

StarWars 2.0 1486.7 1.8

Table VII shows the performance of the ESN predictor for all the video traces in

terms of the three performance metrics.

C. Two-step-ahead Prediction

1. Prediction of I-VOPs

The two-step-ahead prediction (Two-SP) of individual I-VOPs means predicting 0.96

seconds ahead. The training was done using the first 1500 points of the I-VOP size

time-series of video trace Aladdin. The next 500 points were used for the validation

of the model.

a. Two-step-ahead Prediction Using ARX Models

The indicators used for the ARX model were I−VOPs, δI, ∆I and the P−VOPs

[34]. The model structure which gives the best results is ny = 3, nu = 1 and nk = 1.



74

500 510 520 530 540 550 560 570 580 590 600
0

1000

2000

3000

4000

5000

6000

7000

8000
ESN Model : Aladdin SSP

Time (sec)

by
te

s/f
ra

m
e

Predicted MA VOP sizes
Actual MA VOP sizes

Fig. 35. SSP sizes of the moving average VOPs of Aladdin using ESN models.
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Fig. 36. SSP errors of moving average VOP sizes of Aladdin using ESN models.
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Fig. 37. SSP sizes of the moving average VOPs of StarWars using ESN models.

0 500 1000 1500 2000 2500 3000 3500
−2000

−1500

−1000

−500

0

500

1000

1500

2000
Prediction Errors : Star Wars SSP

Time (sec)

by
te

s/f
ra

m
e

Fig. 38. SSP errors of moving average VOP sizes of StarWars using ESN models.
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Table VII. Performance metrics of the SSP for ESN models

Video Trace MSE (%) MAE (in bytes) MRE

Aladdin 2.3 3022.0 9.9

ARD Talk 1.4 5245.8 0.8

Die Hard III 1.4 1354.4 2.4

Jurassic Park I 2.1 11956 2.2

Lecture Room 1.3 280.1 0.6

Silence of the Lambs 2.7 1738.2 2.8

Skiing 1.5 1049.6 2.5

StarWars 0.8 1547.6 2.2

Figures 39 to 42 show the performance of the designed predictor for a time window of

100 seconds and errors for the entire lengths of the video traces Aladdin and StarWars

respectively.

Table VIII shows the performance of the ARX predictor for the video traces used

in this research in terms of the three performance metrics.

b. Two-step-ahead Prediction Using ESN Models

The network structure which gave the best results was 8 − 25 − 1. The inputs and

indicators used were I−VOPs, δI, ∆I and the P−VOPs [34]. Figures 43 to 46 show

the performance of the designed predictor for a time window of 100 seconds and errors

for the entire lengths of the video traces Aladdin and StarWars respectively.

Table IX shows the performance of the ESN predictor for all the video traces in

terms of the three performance metrics.
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Fig. 39. Two-SP sizes of the I-VOPs of Aladdin using ARX models.
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Fig. 40. Two-SP errors of I-VOP sizes of Aladdin using ARX models.
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Fig. 41. Two-SP sizes of the I-VOPs of StarWars using ARX models.
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Fig. 42. Two-SP errors of I-VOP sizes of StarWars using ARX models.
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Table VIII. Performance metrics of the I-VOP for the two-SP for ARX models

Video Trace MSE (%) MAE (in bytes) MRE

Aladdin 4.8 8616.1 16.9

ARD Talk 1.7 5877.4 2.1

Die Hard III 5.6 4898.1 11.1

Jurassic Park I 2.0 9625.2 7.9

Lecture Room 0.7 1192.0 1.1

Silence of the Lambs 6.9 7892.0 9.1

Skiing 4.3 4713.1 2.2

StarWars 3.0 6797.5 7.7
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Fig. 43. Two-SP sizes of the I-VOPs of Aladdin using ESN models.
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Fig. 44. Two-SP errors of I-VOP sizes of Aladdin using ESN models.
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Fig. 45. Two-SP sizes of the I-VOPs of StarWars using ESN models.
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Fig. 46. Two-SP errors of I-VOP sizes of StarWars using ESN models.

Table IX. Performance metrics of the I-VOP for the two-SP for ESN models

Video Trace MSE (%) MAE (in bytes) MRE

Aladdin 5.4 10294 15.8

ARD Talk 2.8 9349.4 1.6

Die Hard III 5.4 5021.1 11.4

Jurassic Park I 6.3 12426 7.4

Lecture Room 0.2 1110.8 0.8

Silence of the Lambs 7.0 9103.6 9.7

Skiing 3.7 5080.3 2.5

StarWars 2.7 7429.5 7.8
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2. Prediction of Moving Average of VOPs

The two-step-ahead prediction (Two-SP) represents a time horizon of 0.96 seconds.

For the two -step-ahead prediction, training was done using the first 1500 points of

the moving average time-series of VOP sizes of video trace Aladdin. The next 500

points were used for the validation of the model. The developed model was then used

to generate two-step-ahead predictions for all eight video traces.

a. Two-step-ahead Prediction Using AR Models

The AR model used for the two-step-ahead prediction was the same model that was

developed for SSP. For this model, ny = 17. Figures 47 to 50 show the performance

of the designed predictor for a time window of 100 seconds and errors for the entire

lengths of the video traces Aladdin and StarWars respectively.
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Fig. 47. Two-SP sizes of the moving average VOPs of Aladdin using AR models.
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Fig. 48. Two-SP errors of moving average VOP sizes of Aladdin using AR models.
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Fig. 49. Two-SP sizes of the moving average VOPs of StarWars using AR models.
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Fig. 50. Two-SP errors of moving average VOP sizes of StarWars using AR models.

Table X shows the performance of the AR predictor for the video traces used in

this research in terms of the performance metrics defined earlier in the chapter.

b. Two-step-ahead Prediction Using ARX Models

In the design of ARX models for two-step-ahead prediction, other than the time-series

xMA, external indicators δxMA, ∆xMA and I−VOPs were also used as additional

inputs. The model which gave the best results had the structure: ny = 3, nu = [1111]

and nk = [1111]. Figures 51 to 54 show the performance of the designed predictor

for a time window of 100 seconds and errors for the entire lengths of the video traces

Aladdin and StarWars respectively.

Table XI shows the performance of the ARX predictor for the video traces used

in this research in terms of the three performance metrics.
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Table X. Performance metrics of the two-SP for AR models

Video Trace MSE (%) MAE (in bytes) MRE

Aladdin 9.2 9147.9 21.2

ARD Talk 3.1 7573.4 3.8

Die Hard III 7.4 9132.0 20.4

Jurassic Park I 4.7 9275.9 13.8

Lecture Room 13.8 8809.0 11.4

Silence of the Lambs 8.8 7380.7 5.3

Skiing 6.3 1504.8 5.6

StarWars 4.5 3232.8 7.2
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Fig. 51. Two-SP sizes of the moving average VOPs of Aladdin using ARX models.
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Fig. 52. Two-SP errors of moving average VOP sizes of Aladdin using ARX models.
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Fig. 53. Two-SP sizes of the moving average VOPs of StarWars using ARX models.
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Fig. 54. Two-SP errors of moving average VOP sizes of StarWars using ARX models.

Table XI. Performance metrics of the two-SP for ARX models

Video Trace MSE (%) MAE (in bytes) MRE

Aladdin 9.6 9157.4 14.9

ARD Talk 3.0 5318.6 2.0

Die Hard III 7.9 5588.7 6.2

Jurassic Park I 4.5 9147.1 6.7

Lecture Room 6.8 431.6 1.5

Silence of the Lambs 8.5 2816.3 4.9

Skiing 6.5 1606.1 6.6

StarWars 4.7 3137.1 7.3
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c. Two-step-ahead Prediction Using FMLP Models

The two-step-ahead FMLP model was designed using the external indicators. The

FMLP structure which gave the best results was 12 − 28 − 1. For the prediction

of xMA(k), the 12 inputs were xMA(k − 2), xMA(k − 3), xMA(k − 4), δxMA(k − 2),

δxMA(k − 3), δxMA(k − 4), ∆xMA(k − 2), ∆xMA(k − 3), ∆xMA(k − 4), I1(k − 2),

I2(k − 2), and I3(k − 2). Figures 55 to 58 show the performance of the designed

predictor for a time window of 100 seconds and errors for the entire lengths of the

video traces Aladdin and StarWars respectively.
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Fig. 55. Two-SP sizes of the moving average VOPs of Aladdin using FMLP models.

