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ABSTRACT 

On a Tensor-Based Finite Element Model for  

the Analysis of Shell Structures. (December 2005) 

Roman Augusto Arciniega Aleman, B.E., University of Ricardo Palma, Lima; 

M.E., Catholic University of Rio de Janeiro  

Chair of Advisory Committee:  Dr. J.N. Reddy 
 
 

In the present study, we propose a computational model for the linear and nonlinear 

analysis of shell structures. We consider a tensor-based finite element formulation which 

describes the mathematical shell model in a natural and simple way by using curvilinear 

coordinates. To avoid membrane and shear locking we develop a family of high-order 

elements with Lagrangian interpolations. 

 The approach is first applied to linear deformations based on a novel and consistent 

third-order shear deformation shell theory for bending of composite shells. No 

simplification other than the assumption of linear elastic material is made in the 

computation of stress resultants and material stiffness coefficients. They are integrated 

numerically without any approximation in the shifter. Therefore, the formulation is valid 

for thin and thick shells. A conforming high-order element was derived with 0C  

continuity across the element boundaries. 

 Next, we extend the formulation for the geometrically nonlinear analysis of 

multilayered composites and functionally graded shells. Again, Lagrangian elements 

with high-order interpolation polynomials are employed. The flexibility of these 

elements mitigates any locking problems. A first-order shell theory with seven 

parameters is derived with exact nonlinear deformations and under the framework of the 
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Lagrangian description. This approach takes into account thickness changes and, 

therefore, 3D constitutive equations are utilized. Finally, extensive numerical 

simulations and comparisons of the present results with those found in the literature for 

typical benchmark problems involving isotropic and laminated composites, as well as 

functionally graded shells, are found to be excellent and show the validity of the 

developed finite element model. Moreover, the simplicity of this approach makes it 

attractive for future applications in different topics of research, such as contact 

mechanics, damage propagation and viscoelastic behavior of shells. 
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CHAPTER I 

INTRODUCTION 

A. General  

Shell structures have always been a fascinating area of research. Their unpredictable 

behavior and difficulties in their mathematical as well as numerical modeling make these 

structures a challenge for researchers and engineers. Since shells abound in nature, it is 

not surprising that they have been widely used as efficient load-carrying members in 

many engineering structures. Shells can sustain large loads with remarkably little 

material. Examples of shell applications include storage tanks, roofs, lenses, and 

helmets, and they are also found in automobile, aircraft and off-shore structures. 

 Shells are three-dimensional bodies in which one topological dimension is much 

smaller than the other two. They occupy a narrow neighborhood of a two-dimensional 

manifold. The behavior of the shell can be captured by solving directly the three-

dimensional elasticity differential equations. However, due to the complexity of the 

numerical simulations of a three-dimensional body (even for the most powerful 

computers and computational techniques, solutions are restricted to simple cases), it is 

suitable to represent the problem as a two-dimensional model leading to the construction 

of shell theories. Such theories enable an insight into the structure of the equations 

involved, independently and prior to the computation itself. Based on them, powerful 

computational methods can be formulated. Shell theory is, of course, subject to the faults 

and limitations of any mathematical model of a physical system and posses many layers 

of approximations. Difficulties in modeling shell structures are illustrated by the 
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following three excerpts from prominent researches of the area: 

Shell theory attempts the impossible: to provide a two-dimensional repre-

sentation of an intrinsically three-dimensional phenomenon. 

 W.T. Koiter and J.G. Simmonds [1] 

The theory of shells is by definition an approximate one and, generally, 

neither complete nor exact information as to the stress and strain state in 

a thin three-dimensional body can be provided by this theory. 

 W. Pietraszkiewicz [2] 

Shell structures may be called the prima donnas of structures. Their 

behavior is difficult to analyze and … apparently small changes of geome-

try or support conditions can result into a totally different response. 

 D. Chapelle and K.J. Bathe [3] 

 In the past decades, the development of efficient computational models for the 

analysis of shells has been one of the most important research activities. This has been 

motivated by the advent of materials such as composite laminates and functionally 

graded shells. In particular, shells made of laminated composites continue to be of great 

interest in many engineering applications. In some applications these structures can 

experience large elastic deformations and finite rotations. Consequently, geometric 

nonlinearities play an essential role in the behavior of the shell. In that sense, the choice 

of appropriate mathematical models together with reliable computational procedures that 

can accurately represent nonlinear deformations and stresses in shell structures is of vital 

importance. 

 Most significant advances in shell analyses have been made using the finite element 

method. Finite elements used for shells can be grouped into four kinds: flat facet 

element, solid 3D element, continuum based shell element (or degenerated shell 
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element) and a 2D element based on a shell theory. Among these, the last two elements 

are the most common ones. The degenerated shell element was first developed by 

Ahmad et al. [4] from a three-dimensional solid element by a process which discretizes 

the 3D elasticity equations in terms of midsurface nodal variables. It is based on 

isoparametric interpolations in Cartesian coordinates that imposes the same kinematical 

constraints as those of the Reissner-Mindlin approach. Therefore, a first-order shear 

deformation theory can be implicitly identified. On the other hand, elements based on 

shell theories began to appear in the late sixties. These elements are based on convected 

curvilinear coordinates and are capable of capturing the membrane-bending coupling 

correctly. Even though degenerated solid elements have dominated shell analysis during 

the seventies and eighties, beginning with the work of Simo and Fox [5], shell elements 

have been increasingly used in the last decade. Examples of these formulations can be 

found in Chinosi et al. [6], Cho and Roh [7] and Chapelle et al. [8]. A comparison 

between both methodologies, presented by Büchter and Ramm [9], reveals that they 

have come very close to each other in the meantime. 

 Finite elements based on shell theories describe, in a natural way, the behavior of the 

shell since they are written in terms of curvilinear coordinates. For this case, two 

different approaches can be identified whether or not there is an approximation of the 

geometry of the midsurface (i.e., finite element domain in the parametric space of the 

midsurface A ). Formulations in which the midsurface is represented by a chart and 

that interpolate the covariant components of the kinematic variables are called tensor-

based finite element models. It is often heard the argument that this kind of interpolation 

automatically causes difficulties with the rigid body modes of curved structures because 

they cannot be properly represented [9, 10]. That point of view is not shared herein. We 

shall demonstrate in this dissertation (from a heuristic perspective) that with the help of 
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an appropriate element, these problems never occur. 

 It is well-known that the standard displacement-based type of element for shells is 

too stiff and suffers from locking phenomena. Locking problem arises due to 

inconsistencies in modeling the transverse shear energy and membrane energy. In other 

words, the convergence property of the element for some specific problems becomes 

worse as the thickness tends to zero. The dominant trend in computational mechanics for 

shells over the last decades is the use of low-order finite element formulations with 

mixed interpolations to overcome locking. A mixed interpolation approach can be 

considered as a special case of mixed finite element models that are usually modeled by 

the Hu-Washizu functional. To propose a reliable mixed finite element, we should 

satisfy the inf-sup condition property. This condition means optimal convergence in 

shell analyses. Despite of its importance, it is generally not possible to prove analytically 

whether or not a shell element satisfies this condition. Examples of efficient low-order 

elements are the assumed strain elements (Hinton and Huang [11], Dvorkin and Bathe 

[12]) and the enhanced strain elements (Simo and Rifai [13]).  

 Alternatively, high-order elements have been proposed for the analysis of shells. The 

claim of this approach is to use finite elements of sufficiently high degree to recover the 

convergence property within an optimal order. This is called p-version finite element 

(where p is the degree of the interpolation polynomial). In that case, there is no need to 

use mixed formulations and displacement-based finite elements can be applied. 

 As compared with standard low-order elements, high-order finite elements appear far 

more complicated. However, we will see in this dissertation that raising the p-level 

frequently results in better accuracy. Moreover, high-order finite elements are more 

reliable because of their applicability in a diversity of shell problems. Finite elements 

with high-order interpolations have been utilized by Pitkäranta and co-workers [14-16] 
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for linear analysis of isotropic shells. Further applications of high-order elements to 

shells (with hierarchical modal basis) can be found in Refs. [6, 17]. 

 The use of tensor-based finite element formulations together with high-order 

elements for the analysis of shell structures leads to an efficient computational approach 

which is straightforward to implement. Such model can be applied to linear and 

nonlinear analyses of shells made of isotropic, laminated composite and functionally 

graded materials as we will see in this dissertation. 

B. Motivation and objectives 

After an assessment of previous studies in the literature for the analysis of shells, we find 

that most shell formulations are based on mixed functionals with low-order finite 

elements (under the isoparametric concept, which is directly inherited from degenerated 

finite elements). Moreover, finite element models for shells are limited to the analysis of 

isotropic materials with few applications to laminated composites [18-20]. Having 

motivated the use of tensor-based finite element models with high-order expansion, we 

propose in this dissertation a reliable computational model for the linear and nonlinear 

analysis of shell structures. Specifically, our aim in this work is the following: 

- To develop of a mathematical model and its finite element implementation for the 

linear analysis of shell structures. The formulation is based on the third-order shear 

deformation theory (Reddy [21], Reddy and Liu [22]) which can captures the basic 

kinematic response of laminated composite materials. 

- To develop a refined mathematical model to simulate finite displacements and 

rotations of shell structures. The model is based on an improved first-order shear 

deformation theory with seven independent parameters (Sansour [23], Bischoff and 

Ramm [24]) under the Lagrangian framework. The use of a rotation tensor is 
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avoided and the additive update procedure of the shell configuration is preserved. 

Since thickness stretching is considered in the formulation, three-dimensional 

constitutive equations are required. 

 The formulation is original in the following aspects: 

- The finite element formulation is tensor-based (domain in the parametric space of 

the midsurface and interpolation of the covariant components of the kinematic 

variables). 

- First to introduce high-order finite elements together with a displacement-based 

finite element model to mitigate locking in geometrically nonlinear analysis of 

shells. 

- Broad range of applications for different geometries (beams, plates, cylindrical 

shells, spherical shells, etc.) as well as different type of materials (isotropic, 

laminated composite and functionally graded shells). 

 The mathematical shell model is beautifully and consistently derived using absolute 

tensor notation and the finite element model is developed in a straightforward way. The 

simplicity of this approach makes it attractive for future applications in different topics 

of research such as contact mechanics, damage propagation and viscoelastic behavior of 

shells. Previous works of the author for linear analysis of laminated shells can be found 

in Refs. [25, 26]. 

C. Outline of the research 

This dissertation is organized in six chapters. Chapter II and III are concerned with the 

linear shell analysis while Chapter IV and V deal with the nonlinear analysis. 

