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ABSTRACT

Forced Two Layer Beta-Plane Quasi-Geostrophic Flow. (December 2005)

Constantin Onica, B.S., Al. I. Cuza University, Iasi, Romania;

M.S., Al. I. Cuza University, Iasi, Romania

Chair of Advisory Committee: Dr. Ciprian Foias

We consider a model of quasigeostrophic turbulence that has proven useful in

theoretical studies of large scale heat transport and coherent structure formation in

planetary atmospheres and oceans. The model consists of a coupled pair of hyperbolic

PDE’s with a forcing which represents domain-scale thermal energy source. Although

the use to which the model is typically put involves gathering information from very

long numerical integrations, little of a rigorous nature is known about long-time prop-

erties of solutions to the equations. In the first part of my dissertation we define a

notion of weak solution, and show using Galerkin methods the long-time existence

and uniqueness of such solutions. In the second part we prove that the unique weak

solution found in the first part produces, via the inverse Fourier transform, a classical

solution for the system. Moreover, we prove that this solution is analytic in space

and positive time.
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CHAPTER I

INTRODUCTION

Among several challenging aspects of weather prediction, one recognized very early

was the large range of time and space scales involved if attempts are based on fun-

damental equations of continuum mechanics. “Weather” here refers to motions of

relatively low frequency when compared with sound or gravity waves. Pioneering

attempts [3], [4] with the first computers to predict extra-tropical weather patterns

on spatial scales of order 1000 km used a series of observationally motivated approxi-

mations to derive a system of equations which “filtered” out relatively high frequency

motions, thereby substantially reducing the range of timescales and easing the com-

putational burden to the point where the goal of a useful forecast came within reach.

The assumptions and approximations, now collectively called quasigeostrophic theory,

placed special emphasis on observations that the evolution of the horizontal veloc-

ity and pressure gradient fields appeared to nearly preserve a “geostrophic” balance

between Coriolis and pressure gradients forces, on large space scales and time scales

exceeding a day. While computational technology now allows forecasts using equa-

tions derived under less restrictive assumptions, and the theory is now but one of a

class based on geophysically relevant “balances” (see [15], [16]), quasigeostrophic the-

ory and its numerical models remain of interest to meteorologists and oceanographers

because they capture a number of physically important features while possessing a

structure amenable to mathematical analysis and extensive numerical experimenta-

tion.

This dissertation concerns a simple quasigeostrophic model used by the author

The journal model is IEEE Transactions on Automatic Control.
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of [13] to study a problem of pattern formation believed to be import in climate

studies. The same model has been used for other purposes ([8], [12], [9], [11]). It is a

coupled pair of 2D vorticity equations, in which the coupling term has the physical

interpretation of a temperature field and is of central importance to its use. The

system is forced by stimulation of a geophysically important instability present in

the system. Numerical integrations indicate that the instability is typically arrested

by nonlinearity, and all variables of interest come eventually to fluctuate irregularly

about a suitably defined average value. Different variables take differing amounts of

integration time to reveal this behavior; if this occurs for all variables of interest, the

system is judged to be at “statistically steady state.” Statistically steady states are

not always observed: for some choices of model parameters the system energy grows

without bound and integrations must be stopped because of exponential overflow. No

analysis has been done that explains this experience.

The model is typically used when many long-time numerical integrations of geo-

physical turbulence are required for purposes related to climate studies, purposes

for which use of a climate models would be unnecessarily (and often prohibitively)

demanding of computational time. Reliance on the model has been based on the

convincing representation it gives of certain observed phenomena. Data from long

numerical integrations are subjected to various averaging procedures to extract in-

formation about statistically steady states; these averages constitute the “climate” of

the model, and sensitivity of these averages to parametric changes in the model is of

interest to theories of climate behavior. No analytical guidance exists for the proper

construction, or interpretation, of these averages.

Our primary motivation in undertaking this study is to put on a firm mathemati-

cal ground the calculations in [13]. We expect that this analytic study will clarify the

theoretical difficulties referred to in the preceding paragraph. Also, as the reader will
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see in the next chapter, the model system sits in an interesting position between 2D

and 3D Navier Stokes, so the problem may have some independent interest. The most

closely related analytical work appears to be that of [1], which establishes finite-time

existence and uniqueness for the quasigeostrophic model proposed by [2], with esti-

mates of that finite time based on the size of initial data and the size of the forcing.

(We mention recent work on a less closely related equation in the next chapter.)

The plan of the dissertation is as follows. In Section A of Chapter II we present

the model in physical space variables, place it in context with recent related work,

give some discussion of the forcing, and motivate an energy norm chosen for the sub-

sequent analysis. In Section B of Chapter II we reformulate the model in wave-vector

space, define relevant function spaces and norms, and present our notion of a weak

solution. Chapter III follows an approach presented in [7] for study of the Navier-

Stokes equations. In Section A of Chapter III we define a sequence of approximating

Galerkin systems. Each system is a finite set of ODE’s with quadratic nonlinear-

ity, constructed by truncating the full wave-vector system at a wavenumber N . The

long time existence of a classical solution (called there an N -solution) for each such

system follows from the theory of ordinary differential equations. Key steps involve

obtaining bound on energy injection by the forcing and certain algebraic observations

that are analogues of integration-by-parts arguments. Section B of Chapter III then

establishes (Theorem B.1) the existence of a weak solution by first verifying equicon-

tinuity and uniform boundedness of the family of N -solutions, for a fixed wavenumber

and time interval [0, T ] of integer length T . Applications of the Arzela-Ascoli The-

orem, diagonalizing over wavenumbers and T , produces a limit which is then shown

to be a weak solution. Section C of Chapter III demonstrates the uniqueness of the

weak solution. In each of these sections the main effort is to control the non-linear

term: key steps in the proof of Theorem B.1 involve combinations of Holder’s and
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Ladyzhenskaya’s inequalities with a Gronwall argument. In Chapter IV we show that

our unique weak solution is in fact a classical solution. In addition we will prove that

the mentioned solution is time and space analytic. Meantime, L. Panetta, E. Titi

and M. Ziane have announced in [14] existence and uniqueness results (as well as a

dissipativity property) for the strong solutions of our system under a more restrictive

condition on the dissipative terms of the system.



5

CHAPTER II

PRELIMINARIES

A. The model system

In this section we employ non-dimensionalizations that we do not discuss. Details

can be found in [13], [15], [16]. Common to all versions of quasigeostrophic theory is

the assumption that the horizontal velocity field has a streamfunction

~u = ∇⊥ψ, (2.1)

(a non-dimensional form of geostrophic balance), together with an evolution equation

for a quantity Q

∂Q

∂t
+
∂ψ

∂x1

∂Q

∂x2

− ∂ψ

∂x2

∂Q

∂x1

= F [ψ] +D[ψ]. (2.2)

Here ∇⊥ψ = (− ∂ψ
∂x2
, ∂ψ
∂x1

), (x1, x2) are horizontal coordinates, F and D are forcing and

dissipation terms, and Q is related to ψ by a linear differential operator L in space

variables

Q = L[ψ]. (2.3)

Different choices for L give different versions of the theory: the general form is

L[ψ] = βx2 + ∆ψ + a(x3)
∂

∂x3

(
b(x3)

∂

∂x3

ψ

)
. (2.4)

Here ∆ ≡ ∂
∂x2

1
+ ∂

∂x2
2
, β ≥ 0 is a constant and a(x3), b(x3) are functions related to a

reference state density structure which is not explained by the theory. In this form Q

is called the continuously stratified version of potential vorticity; in numerical models

the vertical dependence is expressed in terms of fluid layers or modes, with appropriate

treatments of the vertical derivatives. Thorough discussions from different points of

view are given by [15] and [16].
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The quantity

τ ≡ ∂ψ

∂x3

(2.5)

appearing in (2.4) plays an important role in the theory: it is a representation of

temperature (or buoyancy), and in view of (2.1), its horizontal gradient is related to

vertical shear:

∂~u

∂x3

= ∇⊥τ. (2.6)

The presence of non-zero τ also allows a form of vorticity generation not present in 2D

flow. Versions of the theory that assume τ ≡ 0, are called barotropic, and ones that

do not are called baroclinic. (Note that barotropic versions with β = 0 are simply

2D incompressible Navier Stokes equations.) For baroclinic versions, an equation for

evolution of temperature on the boundary is included. Recent interest has in fact

focused on the model that emerges when Q is assumed constant within the interior

of the domain, and the evolution equation (2) is replaced by one governing boundary

temperature field: this model, with L[ψ] = −(−∆)−1/2ψ is called “surface geostrophic

theory” and presents an interesting connection with the 3D Euler and Navier Stokes

equations ([10], [6],[5]).

The model we study here uses the same vertical discretization of (2.2), (2.4)

used in the early forecast attempts [4], but with the periodic boundary conditions

motivated by [2] and with a special form of forcing that we describe briefly. Details

are in [13], [8]. The model is defined in terms of a pair of streamfunctions (ψ1, ψ2).

In the physical interpretation, the flow given by ψ1 is at a greater altitude (x3 value)

than that given by ψ2. The analogue of the temperature variable (2.5) is

ψ̂ =
ψ1 − ψ2

2
(2.7)

and there is a relation corresponding naturally to (2.6) between horizontal derivatives
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of ψ̂ and vertical velocity differences. It is assumed that the flow takes place in the

presence of an imposed, horizontally uniform temperature gradient, with a strength

sufficient to excite an exponential instability at a number of scales. This gradient,

like the reference stratification, cannot be altered by the flow’s evolution. It is a

stronger physical assumption than a simple imposition of a temperature drop across

the domain. What actually appears in the equations is the vertical velocity difference

related to the temperature gradient, which we denote in this section by 2Û . The

equations are

∂q1
∂t

+
∂ψ1

∂x1

∂q1
∂x2

− ∂ψ1

∂x2

∂q1
∂x1

= −
[
2Û

∂q1
∂x1

+ (β + Û)
∂ψ1

∂x1

]
− ν(−∆)pq1 (2.8)

∂q2
∂t

+
∂ψ2

∂x1

∂q2
∂x2

− ∂ψ2

∂x2

∂q2
∂x1

= −
[
(β − Û)

∂ψ2

∂x1

]
− ν(−∆)pq2 − κM∆ψ2. (2.9)

Here the qi are related to the ψi by

q1 = ∆ψ1 − ψ̂ (2.10)

q2 = ∆ψ2 + ψ̂ (2.11)

Solutions (ψ1(x1, x2, t), ψ2(x1, x2, t)) to these equations are sought which are periodic

on the domain Ω ≡ [0, 2πL̂]2, where L̂ is a nondimensional real number. It is also

assumed in [13] that such solutions have vanishing horizontal average. (Note: the

velocity difference 2Û is actually used to non-dimensionalize the equations in [13],

[8], and so should be replaced by the value 1/2. We keep it, in this section alone, to

mark terms related to the forcing and to show below how the imposed temperature

gradient enters in the energy equation.)

The linear term involving β is a representation in this planar geometry of an effect

of sphericity in planetary scale flow ([15], [16]); non-zero β is crucial to the formation of

jets and introduces long timescales in the solutions [13]. (Getting estimates regarding
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this effect is one of our aims.) The term involving κM is a parameterization of a

boundary layer effect called Ekman pumping ([15], [16]). In the terms involving ν,

choices of p > 1 are not as directly based on physical principles, and have more

to do with expectations regarding energy and enstrophy cascades, and most often

are made for computational convenience: they are designed to produce dissipative

terms, and to concentrate the dissipation processes in simulations at the smallest

small spatial scales included in the calculation. The hope is that this does not affect

in any important way non-linear interactions at larger scales. When p > 1 the value

of ν has only phenomenological justification. (We note that in [13] the high order

Laplacian operator is not applied to the qi, but instead to the ψi. The analysis we

present for the equations here differs inessentially from what would be needed in that

case. We choose this form of the equations because it the one being used in currently

ongoing numerical studies, and it also agrees with [12], [9], and [11].)