Table XII shows the performance of the FMLP two-step-ahead predictor for the

video traces used in this research in terms of the performance metrics.
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Fig. 56. Two-SP errors of moving average VOP sizes of Aladdin using FMLP models.
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Fig. 57. Two-SP sizes of the moving average VOPs of StarWars using FMLP models.
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Fig. 58. Two-SP errors of moving average VOP sizes of StarWars using FMLP models.

Table XII. Performance metrics of the two-SP for FMLP models

Video Trace MSE (%) MAE (in bytes) MRE

Aladdin 7.8 6017.9 23.9

ARD Talk 2.9 5741.6 2.7

Die Hard III 7.2 5823.2 13.0

Jurassic Park I 4.8 8960.4 8.9

Lecture Room 49.3 5672.8 9.5

Silence of the Lambs 14.2 4523.4 4.4

Skiing 10.2 6011.6 23.3

StarWars 4.1 5841.7 13.6
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d. Two-step-ahead Prediction Using ESN Models

The network structure which gave the best results for two-step-ahead prediction of

the moving average of VOP size time-series was 4 − 30 − 1. In order to predict the

moving average of the VOP sizes at time step k the four inputs were xMA(k − 2),

δxMA(k − 2), ∆xMA(k − 2) and I1(k − 2). Figures 59 to 62 show the performance

of the designed predictor for a time window of 100 seconds and errors for the entire

lengths of the video traces Aladdin and StarWars respectively.

Table XIII shows the performance of the ESN predictor for all the video traces

in terms of the three performance metrics.
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Fig. 59. Two-SP sizes of the moving average VOPs of Aladdin using ESN models.
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Fig. 60. Two-SP errors of moving average VOP sizes of Aladdin using ESN models.
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Fig. 61. Two-SP sizes of the moving average VOPs of StarWars using ESN models.
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Fig. 62. Two-SP errors of moving average VOP sizes of StarWars using ESN models.

Table XIII. Performance metrics of the two-SP for ESN models

Video Trace MSE (%) MAE (in bytes) MRE

Aladdin 7.8 4222.5 4.6

ARD Talk 2.7 5318.4 1.0

Die Hard III 5.4 2791.9 3.4

Jurassic Park I 6.6 10303 4.2

Lecture Room 1.5 378.4 1.0

Silence of the Lambs 8.0 2338.8 3.4

Skiing 5.6 1757.6 5.2

StarWars 3.1 3185.4 4.2
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D. Four-step-ahead Prediction

1. Prediction of I-VOPs

The four-step-ahead prediction (Four-SP) of individual I-VOPs means predicting 1.92

seconds ahead. The training was done using the first 1500 points of the I-VOP size

time-series of video trace Aladdin. The next 500 points were used for the validation

of the model.

a. Four-step-ahead Prediction Using ARX Models

The indicators used for the ARX model were I−VOPs, δI, ∆I and the P−VOPs

[34]. The model structure which gives the best results is ny = 7, nu = 1 and nk = 3.

Figures 63 to 66 show the performance of the designed predictor for a time window of

100 seconds and errors for the entire lengths of the video traces Aladdin and StarWars

respectively.

Table XIV shows the performance of the ARX predictor for the video traces used

in this research in terms of the three performance metrics.

b. Four-step-ahead Prediction Using ESN Models

The network structure which gave the best results was 8 − 23 − 1. The inputs and

indicators used were I−VOPs, δI, ∆I and the P−VOPs [34]. Figures 67 to 70 show

the performance of the designed predictor for a time window of 100 seconds and errors

for the entire lengths of the video traces Aladdin and StarWars respectively.

Table XV shows the performance of the ESN predictor for all the video traces in

terms of the three performance metrics.
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Fig. 63. Four-SP sizes of the I-VOPs of Aladdin using ARX models.
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Fig. 64. Four-SP errors of I-VOP sizes of Aladdin using ARX models.
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Fig. 65. Four-SP sizes of the I-VOPs of StarWars using ARX models.
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Fig. 66. Four-SP errors of I-VOP sizes of StarWars using ARX models.
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Table XIV. Performance metrics of the I-VOP for the four-SP for ARX models

Video Trace MSE (%) MAE (in bytes) MRE

Aladdin 6.6 8597.2 17.6

ARD Talk 3.0 5680.6 2.0

Die Hard III 8.5 4719.6 10.5

Jurassic Park I 3.4 9172.3 8.6

Lecture Room 1.6 1667.4 1.6

Silence of the Lambs 10.8 7761.2 6.3

Skiing 7.0 5338.4 2.4

StarWars 4.5 6536.4 7.5
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Fig. 67. Four-SP sizes of the I-VOPs of Aladdin using ESN models.
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Fig. 68. Four-SP errors of I-VOP sizes of Aladdin using ESN models.
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Fig. 69. Four-SP sizes of the I-VOPs of StarWars using ESN models.
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Fig. 70. Four-SP errors of I-VOP sizes of StarWars using ESN models.

Table XV. Performance metrics of the I-VOP for the four-SP for ESN models

Video Trace MSE (%) MAE (in bytes) MRE

Aladdin 6.8 9108.6 16.8

ARD Talk 3.9 12063 1.6

Die Hard III 8.3 4904.7 11.0

Jurassic Park I 6.6 14928 8.9

Lecture Room 0.4 1466.3 1.4

Silence of the Lambs 11.0 8227.5 6.3

Skiing 6.7 5455.6 2.5

StarWars 4.4 7148.3 7.4
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2. Prediction of Moving Average of VOPs

The four-step-ahead prediction (Four-SP) represents a time horizon of 1.92 seconds.

For four-step-ahead prediction, training was done using the first 1500 points of the

moving average time-series of VOP sizes of video trace Aladdin. The next 500 points

were used for the validation of the model. The developed model was then used to

generate four-step-ahead predictions for the entire length for all the eight video traces.

a. Four-step-ahead Prediction Using AR Models

The AR model used for four-step-ahead prediction was the same model that was

developed for SSP. For this model, ny = 17. Figures 71 to 74 show the performance

of the designed predictor for a time window of 100 seconds and errors for the entire

lengths of the video traces Aladdin and StarWars respectively.
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Fig. 71. Four-SP sizes of the moving average VOPs of Aladdin using AR models.
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Fig. 72. Four-SP errors of moving average VOP sizes of Aladdin using AR models.
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Fig. 73. Four-SP sizes of the moving average VOPs of StarWars using AR models.
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Fig. 74. Four-SP errors of moving average VOP sizes of StarWars using AR models.

Table XVI shows the performance of the AR predictor for the video traces used

in this research in terms of the performance metrics defined earlier in the chapter.

b. Four-step-ahead Prediction Using ARX Models

In the design of ARX models for four-step-ahead prediction, other than the time-series

xMA, external indicators δxMA, ∆xMA and I−VOPs were also used as additional

inputs. The model which gave the best results had the structure: ny = 6, nu = [1111]

and nk = [2222]. Figures 75 to 78 show the performance of the designed predictor

for a time window of 100 seconds and errors for the entire lengths of the video traces

Aladdin and StarWars respectively.