 In Chapter II, we discuss the linear shell theory. After a brief bibliographical review, 

we introduce some mathematical concepts for shell analyses. Next, we develop the 



 7

kinematics of deformation of the shell based on the third-order theory. Reduced 

constitutive equations for linear elastic materials are derived and then utilized in the 

principle of virtual work. 

 Chapter III presents the abstract finite element implementation for the shell model 

described in Chapter II. We start by defining the configuration of the shell and deriving 

the variational formulation. The discrete finite element model is introduced and the 

interpolations of the kinematic variables are described. The problem of locking in shell 

structures is amply discussed. Two asymptotic behavior of the shell that causes locking 

are identified. The use of high-order elements is justified. Finally, we present numerical 

examples for static linear analysis of plates, cylindrical shells and spherical shells. 

Specifically we consider several well-known benchmark problems such as the barrel 

vault, the pinched cylinder, the pinched hemispherical shell, etc. 

 Chapter IV is concerned with the development of the nonlinear shell theory for finite 

displacements and rotations. We review some mathematical preliminaries related to shell 

theories. The deformation of the shell is examined under the Lagrangian description. The 

kinematics of the shell is presented in vector form. An alternative tensor component 

form for these equations is also given. The stress power is derived and the stress 

resultant tensors are defined. For the sake of completeness, the equilibrium equations are 

obtained in absolute tensor notation by applying the principle of virtual work. Next, we 

present the constitutive equations for the formulation based on hyperelastic materials. In 

particular, constitutive matrices for multilayered composites and functionally graded 

shells are considered. Finally, a brief description of the geometrically exact shell theory 

is presented. 

 Chapter V addresses the finite element model for the nonlinear shell theory derived 

before. We apply the principle of virtual work to obtain the weak form of the 
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equilibrium equations. A consistent linearization is derived that yields the symmetric 

tangent operator. The discrete finite element model is introduced by approximating the 

parametric space of the midsurface and interpolating the covariant components of the 

kinematic variables. Solution procedures based on the Newton-Raphson method and   

the cylindrical arc-length method are examined. Finally, numerical simulations are 

performed for finite deformation analyses of benchmark problems that include plates, 

cylindrical, spherical and hyperboloidal shells under static loading.  

 Chapter VI gives the closure of our work. It starts with a summary of the study, 

followed by the concluding remarks and comments on the direction of future research. 
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CHAPTER II 

LINEAR SHELL THEORY* 

The aim of this chapter is to develop a consistent third-order shear deformation theory 

for the linear analysis of multilayered composite and functionally graded shells. The 

theory, based on the ideas of Reddy and Liu [22], has five independent parameters and 

satisfies the tangential traction-free condition on the inner and outer surfaces of the shell 

(this condition can be relaxed by using a seven-parameter formulation which will be 

described in the finite element formulation in Chapter III). In addition, no simplification 

is made in the computation of stress resultants other than the assumption of linear elastic 

material. Material stiffness coefficients of the laminate are integrated numerically 

without any approximation in the shifter. The principle of virtual work is applied in 

terms of stress resultants and provides a basis for the finite element implementation.  

 For the derivation of the shell theory we utilize concepts and notions of tensor 

analysis and tensor calculus in curvilinear coordinates, and differential geometry. Except 

for section B that deals with the mathematical background of the shell theory, these 

concepts are accepted outright and are not further discussed. 

A. Preliminaries 

We discuss briefly a bibliographical review for shear deformable theories. The 

derivation of shear deformable shell theories has been one of the most prominent 

                                                 
* Copyright © 2004 From Shear deformation plate and shell theories: From Stavsky to present by 
J.N. Reddy, R.A. Arciniega. Mech. Advanced Mater. Struct. 11 (6-II), 535-582. Reproduced by 
permission of Taylor & Francis Group, LLC., http://www.taylorandfrancis.com; Copyright © 
2005 From Consistent third-order shell theory with application to composite circular cylinders 
by R.A. Arciniega, J.N. Reddy. AIAA J. 43 (9), 2024-2038. Reprinted by permission of the 
American Institute of Aeronautics and Astronautics, Inc. 



 10

challenges in solid mechanics for many years. The basic idea is to develop appropriate 

models that can accurately simulate the effects of shear deformations and transverse 

normal strains in laminated shells.  

 Shear deformable shell theories are intrinsically related to the advent of laminated 

structures. The importance of including these effects comes from the fact that composite 

materials have very high ratios of inplane Young’s moduli to transverse shear moduli. 

Consequently, shear deformation plays an important role in the global behavior of these 

materials. The first such theory for laminated isotropic plates is due to Stavsky [27]. The 

theory was generalized to laminated anisotropic plates by Yang et al. [28] and it is 

known as the YNS theory (which stands for Yang, Norris and Stavsky). This theory 

represents an extension of Reissner-Mindlin plate theory for homogeneous isotropic 

plates to arbitrarily laminated anisotropic plates and includes shear deformation and 

rotatory inertia effects. 

 Comparisons of closed-form elasticity solutions of laminated plates with those of the 

classical plate theory (under Kirchhoff assumptions) have been conducted by Pagano 

[29, 30] and Pagano and Hatfield [31]. These papers are well-known benchmarks for 

evaluation of laminated plate theories. The effect of boundary conditions in vibration 

and buckling responses of composite plates was investigated by Whitney [32]. 

 The classical Reissner-Mindlin theory used in most of the work cited above assumes 

linear variation of the in-plane displacements with the thickness coordinate. High-order 

theories have then been required for a better description of shear deformations and 

transverse normal strains in laminated shells. Most of the high-order theories are derived 

based on assuming a displacement field. The displacement field is expanded as a 

quadratic or higher-order functions of the thickness coordinate. These theories are 

computationally more demanding. An additional independent variable is introduced in 
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the theory with each additional power of the thickness coordinate. 

  These limitations were overcame back in the 80s with a simpler third-order shear 

deformation laminate theory proposed by Reddy [21] for composite plates and by Reddy 

and Liu [22] for laminated shells. The theory is based on assuming membrane 

displacements as cubic functions of the thickness coordinate, and the transverse 

displacement as constant through the thickness. The theory contains the same 

independent unknowns as the Reissner-Mindlin theory which is usually called the first-

order theory. This is achieved by enforcing the free-traction condition on the top and 

bottom surfaces of the shell. The significant feature of the Reddy’s theory is that the 

assumed displacement field leads to a parabolic distribution of the transverse shear 

strain, hence, it removes the need for using a shear correction factor. The theory has 

been amply used for computation of deflections, natural frequencies, buckling loads, etc. 

of laminated plates and shells [33-38]. In general, third-order shear deformation theories 

are capable of predicting accurately the global behavior of plates and shells. 

 An important question arises regarding the adoption of a kinematical model to 

analyze composite shells: which model can better describe the shell behavior? It has 

been demonstrated that the classical shell theory is not able to predict the deformation 

behavior with sufficient accuracy in composite shells [39]. However, the benefits in 

using high-order theories instead of first-order theories are not clearly established.  

 Disadvantages of the refined third-order theory can be attributed to the numerical 

solution rather than the theory itself. The presence of first partial derivatives of the 

transverse displacement in the displacement field leads to finite element formulations 

with Hermite interpolations functions. However, this drawback can be overcome by 

relaxing the continuity of the displacement field. This point will be amply discussed in 

Chapter III. 
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 To complete the present literature review we mention two additional refined theories 

which are available to evaluate detailed local stress analysis: the layer-wise theory and 

the zig-zag theory. In the layer-wise plate theory, proposed by Reddy [40] and Reddy et 

al. [41, 42], the 3D displacement field is expanded as a linear combination of the 

thickness coordinate and undetermined functions of the position of each layer. The 

continuity of the transverse normal and shear stresses is not enforced. On the other hand, 

we have the zigzag theory [43-45] in which the displacement field fulfills a priori the 

static and geometric continuity conditions between contiguous layers. The reduction of 

the three-dimensional problem to the two-dimensional one is accomplished by assuming 

a displacement field which allows piecewise linear variation of the membrane 

displacements and a constant value of the transverse displacement through the thickness 

of the laminate. Thus, the boundary conditions on the external surfaces are not fulfilled, 

as well as in the first-order shear deformation theories.  

 Even though these theories described above are superior to the third-order theory in 

predicting local stresses, we will adopt the latter because of its simplicity (less 

computational effort) and accurate results for global analysis which is the goal in the 

present research. We will also show that the developed third-order theory is able to 

represent complex through-the-thickness distributions of insurface displacements and 

stresses of laminated shells. 

B. Mathematical background  

In this section, we present the mathematical preliminaries of the shell theory. A general 

description of tensor algebra can be found in [46-50]. Figure 2.1 shows the undeformed 

state of an arbitrary shell continuum. Let V be the volume of the undeformed (reference) 

configuration. Let S + and S − denote the outer and inner surfaces of the volume V, and Ω 
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be the undeformed midsurface of the shell such that 

  [ ]2, 2 .V h hΩ= ×−  (2.1) 

 The point P in V (surface Ω ) is defined by a set of convected curvilinear coordinates 

( )1 2 3, ,θ θ θ  attached to the shell body and the point P0 in Ω by ( )1 2,θ θ , where 3θ  

denotes the normal coordinate. Covariant and contravariant base vectors at P0 in Ω are 

denoted by , α
αa a  with metric ,a aαβ

αβ . We also define a normal vector to the 

midsurface 3
3 =a a  such that 3 3 1⋅ =a a . As usual, the Einstein summation convention is 

applied to repeated indices of tensor components where Greek indices represent the 

numbers 1, 2 and Latin ones the numbers 1, 2, 3. Then 

  
( )

3

1 2

, , , 0

, , ,

a aαβ α β α α
αβ α β β β α

α αα

δ

θ θ
θ

= ⋅ = ⋅ ⋅ = ⋅ =

∂
= = =

∂

a a a a a a a a

ra r r r
 (2.2) 

where r is the position vector of the point P0 in Ω, and α
βδ  is the mixed Kronecker delta 

function. 
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S -
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h/2
R

r
e3
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1θ
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1x

3x

2x

P Ω

 

Fig. 2.1. Reference state of an arbitrary shell continuum. 
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 The components of the metric tensor aαβ  are known as the first fundamental form of 

the surface. In the following developments, ( ),i  denotes partial derivatives with respect 

to the corresponding space coordinate, while ||( ) i  and |( ) α  designate covariant 

derivatives with respect to space and surface metrics, respectively. In a similar fashion, 

covariant and contravariant base vectors at points of V are denoted by , i
ig g  with 

corresponding metrics , ij
ijg g . Thus 

  
( )1 2 3

, ,

, , , ,

i j i j i i
i j i j j j

i ii

g g δ

θ θ θ
θ

= ⋅ = ⋅ ⋅ =

∂
= = =

∂

g g g g g g

Rg R R R
 (2.3) 

where R is the position vector of a typical point P in V (see Fig. 2.1). 