A useful view of the roles of the terms on the right-hand sides of (2.8,2.9) comes

from deriving the energy equation for the model. To do this, each layer equation is

multiplied by its streamfunction, the equations are integrated horizontally, and the

results are added. Using the notation (in this section alone)

< F >=

∫

Ω

F (x1, x2, t)dx1dx2 (2.12)

what results after several integrations by parts and uses of periodicity is

∂E

∂t
= 2Û <

∂ψ̃

∂x1

ψ̂ > −κM < |∇ψ2|2 > −νP (2.13)

where ψ̃ ≡ ψ1+ψ2

2
and the total energy E is defined by

E =
< |∇ψ1|2 + |∇ψ2|2 >

2
+ < ψ̂2 > (2.14)

is the sum of terms representing the kinetic energies in each layer and the model’s
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form of potential energy. The term P is positive definite:

P =





< (∆m+1ψ1)
2
+ (∆m+1ψ2)

2
+ 2|∇

(
∆mψ̂

)
|2 > if p = 2m+ 1

< |∇ (∆mψ1) |2 + |∇ (∆mψ2) |2 + 2
(
∆mψ̂

)2

> if p = 2m
(2.15)

The only term not clearly sign-definite is that involving Û and is the energy source

term for the model. It corresponds to the net flux of heat down the mean temperature

gradient represented by the imposed vertical shear Û . This is as in models of thermal

convection, where the energy generation for turbulent motions may also be related to

the net down-gradient heat flux.

Notice that formal use of Cauchy-Schwartz and Poincare inequalities (recall the

assumption of zero horizontal average for the ψi) gives the crude estimate

<
∂ψ̃

∂x1

ψ̂ >≤
(
< |∇ψ̃|2 >

)1/2 (
< |ψ̂|2 >

)1/2

≤ L̂
(
< |∇ψ̃| >

)1/2 (
< |∇ψ̂| >

)1/2

=
L̂

2

< |∇ψ1|2 + |∇ψ2|2 >
2

≤ L̂

2
E.

So from the energy equation (2.13) we get

∂E

∂t
+ νP + κM < |∇ψ2|2 >≤ Û L̂E. (2.16)

An analogue of this argument will be used in Section A of Chapter III. Notice

that no mention of the parameter β occurs in this estimate of the domain-integrated

energy. (It does, however, appear in the equation for enstrophy equation). Never-

theless, experience with the model has indicated that the presence of the term β

fundamentally affects the manner in which energy transfers within the domain occur,

and the timescales present in numerical solutions.

We now drop further mention of the constant Û , using instead its value 1/2.
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B. The wave-vector formulation

Let L̂ > 0, Ω be the square [0, 2πL̂]2 ⊂ R
2 and α be an arbitrary nonnegative

real number. We consider the equations (2.8)-(2.11) in Ω with periodic boundary

conditions:

∂q1
∂t

+

(
∂ψ1

∂x1

∂q1
∂x2

− ∂ψ1

∂x2

∂q1
∂x1

)
= − ∂q1

∂x1

− (β +
1

2
)
∂ψ1

∂x1

− ν(−∆)1+αq1 (2.17)

∂q2
∂t

+

(
∂ψ2

∂x1

∂q2
∂x2

− ∂ψ2

∂x2

∂q2
∂x1

)
= −κM∆ψ2 − (β − 1

2
)
∂ψ2

∂x1

− ν(−∆)1+αq2, (2.18)

where

q1 = ∆ψ1 −
ψ1 − ψ2

2
and q2 = ∆ψ2 +

ψ1 − ψ2

2
. (2.19)

If ϕ is a 2πL̂-periodic complex-valued scalar or vector function which is integrable

over Ω, we define its Fourier coefficients by

ϕ(k) =
1

(2πL̂)2

∫

Ω

e−
i

L
k·xϕ(x)dx, k ∈ Z

2.

Its Fourier series will then be
∑

k∈Z2

ϕ(k)e
i

L
k·x.

Moreover, if ϕ = ϕ(x, t) : R
2 × [0, T ](or [0,∞)) −→ C

d, d ∈ N, is 2πL̂-periodic in the

plane variable, we denote by {ϕ(k, t)}k∈Z2 the Fourier coefficients of ϕ(·, t).

By formally replacing in (2.17)-(2.19) ψj(x, t) with
∑

k∈Z2

ψj(k, t)e
i

L
k·x and qj(x, t)

with
∑

k∈Z2

qj(k, t)e
i

L
k·x, j = 1, 2, and identifying the corresponding Fourier coefficients

we obtain the following equations:

d

dt
q1(k, t) +

1

L̂2

∑

h+l=k

(h2l1 − h1l2)ψ1(h, t)q1(l, t)

= − i

L̂
k1q1(k, t) − (β +

1

2
)
i

L̂
k1ψ1(k, t) − ν

( |k|
L̂

)2(1+α)

q1(k, t), (2.20)
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d

dt
q2(k, t) +

1

L̂2

∑

h+l=k

(h2l1 − h1l2)ψ2(h, t)q2(l, t)

= κM
|k|2

L̂2
ψ2(k, t) − (β − 1

2
)
i

L̂
k1ψ2(k, t) − ν

( |k|
L̂

)2(1+α)

q2(k, t), (2.21)

with

q1(k, t) = −|k|2

L̂2
ψ1(k, t) −

ψ1(k, t) − ψ2(k, t)

2
, (2.22)

q2(k, t) = −|k|2

L̂2
ψ2(k, t) +

ψ1(k, t) − ψ2(k, t)

2
, (2.23)

for every k ∈Z
2. Since ψj(x, t), j = 1, 2, are real-valued functions we have that

ψj(−k, t) = ψj(k, t),k ∈Z
2, j = 1, 2, (2.24)

where for a complex number z we denote by z the complex conjugate of z. The

equations (2.20)-(2.24) are called the wave-vectors formulation of the equations (2.17)-

(2.19) for plane 2πL̂-periodic solutions. Let

K := {−→ψ = ({ψ1(k)}k∈Z2 , {ψ2(k)}k∈Z2) : ψj(k) ∈ C, ψj(−k) = ψj(k), j = 1, 2,

k ∈Z
2, ψ1(0) + ψ2(0) = 0} (2.25)

and

H :=

{
−→
ψ ∈ K : |−→ψ |2 :=

∑

k∈Z2

E(
−→
ψ )(k) <∞

}
, (2.26)

where

E(
−→
ψ )(k) :=

|k|2

L̂2

(
|ψ1(k)|2 + |ψ2(k)|2

)
+

|ψ1(k) − ψ2(k)|2
2

.

The space K with the metric

d(
−→
ψ ,−→ϕ ) :=

∑

k∈Z2

(
2∑

j=1

|ψj(k) − ϕj(k)|
1 + |ψj(k) − ϕj(k)|

)
2−|k|2 , (2.27)

is a Frechet space, and H with the norm (as above) given by the scalar prod-
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uct
〈−→
ψ ,−→ϕ

〉
:=

∑
k∈Z2

[
|k|2bL2

(
ψ1(k)ϕ1(k) + ψ2(k)ϕ2(k)

)
+

(ψ1(k)−ψ2(k))(ϕ1(k)−ϕ2(k))
2

]
is

a Hilbert space. For each γ > 0 define

Vγ :=

{
−→
ψ ∈ H : |−→ψ |2γ :=

∑

k∈Z2

( |k|
L̂

)2γ

E(
−→
ψ )(k) <∞

}
. (2.28)

We denote by C([0,∞),K) the space of all K-valued continuous functions on [0,∞),

where the continuity is with respect to the metric defined by (2.27). We also define

the spaces L∞
loc([0,∞), H) and L2

loc([0,∞), Vγ) by the following:

L∞
loc([0,∞), H) =

{−→
ψ : [0,∞) −→ H : ess- sup

0≤t≤T
|−→ψ (t)| <∞, for every T ∈ [0,∞)

}

and

L2
loc([0,∞), Vγ) =

{−→
ψ : [0,∞) −→ Vγ :

∫ T

0

|−→ψ (t)|2γdt <∞, for every T ∈ [0,∞)

}
.

Now we are ready to give the definition of a weak solution for (2.20)-(2.24) with

initial data
−→
ψ 0 ∈ H.

Definition B.1. Let
−→
ψ 0 ∈ H. A H-valued function

−→
ψ is called weak solution for

the equations (2.20)-(2.24) with initial data
−→
ψ 0 if it has the following properties:

1)
−→
ψ ∈ C([0,∞),K) ∩ L∞

loc([0,∞), H) ∩ L2
loc([0,∞), V1+α),

2) q1(k, t) = q1(k, 0) −
∫ t

0
{ 1bL2

∑
h+l=k

(h2l1 − h1l2)ψ1(h, τ)q1(l, τ) + ibLk1q1(k, τ)+ (β +

1
2
) ibLk1ψ1(k, τ) + ν

(
|k|bL )2(1+α)

q1(k, τ)}dτ ,

q2(k, t) = q2(k, 0)−
∫ t

0
{ 1bL2

∑
h+l=k

(h2l1−h1l2)ψ2(h, τ)q2(l, τ)−κM |k|2bL2
ψ2(k, τ)+(β−

1
2
) ibLk1ψ2(k, τ)+ν

(
|k|bL )2(1+α)

q2(k, τ)}dτ , ∀t ∈ [0,∞), ∀k ∈ Z
2, where q1(k, t) =

− |k|2bL2
ψ1(k, t) − ψ1(k,t)−ψ2(k,t)

2
, q2(k, t) = − |k|2bL2

ψ2(k, t) + ψ1(k,t)−ψ2(k,t)
2

, ∀k ∈ Z
2,

and

3) ψj(k, 0) = ψ0
j (k), j = 1, 2, ∀k ∈ Z

2.
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CHAPTER III

WEAK SOLUTIONS

A. Galerkin approximations

In order to prove the existence of a weak solution for the equations (2.20)-(2.24) we

will use the Galerkin approximations technique. Notice that




q1(k)

q2(k)


 =




−
(

|k|2bL2
+ 1

2

)
1
2

1
2

−
(

|k|2bL2
+ 1

2

)







ψ1(k)

ψ2(k)


 .

Denote

Ak =




−
(

|k|2bL2
+ 1

2

)
1
2

1
2

−
(

|k|2bL2
+ 1

2

)




and note that Ak is invertible for every k 6= 0. For every k ∈ Z
2\{0}, the equations

(2.20) and (2.21) become

d

dt




ψ1(k, t)

ψ2(k, t)


 = A−1

k




− 1bL2

∑
h+l=k,|h|,|l|≤N

(h2l1 − h1l2)ψ1(h, t)q1(l, t)

− 1bL2

∑
h+l=k,|h|,|l|≤N

(h2l1 − h1l2)ψ2(h, t)q2(l, t)


+

A−1
k




− ibLk1q1(k, t) − (β + 1
2
) ibLk1ψ1(k, t) − ν

(
|k|bL )2(1+α)

q1(k, t)

κM
|k|2bL2

ψ2(k, t) − (β − 1
2
) ibLk1ψ2(k, t) − ν

(
|k|bL )2(1+α)

q2(k, t)


 . (3.1)

For N ∈ N fixed we consider the system:

d

dt




ϕ1(k, t)

ϕ2(k, t)


 = A−1

k




− 1bL2

∑
h+l=k

(h2l1 − h1l2)ϕ1(h, t)r1(l, t)

− 1bL2

∑
h+l=k

(h2l1 − h1l2)ϕ2(h, t)r2(l, t)


+

A−1
k




− ibLk1r1(k, t) − (β + 1
2
) ibLk1ϕ1(k, t) − ν

(
|k|bL )2(1+α)

r1(k, t)

κM
|k|2bL2

ϕ2(k, t) − (β − 1
2
) ibLk1ϕ2(k, t) − ν

(
|k|bL )2(1+α)

r2(k, t)


 , (3.2)
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for k 6= 0, |k| ≤ N , and

d

dt




ϕ1(0, t)

ϕ2(0, t)


 =




0

0


 , (3.3)

where

r1(k, t) = −|k|2

L̂2
ϕ1(k, t) −

ϕ1(k, t) − ϕ2(k, t)

2
, (3.4)

r2(k, t) = −|k|2

L̂2
ϕ2(k, t) +

ϕ1(k, t) − ϕ2(k, t)

2
. (3.5)

We will be referring to equations (3.2) and (3.3) together with (3.4) and (3.5) as the

N -system.