Table XVII shows the performance of the ARX predictor for the video traces

used in this research in terms of the three performance metrics.
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Table XVI. Performance metrics of the four-SP for AR models

Video Trace MSE (%) MAE (in bytes) MRE

Aladdin 15.2 9326.8 37.0

ARD Talk 4.9 7868.6 4.6

Die Hard III 15.3 9132.0 20.4

Jurassic Park I 9.9 9563.7 14.2

Lecture Room 40.5 9007.1 15.8

Silence of the Lambs 20.9 7832.2 10.4

Skiing 13.0 1677.9 7.4

StarWars 8.5 3099.9 9.5
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Fig. 75. Four-SP sizes of the moving average VOPs of Aladdin using ARX models.
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Fig. 76. Four-SP errors of moving average VOP sizes of Aladdin using ARX models.
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Fig. 77. Four-SP sizes of the moving average VOPs of StarWars using ARX models.
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Fig. 78. Four-SP errors of moving average VOP sizes of StarWars using ARX models.

Table XVII. Performance metrics of the four-SP for ARX models

Video Trace MSE (%) MAE (in bytes) MRE

Aladdin 14.9 5739.2 17.6

ARD Talk 4.4 5522.0 2.3

Die Hard III 14.0 4972.0 7.0

Jurassic Park I 9.8 9324.9 7.0

Lecture Room 7.4 601.8 3.3

Silence of the Lambs 17.0 4760.6 9.5

Skiing 13.6 1965.7 8.7

StarWars 8.8 3074.4 9.4
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c. Four-step-ahead Prediction Using FMLP Models

The four-step-ahead FMLP model was designed using the external indicators. The

FMLP structure which gave the best results was 12 − 30 − 1. For the prediction

of xMA(k), the 12 inputs were xMA(k − 4), xMA(k − 5), xMA(k − 6), δxMA(k − 4),

δxMA(k − 5), δxMA(k − 6), ∆xMA(k − 4), ∆xMA(k − 5), ∆xMA(k − 6), I1(k − 4),

I2(k − 4), and I3(k − 4). Figures 79 to 82 show the performance of the designed

predictor for a time window of 100 seconds and errors for the entire lengths of the

video traces Aladdin and StarWars respectively.
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Fig. 79. Four-SP sizes of the moving average VOPs of Aladdin using FMLP models.

Table XVIII shows the performance of the FMLP four-step-ahead predictor for

the video traces used in this research in terms of the performance metrics.
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Fig. 80. Four-SP errors of moving average VOP sizes of Aladdin using FMLP models.
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Fig. 81. Four-SP sizes of the moving average VOPs of StarWars using FMLP models.
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Fig. 82. Four-SP errors of moving average VOP sizes of StarWars using FMLP models.

Table XVIII. Performance metrics of the four-SP for FMLP models

Video Trace MSE (%) MAE (in bytes) MRE

Aladdin 13.2 5794.5 20.7

ARD Talk 5.0 5957.3 1.4

Die Hard III 11.6 3574.1 7.0

Jurassic Park I 23.1 15254 4.2

Lecture Room 81.9 1017.6 2.4

Silence of the Lambs 25.9 3030.3 9.6

Skiing 13.8 1886.8 9.2

StarWars 6.3 3123.6 9.9
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d. Four-step-ahead Prediction Using ESN Models

The network structure which gave the best results for four-step-ahead prediction of

the moving average of VOP size time-series was 4 − 30 − 1. In order to predict the

moving average of the VOP sizes at time step k the four inputs were xMA(k − 4),

δxMA(k − 4), ∆xMA(k − 4) and I1(k − 4). Figures 67 to 86 show the performance

of the designed predictor for a time window of 100 seconds and errors for the entire

lengths of the video traces Aladdin and StarWars respectively.

Table XIX shows the performance of the ESN predictor for all the video traces

in terms of the three performance metrics.

500 510 520 530 540 550 560 570 580 590 600
0

1000

2000

3000

4000

5000

6000

7000

8000
ESN Model : Aladdin 4−step−ahead−prediction

Time (sec)

by
te

s/f
ra

m
e

Predicted MA VOP sizes
Actual MA VOP sizes

Fig. 83. Four-SP sizes of the moving average VOPs of Aladdin using ESN models.
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Fig. 84. Four-SP errors of moving average VOP sizes of Aladdin using ESN models.
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Fig. 85. Four-SP sizes of the moving average VOPs of StarWars using ESN models.



111

0 500 1000 1500 2000 2500 3000 3500

−2000

−1000

0

1000

2000

3000

Prediction Errors : Star Wars 4−step−ahead−prediction

Time (sec)

by
te

s/f
ra

m
e

Fig. 86. Four-SP errors of moving average VOP sizes of StarWars using ESN models.

Table XIX. Performance metrics of the four-SP for ESN models

Video Trace MSE (%) MAE (in bytes) MRE

Aladdin 13.7 5543.3 10.6

ARD Talk 4.6 5775.2 1.4

Die Hard III 12.3 3958.3 5.9

Jurassic Park I 15.2 16257 5.9

Lecture Room 2.8 654.29 1.7

Silence of the Lambs 16.6 2563.4 9.2

Skiing 11.8 1965.4 9.0

StarWars 8.4 3350.0 9.1
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E. Six-step-ahead Prediction

1. Prediction of I-VOPs

The six-step-ahead prediction (Six-SP) of individual I-VOPs means predicting 2.88

seconds ahead. The training was done using the first 1500 points of the I-VOP size

time-series of video trace Aladdin. The next 500 points were used for the validation

of the model.

a. Six-step-ahead Prediction Using ARX Models

The indicators used for the ARX model were I−VOPs, δI, ∆I and the P−VOPs

[34]. The model structure which gives the best results is ny = 7, nu = 1 and nk = 1.

Figures 87 to 90 show the performance of the designed predictor for a time window of

100 seconds and errors for the entire lengths of the video traces Aladdin and StarWars

respectively.

Table XX shows the performance of the ARX predictor for the video traces used

in this research in terms of the three performance metrics.

b. Six-step-ahead Prediction Using ESN Models

The network structure which gave the best results was 8 − 25 − 1. The inputs and

indicators used were I−VOPs, δI, ∆I and the P−VOPs [34]. Figures 91 to 94 show

the performance of the designed predictor for a time window of 100 seconds and errors

for the entire lengths of the video traces Aladdin and StarWars respectively.

Table XXI shows the performance of the ESN predictor for all the video traces

in terms of the three performance metrics.
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Fig. 87. Six-SP sizes of the I-VOPs of Aladdin using ARX models.
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Fig. 88. Six-SP errors of I-VOP sizes of Aladdin using ARX models.
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Fig. 89. Six-SP sizes of the I-VOPs of StarWars using ARX models.
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Fig. 90. Six-SP errors of I-VOP sizes of StarWars using ARX models.
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Table XX. Performance metrics of the I-VOP for the six-SP for ARX models

Video Trace MSE (%) MAE (in bytes) MRE

Aladdin 7.6 8029.5 16.5

ARD Talk 4.0 5665.1 2.1

Die Hard III 10.8 5105.9 10.2

Jurassic Park I 4.3 8926.8 8.1

Lecture Room 2.7 1841.7 1.9

Silence of the Lambs 13.2 7546.6 8.0

Skiing 8.7 5210.3 2.3

StarWars 5.6 6952.2 7.5
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Fig. 91. Six-SP sizes of the I-VOPs of Aladdin using ESN models.
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Fig. 92. Six-SP errors of I-VOP sizes of Aladdin using ESN models.
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Fig. 93. Six-SP sizes of the I-VOPs of StarWars using ESN models.
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Fig. 94. Six-SP errors of I-VOP sizes of StarWars using ESN models.