 The description of the 3D shell continuum can be obtained by expressing the position 

vector R at the point P in terms of r and the unit vector 3a . Namely 

  3
3.θ= +R r a  (2.4) 

In view of (2.4), the covariant vectors αg and αa  are related according to the expression  

   
3

3,

3 3.
α α αθ= +

=

g a a
g a

 (2.5) 

It follows that 

  3 33
3 330, 1.g g g gα

α = = = =  (2.6) 

 The covariant components of the curvature tensor (second fundamental form of the 

surface) are defined by 

  
3

| 3

, 3 3,

,bαβ αβ αβ

α β α β

ΩΓ=− = ⋅

= ⋅ =− ⋅

r a

a a a a
 (2.7) 

and the mixed components of the curvature tensor by 

  3 |b

a b

α α
β β

αµ
µβ

ΩΓ=−

=
 (2.8) 
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where |
i
j k ΩΓ  denotes the Christoffel symbol of the second kind with respect to Ω. We 

also define the components of the third fundamental form of the surface as 

  .c b bλ
αβ α λβ=  (2.9) 

 Now, we use the well-known Weingarten formula 

  3, .bλ
α α λ=−a a  (2.10) 

The first equation of expression (2.5) can be transformed into 

  
3b

β
α α β

β β β
α α α

µ

µ δ θ

=

= −

g a
 (2.11) 

with β
αµ  as the shifter tensor components of the shell continuum. 

 The following additional definitions and relationships are needed in the sequel  

  
( ) ( ) ( )

3 3 2

det , det , det

1 2 ( )

ija a g g

g a H K

β
αβ αµ µ

µ θ θ

= = =

= = − +
 (2.12) 

where H and K, respectively, denote the mean and Gaussian curvatures of the surface.  

 Finally, the differential volume of an element is given by 

  
1 2 3

3

dV g d d d

d d

θ θ θ

µ θΩ

=

=
 (2.13)  

where g  and µ  are related by (2.12) and the surface element is defined by  

  1 2.d a d dθ θΩ=  (2.14) 

C. Kinematics of deformation of shells 

Let v be the displacement vector associated with a point P in V. It can be expressed in 

terms of either the space base vectors ig (or ig ) in V or the surface base vectors αa and 

3a  in Ω. Namely 
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3 3

3 3

i i
i iV V

v v v vα α
α α

= =

= + = +

v g g

a a a a
 (2.15) 

where ( ),i
iV V  and ( ),i

iv v  are the contravariant and covariant components of the vector 

v in V and Ω, respectively. 

 Similarly, the Green-Lagrange strain tensor E can be expressed in terms of the space 

or surface base vectors. Then 

  
i j

ij

i j
ij

E

E

= ⊗

= ⊗

E g g

a a
 (2.16) 

where ijE  and ijE  denote the covariant components of the tensor E. The tensor 

components ijE  measure the difference of metrics between the deformed and 

undeformed configurations. It can be shown that 

  
, , , ,

|| || || ||

1 ( )
2
1 ( ).
2

ij i j j i i j

k
i j j i k ji

E

V V V V

= ⋅ + ⋅ + ⋅

= + +

g v g v v v
 (2.17) 

Since we are considering only infinitesimal deformations, the underlined terms of (2.17) 

may be dropped. Then, the linear strain components are 

  || ||
1 ( ).
2ij i j j iV Vε = +  (2.18) 

 The space and surface components of the displacement vector are connected by the 

following equations 

  
3 3

V v

V v

β
α α βµ=

=
 (2.19) 

and the covariant derivatives of the vector v in V are related to the covariant derivatives 

in Ω by the following expression (see Naghdi [48] and Librescu [49])  
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  |||| | 3 3 ,3

|||| 3, 3 3 3,33

( ) ,

, .

V v b v V v

V v b v V v

λ λ
αα β α λ β λβ α λ

λ
α α α λ

µ µ= − =

= + =
 (2.20) 

Eq. (2.18) can be written as 

  

|| ||

|| ||3 3 3

||33 3 3

1 ( )
2
1 ( )
2

.

V V

V V

V

αβ α β β α

α α α

ε

ε

ε

= +

= +

=

 (2.21) 

 Finally, substituting (2.20) into (2.21), we obtain the exact 3D strain-displacement 

relations of the shell 

  

( )| 3 | 3

3
| | 3 3 | |

3 ,3 3,

3
,3 3, ,3

33 3,3

1 ( ) ( )
2
1 1( ) ( ) ( )
2 2

1 ( )
2
1 1( ) ( ) ( )
2 2

.

v b v v b v

v v b v c v b v b v

v v b v

v v b v b v

v

λ λ
αβ α λ β λβ β λ α λα

λ λ
α β β α αβ αβ α λ β β λ α

λ λ
α α λ α α λ

λ λ
α α α λ α λ

ε µ µ

θ

ε µ

θ

ε

= − + −

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜= + − + − +⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

= + +

= + + + −

=

 (2.22) 

 Next, we introduce the following assumptions for the present formulation: 

Assumption 1: The displacement field is based on a cubic expansion of the thickness 

coordinate around the midsurface and the transverse displacement is 

assumed to be constant through the thickness. 

Assumption 2: Fourth or higher-order terms in the strain-displacement relations of the 

shell are neglected. 

Assumption 3: The normal stresses perpendicular to the midsurface are neglected. 

 The first two are kinematic assumptions while the last one is commonly used [9] in 

shell theories. Assumption 1 was originally proposed by Reddy [21] and Reddy and Liu 
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[22] in which, a nine-parameter formulation obtained initially is reduced to a five-

parameter one imposing the tangential traction-free conditions on S+  and S− . In 

addition, the second part of assumption 1 asserts the “unstretched” condition of the 

material line normal to the midsurface. Then, the displacement field can be written as 

  
( )
( )

3 3 2 3 3

3 3

( ) ( )

.

i

i

v u

v u
α α α α αθ ϕ θ γ θ η θ

θ

= + + +

=
 (2.23) 

 The stress tensor σ  and the stress vector t can be expressed in terms of the covariant 

space vectors ig  as 

  
3

3.

ij
i j

t tα
α

σ= ⊗

= +

σ g g

t g g
 (2.24) 

 The absence of tangential tractions on S+ and S−  implies that 0tα = . Using the 

Cauchy formula on the outer and inner surfaces with 3=n g  and 3=−n g  respectively, 

we arrive to the following condition  

  3
,

| 0.
S S

tα ασ + −= =  (2.25) 

 Note that for anisotropic materials the generalized Hooke’s law is written as 

  ij ijkl
klEσ ε=  (2.26) 

where ijklE  are contravariant space components of the elasticity tensor associated with a 

linear elastic body. Substituting (2.26) into (2.25), we obtain 

  3 ,
| 0
S Sαε + −=  (2.27) 

for orthotropic materials. In case of anisotropic or monoclinic materials (one material 

plane of symmetry), Eq. (2.27) does not hold. 

 The displacement field (2.23) is substituted into the second equation of (2.22) and 

the result into (2.27). It gives  
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1
3,

1
3,2

1 ( ) ( )
3

4 ( ) ( )
3

b d u b u

d u b u
h

λ β κ
α α λ β β β κ

β κ
α α β β β κ

γ ϕ

η ϕ

−

−

=− + +

=− + +
 (2.28) 

where 1( )d β
α

−  denotes the inverse of d β
α  and is defined as 

  

2 2

1

1
12 6

( ) .

h hd K b H

d d

α α α
β β β

λ β β
α λ α

δ

δ−

⎛ ⎞⎟⎜ ⎟= − −⎜ ⎟⎜ ⎟⎜⎝ ⎠

=

 (2.29) 

Taking into account (2.28), the displacement field (2.23) becomes 

  
( )

( )

3 1
3,

3 3

( ) ( )i

i

v u h d u b u

v u

λ β κ
α α α α λ β β β κθ ϕ θ ϕ

θ

−= + + + +

=
 (2.30) 

where  

  3 2 3 3
2

1 4( ) ( ) .
3 3

h b
h

β β β
α α αθ δ θ

⎛ ⎞⎟⎜= − − ⎟⎜ ⎟⎜⎝ ⎠
 (2.31) 

 The nine-parameter theory given by equation (2.23) is now reduced to a five-

parameter one (with variables iu  and αϕ ), which has the same number of variables as 

the first-order shell theory [48]. We denote TSDT the present third-order shear 

deformation theory and FSDT the present first-order shear deformation theory. The latter 

theory can be obtained from (2.30) by neglecting the underlined terms and is also known 

as the Reissner-Mindlin theory. Substituting equation (2.30) into the strain-displacement 

equations given in (2.22), we obtain the following relations 

  
(0) (1) 3 (2) 3 2 (3) 3 3 (4) 3 4

(0) (1) 3 (2) 3 2 (3) 3 3
3 3 3 3 3

( ) ( ) ( ) ( )

( ) ( ) ( )

αβ αβ αβ αβ αβ αβ

α α α α α

ε ε ε θ ε θ ε θ ε θ

ε ε ε θ ε θ ε θ

= + + + +

= + + +
 (2.32) 

with 33 0ε = . The underlined term is neglected by assumption 2. 

 On the other hand, assumption 3 implies the normal stress is zero. However, the 

second part of assumption 1 states the strain component 33 0ε =  in evident contradiction 
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to the constitutive equations. A justification for this assumption can be found in Koiter 

[51]. Shell formulations that include a linear variation of the thickness stretch have been 

proposed by Büchter and Ramm [52] and Simo et al. [53]. 

 Finally, the coefficients ( )i
αβε  and ( )

3
i

αε of (2.32) are given by 

  

(0)
| | 3

(1)
| | | | 3

(2)
| | | |

(3)
| | | |

(4)
| |

(0)
3 3,

(1)
3

1 ( )
2
1 ( )
2
1 ( )
2
1 ( )
2
1 ( )
2
1 ( )
2

u u b u

b u b u c u

b b

b b

b b

u b u

αβ α β β α αβ

λ λ
αβ α β β α α λ β β λ α αβ

λ λ
αβ α β β α α λ β β λ α

λ λ
αβ α β β α α λ β β λ α

λ λ
αβ α λ β β λ α

λ
α α α α λ

α α

ε

ε ϕ ϕ

ε γ γ ϕ ϕ

ε η η γ γ

ε η η

ε ϕ

ε γ

= + −

= + − − +

= + − −

= + − −

= − −

= + +

=

(2)
3

(3)
3

1 (3 )
2

b

b

λ
α α α λ

λ
α α λ

ε η γ

ε η

= −

=−

 (2.33) 

where αγ  and αη  are defined by (2.28). Full expressions of the strain-displacement 

relations for plates, cylindrical shells and spherical shells (for the TSDT and FSDT) are 

shown in appendix A. 