Definition A.1. Let Z
2
N = {k ∈ Z

2||k| ≤ N}. A N -solution is a family of functions

{(ϕ1(k, ·), ϕ2(k, ·))}k∈Z2
N

satisfying the N -system.

Lemma A.1. Let N ∈ N and
−→
ψ 0 ∈ H. Then

(a) there exist t0 > 0 and {(ϕ1(k, ·), ϕ2(k, ·))}k∈Z2
N

such that

(i) ϕj(k, ·) ∈ C∞([0, t0]; C),

(ii) {(ϕ1(k, ·), ϕ2(k, ·))}k∈Z2
N

is a N -solution with ϕj(k, 0) = ψ0
j (k), ∀|k| ≤ N ,

j = 1, 2, and

(iii) ϕj(k, t) = ϕj(−k, t),∀|k| ≤ N, j = 1, 2,

(b) for every T ∈ (0,∞) with the property that the above solution exists on [0, T )

there exists M > 0 such that

|ϕj(k, t)| ≤M,∀t ∈ [0, T ),∀|k| ≤ N, j = 1, 2. (3.6)

Moreover, the N -solution {(ϕ1(k, ·), ϕ2(k, ·))}k∈Z2
N

with initial data
−→
ψ 0 is unique in

the interval of existence.
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Proof. Part (a) follows immediately from the classical theory of systems of ordinary

differential equations and the fact that {ϕj(k, t)}|k|≤N,j=1,2 and {ϕj(−k, t)}|k|≤N,j=1,2

are solutions for the same system of ODEs with the same initial data (since ψ0
j (k) =

ψ0
j (−k), for every k ∈ Z

2). For (b) we start by noticing that from (3.3) we have that

ϕj(0, t) = ψ0
j (0),∀t ∈ [0, T ), j = 1, 2. (3.7)

Using the equations (3.4) and (3.5) we also get

Re
∑

|k|≤N

((
d

dt
r1(k, t)

)
ϕ1(k, t) +

(
d

dt
r2(k, t)

)
ϕ2(k, t)

)
=

Re
∑

|k|≤N

{−|k|2

L̂2

(
d

dt
ϕ1(k, t)

)
ϕ1(k, t) −

|k|2

L̂2

(
d

dt
ϕ2(k, t)

)
ϕ2(k, t)−

(
d

dt

(
ϕ1(k, t) − ϕ2(k, t)

2

))
ϕ1(k, t) +

(
d

dt

(
ϕ1(k, t) − ϕ2(k, t)

2

))
ϕ2(k, t)} =

−1

2

d

dt

∑

|k|≤N

{ |k|2

L̂2
(|ϕ1(k, t)|2 + |ϕ2(k, t)|2) +

|ϕ1(k, t) − ϕ2(k, t)|2
2

}
. (3.8)

We will extend a N -solution in a natural way to a function
−→
ψ N such that for every t

in the interval of existence of our N -solution we have
−→
ψ N(t) ∈ K, namely:

ψN(k, t) = ϕ(k, t), if |k| ≤ N and ψN(k, t) =




0

0


 , if |k| > N . (3.9)

For
−→
ψ N we then obtain from (3.8) that

1

2

d

dt
|−→ψ N(t)|2 = −Re

∑

|k|≤N

(
d

dt
r1(k, t)

)
ϕ1(k, t) +

(
d

dt
r2(k, t)

)
ϕ2(k, t),

and using (3.2) we get

1

2

d

dt
|−→ψ N(t)|2 = −Re

∑

|k|≤N

{(− 1

L̂2

∑

h+l=k

(h2l1 − h1l2)ϕ1(h, t)r1(l, t)
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− i

L̂
k1r1(k, t) − (β +

1

2
)
i

L̂
k1ϕ1(k, t) − ν

( |k|
L̂

)2(1+α)

r1(k, t))ϕ1(k, t)

+(− 1

L̂2

∑

h+l=k

(h2l1 − h1l2)ϕ2(h, t)r2(l, t) + κM
|k|2

L̂2
ϕ2(k, t)

−(β − 1

2
)
i

L̂
k1ϕ2(k, t) − ν

( |k|
L̂

)2(1+α)

r2(k, t))ϕ2(k, t)},

which implies that

1

2

d

dt
|−→ψ N(t)|2 =

1

L̂2
Re

∑

|k|≤N

∑

h+l=k

(h2l1 − h1l2)(ϕ1(h, t)r1(l, t)ϕ1(k, t)

+ϕ2(h, t)r2(l, t)ϕ2(k, t)) + Re


 i

L̂

∑

|k|≤N

k1r1(k, t)ϕ1(k, t)




−κM
∑

|k|≤N

|k|2

L̂2
|ϕ2(k, t)|2

+νRe
∑

|k|≤N

( |k|
L̂

)2(1+α)

(r1(k, t)ϕ1(k, t) + r2(k, t)ϕ2(k, t)). (3.10)

Using (iii) from part (a) of Lemma A.1 we deduce that

S1 : =
∑

|k|≤N

∑

h+l=k

(h2l1 − h1l2)ϕ1(h, t)r1(l, t)ϕ1(k, t)

=
∑

h+l+k=0,|h|,|l|,|k|≤N

(h2l1 − h1l2)ϕ1(h, t)r1(l, t)ϕ1(k, t),

and after we interchange h with k we obtain

S1 =
∑

h+l+k=0,|h|,|l|,|k|≤N

(k2l1 − k1l2)ϕ1(k, t)r1(l, t)ϕ1(h, t)

=
∑

h+l+k=0,|h|,|l|,|k|≤N

((−h2 − l2)l1 − (−h1 − l1)l2)ϕ1(k, t)r1(l, t)ϕ1(h, t)

=
∑

h+l+k=0,|h|,|l|,|k|≤N

(−h2l1 + h1l2)ϕ1(k, t)r1(l, t)ϕ1(h, t) = −S1.

Therefore, S1 = 0. Similarly,
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S2 :=
∑

|k|≤N

∑

h+l=k

(h2l1 − h1l2)ϕ2(h, t)r2(l, t)ϕ2(k, t) = 0.

Thus, (3.10) becomes

1

2

d

dt
|−→ψ N(t)|2 + κM

∑

|k|≤N

|k|2

L̂2
|ϕ2(k, t)|2 = Re


 i

L̂

∑

|k|≤N

k1r1(k, t)ϕ1(k, t)




+νRe
∑

|k|≤N

( |k|
L̂

)2(1+α)

(r1(k, t)ϕ1(k, t) + r2(k, t)ϕ2(k, t)). (3.11)

From (3.4) and (3.5) we easily get that

r1(k, t)ϕ1(k, t) + r2(k, t)ϕ2(k, t) = −E(−→ϕ )(k) (3.12)

and

S3 : = Re


 i

L̂

∑

|k|≤N

k1r1(k, t)ϕ1(k, t)




= Re
i

L̂


−

∑

|k|≤N

k1

( |k|2

L̂2
+

1

2

)
|ϕ1(k, t)|2 +

1

2

∑

|k|≤N

k1ϕ2(k, t)ϕ1(k, t)




= Re


 i

2L̂

∑

|k|≤N

k1ϕ2(k, t)ϕ1(k, t)


 . (3.13)

Using (3.12) and (3.13), (3.11) becomes

1

2

d

dt
|−→ψ N(t)|2 + κM

∑

|k|≤N

|k|2

L̂2
|ϕ2(k, t)|2 = Re


 i

2L̂

∑

|k|≤N

k1ϕ2(k, t)ϕ1(k, t)




−ν
∑

|k|≤N

( |k|
L̂

)2(1+α)

E(
−→
ψ N)(k). (3.14)

Next we notice that
∣∣∣∣∣∣
i

2L̂

∑

|k|≤N

k1ϕ2(k, t)ϕ1(k, t)

∣∣∣∣∣∣
≤ 1

2L̂

∑

|k|≤N

|k||ϕ2(k, t)||ϕ1(k, t)|
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≤ L̂

2

∑

|k|≤N

( |k|
L̂

|ϕ1(k, t)|
)( |k|

L̂
|ϕ2(k, t)|

)

≤ L̂

4

∑

|k|≤N

|k|2

L̂2

(
|ϕ1(k, t)|2 + |ϕ2(k, t)|2

)
≤ L̂

4
|−→ψ N(t)|2. (3.15)

From (3.14) and (3.15) we obtain

1

2

d

dt
|−→ψ N(t)|2 + κM

∑

|k|≤N

|k|2

L̂2
|ϕ2(k, t)|2 + ν

∑

|k|≤N

( |k|
L̂

)2(1+α)

E(
−→
ψ N)(k)

≤ L̂

4
|−→ψ N(t)|2, ∀t ∈ [0, T ). (3.16)

Therefore, 1
2
d
dt
|−→ψ N(t)|2 ≤ bL

4
|−→ψ N(t)|2, ∀t ∈ [0, T ) which implies that |−→ψ N(t)|2 ≤

e
L
2
t|−→ψ 0|2 ≤ e

L
2
T |−→ψ 0|2, ∀t ∈ [0, T ). From here and relation (3.7) we easily get that

∃M > 0 such that |ϕj(k, t)| ≤M,∀t ∈ [0, T ),∀|k| ≤ N, j = 1, 2.

From Lemma A.1 (b) and the classical theory of ODE’s it follows immediately

that

Corollary A.1. For given
−→
ψ 0 ∈ H there exists a unique N -solution with initial data

−→
ψ 0 defined on [0,∞).

Corollary A.2. The function
−→
ψ N defined by (36) belongs to C([0,∞),K).

Proof. Recall that ϕj(k, t) = ϕj(−k, t),∀|k| ≤ N, j = 1, 2, and notice also that

ϕ1(0, t) + ϕ2(0, t) = ψ0
1(0) + ψ0

2(0) = 0, ∀t ∈ [0,∞). Therefore,

−→
ψ N(t) ∈ K, ∀t ∈ [0,∞).

Since ϕj(k, ·) is continuous on [0,∞), ∀|k| ≤ N, j = 1, 2, we see that
−→
ψ N(·) ∈

C([0,∞),K).
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B. Existence of weak solutions

Applying the process from Section A of this chapter for every N ∈ N we get the

sequence {−→ψ N(·)}N∈N ⊂ C([0,∞),K). On the space C([0,∞),K) we define the

metric

dist(
−→
ψ (·),−→ϕ (·)) =

∑

T=1,2,...

1

2T
sup{d(−→ψ (t),−→ϕ (t)) : 0 ≤ t ≤ T}

1 + sup{d(−→ψ (t),−→ϕ (t)) : 0 ≤ t ≤ T}
.

Remark B.1. The convergence dist(−→ϕm(·),−→ϕ (·)) → 0 as m → ∞ is equivalent to,

for every k ∈ Z
2 and t0 ∈ [0,∞), ϕm,j(k, t) → ϕj(k, t) uniformly on [0, t0], j = 1, 2.

The proof of the existence of weak solutions for (2.20)-(2.24) with initial data

−→
ψ 0 ∈ H will be split in two parts. First we prove that there exists a subsequence

{−→ψ Np(·)}p∈N of {−→ψ N(·)}N∈N converging to some
−→
ψ (·) in C([0,∞),K). After that we

will show that the limit
−→
ψ (·) is our desired weak solution. The first part is covered

by the following lemma.

Lemma B.1. There exist a subsequence {−→ψ Np(·)}p∈N of {−→ψ N(·)}N∈N and a function

−→
ψ (·) ∈ C([0,∞),K) such that limp→∞ dist(

−→
ψ Np ,

−→
ψ ) = 0.