Table XXI. Performance metrics of the I-VOP for the six-SP for ESN models

Video Trace MSE (%) MAE (in bytes) MRE

Aladdin 8.2 10031 15.8

ARD Talk 5.4 10759 2.0

Die Hard III 10.2 5322.5 11.1

Jurassic Park I 7.8 14490 8.8

Lecture Room 2.4 1648.8 1.6

Silence of the Lambs 14.8 8319.0 8.5

Skiing 8.4 5372.5 2.5

StarWars 5.4 5814.1 7.0
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2. Prediction of Moving Average of VOPs

The six-step-ahead prediction (Six-SP) represents a time horizon of 2.88 seconds. For

six-step-ahead prediction, training was done using the first 1500 points of the moving

average time-series of VOP sizes of video trace Aladdin. The next 500 points were

used for the validation of the model. The developed model was then used to generate

six-step-ahead predictions for the entire length for all the eight video traces.

a. Six-step-ahead Prediction Using AR Models

The AR model used for six-step-ahead prediction was the same model that was de-

veloped for SSP. For this model, ny = 17. Figures 95 to 98 show the performance

of the designed predictor for a time window of 100 seconds and errors for the entire

lengths of the video traces Aladdin and StarWars respectively.
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Fig. 95. Six-SP sizes of the moving average VOPs of Aladdin using AR models.
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Fig. 96. Six-SP errors of moving average VOP sizes of Aladdin using AR models.
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Fig. 97. Six-SP sizes of the moving average VOPs of StarWars using AR models.
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Fig. 98. Six-SP errors of moving average VOP sizes of StarWars using AR models.

Table XXII shows the performance of the AR predictor for the video traces used

in this research in terms of the performance metrics defined earlier in the chapter.

b. Six-step-ahead Prediction Using ARX Models

In the design of ARX models for six-step-ahead prediction, other than the time-series

xMA, external indicators δxMA, ∆xMA and I−VOPs were also used as additional

inputs. The model which gave the best results had the structure: ny = 7, nu = [1111]

and nk = [1111]. Figures 99 to 102 show the performance of the designed predictor

for a time window of 100 seconds and errors for the entire lengths of the video traces

Aladdin and StarWars respectively.

Table XXIII shows the performance of the ARX predictor for the video traces

used in this research in terms of the three performance metrics.
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Table XXII. Performance metrics of the six-SP for AR models

Video Trace MSE (%) MAE (in bytes) MRE

Aladdin 16.5 9326.8 37.0

ARD Talk 6.1 7880.3 4.6

Die Hard III 19.0 9132.0 20.4

Jurassic Park I 12.4 9554.1 14.2

Lecture Room 66.7 9013.5 15.9

Silence of the Lambs 28.4 7940.1 11.4

Skiing 16.1 1817.5 7.1

StarWars 9.9 3294.8 9.5
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Fig. 99. Six-SP sizes of the moving average VOPs of Aladdin using ARX models.
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Fig. 100. Six-SP errors of moving average VOP sizes of Aladdin using ARX models.
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Fig. 101. Six-SP sizes of the moving average VOPs of StarWars using ARX models.
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Fig. 102. Six-SP errors of moving average VOP sizes of StarWars using ARX models.

Table XXIII. Performance metrics of the six-SP for ARX models

Video Trace MSE (%) MAE (in bytes) MRE

Aladdin 18.1 5791.8 18.5

ARD Talk 6.4 5131.1 2.4

Die Hard III 17.6 4611.3 7.6

Jurassic Park I 12.3 9246.3 7.1

Lecture Room 10.7 630.1 3.7

Silence of the Lambs 21.5 4356.5 10.5

Skiing 17.5 2039.8 8.8

StarWars 10.4 3215.2 9.2
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c. Six-step-ahead Prediction Using FMLP Models

The six-step-ahead FMLP model was designed using the external indicators. The

FMLP structure which gave the best results was 12 − 30 − 1. For the prediction

of xMA(k), the 12 inputs were xMA(k − 6), xMA(k − 7), xMA(k − 8), δxMA(k − 6),

δxMA(k − 7), δxMA(k − 8), ∆xMA(k − 6), ∆xMA(k − 7), ∆xMA(k − 8), I1(k − 6),

I2(k − 6), and I3(k − 6). Figures 103 to 106 show the performance of the designed

predictor for a time window of 100 seconds and errors for the entire lengths of the

video traces Aladdin and StarWars respectively.
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Fig. 103. Six-SP sizes of the moving average VOPs of Aladdin using FMLP models.

Table XXIV shows the performance of the FMLP six-step-ahead predictor for

the video traces used in this research in terms of the performance metrics.
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Fig. 104. Six-SP errors of moving average VOP sizes of Aladdin using FMLP models.

500 510 520 530 540 550 560 570 580 590 600
200

400

600

800

1000

1200

1400

1600

1800

2000
FMLP Model : Star Wars 6−step−ahead−prediction

Time (sec)

by
te

s/f
ra

m
e

Predicted MA VOP sizes
Actual MA VOP sizes

Fig. 105. Six-SP sizes of the moving average VOPs of StarWars using FMLP models.
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Fig. 106. Six-SP errors of moving average VOP sizes of StarWars using FMLP models.

Table XXIV. Performance metrics of the six-SP for FMLP models

Video Trace MSE (%) MAE (in bytes) MRE

Aladdin 15.3 5807.7 25.3

ARD Talk 6.1 6359.1 1.3

Die Hard III 15.3 3986.8 8.9

Jurassic Park I 21.6 13105 3.8

Lecture Room 73.3 677.1 2.7

Silence of the Lambs 33.3 2945.3 12.3

Skiing 20.0 1825.9 9.5

StarWars 8.2 3432.8 10.6
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d. Six-step-ahead Prediction Using RMLP Models

As in [34], the six-step-ahead RMLP model was designed using the external indicators.

The RMLP structure which gave the best results was 16 − 17 − 1. The training was

done using global feedback. For the prediction of xMA(k), 11 of the 16 inputs were

xMA(k − 6), xMA(k − 7), xMA(k − 8), δxMA(k − 6), δxMA(k − 7), δxMA(k − 8),

∆xMA(k − 6), ∆xMA(k − 7), ∆xMA(k − 8), I1(k − 6) and I2(k − 6). The remaining

5 inputs were the past predictions of the model, that is x̂∗
MA(k − 1), x̂∗

MA(k − 2),

x̂∗
MA(k − 3), x̂∗

MA(k − 4) and x̂∗
MA(k − 5). Figures 107 to 110 show the performance

of the designed predictor for a time window of 100 seconds and errors for the entire

lengths of the video traces Aladdin and StarWars respectively.
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Fig. 107. Six-SP sizes of the moving average VOPs of Aladdin using RMLP models.

Table XXV shows the performance of the RMLP six-step-ahead predictor for the

video traces used in this research in terms of the performance metrics.



128

0 500 1000 1500 2000 2500 3000 3500
−6000

−4000

−2000

0

2000

4000

6000

8000
Prediction Errors : Aladdin 6−step−ahead−prediction

Time (sec)

by
te

s/f
ra

m
e

Fig. 108. Six-SP errors of moving average VOP sizes of Aladdin using RMLP models.
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Fig. 109. Six-SP sizes of the moving average VOPs of StarWars using RMLP models.
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Fig. 110. Six-SP errors of moving average VOP sizes of StarWars using RMLP models.

Table XXV. Performance metrics of the six-SP for RMLP models

Video Trace MSE (%) MAE (in bytes) MRE

Aladdin 15.6 6296.4 29.8

ARD Talk 5.9 5676.8 2.1

Die Hard III 18.5 4611.3 10.8

Jurassic Park I 11.3 9125.0 15.2

Lecture Room 140.0 4699.9 9.5

Silence of the Lambs 45.3 3473.9 13.3

Skiing 29.2 4934.4 19.0

StarWars 9.8 5581.4 36.2
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e. Six-step-ahead Prediction Using ESN Models

The network structure which gave the best results for six-step-ahead prediction of

the moving average of VOP size time-series was 4 − 30 − 1. In order to predict the

moving average of the VOP sizes at time step k the four inputs were xMA(k − 6),

δxMA(k − 6), ∆xMA(k − 6) and I1(k − 6). Figures 111 to 114 show the performance

of the designed predictor for a time window of 100 seconds and errors for the entire

lengths of the video traces Aladdin and StarWars respectively.