D. Constitutive equations 

This section addresses the constitutive equations for a laminated shell. A more detailed 

explanation, which includes functionally graded materials, can be found in Chapter IV 

section F.  

 Consider a composite shell built of a finite number N of laminae which are made of 

an arbitrary linear elastic orthotropic material (Fig. 2.2). It is also assumed that layers are 
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perfectly bonded together without any slip among their interfaces. The principal material 

axes are allowed to be oriented differently from layer to layer. At each point of the layer 

( 1, )L L N= , we set a local orthonormal coordinate system αθ  such that the 

corresponding base vectors αg  coincide at P with the principal material directions and 

are, furthermore, of unit length. The third coordinate 3 3θ θ=  remains unchanged. The 

constitutive equations with respect to this system are given by 

  ij ijkl
L klEσ ε=  (2.34) 

where mnkl
LE  are the components of the elasticity tensor referred to iθ  and identical at P 

with the physical ones (since ig  are orthonormal basis). Therefore, these coefficients can 

be calculated in terms of the engineering elastic constants which can be found in several 

textbooks of composite materials (see Reddy [54]). 

2θ

1θ

3θ

Lamina L S+

1Lh +

Lh

/ 2h

P

P0

S−

Ω

 

Fig. 2.2. Arbitrary laminated shell. 

 Writing (2.34) in terms of the laminate coordinates iθ  gives 

  ij ijkl
L klEσ ε=  (2.35) 

where 
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  .
i j k l

ijkl mnpq
L Lm n p qE Eθ θ θ θ

θ θ θ θ
∂ ∂ ∂ ∂

=
∂ ∂ ∂ ∂

 (2.36) 

The base vectors in coordinates iθ  and iθ  are related by 

  
j

m jm

θ
θ
∂

=
∂

g g  (2.37) 

which implies 

  ( )( ) ( ) ( ) .ijkl i j k l mnpq
L m n p q LE E= ⋅ ⋅ ⋅ ⋅g g g g g g g g  (2.38) 

 Finally, we use assumption 3 of zero stress condition in the thickness direction. It 

leads to 

  
3 3 3

32
L

L

C

C

αβ αβωρ
ωρ

α α ω
ω

σ ε

σ ε

=

=
 (2.39) 

with the reduced elasticity tensor 

  

33
33

3333

3 3 3 3.

L
L L L

L

L L

EC E E
E

C E

ωρ
αβωρ αβωρ αβ

α ω α ω

= −

=

 (2.40) 

Note that ijkl
LC  are no longer components of a tensor. 

E. Principle of virtual work and stress resultants 

For the displacement finite element formulation, the virtual work principle of the 

laminated continuum is utilized. It asserts that: If a continuum body is in equilibrium 

then the virtual work of the total forces is zero under a virtual displacement (see Reddy 

[55]). It is expressed in terms of the stress and strain tensor as 

  
int ext

0ij j
ij jV

dV P V d

δ δ δ

σ δε δ
Ω

Ω

= +

= − =∫ ∫

W W W
 (2.41) 

where intδW  is the virtual work of the internal forces, extδW  the virtual work of external 
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forces and δ  is the variational operator.  

 Substituting equation (2.13) into the expression above, we obtain 

  3
int .ij

ijV
d dδ µσ δε θΩ= ∫W  (2.42)  

The decisive step in defining the stress resultants is to split (2.42) into a surface integral 

and a line integral in the transverse direction using (2.32). Furthermore, in view of the 

condition 33 0ε =  we obtain 

  
3 3

3 ( ) ( ) 3 3 ( ) ( ) 3
int 3

0 0

( ) 2 ( ) .n n n n

V n n

d dαβ α
αβ αδ σ θ δε σ θ δε µ θΩ

= =

⎛ ⎞⎟⎜= + ⎟⎜ ⎟⎜ ⎟⎝ ⎠∑ ∑∫W  (2.43) 

 The pre-integration along the thickness of the laminate leads to a two-dimensional 

virtual work principle, i.e. 

  
3 3( ) ( )

( ) ( )3
3

0 0

2 0.
n n

n n j
j

n n

N Q d P V dααβ
αβ αδ δε δε δ

Ω Ω
Ω Ω

= =

⎛ ⎞⎟⎜= + − =⎟⎜ ⎟⎜ ⎟⎝ ⎠∑ ∑∫ ∫W  (2.44) 

The stress resultants 
( )n
Nαβ  and 

( )
3

n
Qα  are denoted by 

  

2
( )

3 3

2

2
( )

3 3 33

2

( )

( ) , 0,1,2,3.

h
n

n

h

h
n

n

h

N d

Q d n

αβαβ

αα

µσ θ θ

µσ θ θ

−

−

=

= =

∫

∫
 (2.45) 

 The scalar quantity µ , which is the determinant of the shell shifter tensor, contains 

information about changes of differential geometry, i.e. the size and the shape of a 

differential volume element throughout the shell thickness. We can now expand 

expression (2.45) by using (2.39) with (2.32) 

  

12 3( )
3 3 3 ( ) 3 3

1 02

3
( )

0

( ) ( ) ( )

, 0,1,2,3

L

L

hh Nn
n k k n

L
L kh h

k n
k

k

N d C d

C n

αβ αβωραβ
ωρ

αβωρ
ωρ

µσ θ θ µ θ ε θ θ

ε

+

= =−

+

=

⎛ ⎞⎟⎜= = ⎟⎜ ⎟⎜ ⎟⎝ ⎠

= =

∑ ∑∫ ∫

∑
 (2.46) 
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and 

  

12 3( )
3 3 3 3 3 3 ( ) 3 33

3
1 02

3
( )3 3

3
0

( ) 2 ( ) ( )

2 , 0,1,2,3

L

L

hh Nn
n k k n

L
L kh h

k n
k

k

Q d C d

C n

α α βα
β

α β
β

µσ θ θ µ θ ε θ θ

ε

+

= =−

+

=

⎛ ⎞⎟⎜= = ⎟⎜ ⎟⎜ ⎟⎝ ⎠

= =

∑ ∑∫ ∫

∑
 (2.47) 

where material stiffness coefficients of the laminate are given by 

  

1

1

3 3

1

3 3 3 33 3

1

( )

( ) , 0,1, ,6.

L

L

L

L

hNk
k

L
L h

hNk
k

L
L h

C C d

C C d k

αβωρ αβωρ

α βα β

µ θ θ

µ θ θ

+

+

=

=

⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
⎛ ⎞⎟⎜ ⎟⎜= =⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

∑ ∫

∑ ∫ …

 (2.48) 

 Integration shown in equation (2.48) of the material law through the thickness 

direction is fundamental in reducing the three-dimensional theory into the two-

dimensional one. The actual process of computation of (2.48) is carried out numerically 

using the Gaussian integration formula with 50 Gauss points per layer. 
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CHAPTER III 

ABSTRACT FINITE ELEMENT MODEL AND RESULTS* 

This chapter is devoted firstly to the development of the displacement finite element 

model for laminated shells based on the principle of virtual work and secondly to 

numerical applications of the present approach. 

 It is well-known [39] that first-order shear deformable models require the use of 

Lagrange interpolation functions for all generalized displacements for the finite element 

implementation. This is called 0C  elements since it is required that the kinematic 

variables be continuous through the boundary of the elements. On the other hand, 

because of the presence of first partial derivatives of the variable 3u  in the displacement 

field (2.30), the finite element model for the third-order theory requires Hermite 

interpolation for the transverse deflection ( 1C  elements) and Lagrange interpolation for 

other displacements.  

 It has been shown that finite element models for shells based on 1C  continuity 

elements are numerically inconvenient as they involve second partial derivatives of the 

interpolation functions. They cannot account for all rigid body modes of a curved 

element (Cantin and Clough [56]). Furthermore, 1C  continuity elements can be only 

used for mapping rectangular meshes not distorted ones since the constant curvature 

criterion could be violated (Zienkiewicz [57]). Therefore, the use of displacement finite 

element models with 0C  continuity across the element boundary is computationally 

                                                 
* Copyright © 2004 From Shear deformation plate and shell theories: From Stavsky to present by 
J.N. Reddy, R.A. Arciniega. Mech. Advanced Mater. Struct. 11 (6-II), 535-582. Reproduced by 
permission of Taylor & Francis Group, LLC., http://www.taylorandfrancis.com; Copyright © 
2005 From Consistent third-order shell theory with application to composite circular cylinders 
by R.A. Arciniega, J.N. Reddy. AIAA J. 43 (9), 2024-2038. Reprinted by permission of the 
American Institute of Aeronautics and Astronautics, Inc. 
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advantageous. 

 In that sense, we relax the continuity in the displacement field (2.30) by introducing 

two auxiliary variables αψ , i.e. 

  3,uα α αψ ϕ= +  (3.1) 

which was utilized by Nayak et al. [38] for the analysis of composite plates. In order to 

satisfy Eq. (3.1), we have to incorporate in the weak formulation the corresponding 

displacement constraints 3,( )uα α α αψ ϕ≡ − +K . Substituting (3.1) into (2.30), we have 

  
( )
( )

3 1

3 3

( ) ( )i

i

v u h d b u

v u

λ β κ
α α α α λ β β κθ ϕ θ ψ

θ

−= + + +

=
 (3.2) 

which requires only 0C  continuity in the kinematic variables. In vector notation Eq. 

(3.2) becomes 

  ( ) ( ) ( ) ( ) ( )3 3 2 3 3( ) ( )i α α α αθ θ θ θ θ θ θ θ= + + +v u ϕ γ η  (3.3) 

where u  denotes displacement vector of the midsurface; and ,ϕ γ  and η  are in-surface 

rotation vectors defined by  

  
( ) ( ) ( )

( )

1

1
2

1, , ( ) ( )
3

4 ( ) ( ) .
3

i
iu b d b u

d b u
h

α α β α λ β κ µ
β µ λ β β κ

α β κ µ
µ β β κ

θ θ ϕ θ ψ

θ ψ

−

−

= = =− +

=− +

u a a a

a

ϕ γ

η
 (3.4) 

 Note that the displacement field (3.3), which defines the configuration of the shell, 

can be written in terms of the triple ( ), ,iu α αϕ ψ  with seven independent variables. 

Equation (3.3) is then used to obtain the new kinematic relations of the shell and, hence, 

the variational formulation for the finite element model. As a result of (3.1), the number 

of kinematic variables for the TSDT and FSDT formulations is seven and five 

respectively. 