Proof. Let T , N ∈ N be fixed. Using (3.2) we can write

d

dt
(r1(k, t) + r2(k, t)) = − 1

L̂2

∑

h+l=k,|h|,|l|≤N

(h2l1 − h1l2)(ϕ1(h, t)r1(l, t)

+ϕ2(h, t)r2(l, t)) −
i

L̂
k1r1(k, t) −

(
β +

1

2

)
i

L̂
k1ϕ1(k, t) −

(
β − 1

2

)
i

L̂
k1ϕ2(k, t)

+κM
|k|2

L̂2
ϕ2(k, t) − ν

( |k|
L̂

)2(1+α)

(r1(k, t) + r2(k, t)) . (3.17)

Next we add (3.4) with (3.5) and we divide by − |k|2bL2
. With the use of (3.17) we get

d

dt
(ϕ1(k, t) + ϕ2(k, t)) =

1

|k|2
∑

h+l=k,|h|,|l|≤N

(h2l1 − h1l2)(ϕ1(h, t)r1(l, t)
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+ϕ2(h, t)r2(l, t)) +
iL̂k1

|k|2 r1(k, t) +

(
β +

1

2

)
iL̂k1

|k|2 ϕ1(k, t)

+

(
β − 1

2

)
iL̂k1

|k|2 ϕ2(k, t) − κMϕ2(k, t) − ν

( |k|
L̂

)2(1+α)

(ϕ1(k, t) + ϕ2(k, t)) . (3.18)

Now define ϕ̃(k, t) := ϕ1(k, t) + ϕ2(k, t) and ϕ̂(k, t) := ϕ1(k, t) − ϕ2(k, t). For s, t ∈

[0, T ], s < t, from (3.18) we obtain

|ϕ̃(k, t) − ϕ̃(k, s)| ≤ 1

|k|2 |
∑

h+l=k,|h|,|l|≤N

∫ t

s

(h2l1 − h1l2)(ϕ1(h, τ)r1(l, τ)+

ϕ2(h, τ)r2(l, τ))dτ | +
L̂

|k|

∫ t

s

|r1(k, τ)|dτ +

(
β +

1

2

)
L̂

|k|

∫ t

s

|ϕ1(k, τ)|dτ+
(
β − 1

2

)
L̂

|k|

∫ t

s

|ϕ2(k, τ)|dτ + κM

∫ t

s

|ϕ2(k, τ)|dτ+

ν

( |k|
L̂

)2(1+α) ∫ t

s

(|ϕ1(k, τ)| + |ϕ2(k, τ)|) dτ . (3.19)

Recall that we proved that

|−→ψ N(t)|2 =
∑

|k|≤N

(
|k|2

L̂2

(
|ϕ1(k, t)|2 + |ϕ2(k, t)|2

)
+

|ϕ1(k, t) − ϕ2(k, t)|2
2

)

≤ e
LT
2 |−→ψ 0|2, (3.20)

for every t ∈ [0, T ]. Therefore, for k 6= 0, we have

|ϕj(k, t)| ≤
L̂

|k|e
LT
4 |−→ψ 0|, ∀t ∈ [0, T ], j = 1, 2.

Using this we see that all the integrals from the right hand side of (3.19) except the

first one are bounded by c1(t − s) where c1 is some positive constant which doesn’t

depend on N . From (3.4) we obtain

∑

h+l=k,|h|,|l|≤N

(h2l1 − h1l2)ϕ1(h, τ)r1(l, τ) =
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−
∑

h+l=k,|h|,|l|≤N

(h2l1 − h1l2)
|l|2

L̂2
ϕ1(h, τ)ϕ1(l, τ)

−1

2

∑

h+l=k,|h|,|l|≤N

(h2l1 − h1l2)ϕ1(h, τ)(ϕ1(l, τ) − ϕ2(l, τ)). (3.21)

We notice that

S4 : =
∑

h+l=k,|h|,|l|≤N

(h2l1 − h1l2)
|l|2

L̂2
ϕ1(h, τ)ϕ1(l, τ)

=
∑

h+l=k,|h|,|l|≤N

(h2l1 − h1l2)
l · (k − h)

L̂2
ϕ1(h, τ)ϕ1(l, τ)

=
1

L̂2

∑

h+l=k,|h|,|l|≤N

(h2l1 − h1l2)(l · k)ϕ1(h, τ)ϕ1(l, τ) −

1

L̂2

∑

h+l=k,|h|,|l|≤N

(h2l1 − h1l2)(l · h)ϕ1(h, τ)ϕ1(l, τ). (3.22)

By interchanging h with l in the last sum of (3.22) we get that the indicated sum is

0, and, therefore

S4 =
1

L̂2

∑

h+l=k,|h|,|l|≤N

(h2l1 − h1l2)(l · k)ϕ1(h, τ)ϕ1(l, τ)

=
1

L̂2

∑

h+l=k,|h|,|l|≤N

(h2(k1 − h1) − h1(k2 − h2))(l · k)ϕ1(h, τ)ϕ1(l, τ)

=
1

L̂2

∑

h+l=k,|h|,|l|≤N

(h2k1 − h1k2)(l · k)ϕ1(h, τ)ϕ1(l, τ). (3.23)

From (3.21) and (3.23) we deduce that

|
∑

h+l=k,|h|,|l|≤N

(h2l1 − h1l2)ϕ1(h, τ)r1(l, τ)| ≤

1

L̂2

∑

h+l=k,|h|,|l|≤N

|h||k|2|l||ϕ1(h, τ)||ϕ1(l, τ)|

+
L̂2

2

∑

h+l=k,|h|,|l|≤N

|h|
L̂

|ϕ1(h, τ)|
|l|
L̂
|ϕ2(l, τ)|,
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and using Cauchy-Schwartz inequality we get that the left term in the above inequality

is less or equal then

|k|2


∑

|h|≤N

|h|2

L̂2
|ϕ1(h, τ)|2




1
2


∑

|l|≤N

|l|2

L̂2
|ϕ1(l, τ)|2




1
2

+
L̂2

2



∑

|h|≤N

|h|2

L̂2
|ϕ1(h, τ)|2




1
2


∑

|l|≤N

|l|2

L̂2
|ϕ2(l, τ)|2




1
2

≤

(
|k|2 +

L̂2

2

)
|−→ψ N(τ)|2 ≤

(
|k|2 +

L̂2

2

)
e

LT
2 |−→ψ 0|2, ∀τ ∈ [0, T ]. (3.24)

Similarly,

|
∑

h+l=k,|h|,|l|≤N

(h2l1 − h1l2)ϕ2(h, τ)r2(l, τ)| ≤ c2, ∀τ ∈ [0, T ], (3.25)

where c2 is a positive constant which doesn’t depend on N . Thus, there exists c̃ > 0

which doesn’t depend on N such that

|ϕ̃(k, t) − ϕ̃(k, s)| ≤ c̃(t− s), ∀t, s ∈ [0, T ], s < t. (3.26)

Using the same idea we can easily get that ĉ > 0 such that

|ϕ̂(k, t) − ϕ̂(k, s)| ≤ ĉ(t− s), ∀t, s ∈ [0, T ], s < t. (3.27)

From (3.26) and (3.27) we obtain that there exists c > 0 which doesn’t depend on N

such that

|ψN,j(k, t) − ψN,j(k, s)| ≤ c(t− s), ∀t, s ∈ [0, T ], j = 1, 2. (3.28)

Notice that we can choose c such that the following is also true

|ψN,j(k, 0)| = |ψ0
j (k)| ≤ c|−→ψ 0|. (3.29)

The relations (3.28) and (3.29) allow us to apply Arzela-Ascoli Theorem for the se-
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quence {ψN,j(k, ·)}N∈N. We get that for T = 1 and a fixed k ∈ Z
2 there exist a

subsequence {ψNh,j(k, ·)}h∈N of {ψN,j(k, ·)}N∈N and a function ψ1,j(k, ·) ∈ C([0, 1],C)

such that {ψNh,j(k, ·)}h∈N converges to ψ1,j(k, ·) uniformly on [0, 1]. By applying

Cantor’s diagonal method for k ∈ Z
2 (written as a sequence) we prove the existence

of a subsequence of {−→ψ N(·)}N∈N which converges to a function
−→
ψ 1(·) in C([0, 1],K).

For this subsequence we repeat the above argument with T = 2 to get another

subsequence which converges to a function
−→
ψ 2(·) in C([0, 2],K). We continue with

T = 3, 4, ..., and we apply Cantor’s diagonal method to obtain that there exist a subse-

quence {−→ψ Np(·)}p∈N of {−→ψ N(·)}N∈N and
−→
ψ (·) ∈ C([0,∞),K) such that {−→ψ Np(·)}p∈N

converges to
−→
ψ (·) in C([0,∞),K).

Now we are ready to prove the main theorem of this section.

Theorem B.1. The function
−→
ψ provided by Lemma B.1 is a weak solution for (2.20)-

(2.24) with initial data
−→
ψ 0.

Proof. Since {−→ψ Np}p∈N converges to
−→
ψ in C([0,∞),K) we get that for every T ∈

[0,∞)

ψNp,j(k, t) → ψj(k, t) uniformly on [0, T ], j = 1, 2. (3.30)

If
−→
θ ∈ K and M ∈ N define PM

−→
θ ∈ K by

(PM
−→
θ )(k) = θ(k) if |k| ≤M , and (PM

−→
θ )(k) = 0, if |k| > M .

Then, if M ∈ N and Np ≥M we have

|PM
−→
ψ Np(t)| ≤ |−→ψ Np(t)| ≤ e

LT
4 |−→ψ 0|,∀t ∈ [0, T ].

Letting p→ ∞ and using (3.30) we obtain

|PM
−→
ψ (t)| ≤ e

LT
4 |−→ψ 0|,∀t ∈ [0, T ],∀M ∈ N,
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and by letting M → ∞ we get

|−→ψ (t)| ≤ e
LT
4 |−→ψ 0|,∀t ∈ [0, T ], (3.31)

which shows that
−→
ψ ∈ L∞

loc([0,∞), H). By integrating (3.16) we deduce that

ν

∫ T

0

|−→ψ N(t)|21+αdt = ν

∫ T

0

∑

|k|≤N

( |k|
L̂

)2(1+α)

E(
−→
ψ N)(k)dt

≤ 1

2
|−→ψ 0|2 +

L̂

4

∫ T

0

|−→ψ N(t)|2dt ≤
(

1

2
+
L̂T

4
e

LT
2

)
|−→ψ 0|2. (3.32)

If M ∈ N and Np ≥M we have

ν

∫ T

0

∑

|k|≤M

( |k|
L̂

)2(1+α)

E(
−→
ψ Np)(k)dt

≤ ν

∫ T

0

∑

|k|≤Np

( |k|
L̂

)2(1+α)

E(
−→
ψ Np)(k)dt

≤
(

1

2
+
L̂T

4
e

LT
2

)
|−→ψ 0|2.

Therefore, by using (3.30), if p→ ∞ we obtain

ν

∫ T

0

∑

|k|≤M

( |k|
L̂

)2(1+α)

E(
−→
ψ Np)(k)dt ≤

(
1

2
+
L̂T

4
e

LT
2

)
|−→ψ 0|2,∀M ∈ N.

Now we apply Beppo-Levi Theorem to get that

∫ T

0

|−→ψ (t)|21+αdt ≤
1

ν

(
1

2
+
L̂T

4
e

LT
2

)
|−→ψ 0|2,∀T ∈ [0,∞), (3.33)

which proves that
−→
ψ ∈ L2

loc([0,∞), V1+α). Thus
−→
ψ satisfies the condition 1) from

Definition B.1 of Chapter II. From (3.2) and (3.3) we easily get that

qNp,1(k, t) = qNp,1(k, 0) −
∫ t

0

{ 1

L̂2

∑

h+l=k

(h2l1 − h1l2)ψNp,1(h, τ)qNp,1(l, τ)

+
i

L̂
k1qNp,1(k, τ) + (β +

1

2
)
i

L̂
k1ψNp,1(k, τ)
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+ν

( |k|
L̂

)2(1+α)

qNp,1(k, τ)}dτ,∀Np ≥ |k|. (3.34)

Using (3.30) it is clear that all the terms under the integral except the first one

converge to the corresponding ones for
−→
ψ . We need to show that

δ :=

∫ t

0

∑

h+l=k

(h2l1 − h1l2)(ψNp,1(h, τ)qNp,1(l, τ) − ψ1(h, τ)q1(l, τ))dτ → 0 (3.35)

as p→ ∞. For this we have

∑

h+l=k

(h2l1 − h1l2)(ψNp,1(h, τ)qNp,1(l, τ) − ψ1(h, τ)q1(l, τ))

=
∑

h+l=k

(h2l1 − h1l2)
|l|2

L̂2
(ψNp,1(h, τ)ψNp,1(l, τ) − ψ1(h, τ)ψ1(l, τ))

+
1

2

∑

h+l=k

(h2l1 − h1l2)(ψNp,1(h, τ)ψNp,1(l, τ) − ψ1(h, τ)ψ1(l, τ))

+
1

2

∑

h+l=k

(h2l1 − h1l2)(ψNp,1(h, τ)ψNp,2(l, τ) − ψ1(h, τ)ψ2(l, τ)).