Table XXVI shows the performance of the ESN predictor for all the video traces

in terms of the three performance metrics.
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Fig. 111. Six-SP sizes of the moving average VOPs of Aladdin using ESN models.
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Fig. 112. Six-SP errors of moving average VOP sizes of Aladdin using ESN models.
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Fig. 113. Six-SP sizes of the moving average VOPs of StarWars using ESN models.
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Fig. 114. Six-SP errors of moving average VOP sizes of StarWars using ESN models.

Table XXVI. Performance metrics of the six-SP for ESN models

Video Trace MSE (%) MAE (in bytes) MRE

Aladdin 14.6 5727.6 11.9

ARD Talk 9.1 6140.6 2.1

Die Hard III 15.3 4324.9 5.9

Jurassic Park I 11.5 11938 6.6

Lecture Room 3.8 700.6 2.1

Silence of the Lambs 32.6 2945.3 12.3

Skiing 22.6 3508.3 10.4

StarWars 8.1 3269.7 9.7
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F. Ten-step-ahead Prediction

1. Prediction of I-VOPs

The ten-step-ahead prediction (ten-SP) of individual I-VOPs means predicting 4.8

seconds ahead. The training was done using the first 1500 points of the I-VOP size

time-series of video trace Aladdin. The next 500 points were used for the validation

of the model.

a. Ten-step-ahead Prediction Using ARX Models

The indicators used for the ARX model were I−VOPs, δI, ∆I and the P−VOPs

[34]. The model structure which gives the best results is ny = 11, nu = 1 and

nk = 1. Figures 115 to 118 show the performance of the designed predictor for a time

window of 100 seconds and errors for the entire lengths of the video traces Aladdin

and StarWars respectively.

Table XXVII shows the performance of the ARX predictor for the video traces

used in this research in terms of the three performance metrics.

b. Ten-step-ahead Prediction Using ESN Models

The network structure which gave the best results was 8 − 20 − 1. The inputs and

indicators used were I−VOPs, δI, ∆I and the P−VOPs [34]. Figures 119 to 122

show the performance of the designed predictor for a time window of 100 seconds and

errors for the entire lengths of the video traces Aladdin and StarWars respectively.

Table XXVIII shows the performance of the ESN predictor for all the video traces

in terms of the three performance metrics.
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Fig. 115. Ten-SP sizes of the I-VOPs of Aladdin using ARX models.
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Fig. 116. Ten-SP errors of I-VOP sizes of Aladdin using ARX models.
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Fig. 117. Ten-SP sizes of the I-VOPs of StarWars using ARX models.
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Fig. 118. Ten-SP errors of I-VOP sizes of StarWars using ARX models.
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Table XXVII. Performance metrics of the I-VOP for the ten-SP for ARX models

Video Trace MSE (%) MAE (in bytes) MRE

Aladdin 8.1 7187.7 15.6

ARD Talk 5.0 6071.5 2.7

Die Hard III 11.5 4858.1 10.3

Jurassic Park I 5.3 8471.0 7.0

Lecture Room 3.3 1920.5 2.0

Silence of the Lambs 15.7 6780.9 6.3

Skiing 10.2 5022.6 2.6

StarWars 6.2 4500.5 7.2
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Fig. 119. Ten-SP sizes of the I-VOPs of Aladdin using ESN models.
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Fig. 120. Ten-SP errors of I-VOP sizes of Aladdin using ESN models.
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Fig. 121. Ten-SP sizes of the I-VOPs of StarWars using ESN models.
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Fig. 122. Ten-SP errors of I-VOP sizes of StarWars using ESN models.

Table XXVIII. Performance metrics of the I-VOP for the ten-SP for ESN models

Video Trace MSE (%) MAE (in bytes) MRE

Aladdin 8.5 9167.4 14.4

ARD Talk 6.4 6746.3 1.7

Die Hard III 11.3 7328.1 9.9

Jurassic Park I 8.8 14991 9.8

Lecture Room 2.9 1723.1 3.1

Silence of the Lambs 17.0 8404.5 7.6

Skiing 10.1 5687.0 2.7

StarWars 6.9 9544.7 18.7
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2. Prediction of Moving Average of VOPs

The ten-step-ahead prediction (Ten-SP) represents a time horizon of 4.80 seconds.

For ten-step-ahead prediction, training was done using the first 1500 points of the

moving average time-series of VOP sizes of video trace Aladdin. The next 500 points

were used for the validation of the model. The developed model was then used to

generate ten-step-ahead predictions for the entire length for all the eight video traces.

a. Ten-step-ahead Prediction Using AR Models

The AR model used for ten-step-ahead prediction was the same model that was

developed for SSP. For this model, ny = 17. Figures 123 to 126 show the performance

of the designed predictor for a time window of 100 seconds and errors for the entire

lengths of the video traces Aladdin and StarWars respectively.

500 510 520 530 540 550 560 570 580 590 600
0

1000

2000

3000

4000

5000

6000

7000

8000
AR Model : Aladdin 10−step−ahead−prediction

Time (sec)

by
te

s/f
ra

m
e

Predicted MA VOP sizes
Actual MA VOP sizes

Fig. 123. Ten-SP sizes of the moving average VOPs of Aladdin using AR models.
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Fig. 124. Ten-SP errors of moving average VOP sizes of Aladdin using AR models.
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Fig. 125. Ten-SP sizes of the moving average VOPs of StarWars using AR models.
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Fig. 126. Ten-SP errors of moving average VOP sizes of StarWars using AR models.

Table XXIX shows the performance of the AR predictor for the video traces used

in this research in terms of the performance metrics defined earlier in the chapter.

b. Ten-step-ahead Prediction Using ARX Models

In the design of ARX models for ten-step-ahead prediction, other than the time-series

xMA, external indicators δxMA, ∆xMA and I−VOPs were also used as additional

inputs. The model which gave the best results had the structure: ny = 11, nu = [1111]

and nk = [1111]. Figures 127 to 130 show the performance of the designed predictor

for a time window of 100 seconds and errors for the entire lengths of the video traces

Aladdin and StarWars respectively.

Table XXX shows the performance of the ARX predictor for the video traces

used in this research in terms of the three performance metrics.
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Table XXIX. Performance metrics of the ten-SP for AR models

Video Trace MSE (%) MAE (in bytes) MRE

Aladdin 17.9 9326.8 37.0

ARD Talk 7.7 7930.1 4.8

Die Hard III 24.9 9132.0 20.4

Jurassic Park I 16.1 9571.2 28.0

Lecture Room 120.4 9170.5 22.5

Silence of the Lambs 41.5 7940.1 11.1

Skiing 19.7 1770.0 6.8

StarWars 11.8 3237.7 10.3
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Fig. 127. Ten-SP sizes of the moving average VOPs of Aladdin using ARX models.
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Fig. 128. Ten-SP errors of moving average VOP sizes of Aladdin using ARX models.
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Fig. 129. Ten-SP sizes of the moving average VOPs of StarWars using ARX models.
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Fig. 130. Ten-SP errors of moving average VOP sizes of StarWars using ARX models.

Table XXX. Performance metrics of the ten-SP for ARX models

Video Trace MSE (%) MAE (in bytes) MRE

Aladdin 18.9 6636.5 17.9

ARD Talk 7.9 5897.9 2.4

Die Hard III 21.2 3456.6 9.1

Jurassic Park I 15.6 9416.8 8.4

Lecture Room 11.5 716.2 2.5

Silence of the Lambs 28.6 3938.3 10.7

Skiing 20.3 1887.6 7.1

StarWars 12.0 3201.1 10.2
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c. Ten-step-ahead Prediction Using FMLP Models

The ten-step-ahead FMLP model was designed using the external indicators. The

FMLP structure which gave the best results was 12 − 27 − 1. For the prediction of

xMA(k), the 12 inputs were xMA(k − 10), xMA(k − 11), xMA(k − 12), δxMA(k − 10),

δxMA(k−11), δxMA(k−12), ∆xMA(k−10), ∆xMA(k−11), ∆xMA(k−12), I1(k−10),

I2(k − 10), and I3(k − 10). Figures 131 to 134 show the performance of the designed

predictor for a time window of 100 seconds and errors for the entire lengths of the

video traces Aladdin and StarWars respectively.
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Fig. 131. Ten-SP sizes of the moving average VOPs of Aladdin using FMLP models.