 27

A. Abstract configuration of the shell 

The displacement field (3.3) is a three dimensional vector depending on three curvilinear 

coordinates ( )1 2 3, ,θ θ θ . However, all kinematic variables are functions of the parametric 

space of the midsurface ( )1 2,θ θ . The third coordinate, normal to the midsurface, is used 

to complete the description of the configuration of the shell. The interval [ ]2, 2h h−  is 

considered constant everywhere. Consequently, the configuration of the shell in uniquely 

determined by the triple ( ), ,u ϕ ψ  or in component form by the triple ( ), ,iu α αϕ ψ . 

 Let ( )1 2,θ θ ∈A  be the parametric space of the midsurface. The vectors ,u ϕ  and 

ψ  can be interpreted as mappings from the two-dimensional chart A  to nR  (Fig. 3.1). 

A

e3

e2
e1

( ) 2 3 2 2, , : × ×∈ →u Aϕ ψ

Ω

1θ

2θ

1x

2x

3x

 

Fig. 3.1. Parametrization of the midsurface. 

 The abstract configuration of the shell is then defined by the set 

  ( ){ }3 2 2, , : .Φ Φ= ≡ → × ×uC Aϕ ψ R R R  (3.5) 

Note that elements Φ∈C  contain the same amount of three-dimensional information as 

Eq. (3.3) to locate arbitrary points in the three-dimensional shell. 
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 The set C  is also interpreted as a configuration manifold. Shell theories can be 

written in terms of tensors on an abstract manifold. That approach is preferred by 

mathematicians who are well-trained in analysis and calculus on manifolds (see books of 

do Carmo [58] and Bishop and Goldberg [59]). A typical example of this kind of 

notation is given by the so called “geometrically exact shell theory” based on the 

Cosserat continuum (see dissertations of Fox [60] and Rifai [61]). However, for most 

engineers, general tensor analysis is more suitable to develop shell theories since 

problems in elasticity occur in the Euclidean manifold E . 

B. The variational formulation 

The weak form can be easily constructed from the principle of virtual work given in 

equation (2.41). Let ( ), ,Φ≡ u ϕ ψ  be a configuration solution of the shell. We start by 

introducing the space of test functions V  (space of admissible variations) defined by 

 ( ){ }3 2 21 1 1, , ( ) | 0, | 0, | 0( ) ( )
D D D

H H H Γ Γ ΓΘ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ≡ ∈ Ω × × = = =Ω Ω⎣ ⎦ ⎣ ⎦ ⎣ ⎦w wV ϑ κ ϑ κ  (3.6) 

where 1( )H Ω  is the Sobolev space of degree 1 and DΓ  is the Dirichlet boundary (see 

Brenner and Scott [62]). The test function Θ  can be seen as virtual displacements and 

rotations of the midsurface. Notice that we have chosen the space 1( )H Ω  since only 0C  

continuity is required for the functions on the finite element space hpV .  

 The weak form G  can be written in the following form  

  ( ) ( ) ( ) ( ) ( ); ; ; ; 0mb sΘ Φ Θ Φ Θ Φ Θ Φ Θ≡ + + − =G A A B F  (3.7) 

where mbA , sA  and B  are bilinear forms given by 

  
( ) ( ) ( )

( ) ( ) ( )

3 3
( ) ( )

0 0

3 3
( ) ( )

3 3 3 3
0 0

;

; 4

k l
l k

mb
k l

k l
l k

s
k l

C d

C d

αβωρ
ωρ αβ

α ω ω α

ε ε

ε ε

Ω

Ω

Θ Φ Φ Θ Ω

Θ Φ Φ Θ Ω

+

= =

+

= =

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜ ⎟⎝ ⎠
⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜ ⎟⎝ ⎠

∑∑∫

∑∑∫

A

A
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  ( ) ( ) ( ); dα αγ
Ω

Θ Φ Φ Θ Ω= ∫B K K  (3.8) 

and F  is a linear form denoted by 

  ( ) 3
3( )P w P w dα

α
Ω

Θ Ω= +∫F  (3.9) 

for external distributed loading. The terms ( )( )n
αβε  and ( )( )

3
n

αε  are components of the 

strain tensor given by Eq. (2.33) while 
n

ijklC  are material stiffness coefficients. Note that 

a penalty term for the constraints (3.1) is incorporated in (3.7) where γ  denotes the 

penalty parameter (very large value). Nevertheless, it can be shown that the influence of 

the underlined term in (3.7) on the numerical results is negligible. Therefore, this term is 

not included in the numerical results unless it is stated otherwise. 

 The variational formulation of the boundary value problem can be now stated as 

follows 

  Find ( ), ,Φ= ∈u Vϕ ψ  such that ( ), ,Θ∀ = ∈w Vϑ κ  

  ( ) ( ) ( ); ; .mb sΘ Φ Θ Φ Θ+ =A A F  (3.10) 

 It can be easily demonstrated that mbA  and sA  are symmetric and bounded. On the 

other hand, proving ellipticity (or coercivity) on V  of the bilinear forms is far more 

complicated. Since this issue goes beyond the goals of the present dissertation, we will 

not attempt to do it. However, for the sake of completeness we refer the paper of 

Bernadou et al. [63] which provides complete proofs of the ellipticity of the strain 

energies in two shell models: Koiter’s model and Naghdi’s model (see also Ciarlet [64] 

and Chapelle and Bathe [65, 66]). Under the conditions discussed above, existence and 

uniqueness in the solution of the variational problem (3.10) follows from the Lax-

Milgram theorem [62, 66]. 
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C. Discrete finite element model 

Let A  be the computational domain of the shell which is discretized into NEL 

elements such that 

  
NEL

1

e

e=

=A A∪  (3.11) 

where the closure of A  is obviously understood. Next, we construct the finite-

dimensional space of V  called hpV  such that hp⊂V V . The symbol h represents the 

maximum of all element sizes (we shall be careful with this symbol because h is also 

used in the numerical examples as the thickness of the shell) and p the degree of the 

polynomials utilized to interpolate the kinematic variables. In order to obtain a better 

approximation of the solution, we can either reduce h (i.e. refine the mesh) or increase 

the polynomial degree p.  

 The discrete finite element model of the problem (3.10) is now written as 

 Find ( ), ,hp hp hp hp hpΦ = ∈u ϕ ψ V  such that ( ), ,hp hp hp hp hpΘ∀ = ∈w Vϑ κ  

  ( ) ( ) ( )( ) ( ) ( ); ; .e hp hp e hp hp e hp
mb sΘ Φ Θ Φ Θ+ =A A F  (3.12) 

Similar to the variational problem (3.10), uniqueness of the discrete problem follows 

from the condition hp⊂V V  and the Lax-Milgram theorem.  

 Under the isoparametric concept, the same interpolation functions for the coordinates 

and variables are utilized [67]. Let [ ] [ ]ˆ 1,1 1,1eΩ ≡ − ×−  be a parent domain in ( ),ξ η -

space (i.e., the closed, biunit square in 2 ). We first map the parametric coordinates 

( ) 2ˆ, : e eΩ⋅ ⋅ ∈ →Aθ  such that 

  ( ) ( )( ) ( )

1

, ( ) ,
m

j j

j

Nα
αξ η θ ξ η

=

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑ eθ  (3.13) 

where α
αθ= eθ . The vectors αe  are orthonormal basis of 2 . 
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 We shall point out that the isoparametric concept used here should not be confused 

with the isoparametric formulations for shells which are directly inherited from the 

degenerated element models (so-called continuum-based formulations [4, 68]). In our 

case the map ( ),ξ ηθ  just scales a rectangular element to the master element instead of a 

total approximation of the midsurface.  

 Next, the kinematic variables are interpolated. As we know the present finite element 

model requires only 0C  continuity in all variables. The finite element equations are 

obtained by interpolating the covariant components of the kinematic variables of the 

midsurface in terms of base vectors αa . Namely  

  
( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1 1

( ) ( )

1

, , ,

,

m m
hp j j k hp j j

k
j j

m
hp j j

j

u N N

N

α
α

α
α

ξ η ϕ ξ η

ψ ξ η

= =

=

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜= =⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

∑ ∑

∑

u θ a θ a

θ a

ϕ

ψ

 (3.14) 

where m is the number of nodes of the element, ( )( ) ,jN ξ η  are interpolation functions at 

the node j and ( )( ) ( ) ( ), ,j j j
iu α αϕ ψ  denote the nodal values of the kinematic variables. 

 The present finite element model is called “tensor-based formulation” because of the 

following two conditions: no approximation of the midsurface (the computational 

domain lies in A ) and interpolation of the covariant components of the kinematic 

variables. We believe that tensor-based models describe in a natural and better way the 

actual behavior of the shell. 

1. The problem of locking and its implications 

The variational problem (3.10) and the discrete problem (3.12) are well-posed in the 

sense that their solution exist, are unique, and depend continuously on the external data 

F . Moreover, the Céa’s Lemma ensures that the finite element solution is optimal with 
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respect to the approximation capabilities of the finite element space hpV  [62, 66]. 

Namely 

  inf .
hp

hp C
Θ

Φ Φ Φ Θ
∈

− −≤V V
V

 (3.15) 

The error hpΦ Φ− V  is proportional to the best it can be using the discrete space hpV .  

 The approximation theory and Eq. (3.15) yield an error estimate for the present 

boundary value problem, i.e.  

  ( )hp pC hΦ Φ− ≤V O  (3.16) 

for smooth solutions Φ , with the constant C independent of h but dependent on the 

geometry and material properties. For plates and shells C depend on the thickness t. For 

small values of t the constant C becomes very large and the order of convergence given 

in (3.16) results impractical. This phenomenon is known as locking (see Babuška and 

Suri [69]).  

 Locking may arise if there are concealed constraints in the physical model that are 

not well represented in the finite element approximation of the model (see Pitkäranta 

[70]). In shells structures the constraints that cause numerical locking are inherited   

from the asymptotic theory as the thickness tens to zero. Two different asymptotic 

behaviors can be identified: membrane dominated and bending dominated states. This 

classification depends on whether the membrane or bending energy component 

dominates the total energy [3, 14-16]. 

 Standard low-order finite element approximations perform well for membrane 

dominated shell problems. The bending dominated case is far more complex to handle. 

In the limit as t tends to zero the asymptotic behavior of the shell corresponds to the 

inextensional shell theory. This constraint causes a numerical overstiffness in finite 

element models. This is called membrane locking. Yet another type of locking, called 
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shear locking, can appear in plates and shells. This is caused by the Kirchhoff-Love 

constraints of vanishing transverse shear strain as the thickness becomes small [14]. 

 Many finite element techniques have been proposed over the past decades to 

remediate shear and membrane locking. The locking is avoided in many cases by     

using uniformly reduced integration or selective integration in the numerical evaluation 

of the stiffness coefficients (Zienkiewicz et al. [71], Stolarski and Belytschko [72]). 