The first sum on the right hand side is equal to

∑

h+l=k

(h2l1 − h1l2)
l·(k − h)

L̂2
(ψNp,1(h, τ)ψNp,1(l, τ) − ψ1(h, τ)ψ1(l, τ))

=
∑

h+l=k

(h2l1 − h1l2)
l · k
L̂2

(ψNp,1(h, τ)ψNp,1(l, τ) − ψ1(h, τ)ψ1(l, τ))

−
∑

h+l=k

(h2l1 − h1l2)
l · h
L̂2

(ψNp,1(h, τ)ψNp,1(l, τ) − ψ1(h, τ)ψ1(l, τ))

and since the last sum is zero we get that

∑

h+l=k

(h2l1 − h1l2)
|l|2

L̂2
(ψNp,1(h, τ)ψNp,1(l, τ) − ψ1(h, τ)ψ1(l, τ))

=
∑

h+l=k

(h2l1 − h1l2)
l · k
L̂2

(ψNp,1(h, τ)ψNp,1(l, τ) − ψ1(h, τ)ψ1(l, τ))

=
∑

h+l=k

(h2(k1 − h1) − h1(k2 − h2))
l · k
L̂2

(ψNp,1(h, τ)ψNp,1(l, τ) − ψ1(h, τ)ψ1(l, τ))
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=
∑

h+l=k

(h2k1 − h1k2)
l · k
L̂2

(ψNp,1(h, τ)ψNp,1(l, τ) − ψ1(h, τ)ψ1(l, τ)),

It follows that

|
∑

h+l=k

(h2l1 − h1l2)(ψNp,1(h, τ)qNp,1(l, τ) − ψ1(h, τ)q1(l, τ))|

≤ |
∑

h+l=k

(h2k1 − h1k2)
l · k
L̂2

(ψNp,1(h, τ)ψNp,1(l, τ) − ψ1(h, τ)ψ1(l, τ))|

+
1

2
|
∑

h+l=k

(h2l1 − h1l2)(ψNp,1(h, τ)ψNp,1(l, τ) − ψ1(h, τ)ψ1(l, τ))|

+
1

2
|
∑

h+l=k

(h2l1 − h1l2)(ψNp,1(h, τ)ψNp,2(l, τ) − ψ1(h, τ)ψ2(l, τ))|

≤
(
|k|2 +

L̂2

2

)
∑

h+l=k

(
|h|
L̂

|ψNp,1(h, τ) − ψ1(h, τ)|
|l|
L̂
|ψNp,1(l, τ)| +

|h|
L̂

|ψ1(h, τ)|
|l|
L̂
|ψNp,1(l, τ) − ψ1(l, τ)|) +

L̂2

2

∑

h+l=k

(
|h|
L̂

|ψNp,1(h, τ) − ψ1(h, τ)|
|l|
L̂
|ψNp,2(l, τ)| +

|h|
L̂

|ψ1(h, τ)|
|l|
L̂
|ψNp,2(l, τ) − ψ2(l, τ)|)

≤ (|k|2 + L̂2)(|−→ψ Np(τ) −
−→
ψ (τ)||−→ψ Np(τ)| + |−→ψ (τ)||−→ψ Np(τ) −

−→
ψ (τ)|).

Using the last estimate and Holder’s inequality we get that

δ ≤ 2(|k|2 + L̂2)

(∫ t

0

|−→ψ Np(τ) −
−→
ψ (τ)|2dτ

)1/2 √
te

Lt
4 |−→ψ 0|.

Now we can see that in order to prove (3.35) it suffices to show that

∫ t

0

|−→ψ Np(τ) −
−→
ψ (τ)|2dτ → 0 as p→ ∞.

Since ψNp,j(k, τ) → ψj(k, τ) uniformly for τ ∈ [0, t], for each fixed k ∈ Z
2, we have

for each M = 1, 2, ...
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λ : = lim sup
p→∞

∫ t

0

|−→ψ Np(τ) −
−→
ψ (τ)|2dτ

= lim sup
p→∞

∫ t

0

|(I − PM)(
−→
ψ Np(τ) −

−→
ψ (τ))|2dτ

≤ lim sup
p→∞

[
2

∫ t

0

|(I − PM)
−→
ψ Np(τ)|2dτ

]
+ 2

∫ t

0

|(I − PM)
−→
ψ (τ)|2dτ . (3.36)

We also have

|(I − PM)
−→
ψ Np(τ)|2 =

∑

|k|>M

E(
−→
ψ Np(τ))(k) ≤ L̂

M

∑

|k|>M

|k|
L̂
E(

−→
ψ Np(τ))(k)

≤ L̂

M
|−→ψ Np(τ)|21+α. (3.37)

From (3.32) and (3.37) we get

∫ t

0

|(I − PM)
−→
ψ Np(τ)|2dτ ≤ L̂

M

∫ t

0

|−→ψ Np(τ)|21+αdτ

≤ L̂

νM

(
1

2
+
L̂t

4
e

Lt
2

)
|−→ψ 0|2. (3.38)

Applying Lebesgue’s dominated convergence theorem we have that

lim
M→∞

∫ t

0

|(I − PM)
−→
ψ (τ)|2dτ = 0. (3.39)

Using (3.38) and (3.39) we let M → ∞ in (3.36) and we obtain that λ = 0. Next we

let p→ ∞ in (3.34) to get the first equation of 2) in Definition B.1 of Chapter II. In

a similar fashion we deduce the second equation of 2) in Definition B.1 of Chapter II.

It is easy to see that ψj(k, 0) = ψ0
j (k), ∀k ∈ Z

2, j = 1, 2, and the proof that
−→
ψ is a

weak solution for (2.20)-(2.24) with initial data
−→
ψ 0 is complete.
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C. Uniqueness of weak solutions

In this section we prove that
−→
ψ (the weak solution found in the previous section) is

the unique weak solution for (2.20)-(2.24). For this we need a few preliminary results.

Lemma C.1. Let ϕ0, ψ0 ∈ R
d, f , g ∈ L2([0, T ]; Rd) and let

ϕ(t) = ϕ0 +

∫ t

0

f(τ)dτ, ψ(t) = ψ0 +

∫ t

0

g(τ)dτ,∀0 ≤ t ≤ T . (3.40)

Then

ϕ(t) · ψ(t) = ϕ0 · ψ0 +

∫ t

0

(f(τ) · ψ(τ) + ϕ(τ) · g(τ))dτ,∀0 ≤ t ≤ T . (3.41)

Proof. If f, g ∈ C([0, T ]; Rd) then from (3.40) we get that ϕ′(t) = f(t), ψ′(t) = g(t)

and (3.41) is easily obtained by integrating

d

dt
(ϕ · ψ) =

dϕ

dt
· ψ + ϕ · dψ

dt
. (3.42)

The proof is complete by noticing that C([0, T ]; Rd) is dense in L2([0, T ]; Rd).

Corollary C.1. Let ϕ0 ∈ C, f ∈ L2([0, T ]; C) and let

ϕ(t) = ϕ0 +

∫ t

0

f(τ)dτ,∀0 ≤ t ≤ T .

Then

|ϕ(t)|2 = |ϕ0|2 + 2Re

∫ t

0

f(τ)ϕ(τ)dτ,∀0 ≤ t ≤ T .

The next result that we will use in the proof of uniqueness is the following variant

of Ladyzhenskaya’s inequality. With Ω = [0, 2πL̂]2 ⊂ R
2 there exists cL > 0 such that

‖u‖L4(Ω) ≤ cL ‖u‖1/2

L2(Ω) ‖∇u‖
1/2

(L2(Ω))2 , (3.43)

for every u in
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H1
per(Ω) = {v ∈ L2(Ω) :

∑

k∈Z2

|k|2

L̂2
|v(k)|2 <∞} (3.44)

with average zero (i.e.,
∫
Ω
u(x)dx = 0). (Recall that in (3.44), {v(k)}k∈Z2 are the

Fourier coefficients of v.)

Next we prove the main theorem of this section.

Theorem C.1. For every given initial data in H the equations (2.20)-(2.24) have a

unique weak solution.

Proof. Suppose that −→ϕ is another weak solution for (2.20)-(2.24) with initial data

−→
ψ 0. Let −→w =

−→
ψ −−→ϕ and −→y = −→q −−→r , where

rj(k, t) = −|k|2

L̂2
ϕj(k, t) + (−1)j

ϕ1(k, t) − ϕ2(k, t)

2
, j = 1, 2.

Since
−→
ψ and −→ϕ are weak solutions we have that

q1(k, t) = q1(k, 0) −
∫ t

0

{ 1

L̂2

∑

h+l=k

(h2l1 − h1l2)ψ1(h, τ)q1(l, τ) +
i

L̂
k1q1(k, τ)+

(β +
1

2
)
i

L̂
k1ψ1(k, τ) + ν

( |k|
L̂

)2(1+α)

q1(k, τ)}dτ (3.45)

and

r1(k, t) = r1(k, 0) −
∫ t

0

{ 1

L̂2

∑

h+l=k

(h2l1 − h1l2)ϕ1(h, τ)r1(l, τ) +
i

L̂
k1r1(k, τ)

+(β +
1

2
)
i

L̂
k1ϕ1(k, τ) + ν

( |k|
L̂

)2(1+α)

r1(k, τ)}dτ . (3.46)

By subtracting (3.46) from (3.45) we get that

y1(k, t) = y1(k, 0) −
∫ t

0

{ 1

L̂2

∑

h+l=k

(h2l1 − h1l2)(ψ1(h, τ)q1(l, τ) − ϕ1(h, τ)r1(l, τ))

+
i

L̂
k1y1(k, τ) + (β +

1

2
)
i

L̂
k1w1(k, τ) + ν

( |k|
L̂

)2(1+α)

y1(k, τ)}dτ . (3.47)
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Similarly,

q2(k, t) = q2(k, 0) −
∫ t

0

{ 1

L̂2

∑

h+l=k

(h2l1 − h1l2)ψ2(h, τ)q2(l, τ) − κM
|k|2

L̂2
ψ2(k, τ)

+(β − 1

2
)
i

L̂
k1ψ2(k, τ) + ν

( |k|
L̂

)2(1+α)

q2(k, τ)}dτ ,

r2(k, t) = r2(k, 0) −
∫ t

0

{ 1

L̂2

∑

h+l=k

(h2l1 − h1l2)ϕ2(h, τ)r2(l, τ)

−κM
|k|2

L̂2
ϕ2(k, τ) + (β − 1

2
)
i

L̂
k1ϕ2(k, τ) + ν

( |k|
L̂

)2(1+α)

r2(k, τ)}dτ ,

and

y2(k, t) = y2(k, 0) −
∫ t

0

{ 1

L̂2

∑

h+l=k

(h2l1 − h1l2)(ψ2(h, τ)q2(l, τ) − ϕ2(h, τ)r2(l, τ))

−κM
|k|2

L̂2
w2(k, τ) + (β − 1

2
)
i

L̂
k1w2(k, τ) + ν

( |k|
L̂

)2(1+α)

y2(k, τ)}dτ . (3.48)

Next we define w̃ = w1 + w2 and ŵ = w1 − w2. An easy calculation gives us that

y1(k) + y2(k) = −|k|2

L̂2
w̃(k) and y1(k) − y2(k) = −

( |k|2

L̂2
+ 1

)
ŵ(k).