Table XXXI shows the performance of the FMLP ten-step-ahead predictor for

the video traces used in this research in terms of the performance metrics.
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Fig. 132. Ten-SP errors of moving average VOP sizes of Aladdin using FMLP models.
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Fig. 133. Ten-SP sizes of the moving average VOPs of StarWars using FMLP models.
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Fig. 134. Ten-SP errors of moving average VOP sizes of StarWars using FMLP models.

Table XXXI. Performance metrics of the ten-SP for FMLP models

Video Trace MSE (%) MAE (in bytes) MRE

Aladdin 17.1 5331.9 28.8

ARD Talk 7.3 6430.9 1.4

Die Hard III 19.7 4127.5 11.9

Jurassic Park I 22.0 12262 6.3

Lecture Room 116.8 1043.3 3.2

Silence of the Lambs 49.5 3359.2 14.1

Skiing 27.2 1818.7 9.7

StarWars 10.2 3324.1 11.6
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d. Ten-step-ahead Prediction Using RMLP Models

As in [34], the ten-step-ahead RMLP model was designed using the external indica-

tors. The RMLP structure which gave the best results was 21− 10− 1. The training

was done using global feedback. For the prediction of xMA(k), 12 of the 21 inputs were

xMA(k− 10), xMA(k− 11), xMA(k− 12), δxMA(k− 10), δxMA(k− 11), δxMA(k− 12),

∆xMA(k − 10), ∆xMA(k − 11), ∆xMA(k − 12), I1(k − 10), I2(k − 10) and I3(k − 10).

The remaining 9 inputs were the past predictions of the model, that is x̂∗
MA(k − 1),

x̂∗
MA(k−2), x̂∗

MA(k−3), x̂∗
MA(k−4), x̂∗

MA(k−5), x̂∗
MA(k−6), x̂∗

MA(k−7), x̂∗
MA(k−8)

and x̂∗
MA(k − 9). Figures 135 to 138 show the performance of the designed predictor

for a time window of 100 seconds and errors for the entire lengths of the video traces

Aladdin and StarWars respectively.
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Fig. 135. Ten-SP sizes of the moving average VOPs of Aladdin using RMLP models.

Table XXXII shows the performance of the RMLP ten-step-ahead predictor for
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Fig. 136. Ten-SP errors of moving average VOP sizes of Aladdin using RMLP models.
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Fig. 137. Ten-SP sizes of the moving average VOPs of StarWars using RMLP models.
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Fig. 138. Ten-SP errors of moving average VOP sizes of StarWarsusing RMLP models.

the video traces used in this research in terms of the performance metrics.

e. Ten-step-ahead Prediction Using ESN Models

The network structure which gave the best results for ten-step-ahead prediction of

the moving average of VOP size time-series was 4 − 25 − 1. In order to predict the

moving average of the VOP sizes at time step k the four inputs were xMA(k − 10),

δxMA(k−10), ∆xMA(k−10) and I1(k−10). Figures 119 to 142 show the performance

of the designed predictor for a time window of 100 seconds and errors for the entire

lengths of the video traces Aladdin and StarWars respectively.

Table XXXIII shows the performance of the ESN predictor for all the video traces

in terms of the three performance metrics.
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Table XXXII. Performance metrics of the ten-SP for RMLP models

Video Trace MSE (%) MAE (in bytes) MRE

Aladdin 16.9 5550.6 20.7

ARD Talk 7.3 6002.5 1.9

Die Hard III 22.7 4217.8 14.0

Jurassic Park I 14.6 9017.0 14.0

Lecture Room 165.3 3624.7 8.6

Silence of the Lambs 59.2 3115.5 16.5

Skiing 37.8 3786.3 14.5

StarWars 11.7 4012.9 37.1
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Fig. 139. Ten-SP sizes of the moving average VOPs of Aladdin using ESN models.
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Fig. 140. Ten-SP errors of moving average VOP sizes of Aladdin using ESN models.
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Fig. 141. Ten-SP sizes of the moving average VOPs of StarWars using ESN models.
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Fig. 142. Ten-SP errors of moving average VOP sizes of StarWars using ESN models.

Table XXXIII. Performance metrics of the ten-SP for ESN models

Video Trace MSE (%) MAE (in bytes) MRE

Aladdin 16.9 5844.6 11.4

ARD Talk 12.9 5914.2 2.4

Die Hard III 20.1 3923.5 8.3

Jurassic Park I 29.2 19997 10.8

Lecture Room 4.7 915.81 1.7

Silence of the Lambs 44.9 5824.1 12.7

Skiing 29.5 4001.0 13.8

StarWars 10.2 3335.2 10.7
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G. Chapter Summary

In this chapter, the single and multi-step-ahead predictors for both the I-VOPs and

moving average of the VOP sizes are presented. Their performance on all the traces

is tabulated in the terms of the standard performance metrics. In the next chapter,

these results are compared against the published literature. A comparison is also

made among these prediction schemes developed in this research. Based on this

analysis some important observations and conclusions are also presented in the next

chapter.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

This chapter summarizes the work presented in this thesis. First, a comparison of

the different models developed in this research is presented. This is followed by the

conclusions and recommendations for future work.

A. Comparison of the Models

In this section, the different empirical models are compared in terms of the perfor-

mance metric MSE. Some of the results used here have been derived from [30]. The

conclusions made later in this chapter are based on this comparison. From the pub-

lished literature it can be accessed that the prediction of individual VOPs has not

been very successful. In this work, we develop one linear (ARX) and one non-linear

(ESN) predictor for I-VOPs. This is done to substantiate the claim that the prediction

of the moving average is more accurate than the prediction of individual VOPs.

1. Single-step-ahead Prediction Models

a. Prediction Models for I-VOPs

Table XXXIV presents the MSE in the single-step-ahead prediction of individual I-

VOPs for the models developed in this work along with the the results published in

the literature. The results for the RMLP model are obtained from [30]. The table

also shows the MBR of the video traces.

Figures 143 and 144 show the performance of the prediction schemes developed

in this research for a 100 second window for the movie traces Aladdin and StarWars

respectively.
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Table XXXIV. MSE of the single-step-ahead prediction of I-VOPs

Video Trace MBR ARX RMLP ESN

(Mbps) Model Model [30] Model

Aladdin 0.44 3.1 2.6 3.0

ARD Talk 0.54 0.8 0.9 1.6

Die Hard III 0.25 3.4 2.9 3.0

Jurassic Park I 0.77 1.1 0.8 3.8

Lecture Room 0.06 0.2 0.2 0.1

Silence of the Lambs 0.11 3.3 3.6 3.8

Skiing 0.19 2.2 2.0 1.9

StarWars 0.28 1.7 1.5 1.5
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Fig. 143. SSP sizes of the I-VOPs of Aladdin.
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Fig. 144. SSP sizes of the I-VOPs of StarWars.

From the table it can be observed that:

1. The performance of non-linear models is better than the linear models.

2. For high bit rates (MBR ≥ 0.4 ∼ 0.5 Mbps), the RMLP predictor is better and

for low bit rates the ESN model is better than other models.

b. Prediction Models for Moving Average

Table XXXV presents the MSE in the single-step-ahead prediction of the moving

average VOP size time-series for different methods used in this research and the

published literature. The results for the FMLP model are obtained from the research

paper by Bhattacharya et al. [30]. The table also shows the MBR of the video traces.