Alternatively, mixed formulations with lower-order elements have been proposed to 

mitigate the effects of shear and membrane locking. Among them, we can cite the 

assumed strain elements (Hinton and Huang [11], Dvorkin and Bathe [12]) and the 

enhanced strain elements (Simo and Rifai [13]). 

 On the other hand, higher-order finite elements show less sensitivity to membrane 

and shear locking and for a particular high p level, problems associated with locking 

disappear [17]. Pitkäranta and co-workers [14-16] verified that increasing the element p 

level is far a more effective way of improving the quality of the numerical 

approximation than refining the finite element mesh at a fixed p level. When the 

comparison between implementation cost and accuracy is taken into account, high-order 

finite elements need a smaller computational effort to achieve the desired accuracy 

without any tricky techniques. Applications of higher-order elements to plates and shells 

can be found in Chinosi et al. [6] and Pontaza and Reddy [14, 73].  

 In spite of the many proposed “simple”, “efficient” or “free-locking” finite elements 

found in the literature, there is not such a perfect shell element. We strongly agree with 

the concluding remarks of J. Pitkäranta [74] in a recent paper and quote: The combined 

effort of the engineer and mathematician can bring out the ultimate dream element for 

shells, it could achieve another important goal. It could raise the art of finite element 

modeling of shells from occultism to science. 
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 In this dissertation a family of high-order Lagrange elements is developed (Fig. 3.2). 

These elements seem to be free of membrane and shear locking. Basically, we use 

elements labeled Q25 and Q81 (p levels equal to 4 and 8 respectively), yet the program 

is developed for any p level element. Table 3.1 shows the family of higher-order 

Lagrange elements utilized here and the corresponding number of degrees of freedom 

for the FSDT and TSDT while Figure 3.3 depicts the shape functions (13)N , (25)N  and 
(41)N  associate with elements Q25, Q49 and Q81 respectively. 
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Fig. 3.2. Basic p-elements used in the present formulation. 
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Table 3.1. Number of degrees of freedom per element for different p levels. 

Element p level FSDT (DOF) TSDT (DOF) 
Q4 1 20 28 
Q9 2 45 63 

Q25 4 125 175 
Q49 6 245 343 
Q81 8 405 567 

 

 

 
Fig. 3.3. Interpolation functions: (a) (13)N - Q25, (b) (25)N - Q49, (c) (41)N - Q81. 

(a) (b) 

(c) 
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 For the sake of completeness we present formulas to compute Lagrange polynomials 

in natural coordinates [67, 68], i.e. 

  ( ) ( )
1 1

1 2

1 1

( ) ( ), , 1, , 1
( ) ( )

p p
k k

i i
k ki k i k
k i k i

L L i pξ ξ η ηξ η
ξ ξ η η

+ +

= =
≠ ≠

− −
= = = +

− −∏ ∏ …  (3.17) 

where p is the polynomial degree. Finally, the shape functions mapped in the biunit 

square are of the form 

  ( ) ( ) ( )( ) 1 2, , ( 1)( 1)k
i jN L L k j p iξ η ξ η= = − + +  (3.18) 

for the node k of the element. 

2. Solution procedure 

Substituting Eq. (3.14) with interpolation functions (3.18) into the finite element 

approximation (3.12) we obtain the following matrix equations 

  ( ) ( ) ( )e e e=k r f  (3.19) 

where ( )ek  is the element stiffness matrix which is symmetric and positive definite, ( )er  

is the nodal vector displacement of the element and ( )ef  is the load vector. 

 The assembly of the NEL matrices is then carried out over the domain A . This 

leads to a global system 

  =K d F  (3.20) 

with 

  
NEL NEL

( ) ( )

1 1
,e e

e e= =
= =K k F fA A  (3.21) 

where A  denotes the finite element assembly operator and d  are the displacements of 

the global degrees of freedom. 

 Finally, Eq. (3.20) is solved by employing a direct method such as Gauss elimination 
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for symmetric and banded matrices which is suitable for linear shell problems. 

D. Numerical examples 

We present in this section the numerical examples obtained with the formulation 

developed herein. The performance of the developed elements together with the FSDT 

and TSDT formulations are evaluated by solving several benchmark problems for plates, 

cylindrical shells and spherical shells (see Fig. 3.4). A parametric study for bending of 

functionally graded plates is presented as well. 

 

Fig. 3.4. Geometries: (a) Plate, (b) Cylindrical shell, (c) Spherical shell. 
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 Regular meshes of Lagrange elements (Q4, Q9, Q25 and Q81) with five and seven 

degrees of freedom per node for the FSDT and TSDT respectively are utilized in the 

finite element analysis. The flexibility of higher-order elements (using polynomials of 

fourth and eighth degree) precludes any presence of shear and membrane locking in the 

numerical computation. Consequently, full Gauss integration rule is employed in the 

evaluation of the stiffness coefficients. For comparison reasons, reduced and selective 

integration techniques have also been implemented. 

 The numerical integration rule (Gauss quadrature) utilized in this formulation is 

shown in Table 3.2. The last number denotes the number of Gauss points used to 

evaluate transverse shear terms, the middle one denotes the number of Gauss points used 

to evaluate the bending-membrane coupling terms, and the first one denotes the number 

of Gauss points used to evaluate the remaining terms in the stiffness matrix. The code 

allows using full integration for all terms, reduced integration (one point less than full 

integration) for all terms, or selective integration in which reduced integration is used for 

both shear and bending-membrane terms and full integration for all other terms.  

Table 3.2. Gauss integration rule for different p levels used in the present formulation. 

p level Geometry* Full 
Integration 

Selective 
Integration 

Reduced 
Integration 

1 
P 
C 
S 

2×-×2 
2×2×2 
2×2×2 

2×-×1 
2×1×1 
2×2×1 

1×-×1 
1×1×1 

- 

2 
P 
C 
S 

3×-×3 
3×3×3 
3×3×3 

3×-×2 
3×2×2 
3×3×2 

2×-×2 
2×2×2 

- 

4 
P 
C 
S 

5×-×5 
5×5×5 
5×5×5 

5×-×4 
5×4×4 
5×5×4 

4×-×4 
4×4×4 

- 

8 
P 
C 
S 

9×-×9 
9×9×9 
9×9×9 

9×-×8 
9×8×8 
9×9×8 

8×-×8 
8×8×8 

- 
 * P, C and S stand for plates, cylindrical shell and spherical shell respectively. 
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1. Plates 

a. Comparisons with analytical solutions 

First, we compare our numerical results with those obtained by Pagano [30]. The 

solutions of Pagano are amply used for assessment of the accuracy of plate theories 

because they represent one of the few analytical 3D solutions for bending cross-ply 

laminated plates.   

 In Tables 3.3 and 3.4 we show dimensionless central deflections and in-plane 

stresses for symmetric cross-ply plates (0°/90°/0°) under sinusoidal loading with two 

plate aspect ratios, 1a b =  and 1/3 respectively. The following dimensionless 

parameters are employed 

  2 2
34 3 23

0 0 0

100 100 1, , ,E E av v v v S
q h S q h S q S hαβ αβαα σ σ< > < >< > < >< > < >

= = = =  

and lamina properties  

  1 2 13 12 2 23 2 1225, 0.5 , 0.2 , 0.25 .E E G G E G E ν= = = = =  

The simply-supported boundary conditions are 

  At θ1 = ± a/2       2 3 2 2 0u u ϕ ψ< > < > < > < >= = = =  

  At θ2 = ± b/2       1 3 1 1 0u u ϕ ψ< > < > < > < >= = = =  

and loading ( ) ( )3 1 2
0 cos cosP q a bπθ πθ= . 

 It is noticed that the results for the present FSDT and TSDT are in close agreement 

with those of Pagano [30]. However, when we increase the thickness of the plate the 

results diverge. This is clearly understood and expected since the equivalent single-layer 

formulation adopted here, is a 2D approximation of the 3D continuum. It is also verified 

once again that the TSDT shows more accurate results than the FSTD for thick plates. 
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Table 3.3. Central deflection and stresses of a three-ply (0°/90°/0°) laminated square 
plate under sinusoidal loading (4×4Q25). 

S  Pagano [30] Present TSDT Present FSDT 
4 0.801 0.76692 0.43697 

10 0.590 0.58472 0.51341 
20 0.552 0.55070 0.53183 
50 0.541 0.54064 0.53757 

100 

11 0,0,
2
hσ< >

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 

0.539 0.53919 0.53841 
4 -0.556 -0.50786 -0.47744 

10 -0.288 -0.27123 -0.25361 
20 -0.210 -0.20500 -0.19967 
50 -0.185 -0.18376 -0.18286 

100 

22 0,0,
6
hσ< >

⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎜⎝ ⎠
 

-0.181 -0.18063 -0.18040 
4 -0.0511 -0.04993 -0.03692 

10 -0.0289 -0.02807 -0.02517 
20 -0.0234 -0.02312 -0.02234 
50 -0.0216 -0.02158 -0.02145 

100 

12 , ,
2 2 2
a b hσ< >

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 

-0.0213 -0.02136 -0.02132 
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Table 3.4. Central deflections and stresses of a three-ply (0°/90°/0°) laminated 
rectangular plate ( 3 )b a=  under sinusoidal loading (4×4Q25). 

S  Pagano [30] Present TSDT Present FSDT 
4 2.820 2.64838 2.36256 

10 0.919 0.86904 0.80301 
20 0.610 0.59580 0.57838 
50 0.520 0.51821 0.51539 

100 

( )3 0,0, 0v< >  

0.508 0.50709 0.50638 
4 1.140 1.08110 0.61299 

10 0.726 0.71216 0.62141 
20 0.650 0.64618 0.62279 
50 0.628 0.62697 0.62319 

100 

11 0,0,
2
hσ< >

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 

0.624 0.62420 0.62325 
4 -0.1190 -0.10389 -0.09342 

10 -0.0435 -0.04011 -0.03746 
20 -0.0299 -0.02898 -0.02827 
50 -0.0259 -0.02576 -0.02564 

100 

22 0,0,
6
hσ< >

⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎜⎝ ⎠
 

-0.0253 -0.02529 -0.02526 
4 -0.0269 -0.02631 -0.02047 

10 -0.0120 -0.01167 -0.01048 
20 -0.0093 -0.00915 -0.00884 
50 -0.0084 -0.00842 -0.00837 

100 

12 , ,
2 2 2
a b hσ< >

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 

-0.0083 -0.00832 -0.00830 
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Another comparison of the dimensionless central deflections of three cross-ply 

rectangular plates is given in Table 3.5 (with the same geometry, material properties and 

boundary conditions). In addition to the results of Pagano we include the MDT and 

SDT7 results of Braun [75] and Braun et al. [76]. The MDT is a layer-wise theory ( 0C  

continuous displacement field) so-called multidirector theory, while the SDT7 is an 

improved first-order theory with thickness stretching and 7 parameters (with enhanced 

assumed strain, EAS). The percentage of error computed for the TSDT and FSDT (case 

4S = ) with respect to Pagano’s solutions are 6% and 16% respectively. Naturally, the 

MDT gives better results for thick plates than other theories. On the other hand, 

remarkably, the present FSDT shows more accurate than the SDT7, although Braun’s 

formulation uses thickness stretching with EAS. These results are illustrated in Fig. 3.5 

as well. 