Adding (3.47) and (3.48) we obtain that

|k|2

L̂2
w̃(k, t) =

|k|2

L̂2
w̃(k, 0) +

∫ t

0

{ 1

L̂2

∑

h+l=k

(h2l1 − h1l2)(ψ1(h, τ)q1(l, τ)

−ϕ1(h, τ)r1(l, τ) + ψ2(h, τ)q2(l, τ) − ϕ2(h, τ)r2(l, τ)) +
i

L̂
k1y1(k, τ)

+(β +
1

2
)
i

L̂
k1w1(k, τ) − κM

|k|2

L̂2
w2(k, τ) + (β − 1

2
)
i

L̂
k1w2(k, τ)

+ν

( |k|
L̂

)2(1+α)
(
−|k|2

L̂2
w̃(k, τ)

)
}dτ . (3.49)

Applying Corollary C.1 with ϕ(t) = |k|bL w̃(k, t), for every k 6= 0 we obtain
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|k|2

L̂2
|w̃(k, t)|2 =

|k|2

L̂2
|w̃(k, 0)|2 + 2Re

∫ t

0

{ 1

L̂2

∑

h+l=k

(h2l1 − h1l2)

(ψ1(h, τ)q1(l, τ) − ϕ1(h, τ)r1(l, τ) + ψ2(h, τ)q2(l, τ) − ϕ2(h, τ)r2(l, τ))w̃(k, τ)

+
i

L̂
k1y1(k, τ)w̃(k, τ) + (β +

1

2
)
i

L̂
k1w1(k, τ)w̃(k, τ) − κM

|k|2

L̂2
w2(k, τ)w̃(k, τ)

+(β − 1

2
)
i

L̂
k1w2(k, τ)w̃(k, τ) − ν

( |k|
L̂

)2(2+α)

|w̃(k, τ)|2}dτ . (3.50)

Subtracting (3.48) from (3.47) we get

( |k|2

L̂2
+ 1

)
ŵ(k, t) =

( |k|2

L̂2
+ 1

)
ŵ(k, 0) +

∫ t

0

{ 1

L̂2

∑

h+l=k

(h2l1 − h1l2)

(ψ1(h, τ)q1(l, τ) − ϕ1(h, τ)r1(l, τ) − ψ2(h, τ)q2(l, τ) + ϕ2(h, τ)r2(l, τ))

+
i

L̂
k1y1(k, τ) + (β +

1

2
)
i

L̂
k1w1(k, τ) + κM

|k|2

L̂2
w2(k, τ)

−(β − 1

2
)
i

L̂
k1w2(k, τ) + ν

( |k|
L̂

)2(1+α)
(
−
(
|k|2

L̂2
+ 1

)
ŵ(k, τ)

)
}dτ .

Applying again Corollary C.1 we deduce that

( |k|2

L̂2
+ 1

)
|ŵ(k, t)|2 =

( |k|2

L̂2
+ 1

)
|ŵ(k, 0)|2 + 2Re

∫ t

0

{ 1

L̂2

∑

h+l=k

(h2l1 − h1l2)

(ψ1(h, τ)q1(l, τ) − ϕ1(h, τ)r1(l, τ) − ψ2(h, τ)q2(l, τ) + ϕ2(h, τ)r2(l, τ))ŵ(k, τ)

+
i

L̂
k1y1(k, τ)ŵ(k, τ) + (β +

1

2
)
i

L̂
k1w1(k, τ)ŵ(k, τ) + κM

|k|2

L̂2
w2(k, τ)ŵ(k, τ)

−(β − 1

2
)
i

L̂
k1w2(k, τ)ŵ(k, τ) − ν

( |k|
L̂

)2(1+α)
(
|k|2

L̂2
+ 1

)
|ŵ(k, τ)|2}dτ . (3.51)

Recall that

|−→w |2 =
∑

k∈Z2

(
|k|2

L̂2

(
|w1(k)|2 + |w2(k)|2

)
+

|w1(k) − w2(k)|2
2

)
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=
1

2

∑

k∈Z2

(
|k|2

L̂2
|w̃(k)|2 +

(
|k|2

L̂2
+ 1

)
|ŵ(k)|2

)
.

Using this and the relations (3.50) and (3.51), after summing over k ∈ Z
2 we obtain

|−→w (t)|2 = |−→w (0)|2 + 2Re

∫ t

0

{ 1

L̂2

∑

k∈Z2

∑

h+l=k

(h2l1 − h1l2)(ψ1(h, τ)q1(l, τ)

−ϕ1(h, τ)r1(l, τ))w1(k, τ) +
1

L̂2

∑

k∈Z2

∑

h+l=k

(h2l1 − h1l2)(ψ2(h, τ)q2(l, τ)

−ϕ2(h, τ)r2(l, τ))w2(k, τ) +
i

L̂

∑

k∈Z2

k1y1(k, τ)w1(k, τ) − κM
∑

k∈Z2

|k|2

L̂2
|w2(k, τ)|2

−ν
∑

k∈Z2

( |k|
L̂

)2(1+α)

E(−→w )(k).

Therefore,

|−→w (t)|2 + κM

∫ t

0

∑

k∈Z2

|k|2

L̂2
|w2(k, τ)|2dτ + ν

∫ t

0

∑

k∈Z2

( |k|
L̂

)2(1+α)

E(−→w )(k)dτ =

2Re
i

L̂

∫ t

0

∑

k∈Z2

k1y1(k, τ)w1(k, τ)dτ + 2Re
1

L̂2

2∑

j=1

∫ t

0

∑

k∈Z2

∑

h+l=k

(h2l1 − h1l2)

(wj(h, τ)qj(l, τ)wj(k, τ) + ϕj(h, τ)yj(l, τ)wj(k, τ))dτ . (3.52)

Using the same steps as when we proved that S1 = 0 we can show that

∑

k∈Z2

∑

h+l=k

(h2l1 − h1l2)wj(h, τ)qj(l, τ)wj(k, τ) = 0, j = 1, 2.

Also we have

∑

k∈Z2

∑

h+l=k

(h2l1 − h1l2)ϕ1(h, τ)y1(l, τ)w1(k, τ) =

∑

h+l+k=0

(h2l1 − h1l2)ϕ1(h, τ)w1(k, τ)

(
−|l|2

L̂2
w1(l, τ) −

w1(l, τ) − w2(l, τ)

2

)
,

and
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∣∣∣∣∣
1

L̂2

∑

h+l+k=0

(h2l1 − h1l2)ϕ1(h, τ)w1(k, τ)
|l|2

L̂2
w1(l, τ)

∣∣∣∣∣

=

∣∣∣∣∣
1

L̂2

∑

h+l+k=0

(h2k1 − h1k2)ϕ1(h, τ)w1(k, τ)
h · l
L̂2

w1(l, τ)

∣∣∣∣∣

≤
∑

h+l+k=0

( |h|2

L̂2
|ϕ1(h, τ)|

)( |k|
L̂

|w1(k, τ)|
)( |l|

L̂
|w1(l, τ)|

)
.

Next we define the auxiliary functions

f(x) =
∑

k∈Z2

|k|2

L̂2
|ϕ1(k, τ)|e

i

L
k·x and g(x) =

∑

k∈Z2

|k|
L̂

|w1(k, τ)|e
i

L
k·x.

Then,

S : =
∑

h+l+k=0

( |h|2

L̂2
|ϕ1(h, τ)|

)( |k|
L̂

|w1(k, τ)|
)( |l|

L̂
|w1(l, τ)|

)

=
1

(2πL̂)2

∫

Ω

f(x)g2(x)dx.

Applying Holder’s and Ladyzhenskaya’s inequalities we obtain that

|S| ≤ 1

(2πL̂)2
‖f‖L2(Ω) ‖g‖

2
L4(Ω)

≤ 1

(2πL̂)2
c2L ‖f‖L2(Ω) ‖g‖L2(Ω) ‖∇g‖(L2(Ω))2

≤ c|−→ϕ (τ)|1|−→w (τ)||−→w (τ)|1,∀τ ∈ [0, T ].

Using the above estimate and similar estimates for the other terms, from (3.52) we

get

|−→w (t)|2 + ν

∫ t

0

|−→w (τ)|21+αdτ ≤ |−→w (0)|2 + c

∫ t

0

|−→w (τ)|2dτ

+c

∫ t

0

|−→ϕ (τ)|1|−→w (τ)||−→w (τ)|1dτ , (3.53)

for every t ∈ [0, T ], where c > 0 depends on T . In the last integral of (3.53) we use
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the inequality 2ab ≤ a2 + b2 to get

|−→w (t)|2 + ν

∫ t

0

|−→w (τ)|21+αdτ ≤ |−→w (0)|2 + c

∫ t

0

|−→w (τ)|2dτ + ν

∫ t

0

|−→w (τ)|21dτ

+c̃

∫ t

0

|−→ϕ (τ)|21|−→w (τ)|2dτ ,

which implies that

|−→w (t)|2 ≤ |−→w (0)|2 + ĉ

∫ t

0

|−→ϕ (τ)|21|−→w (τ)|2dτ .

Using Lemma C.2 (below) we deduce that |−→w (t)|2 ≤ |−→w (0)|2ebc R t
0 |−→ϕ (τ)|21dτ , ∀t ∈ [0, T ].

But −→w (0) = 0, and thus, −→w (t) = 0, ∀t ∈ [0, T ]. Since T was arbitrary we conclude

that
−→
ψ (t) = −→ϕ (t), ∀t ∈ [0,∞), and the proof is complete.

The lemma below is a generalization of Gronwall’s inequality. The proof is ele-

mentary and it is omitted.

Lemma C.2. Let f0 ≥ 0 and f ∈ L∞([0, T ],R), g ∈ L1([0, T ],R) be nonnegative

functions such that

f(t) ≤ f0 +

∫ t

0

g(τ)f(τ)dτ,∀t ∈ [0, T ].

Then

f(t) ≤ f0e
R t
0 g(τ)dτ ,∀t ∈ [0, T ].

Remark C.1. Since every limit point in C([0,∞),K) of {−→ψ N}N∈N is a weak solu-

tion for (2.20)-(2.24) we easily get as a consequence of uniqueness that {−→ψ N}N∈N

converges to
−→
ψ in C([0,∞),K).
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CHAPTER IV

REGULARITY

A. Estimates for the Galerkin approximations

If −→ϕ ∈ K, s ∈ R and ζ ∈ C we denote by As−→ϕ and eζA
s−→ϕ the following

As−→ϕ = ({
( |k|
L̂

)2s

ϕ1(k)}k∈Z2 , {
( |k|
L̂

)2s

ϕ2(k)}k∈Z2)

eζA
s−→ϕ = ({eζ(

|k|

L
)
2s

ϕ1(k)}k∈Z2 , {eζ(
|k|

L
)
2s

ϕ2(k)}k∈Z2).

We define the space

HC = {−→ψ + i−→ϕ :
−→
ψ ,−→ϕ ∈ H}

with the scalar product

(
−→
ψ + i−→ϕ ,−→u + i−→v )C = (

−→
ψ ,−→u ) + (−→ϕ ,−→v ) + i[(−→ϕ ,−→u ) − (

−→
ψ ,−→v )].