Figures 145 and 146 show the performance of these prediction schemes for a 100

second window for the movie traces Aladdin and StarWars respectively.
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Table XXXV. MSE of single-step-ahead prediction for all models

Video Trace MBR AR ARX FMLP ESN

(Mbps) Model Model Model [30] Model

Aladdin 0.44 3.2 3.5 2.5 2.3

ARD Talk 0.54 0.8 1.1 0.8 1.4

Die Hard III 0.25 2.3 2.4 2.4 1.4

Jurassic Park I 0.77 1.2 1.8 1.0 2.1

Lecture Room 0.06 0.8 0.9 14.8 1.3

Silence of the Lambs 0.11 3.3 3.3 3.4 2.7

Skiing 0.19 2.1 2.2 2.7 1.5

StarWars 0.28 1.5 2.0 1.7 0.8
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Fig. 145. SSP sizes of the moving average VOPs of Aladdin for all models.
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Fig. 146. SSP sizes of the moving average VOPs of StarWars for all models.

From Table XXXV the following observations can be made:

1. It can be seen that the non-linear models perform much better than the linear

models for almost all the video traces (except for the video trace Lecture Room).

It is safe to assume in general that the performance of the non-linear models

is better than the linear ones for single-step-ahead prediction and the extra

cost (in terms of the modeling time and complexity) of the non-linear models

is justified.

2. Of the various non-linear models developed in this research and those published

in the literature [30], there is no one model which performs well for all the video

traces. If we relate the performance of the models with the MBR of the video

traces, it can be seen from Table XXXV that the FMLP model performs better

for high bit rate video traces (MBR ≥ 0.4 ∼ 0.5 Mbps) such as ARD Talk
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and Jurassic Park than the ESN model. On the other hand, the ESN model

supersedes the FMLP model in performance for low bit rate videos.

Thus it can be generalized that for single-step-ahead prediction, the FMLP model

performs better for high bits rates whereas for low bit rates the performance of ESN

model is better.

2. Two-step-ahead Prediction Models

a. Prediction Models for I-VOPs

Table XXXVI presents the MSE in the two-step-ahead prediction of individual I-

VOPs for the models developed in this work. The table also shows the MBR of the

video traces.

Figures 147 and 148 show the performance of the prediction schemes developed

in this research for a 100 second window for the movie traces Aladdin and StarWars

respectively.

It can be observed from Table XXXVI that the performance of the ESN model

is better than the ARX model for low bit rate video traces.

b. Prediction Models for Moving Average

Table XXXVII presents the MSE in the two-step-ahead prediction of the moving

average VOP size time-series for different methods used in this research and the

published literature. The results for the RMLP model are obtained from the research

paper by Bhattacharya et al. [30]. The MBR of the video traces is also tabulated in

Table XXXVII.

Figures 149 and 150 show the performance of these prediction schemes for a 100

second window for the movie traces Aladdin and StarWars respectively.



161

Table XXXVI. MSE of the two-step-ahead prediction of I-VOPs

Video Trace MBR ARX ESN

(Mbps) Model Model

Aladdin 0.44 4.8 5.4

ARD Talk 0.54 1.7 2.8

Die Hard III 0.25 5.6 5.4

Jurassic Park I 0.77 2.0 6.3

Lecture Room 0.06 0.7 0.2

Silence of the Lambs 0.11 6.9 7.0

Skiing 0.19 4.3 3.7

StarWars 0.28 3.0 2.7
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Fig. 147. Two-SP sizes of the I-VOPs of Aladdin.
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Fig. 148. Two-SP sizes of the I-VOPs of StarWars.

Table XXXVII. MSE of the two-step-ahead prediction for all models

Video Trace MBR AR ARX FMLP RMLP ESN

(Mbps) Model Model Model Model [30] Model

Aladdin 0.44 9.2 9.6 7.9 8.2 7.8

ARD Talk 0.54 3.1 3.0 2.9 2.4 2.7

Die Hard III 0.25 7.4 7.9 7.2 7.8 5.4

Jurassic Park I 0.77 4.7 4.5 4.8 3.8 6.6

Lecture Room 0.06 13.8 6.8 49.3 22.6 1.5

Silence of the Lambs 0.11 8.8 8.5 14.2 9.3 8.0

Skiing 0.19 6.3 6.5 10.2 7.9 5.6

StarWars 0.28 4.5 4.7 4.1 4.9 3.1
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Fig. 149. Two-SP sizes of the moving average VOPs of Aladdin for all models.
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Fig. 150. Two-SP sizes of the moving average VOPs of StarWars for all models.
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Following observations can be made from Table XXXVII:

1. The non-linear empirical modeling techniques perform better than the linear

techniques for two-step-ahead prediction in terms of the performance metric

MSE.

2. The recurrent neural network models perform better than the feed-forward neu-

ral networks for two-step-ahead prediction. For high bit rate video traces (MBR

≥ 0.4 ∼ 0.5 Mbps), the RMLP model performs better whereas for the low bit

rate traces the performance of the ESN model is better.

Thus it can be generalized from the above discussion that the recurrent neural

networks give best results for two-step-ahead predictions with the RMLP predictor

for high bit rate video traces and ESN predictor for low bit rate video traces.

3. Four-step-ahead Prediction Models

a. Prediction Models for I-VOPs

Table XXXVIII presents the MSE in the four-step-ahead prediction of individual I-

VOPs for the models developed in this work. The table also shows the MBR of the

video traces.

Figures 151 and 152 show the performance of the prediction schemes developed

in this research for a 100 second window for the movie traces Aladdin and StarWars

respectively.

It can be observed from Table XXXVIII that the ESN model still performs better

than the ARX model for low bit rate video traces.
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Table XXXVIII. MSE of the four-step-ahead prediction of I-VOPs

Video Trace MBR ARX ESN

(Mbps) Model Model

Aladdin 0.44 6.6 6.8

ARD Talk 0.54 3.0 3.9

Die Hard III 0.25 8.5 8.3

Jurassic Park I 0.77 3.4 6.6

Lecture Room 0.06 1.6 0.4

Silence of the Lambs 0.11 10.8 11.0

Skiing 0.19 7.0 6.7

StarWars 0.28 4.5 4.4
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Fig. 151. Four-SP sizes of the I-VOPs of Aladdin.
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Fig. 152. Four-SP sizes of the I-VOPs of StarWars.

b. Prediction Models for Moving Average

Table XXXIX presents the MSE in the four-step-ahead prediction of the moving

average VOP size time-series for different methods used in this research and the

published literature. The results for the RMLP model are obtained from the research

paper by Bhattacharya et al. [30]. The MBR of the video traces is also tabulated in

Table XXXIX.

Figures 153 and 154 show the performance of these prediction schemes for a 100

second window for the movie traces Aladdin and StarWars respectively.

From Table XXXIX the following can be observed:

1. The non-linear empirical modeling techniques perform better than the linear

techniques for the four-step-ahead predictions.
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Table XXXIX. MSE of the four-step-ahead prediction for all models

Video Trace MBR AR ARX FMLP RMLP ESN

(Mbps) Model Model Model Model [30] Model

Aladdin 0.44 15.2 14.9 13.2 13.0 13.7

ARD Talk 0.54 4.9 4.4 5.0 4.2 4.6

Die Hard III 0.25 15.3 14.0 11.6 14.9 12.3

Jurassic Park I 0.77 9.9 9.8 23.1 8.0 15.2

Lecture Room 0.06 40.5 7.4 81.9 33.3 2.8

Silence of the Lambs 0.11 20.9 17.0 25.9 19.0 16.6

Skiing 0.19 13.0 13.6 13.8 15.1 11.9

StarWars 0.28 8.5 8.8 6.3 8.6 8.4
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Fig. 153. Four-SP sizes of the moving average VOPs of Aladdin for all models.
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Fig. 154. Four-SP sizes of the moving average VOPs of StarWars for all models.

2. For high bit rate video traces the RMLP model performs better than the other

models whereas for the low bit rate traces we get mixed results. The ESN model

performs better than other non-linear models for very low bit rate video traces

(MBR ≥ 0.2 Mbps) such as Lecture Room, Silence of the Lambs, and Skiing.