Table 3.5. Comparison of the central deflection 3v< >  of a (0°/90°/0°) laminated 
rectangular plate ( 3 )b a=  under sinusoidal loading (4×4Q25). 

Ratio S a h=  
Formulation 

4 10 20 50 100 

Pagano [30] 2.820 0.919 0.610 0.520 0.508 

2.78334 0.90797 0.60512 0.52000 0.50800 
MDT [75] 

1.3% 1.2% 0.8% 0.0% 0.0% 

2.06142 0.75358 0.56608 0.51376 0.50597 
SDT7[75] 

26.9% 18.0% 7.2% 1.2% 0.4% 

2.64838 0.86904 0.59580 0.51821 0.50709 
Present TSDT 

6.0857% 5.4360% 2.3286% 0.3434% 0.1788% 

2.36256 0.80301 0.57838 0.51539 0.50638 
Present FSDT 

16.2211% 12.6212% 5.1840% 0.8875% 0.3183% 
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Fig. 3.5. Central deflection of a three-ply (0°/90°/0°) laminated rectangular plate vs. 

ratio S. 
 

 

Fig. 3.6. Displacement distribution through the thickness 1v< >  of a symmetric three-ply 
(0°/90°/0°) laminated rectangular plate (4×4Q25, S = 4). 
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 Figure 3.6 shows through-the-thickness distribution of the in-plane dimensionless 

displacement 1v< >  for the problem discussed above. We should point out two important 

facts from these results: first the zigzag effect arises visibly in thick cross-ply plates and 

second the TSDT (not the FSDT) can reproduce that effect with some degree of 

accuracy.  

b. Cross-ply rectangular plates 

Here we present finite element solutions for cross-ply laminated rectangular plates. This 

problem was analyzed analytically and numerically by Khdeir and Reddy [33]. They 

compared Lévy-type solutions with finite element results using different theories. Figure 

3.7 shows the computational domain of the rectangular plate with its corresponding 

boundary conditions. 

a

b A B

CD

Simply supported

Simply
Supported

SS, CC or FF

2θ

1θ

 

Fig. 3.7. Cross-ply laminated plate under sinusoidal load. 
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 The edges 2 2bθ =±  are simply supported, while the remaining ones ( 1 2aθ =± ) 

may have arbitrary combination of free, clamped and simply supported edge conditions. 

For the purpose of comparison, the following lamina properties, typical of graphite-

epoxy material, are used in the numerical examples 

  1 2 13 12 2 23 2 1225, 0.5 , 0.2 , 0.25 .E E G G E G E ν= = = = =  

The loading, in all cases, is assumed to be sinusoidal along each surface coordinate 

direction, i.e. 

  
1 2

3
0 cos cos .P q

a b
πθ πθ⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟= ⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

 

 In the finite element analysis, meshes of 4×4 of Q25 and 2×2 of Q81 elements are 

used for the FSDT (with shear correction factor of 5 6 ) and the TSDT. The notation SS, 

CC and FF stand for simply supported, clamped and free boundary conditions at the 

edge 1 2aθ =± . Because of the symmetry conditions of the problem, a quarter of the 

plate is chosen as computational domain. The boundary conditions are 

 At θ 1 = 0 1 1 1 0u ϕ ψ< > < > < >= = =    (Symmetry) 

 At θ 2 = 0 2 2 2 0u ϕ ψ< > < > < >= = =  (Symmetry) 

 At θ 2 = b/2 1 3 1 1 0u u ϕ ψ< > < > < > < >= = = =    (SS) 

 At θ 1 = a/2 2 3 2 2 0u u ϕ ψ< > < > < > < >= = = =   (SS)  

 At θ 1 = a/2 1 2 3 1 2 1 2 0u u u ϕ ϕ ψ ψ< > < > < > < > < > < > < >= = = = = = =  (CC) 

 At θ 1 = a/2 Free (FF). 

 Tables 3.6 to 3.9 show numerical results for deflections and stresses of cross-ply 

square plates for different number of layers, thickness and boundary conditions. The 

following dimensionless variables are utilized 



 46

  
( ) ( )

( ) ( )

2
2

11 1133 23
0 0

22 22 23 232
0 0

10 100,0,0 , 0,0, 2

10 100,0, 2 , 0, 2,0

Ev v h
q b S q S

h b
q S q S

σ σ

σ σσ σ

< > < >< >< >

< > < >< > < >

= =− −

= =−
 

where S b h= .  

 In all cases finite element results are in good agreement with the corresponding 

analytical solutions specially the FSDT. It is also noticed that there is no presence of 

shear locking for meshes of 4×4Q25 or 2×2Q81 elements.  

 

 

Table 3.6. Dimensionless central deflection 3v< > of cross-ply laminated square plates 
under sinusoidal loading (4×4Q25 and 2×2Q81, full integration). 

4×4Q25 2×2Q81 
Scheme S Theory Type*

SS CC FF SS CC FF 
NR 1.6852 1.1619 2.6597 1.6852 1.1619 2.6597 TSDT AR 1.6670 1.0880 2.6240 1.6670 1.0880 2.6240 
NR 1.7584 1.2565 2.7770 1.7584 1.2565 2.7770 5 

FSDT AR 1.7580 1.2570 2.7770 1.7580 1.2570 2.7770 
NR 1.2197 0.6308 1.9996 1.2197 0.6308 1.9996 TSDT AR 1.2160 0.6170 1.9920 1.2160 0.6170 1.9920 
NR 1.2373 0.6563 2.0282 1.2373 0.6563 2.0282 

(0°/90°) 

10 
FSDT AR 1.2370 0.6560 2.0280 1.2370 0.6560 2.0280 

NR 1.1300 0.9159 1.6532 1.1300 0.9159 1.6532 TSDT AR 1.1290 0.8790 1.6510 1.1290 0.8790 1.6510 
NR 1.1365 0.9446 1.6628 1.1365 0.9446 1.6628 5 

FSDT AR 1.1370 0.9450 1.6630 1.1370 0.9450 1.6630 
NR 0.6160 0.3817 0.9156 0.6160 0.3817 0.9156 TSDT AR 0.6160 0.3750 0.9160 0.6160 0.3750 0.9160 
NR 0.6154 0.3852 0.9148 0.6154 0.3852 0.9148 

(0°/90°)5 

10 
FSDT AR 0.6150 0.3850 0.9150 0.6150 0.3850 0.9150 

 * NR corresponds to the present finite element solution and AN to the analytical solution 
obtained by Khdeir and Reddy [33]. 
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Table 3.7. Dimensionless axial stress 11σ< > of cross-ply laminated square plates under 
sinusoidal loading (4×4Q25 and 2×2Q81, full integration). 

4×4Q25 2×2Q81 
Scheme S Theory Type*

SS CC FF SS CC FF 
NR 7.9285 4.8709 2.8488 7.9286 4.8709 2.8490 TSDT AR 8.3850 5.6790 3.1710 8.3850 5.6790 3.1710 
NR 7.1574 3.9104 2.4689 7.1575 3.9105 2.4691 5 

FSDT AR 7.1570 3.9110 2.4690 7.1570 3.9110 2.4690 
NR 7.3630 4.7582 2.5530 7.3630 4.7583 2.5532 TSDT AR 7.4680 4.9520 2.6240 7.4680 4.9520 2.6240 
NR 7.1574 4.4504 2.4415 7.1575 4.4505 2.4417 

(0°/90°) 

10 
FSDT AR 7.1570 4.4500 2.4420 7.1570 4.4500 2.4420 

NR 6.2544 3.7551 2.3456 6.2545 3.7551 2.3458 TSDT AR 6.3400 4.0250 2.4820 6.3400 4.0250 2.4820 
NR 5.0091 2.2750 1.7118 5.0091 2.2750 1.7119 5 

FSDT AR 5.0090 2.2750 1.7120 5.0090 2.2750 1.7120 
NR 5.3452 3.1691 1.9156 5.3453 3.1692 1.9157 TSDT AR 5.3460 3.1930 1.9240 5.3460 3.1930 1.9240 
NR 5.0091 2.6916 1.7225 5.0091 2.6917 1.7226 

(0°/90°)5 

10 
FSDT AR 5.0090 2.6920 1.7230 5.0090 2.6920 1.7230 

 * NR corresponds to the present finite element solution and AN to the analytical solution 
obtained by Khdeir and Reddy [33]. 
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Table 3.8. Dimensionless axial stress 22σ< >of cross-ply laminated square plates under 
sinusoidal loading (4×4Q25 and 2×2Q81, full integration). 

4×4Q25 2×2Q81 
Scheme S Theory Type*

SS CC FF SS CC FF 
NR 7.9285 5.5102 12.868 7.9286 5.5103 12.868

TSDT AR 8.3850 5.5050 13.551 8.3850 5.5050 13.551 
NR 7.1574 5.1525 11.907 7.1575 5.1525 11.907 5 

FSDT AR 7.1570 5.1530 11.907 7.1570 5.1530 11.907
NR 7.3630 3.8223 12.135 7.3630 3.8223 12.135

TSDT AR 7.4680 3.8030 12.295 7.4680 3.8030 12.295 
NR 7.1574 3.7991 11.884 7.1575 3.7992 11.884 

(0°/90°) 

10 
FSDT AR 7.1570 3.7990 11.884 7.1570 3.7990 11.884

NR 6.2544 5.1043 9.3494 6.2545 5.1044 9.3496 TSDT AR 6.3400 4.9630 9.4540 6.3400 4.9630 9.4540 
NR 5.0091 4.2116 7.5824 5.0091 4.2116 7.5825 5 

FSDT AR 5.0090 4.2120 7.5830 5.0090 4.2120 7.5830 
NR 5.3452 3.3132 8.0054 5.3453 3.3132 8.0055 TSDT AR 5.3460 3.2600 8.0050 5.3460 3.2600 8.0050 
NR 5.0091 3.1354 7.5330 5.0091 3.1355 7.5331 

(0°/90°)5 

10 
FSDT AR 5.0090 3.1350 7.5330 5.0090 3.1350 7.5330 

 * NR corresponds to the present finite element solution and AN to the analytical solution 
obtained by Khdeir and Reddy [33]. 
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Table 3.9. Dimensionless transverse shear stress 23σ< > of cross-ply laminated square 
plates under sinusoidal loading (4×4Q25 and 2×2Q81, full integration). 