Similarly, we complexify the space V1 to get the space V1,C with the corresponding

scalar product (·, ·)1,C. For every N ∈ N we consider the following Galerkin system:

d

dζ




Ψ1(k, ζ)

Ψ2(k, ζ)


 = A−1

k




− 1bL2

∑
h+l=k

(h2l1 − h1l2)Ψ1(h, ζ)Q1(l, ζ)

− 1bL2

∑
h+l=k

(h2l1 − h1l2)Ψ2(h, ζ)Q2(l, ζ)


+

A−1
k




− ibLk1Q1(k, ζ) − (β + 1
2
) ibLk1Ψ1(k, ζ) − ν

(
|k|bL )2(1+α)

Q1(k, ζ)

κM
|k|2bL2

Ψ2(k, ζ) − (β − 1
2
) ibLk1Ψ2(k, ζ) − ν

(
|k|bL )2(1+α)

Q2(k, ζ)


 (4.1)

for k 6= 0, |k| ≤ N , and

d

dζ




Ψ1(0, ζ)

Ψ2(0, ζ)


 =




0

0


 , (4.2)

where



36

Q1(k, ζ) = −|k|2

L̂2
Ψ1(k, ζ) −

Ψ1(k, ζ) − Ψ2(k, ζ)

2
, (4.3)

Q2(k, ζ) = −|k|2

L̂2
Ψ2(k, ζ) +

Ψ1(k, ζ) − Ψ2(k, ζ)

2
. (4.4)

The sums in (4.1) are taken only for |h|, |l| ≤ N . For
−→
ψ 0 ∈ H we consider the initial

condition

Ψj(k, 0) = ψ0
j (k), |k| ≤ N, j = 1, 2. (4.5)

The system (4.1) together with (4.5) admits a unique analytic solution
−→
Ψ (N)(ζ) for ζ

in a complex neighborhood of the origin. The solution
−→
Ψ (N)(ζ), for ζ real, coincides

with the usual Galerkin approximation. From (4.1) we have that

d

dζ
Q1(k, ζ) +

1

L̂2

∑

h+l=k

(h2l1 − h1l2)Ψ1(h, ζ)Q1(l, ζ)

= − i

L̂
k1Q1(k, ζ) − (β +

1

2
)
i

L̂
k1Ψ1(k, ζ) − ν

( |k|
L̂

)2(1+α)

Q1(k, ζ), (4.6)

and

d

dζ
Q2(k, ζ) +

1

L̂2

∑

h+l=k

(h2l1 − h1l2)Ψ2(h, ζ)Q2(l, ζ)

= κM
|k|2

L̂2
Ψ2(k, ζ) − (β − 1

2
)
i

L̂
k1Ψ2(k, ζ) − ν

( |k|
L̂

)2(1+α)

Q2(k, ζ). (4.7)

Let a ≥ 0, θ ∈ (−π
2
, π

2
) and take ζ of the form ζ = σeiθ for σ > 0. We want to

evaluate d
dσ
|eaσeiθA1/2−→

Ψ(σeiθ)|21,C. For this we first notice that

1

2

d

dσ
|eaσeiθA1/2−→

Ψ(σeiθ)|21,C =
1

2

d

dσ

∑

|k|≤N

e2aσ cos θ
|k|

L
|k|2

L̂2
E(

−→
Ψ(σeiθ))(k)

where

E(
−→
Ψ(ζ))(k) :=

|k|2

L̂2

(
|Ψ1(k, ζ)|2 + |Ψ2(k, ζ)|2

)
+

|Ψ1(k, ζ) − Ψ2(k, ζ)|2
2

.
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Therefore,

1

2

d

dσ
|eaσeiθA1/2−→

Ψ(σeiθ)|21,C =
∑

|k|≤N

a cos θ
|k|3

L̂3
e2aσ cos θ

|k|

L E(
−→
Ψ(σeiθ))(k)+

1

2

∑

|k|≤N

e2aσ cos θ
|k|

L
|k|2

L̂2

d

dσ
E(

−→
Ψ(σeiθ))(k).

The derivative with respect to σ of E(
−→
Ψ(σeiθ))(k) is equal to

−2Reeiθ

[(
d

dζ
Q1(k, ζ)

)

ζ=σeiθ

Ψ1(k, σeiθ) +

(
d

dζ
Q2(k, ζ)

)

ζ=σeiθ

Ψ2(k, σeiθ)

]

and using (4.6) and (4.7) we get

1

2

d

dσ
|eaσeiθA1/2−→

Ψ(σeiθ)|21,C = a cos θ
∑

|k|≤N

|k|3

L̂3
e2aσ cos θ

|k|

L E(
−→
Ψ(σeiθ))(k)−

Re{eiθ
∑

|k|≤N

e2aσ cos θ
|k|

L
|k|2

L̂2
[(− 1

L̂2

∑

h+l=k

(h2l1 − h1l2)Ψ1(h, σe
iθ)Q1(l, σe

iθ)−

i

L̂
k1Q1(k, σe

iθ) − (β +
1

2
)
i

L̂
k1Ψ1(k, σe

iθ) − ν

( |k|
L̂

)2(1+α)

Q1(k, σe
iθ))

Ψ1(k, σeiθ) + (− 1

L̂2

∑

h+l=k

(h2l1 − h1l2)Ψ2(h, σe
iθ)Q2(l, σe

iθ) + κM
|k|2

L̂2
Ψ2(k, σe

iθ)

−(β − 1

2
)
i

L̂
k1Ψ2(k, σe

iθ) − ν

( |k|
L̂

)2(1+α)

Q2(k, σe
iθ))Ψ2(k, σeiθ)]}.

Thus

1

2

d

dσ
|eaσeiθA1/2−→

Ψ(σeiθ)|21,C = a cos θ
∑

|k|≤N

|k|3

L̂3
e2aσ cos θ

|k|

L E(
−→
Ψ(σeiθ))(k)+

Re{eiθ
∑

|k|≤N

e2aσ cos θ
|k|

L
|k|2

L̂4

∑

h+l=k

(h2l1 − h1l2)(Ψ1(h, σe
iθ)Q1(l, σe

iθ)

Ψ1(k, σeiθ) + Ψ2(h, σe
iθ)Q2(l, σe

iθ)Ψ2(k, σeiθ))}+

Re{ieiθ
∑

|k|≤N

|k|2

L̂2

k1

L̂
e2aσ cos θ

|k|

L Q1(k, σe
iθ)Ψ1(k, σeiθ)}+
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(β +
1

2
)Re{ieiθ

∑

|k|≤N

|k|2

L̂2

k1

L̂
e2aσ cos θ

|k|

L |Ψ1(k, σe
iθ)|2}−

κMRe{eiθ
∑

|k|≤N

|k|4

L̂4
e2aσ cos θ

|k|

L |Ψ2(k, σe
iθ)|2}+

(β − 1

2
)Re{ieiθ

∑

|k|≤N

|k|2

L̂2

k1

L̂
e2aσ cos θ

|k|

L |Ψ2(k, σe
iθ)|2}+

νRe{eiθ
∑

|k|≤N

( |k|
L̂

)2(2+α)

e2aσ cos θ
|k|

L (Q1(k, σe
iθ)Ψ1(k, σeiθ)+

Q2(k, σe
iθ)Ψ2(k, σeiθ))}.

The last equality is equivalent with a new one which has the left-hand side equal to

1

2

d

dσ
|eaσeiθA1/2−→

Ψ(σeiθ)|21,C + κM cos θ
∑

|k|≤N

|k|4

L̂4
e2aσ cos θ

|k|

L |Ψ2(k, σe
iθ)|2+

ν cos θ
∑

|k|≤N

( |k|
L̂

)2(2+α)

e2aσ cos θ
|k|

L E(
−→
Ψ(σeiθ))(k)

and the right-hand side equal to

a cos θ
∑

|k|≤N

|k|3

L̂3
e2aσ cos θ

|k|

L E(
−→
Ψ(σeiθ))(k) −

(β +
1

2
) sin θ

∑

|k|≤N

|k|2

L̂2

k1

L̂
e2aσ cos θ

|k|

L |Ψ1(k, σe
iθ)|2 −

(β − 1

2
) sin θ

∑

|k|≤N

|k|2

L̂2

k1

L̂
e2aσ cos θ

|k|

L |Ψ2(k, σe
iθ)|2 +

Re{ieiθ
∑

|k|≤N

|k|2

L̂2

k1

L̂
e2aσ cos θ

|k|

L Q1(k, σe
iθ)Ψ1(k, σeiθ)} +

Re{eiθ
∑

|k|≤N

e2aσ cos θ
|k|

L
|k|2

L̂4

∑

h+l=k

(h2l1 − h1l2)(Ψ1(h, σe
iθ)Q1(l, σe

iθ)

Ψ1(k, σeiθ) + Ψ2(h, σe
iθ)Q2(l, σe

iθ)Ψ2(k, σeiθ))}.

Next step is to estimate the terms from the right-hand side of the equality.
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For this we have

|
∑

|k|≤N

|k|2

L̂2

k1

L̂
e2aσ cos θ

|k|

L Q1(k, σe
iθ)Ψ1(k, σeiθ)|

= |
∑

|k|≤N

|k|2

L̂2

k1

L̂
e2aσ cos θ

|k|

L [−(
|k|2

L̂2
+

1

2
)|Ψ1(k, σe

iθ)|2 +

1

2
Ψ2(k, σe

iθ) · Ψ1(k, σeiθ)]|

≤ c1|eaσe
iθA1/2−→

Ψ(σeiθ)|1,C|eaσe
iθA1/2−→

Ψ(σeiθ)|2,C

and

= |
∑

|k|≤N

e2aσ cos θ
|k|

L
|k|2

L̂4

∑

h+l=k

(h2l1 − h1l2)Ψ1(h, σe
iθ)Q1(l, σe

iθ)Ψ1(k, σeiθ)|

= |
∑

|k|≤N

e2aσ cos θ
|k|

L
|k|2

L̂4

∑

h+l=−k

(h2l1 − h1l2)Ψ1(h, σe
iθ)Q1(l, σe

iθ)Ψ1(−k, σeiθ)|

≤
∑

h+l+k=0

e2aσ cos θ
|k|

L
|k|2

L̂2

|h|
L̂

|l|
L̂
|Ψ1(h, σe

iθ)||Ψ1(−k, σeiθ)|[ |l|
2

L̂2
|Ψ1(l, σe

iθ)|

+
1

2
(|Ψ1(l, σe

iθ)| + |Ψ2(l, σe
iθ)|)]. (4.8)

Let S be the sum

S : =
∑

h+l+k=0

(
eaσ cos θ

|k|

L
|k|2

L̂2
|Ψ1(−k, σeiθ)|

)(
eaσ cos θ

|h|

L
|h|
L̂

|Ψ1(h, σe
iθ)|
)

(
eaσ cos θ

|l|

L
|l|3

L̂3
|Ψ1(l, σe

iθ)|
)

and define the auxiliary functions

u(x) =
∑

|k|≤N

eaσ cos θ
|k|

L
|k|2

L̂2
|Ψ1(−k, σeiθ)|e i

L
k·x,

v(x) =
∑

|k|≤N

eaσ cos θ
|k|

L
|k|
L̂

|Ψ1(k, σe
iθ)|e i

L
k·x, and

w(x) =
∑

|k|≤N

eaσ cos θ
|k|

L
|k|3

L̂3
|Ψ1(k, σe

iθ)|e i

L
k·x.
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Then, using Holder’s inequality, we obtain that

S =
1

(2πL̂)2

∫

Ω

u(x)v(x)w(x)dx ≤ 1

(2πL̂)2
||u||L4(Ω)||v||L4(Ω)||w||L2(Ω).

Applying Ladyzhenskaya’s inequality we get that

S ≤ c2L

(2πL̂)2
||u||1/2L2(Ω)||∇u||

1/2

L2(Ω)||v||
1/2

L2(Ω)||∇v||
1/2

L2(Ω)||w||L2(Ω)

≤ c̃2|eaσe
iθA1/2−→

Ψ(σeiθ)|3/21,C|eaσe
iθA1/2−→

Ψ(σeiθ)|3/22,C. (4.9)

Estimating the other terms in a similar way we deduce that

1

2

d

dσ
|eaσeiθA1/2−→

Ψ(σeiθ)|21,C + ν cos θ|eaσeiθA1/2−→
Ψ(σeiθ)|22+α,C ≤

(a cos θ + | sin θ|)c1|eaσe
iθA1/2−→

Ψ(σeiθ)|1,C|eaσe
iθA1/2−→

Ψ(σeiθ)|2,C+

L̂(β +
1

2
)| sin θ||eaσeiθA1/2−→

Ψ(σeiθ)|21,C+

c2 cos θ|eaσeiθA1/2−→
Ψ(σeiθ)|3/21,C|eaσe

iθA1/2−→
Ψ(σeiθ)|3/22,C. (4.10)

By using the inequalities xy ≤ 1
2
(x2 + y2) and xy ≤ x4

4
+ 3y4/3

4
, (4.10) implies that

1

2

d

dσ
|eaσeiθA1/2−→

Ψ(σeiθ)|21,C + ν cos θ|eaσeiθA1/2−→
Ψ(σeiθ)|22+α,C ≤

(a cos θ + | sin θ|)2c21
ν cos θ

|eaσeiθA1/2−→
Ψ(σeiθ)|21,C +

ν cos θ

4
|eaσeiθA1/2−→

Ψ(σeiθ)|22,C+

L̂(β +
1

2
)| sin θ||eaσeiθA1/2−→

Ψ(σeiθ)|21,C +
ν cos θ

4
|eaσeiθA1/2−→

Ψ(σeiθ)|22,C+

27c42
4ν3

cos θ|eaσeiθA1/2−→
Ψ(σeiθ)|61,C.