For the range where 0.2 ≤ MBR ≤ 0.4 ∼ 0.5 Mbps, the FMLP model gives

better results.

Thus it can be concluded from the above observations that the ESN model con-

tinues to perform better than others for very low bit rate videos. But for medium

bit rate ranges, its performance is inferior to the FMLP model. The RMLP model

continues to perform better than all other models for high bit rate video traces.
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4. Six-step-ahead Prediction Models

a. Prediction Models for I-VOPs

Table XL presents the MSE in the six-step-ahead prediction of individual I-VOPs for

the models developed in this work. The table also shows the MBR of the video traces.

Figures 155 and 156 show the performance of the prediction schemes developed

in this research for a 100 second window for the movie traces Aladdin and StarWars

respectively.

Table XL. MSE of the six-step-ahead prediction of I-VOPs

Video Trace MBR ARX ESN

(Mbps) Model Model

Aladdin 0.44 7.6 8.2

ARD Talk 0.54 4.0 5.4

Die Hard III 0.25 10.8 10.2

Jurassic Park I 0.77 4.3 7.8

Lecture Room 0.06 2.7 2.4

Silence of the Lambs 0.11 13.2 14.9

Skiing 0.19 8.7 8.4

StarWars 0.28 5.6 5.4

It can be observed from Table XL that though the ESN model is still better than

the ARX model at low bit rates, the errors in both models have increased considerably.
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Fig. 155. Six-SP sizes of the I-VOPs of Aladdin.
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Fig. 156. Six-SP sizes of the I-VOPs of StarWars.
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b. Prediction Models for Moving Average

Table XLI presents the MSE in the Six-step-ahead prediction of the moving average

VOP size time-series for different methods used in this research. The MBR of the

video traces is also tabulated in Table XXXIX.

Figures 157 and 158 show the performance of these prediction schemes for a 100

second window for the movie traces Aladdin and StarWars respectively.

Table XLI. MSE of the six-step-ahead prediction for all models

Video Trace MBR AR ARX FMLP RMLP ESN

(Mbps) Model Model Model Model Model

Aladdin 0.44 16.5 18.1 15.3 15.6 14.6

ARD Talk 0.54 6.1 6.4 6.1 5.9 9.1

Die Hard III 0.25 19.0 17.6 15.3 18.5 15.3

Jurassic Park I 0.77 12.4 12.3 21.6 11.3 11.5

Lecture Room 0.06 66.7 10.7 73.3 140.0 3.8

Silence of the Lambs 0.11 28.4 21.5 33.3 45.3 32.6

Skiing 0.19 16.1 17.5 20.0 29.2 22.6

StarWars 0.28 9.9 10.4 8.2 9.8 8.1

It can be observed from Table XLI that:

1. Though the RMLP predictor is better than other predictors for high bit rate

video traces, the prediction errors are large.

2. There is no single model which performs well for all low bit rate traces. The

prediction is equally bad for both linear and non-linear models.
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Fig. 157. Six-SP sizes of the moving average VOPs of Aladdin for all models.
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Fig. 158. Six-SP sizes of the moving average VOPs of StarWars for all models.
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Thus it can be concluded that the all prediction models begin to falter as the

prediction horizon is increased to six-steps-ahead. Next the results for ten-step-ahead

predictions are presented.

5. Ten-step-ahead Prediction Models

a. Prediction Models for I-VOPs

Table XLII presents the MSE in the ten-step-ahead prediction of individual I-VOPs

for the models developed in this work. The table also shows the MBR of the video

traces.

Figures 159 and 160 show the performance of the prediction schemes developed

in this research for a 100 second window for the movie traces Aladdin and StarWars

respectively.

Table XLII. MSE of the ten-step-ahead prediction of I-VOPs

Video Trace MBR ARX ESN

(Mbps) Model Model

Aladdin 0.44 8.1 8.4

ARD Talk 0.54 5.0 6.4

Die Hard III 0.25 11.5 11.3

Jurassic Park I 0.77 5.3 8.8

Lecture Room 0.06 3.3 2.9

Silence of the Lambs 0.11 15.7 17.0

Skiing 0.19 10.2 10.1

StarWars 0.28 6.2 6.9
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Fig. 159. Ten-SP sizes of the I-VOPs of Aladdin.
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Fig. 160. Ten-SP sizes of the I-VOPs of StarWars.
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It can be observed from Table XLII that the errors in both the models are

significantly high and the performance is comparable.

b. Prediction Models for Moving Average

Table XLIII presents the MSE in the Ten-step-ahead prediction of the moving average

VOP size time-series for different methods used in this research. The MBR of the

video traces is also tabulated in Table XLIII.

Table XLIII. MSE of the ten-step-ahead prediction for all models

Video Trace MBR AR ARX FMLP RMLP ESN

(Mbps) Model Model Model Model Model

Aladdin 0.44 17.9 18.9 17.1 16.9 16.9

ARD Talk 0.54 7.7 7.9 7.3 7.3 12.9

Die Hard III 0.25 24.9 21.2 19.7 22.7 20.1

Jurassic Park I 0.77 16.1 15.6 22.0 14.6 29.2

Lecture Room 0.06 120.4 11.5 116.8 165.3 4.7

Silence of the Lambs 0.11 41.5 28.6 49.5 59.2 44.9

Skiing 0.19 19.7 20.3 27.2 37.8 29.5

StarWars 0.28 11.8 12.0 10.2 11.7 10.2

Figures 161 and 162 show the performance of these prediction schemes for a 100

second window for the movie traces Aladdin and StarWars respectively. It can be

observed from the table that for both the linear and non-linear models, the prediction

errors are high. Though for the high bit rate videos the RMLP predictor is still

better than the others, the errors in predictions are significantly high. Thus it can
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Fig. 161. Ten-SP sizes of the moving average VOPs of Aladdin for all models.
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Fig. 162. Ten-SP sizes of the moving average VOPs of StarWars for all models.
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be concluded that all the models fail to predict the MPEG-coded video source traffic

ten-step-ahead.

B. Conclusions

The objective of the current research is to develop multi-step-ahead prediction schemes

for the prediction of MPEG-coded video source traffic. This work mainly focuses on

the development of prediction models for the moving average time-series of the VOP

sizes. Few models for the prediction of I-VOPs are also developed. A glance at the

I-VOPs prediction results shows that the prediction errors for I-VOPs are comparable

with the prediction errors of the moving average time-series. Literature shows that

the I-VOPs are easier to predict than the P- or B-VOPs. In order to have a good

estimate of the GOV size and hence the bit rate, one needs to have accurate predic-

tions of at least I- and P-VOPs. But since the errors in the prediction of P-VOPs are

much higher ([21], [22] and [30]), the combined result of I- and P-VOP predictions

is bound to be worse than the moving average predictions. This justifies the use of

moving average of the VOP size time-series over the individual VOP siz time-series.

This work can be concluded with the following statements.

1. Recurrent neural network models give good results for the prediction of the

video traffic than linear or non-recurrent neural networks.

2. The RMLP models perform better for high bit rate video traces whereas the

ESN models perform well for low bit rates.

3. The prediction deteriorates significantly with increase in the horizon beyond

four-steps-ahead.

4. This work suggests the ESN prediction model which performs better than the
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existing models for multi-step-ahead predictions for low bit rate videos.

C. Recommendations for Future Work

This work shows that there is no single model that performs well for all bit rates.

Some recommendations for future work are:

1. Use of more than one model for multi-step-ahead prediction of the source video

traffic. This requires the design of a scheme which switches between the pre-

diction models depending on the bit rate of the video traffic.

2. Design of non-linear prediction models which can be adapted online. Till now

researchers have used linear, non-linear and adaptive linear models for the pre-

diction of MPEG-coded video source traffic. The domain non-linear modeling

techniques which can be adapted online for the prediction of MPEG-coded video

source traffic has not been explored.

3. Design of a control scheme for efficient delivery of multimedia traffic using the

output of the empirical models described in this research work.
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