Therefore,

d

dσ
|eaσeiθA1/2−→

Ψ(σeiθ)|21,C + ν cos θ|eaσeiθA1/2−→
Ψ(σeiθ)|22+α,C ≤

2[
(a cos θ + | sin θ|)2c21

ν cos θ
+ L̂(β +

1

2
)| sin θ|]|eaσeiθA1/2−→

Ψ(σeiθ)|21,C+

27c42
2ν3

cos θ|eaσeiθA1/2−→
Ψ(σeiθ)|61,C,
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which gives us that

d

dσ
|eaσeiθA1/2−→

Ψ(σeiθ)|21,C ≤ γ2
1 |eaσe

iθA1/2−→
Ψ(σeiθ)|21,C

+γ2
2 |eaσe

iθA1/2−→
Ψ(σeiθ)|61,C, (4.11)

where

γ1 =
√

2[
(a cos θ + | sin θ|)2c21

ν cos θ
+ L̂(β +

1

2
)| sin θ|]1/2, (4.12)

γ2 = (
27c42
2ν3

cos θ)1/2. (4.13)

If we denote |eaσeiθA1/2−→
Ψ(σeiθ)|21,C by g(σ) (4.11) becomes

d

dσ
g(σ) ≤ γ2

1g(σ) + γ2
2g

3(σ).

We have that

d

dσ
(γ1 + γ2g(σ)) = γ2

d

dσ
g(σ) ≤ (γ2

1 + γ2
2g

2(σ))γ2g(σ)

≤ (γ1 + γ2g(σ))2γ2g(σ) ≤ (γ1 + γ2g(σ))3.

The last inequality implies that

γ1 + γ2g(σ) ≤
√

2(γ1 + γ2g(0)) for 0 ≤ σ ≤ 1

4
(γ1 + γ2g(0))−2.

This proves the following proposition.

Proposition A.1. There exists Γ > 0 independent of N such that

|eaσeiθA1/2−→
Ψ (N)(σeiθ)|1,C ≤ Γ, ∀N ∈ N (4.14)

for |θ| < π
2

and 0 ≤ σ ≤ 1
4
(γ1 + γ2|

−→
ψ 0|21)−2.

In the next section we will use this proposition with a = 1. However we will also

need the following result (in the proof of which we will take a = 0).
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Proposition A.2. If
−→
ψ is the unique weak solution for our system with initial data

−→
ψ 0 ∈ H then

−→
ψ (t) ∈ V1,∀t > 0.

Proof. In (4.9) we have in fact that

S ≤ c̃2|eaσe
iθA1/2−→

Ψ(σeiθ)|1/2
C

|eaσeiθA1/2−→
Ψ(σeiθ)|1,C|eaσe

iθA1/2−→
Ψ(σeiθ)|3/22,C. (4.15)

If we take a = 0 and θ = 0 in (4.10) and use (4.15) instead of (4.9) we get that

1

2

d

dt
|−→ψ (N)(t)|21 + ν|−→ψ (N)(t)|22+α ≤ c2|

−→
ψ (N)(t)|1|

−→
ψ (N)(t)|1/2|−→ψ (N)(t)|3/22 ,∀t ≥ 0.

As before, this implies that

1

2

d

dt
|−→ψ (N)(t)|21 ≤

c3
ν3

|−→ψ (N)(t)|41|
−→
ψ (N)(t)|2,∀t ≥ 0.

From here we obtain that

|−→ψ (N)(t)|21 ≤ |−→ψ (N)(t0)|21e
c3
ν3

R t
t0

|
−→
ψ (N)(τ)|21|

−→
ψ (N)(τ)|2dτ

,∀t ≥ t0.

For a fixed T ∈ (0,∞) we get by using (3.20) and (3.32) that

∫ t

t0

|−→ψ (N)(τ)|21|
−→
ψ (N)(τ)|2dτ ≤ b0(T ),∀0 ≤ t0 ≤ t ≤ T ,

with b0(T ) independent of N . Therefore,

|−→ψ (N)(t)|21 ≤ b1(T )|−→ψ (N)(t0)|21,∀0 ≤ t0 ≤ t ≤ T ,

where b1(T ) is independent of N . Integrating in t0 between 0 and t we get

t|−→ψ (N)(t)|21 ≤ b1(T )

∫ t

0

|−→ψ (N)(t0)|21dt0 ≤ b2(T ),∀t ∈ [0, T ],

where b2(T ) doesn’t depend on N . For M ∈ N and M < N we have

|PM
−→
ψ (N)(t)|21 ≤ |−→ψ (N)(t)|21 ≤

1

t
b2(T ),∀t ∈ (0, T ].
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Letting N → ∞ we get that

|PM
−→
ψ (t)|21 ≤

1

t
b2(T ),∀t ∈ (0, T ].

This implies, by letting M → ∞, that

|−→ψ (t)|21 ≤
1

t
b2(T ),∀t ∈ (0, T ].

Since T was arbitrary we conclude that
−→
ψ (t) ∈ V1,∀t > 0.

B. Time and space analyticity

We can now state the first main result of this chapter.

Theorem B.1. If
−→
ψ 0 ∈ V1 then the unique weak solution extends to an analytic

function
−→
Ψ from D = {ζ = σeiθ : |θ| < π

4
, 0 < σ < σ0} into V1,C satisfying

|eσeiθA1/2−→
Ψ(σeiθ)|1,C


= (

∑

k∈Z2\{0}

e2σ cos θ
|k|

L
|k|2

L̂2
E(

−→
Ψ(σeiθ))(k))1/2


 ≤ Γ (4.16)

in D, where

σ0 =
1

4

([
4
√

2c21ν
−1 + L̂(β +

1

2
)
√

2

]1/2

+
3
√

3c22√
2ν3/2

|−→ψ 0|21

)−2

.

Proof. We use Proposition A.1 with a = 1 and |θ| < π
4
. Then using also (4.12) and

(4.13) we get that

|eσeiθA1/2−→
Ψ (N)(σeiθ)|1,C ≤ Γ,∀N ∈ N in D.

Thus (by virtue of the classical Vitali theorem for operator-valued analytic functions)

there exist a subsequence {−→Ψ (Np)}p∈N and an analytic function Θ defined for ζ in D

such that

eζA
1/2−→

Ψ (Np)(ζ) → Θ(ζ) weakly in V1,C
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for all ζ ∈ D. Let M ∈ N be fixed. We have

|PMeζA
1/2−→

Ψ (Np)(ζ) − PMΘ(ζ)|1,C → 0.

But from the convergence of
−→
ψ (N)(·) to

−→
ψ (·) (see Remark C.1 of Chapter III) we also

have

|etA1/2

PM
−→
ψ (Np)(t) − etA

1/2

PM
−→
ψ (t)|1,C → 0,∀t ∈ [0, σ0].

Therefore, etA
1/2
PM

−→
ψ (t) = PMΘ(t), a.e. on [0, σ0] for every M ∈ N. This easily im-

plies that
−→
ψ (t) = e−tA

1/2
Θ(t),∀t ∈ [0, σ0]. The analytic function

−→
Ψ(ζ) = e−ζA

1/2
Θ(ζ)

extends
−→
ψ and satisfies (4.16). This completes the proof.

The property (4.16) of the solution implies that it is an analytic function in the

time and space variables. Indeed we have the following.

Lemma B.1. Let

Φ(ζ,x) =
∑

k∈Z2\{0}

e
i

L
k·xΦk(ζ), (ζ,x) ∈ D × R

2,

satisfy the following conditions

(i) Φk(ζ) (k ∈ Z
2\{0}) are C-valued analytic functions in D, and

(ii)
∑

k∈Z2\{0}

eReζ
|k|

L |Φk(ζ)| <∞ in D.

Then
∑

k∈Z2\{0}

e
i

L
k·zΦk(ζ)

is absolutely convergent on

Ξ = {(ζ, z) : ζ ∈ D, |Imz| < Reζ}

and the sum Φex(ζ, z) is analytic in Ξ and extends Φ(ζ,x) to Ξ.
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Proof. We have

∑

k∈Z2\{0}

|e i

L
k·zΦk(ζ)| ≤

∑

k∈Z2\{0}

e−
1

L
k·Imz|Φk(ζ)|

≤
∑

k∈Z2\{0}

eReζ
|k|

L |Φk(ζ)|e−
1

L
k·Imz−Reζ

|k|

L

≤
∑

k∈Z2\{0}

eReζ
|k|

L |Φk(ζ)|e−(Reζ−|Imz|)
|k|

L

≤
∑

k∈Z2\{0}

eReζ
|k|

L |Φk(ζ)| <∞

if |Imz| ≤ Reζ. Thus Φex is well defined in Ξ and extends Φ. By noting that the

series is also uniform convergent for |Imz| ≤ (1 − ε)Reζ for any 0 < ε < 1, it is easy

to infer that Φex is also analytic in Ξ.

We can now pass to the second main result of this chapter.

Theorem B.2. Let
−→
ψ 0 ∈ H and

−→
ψ be the unique weak solution with initial data

−→
ψ 0.

Then the functions

ψj(t,x) =
∑

k∈Z2\{0}

e
i

L
k·xψj,k(t), j = 1, 2

can be extended to analytic functions on some open neighborhood of (0,∞) × R
2 in

C × C
2 and also satisfy our system in the classical sense.

Proof. The theory of weak solutions that we developed so far allows us to consider

any t0 > 0 as initial time. So it is clear that it suffices to assume that
−→
ψ 0 ∈ V1

and prove first that ψj, j = 1, 2 can be extended to analytic functions on Ξ. For this

we need to show that the extensions for
−→
ψ j, j = 1, 2 given by Theorem B.1 satisfy

Lemma B.1. Indeed this is true because

∑

k∈Z2\{0}

eReζ
|k|

L |ψj,k(ζ)| ≤
∑

k∈Z2\{0}

L̂2

|k|2 e
Reζ

|k|

L
|k|2

L̂2
|ψj,k(ζ)|
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≤




∑

k∈Z2\{0}

L̂4

|k|4




1/2


∑

k∈Z2\{0}

e2σ cos θ
|k|

L
|k|4

L̂4
|ψj,k(ζ)|2




1/2

≤ c




∑

k∈Z2\{0}

e2σ cos θ
|k|

L
|k|2

L̂2
E(

−→
Ψ(σeiθ))(k)




1/2

≤ cΓ.

Thus ψj, j = 1, 2 are analytic as functions of (ζ, z) for (ζ, z) in a neighborhood in C
3

of (0,∞) × R
2. In particular ψj ∈ C∞((0,∞) × R

2). Therefore, the way we got the

wave-vector formulation of our system automatically shows that ψj, j = 1, 2 satisfy

the system in the classical sense.

Remark B.1. (i) ψj(t, ·) → ψj(0, ·) as tց 0 in H1(Ω).

(ii) If ψj(0, ·) ∈ H2(Ω), j = 1, 2 then
−→
ψ (0) ∈ V1. This implies that

−→
ψ (t) → −→

ψ (0) as

tց 0 in V1 which gives us that ψj(t, ·) → ψj(0, ·) as tց 0 in H2(Ω). By the classical

Sobolev inequalities one obtains that ψj(t,x) → ψj(0,x) as tց 0 uniformly in x.
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CHAPTER V

CONCLUSION

This dissertation is the beginning of a research project. Our primary motivation in

undertaking this study was to put on a firm mathematical ground the behavior of

our system. Also the model system sits in an interesting position between 2D and

3D Navier-Stokes, so the problem may have some independent interest. In the first

part of our study we defined a notion of weak solution, and showed using Galerkin

methods the long-time existence and uniqueness of such solutions. In the second part

we showed that our unique weak solution is in fact a classical solution. In addition

we proved that the mentioned solution is time and space analytic. Next we plan on

working on the convergence of a numerical scheme related to our model, estimating

the errors in the same time. From physical point of view the time average of solutions

are very important. Because of that one of our future plans is to estimate the energy

norm of the time average of solution in terms of fluctuations.
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