4×4Q25 2×2Q81 
Scheme S Theory Type*

SS CC FF SS CC FF 
NR 2.9339 2.0425 4.1098 2.9340 2.0425 4.1100 TSDT AR 3.1550 2.0950 4.4570 3.1550 2.0950 4.4570 
NR 2.7283 1.9579 3.9008 2.7284 1.9580 3.9010 5 

FSDT AR 2.7290 1.9280 3.9010 2.7290 1.9280 3.9010 
NR 2.9775 1.6412 4.1435 2.9778 1.6413 4.1439 TSDT AR 3.1900 1.7250 4.4890 3.1900 1.7250 4.4890 
NR 2.7281 1.5228 3.8818 2.7284 1.5230 3.8822 

(0°/90°) 

10 
FSDT AR 2.7290 1.5230 3.8820 2.7290 1.5230 3.8820 

NR 3.3222 2.6696 4.7348 3.3223 2.6697 4.7349 TSDT AR 3.3620 2.6010 4.7840 3.3620 2.6010 4.7840 
NR 2.7283 2.2472 3.8836 2.7284 2.2472 3.8836 5 

FSDT AR 2.7290 2.2480 3.8830 2.7290 2.2480 3.8830 
NR 3.4057 2.1112 4.8136 3.4059 2.1112 4.8138 TSDT AR 3.4080 2.0830 4.8140 3.4080 2.0830 4.8140 
NR 2.7282 1.7079 3.8530 2.7284 1.7080 3.8532 

(0°/90°)5 

10 
FSDT AR 2.7290 1.7080 3.8530 2.7290 1.7080 3.8530 

 * NR corresponds to the present finite element solution and AN to the analytical solution 
obtained by Khdeir and Reddy [33]. 
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c. Functionally graded square plates 

Next, we consider some bending solutions for functionally graded square plates. The 

boundary conditions are the same as those of the last example (simply-supported). For 

this problem the underlined term in (3.7) is taken into account in the formulation. 

Young’s modulus and Poisson’s ratio for zirconia (ceramic material) and aluminium 

(metal material) are the following 

  151 , 0.3, 70 , 0.3c c m mE GPa E GPaν ν= = = =  

respectively. The non-dimensional quantities are given by 

  
34 33

0 0

3 32
0 0

,

1 1, .

m mE Ev v v v
q h S q h S

q S q S

αα

αβαβ α ασ σσ σ

< > < >< > < >

< >< > < > < >

= =

= =
 

 In Table 3.10, central deflection and in-plane stress results for functionally graded 

plates under sinusoidal loading are tabulated for different side-to-thickness ratios S and 

two volume fraction exponents. It is observed slight differences between the present 

FSDT and TSDT results. They increase when ratio S decreases (thick plates). We also 

illustrate, in Figures 3.8 and 3.9, the effect of the volume fraction exponent on the 

central deflection of FGM square plates for different ratios S under sinusoidal and 

uniformly loading respectively. Again, small differences between both formulations 

increases for thick plates (S = 4) and volume fraction exponents 4 to 8. 

 Finally, Figures 3.10 to 3.17 show through-the-thickness distributions of in-plane 

displacements, membrane and transverse shear stresses for FGM square plates under 

sinusoidal loading for various volume fraction exponents and ratios  S = 4, 100.  
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Table 3.10. Central deflection and in-plane stresses of FGM square plates under 
sinusoidal loading (4×4Q25). 

 Present TSDT Present FSDT 
S 

 0.5n=  2.0n=  0.5n=  2.0n=  
4 0.022114 0.027577 0.022189 0.027404 

10 0.017496 0.021448 0.017505 0.021415 
20 0.016834 0.020568 0.016836 0.020560 
50 0.016648 0.020321 0.016648 0.020320 

100 

( )3 0,0, 0v< >  

0.016622 0.020286 0.016622 0.020286 
4 0.244374 0.283599 0.230626 0.265405 

10 0.232874 0.268379 0.230627 0.265406 
20 0.231193 0.266155 0.230628 0.265407 
50 0.230727 0.265536 0.230635 0.265414 

100 

11 0,0,
2
hσ< >

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 

0.230666 0.265454 0.230642 0.265423 
4 -0.046763 -0.063841 -0.049238 -0.067535 

10 -0.048834 -0.066931 -0.049238 -0.067535 
20 -0.049137 -0.067383 -0.049238 -0.067535 
50 -0.049223 -0.067512 -0.049240 -0.067537 

100 

22 0,0,
6
hσ< >

⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎜⎝ ⎠
 

-0.049237 -0.067533 -0.049241 -0.067539 
4 -0.131586 -0.152707 -0.124183 -0.142910 

10 -0.125393 -0.144511 -0.124183 -0.142910 
20 -0.124487 -0.143312 -0.124183 -0.142910 
50 -0.124232 -0.142975 -0.124184 -0.142911 

100 

12 , ,
2 2 2
a b hσ< >

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 

-0.124197 -0.142928 -0.124185 -0.142912 
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Fig. 3.8. Central deflection 3v< >  versus the volume fraction exponent n for FGM square 

plates under sinusoidal load. 

 
Fig. 3.9. Central deflection 3v< > versus the volume fraction exponent n for FGM square 

plates under uniform load. 

n

3v< >

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0 4 8 12 16 20

TSDT (S = 4)

TSDT (S = 10)

TSDT (S = 100)

FSDT (S = 4)

FSDT (S = 10)

FSDT (S=100)

n

3v< >

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0 4 8 12 16 20

TSDT (S = 4)

TSDT (S = 10)

TSDT (S = 100)

FSDT (S = 4)

FSDT (S = 10)

FSDT (S=100)



 53

 
Fig. 3.10. Displacement distribution through the thickness 1v< >  for FGM plates (S = 4). 

 

Fig. 3.11. Displacement distribution through the thickness 1v< >  for FGM plates (S=100). 
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Fig. 3.12. Stress distribution through the thickness 11σ< >  for FGM plates (S = 4). 

 

Fig. 3.13. Stress distribution through the thickness 11σ< >  for FGM plates (S = 100). 
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Fig. 3.14. Stress distribution through the thickness 12σ< >  for FGM plates (S = 4). 

 

Fig. 3.15. Stress distribution through the thickness 12σ< >  for FGM plates (S = 100). 
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Fig. 3.16. Stress distribution through the thickness 13σ< >  for FGM plates (S = 4). 

 

Fig 3.17. Stress distribution through the thickness 13σ< >  for FGM plates (S = 100). 
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 We notice that both theories converge to each other when the ratio S increases. Also, 

there is no presence of the zigzag effect in the through-the-thickness distribution of the 

in-plane displacement even for thick plates. Both cases, thin and thick plates (S = 4 and 

100 respectively) show similar pattern of curves. In-plane stress distribution through the 

thickness does not exhibit, as expected, any discontinuity (stress concentration like 

laminated plates). Major differences between the FSDT and TSDT are observed in the 

transverse shear stress through-the-thickness distributions as illustrated in Figures 3.16 

and 3.17. Definitely, the FSDT cannot neither reproduce the quasi-parabolic behavior of 

the transverse shear stress nor satisfy the tangential traction-free conditions in the bottom 

and top planes of the plate. This is one of the main advantages of the TSDT over the 

FSDT. In all through-the-thickness distributions of stresses we note that fully metal and 

fully ceramic plates give the same results. This is understandable since we are 

considering linear behavior. Stresses depend on the loading and geometry but not 

material properties. 

2. Cylindrical shells 

a. Clamped shallow panel 

The first cylindrical shell problem to be considered is a clamped shallow panel under 

pressure load (Palazotto and Dennis [77]). This problem exhibits strong shear locking 

(ratio R/h = 800). Because of the symmetry of the problem, a quarter of the panel is 

considered as computational domain (Fig. 3.18). The geometric and material data for the 

problem are 

  
60.45 10 , 0.3

20 , 100 , 0.125 , 0.1 .
E psi
a in R in h in rad

ν
α

= × =
= = = =
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Fig. 3.18. Clamped cylindrical shell under uniformly transverse load. 

 The panel is subjected to uniform transverse load 0 0.04q psi=  with the following 

boundary conditions 

 At θ 1 = 0 1 1 1 0u ϕ ψ< > < > < >= = =      (Symmetry) 

 At θ 2 = 0 2 2 2 0u ϕ ψ< > < > < >= = =     (Symmetry) 

 At θ 1 = a/2, θ 2 = α 0 .iu α αϕ ψ< > < > < >= = =  

 Two sets of uniform meshes are used in the analysis (one with 81 nodes and other 

with 289 nodes). Vertical displacements at the center of the shell for various p levels and 

integration rules are tabulated in Table 3.11 for the TSDT as well as the FSDT. For this 

problem, Palazotto and Dennis [77] reported the vertical deflection at the center as 

0.01144 in  and Brebbia and Connor [78] reported 0.011 in . The results obtained for the 

Q4 element with full integration show strong presence of shear locking. Selective or 

reduced integrations for these cases are, in general, in good agreement with those cited 

before. On the other hand, high-order elements (Q25 and Q81) perform very well under 

shear locking and give excellent results using full integration. 
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Table 3.11. Vertical deflection at the center of the clamped cylindrical panel under 
uniformly transverse load (-u<3> ×10 2 in). 

  Mesh of 81 nodes Mesh of 289 nodes 
p 

level  Full 
integration 

Selective 
integration

Reduced 
integration

Full 
integration

Selective 
integration 

Reduced 
integration

TSDT 0.294404 1.156251 1.157727 0.690335 1.140095 1.140459 1 FSDT 0.337791 1.156233 1.157720 0.745615 1.140085 1.140457 
TSDT 1.172442 1.135172 1.135228 1.142842 1.134908 1.134908 2 FSDT 1.172160 1.135157 1.135219 1.142721 1.134901 1.134906 
TSDT 1.134782 1.134897 1.134896 1.134892 1.134894 1.134892 4 FSDT 1.134775 1.134888 1.134885 1.134888 1.134889 1.134890 
TSDT 1.134895 1.134883 1.134889 1.134892 1.134892 1.134893 8 FSDT 1.134888 1.134878 1.134876 1.134890 1.134889 1.134889 

b. Barrel vault 

This benchmark is also well-known as the Scordelis-Lo roof (Fig. 3.19). The first 

authors to present a solution for this problem appear to be Cantin and Clough [56] (using 

ν = 0.3 instead of zero). They compared their results with those obtained by the program 

of Scordelis and Lo [79] for cylindrical shallow shells. An analytical solution was 

obtained by Gibson [80] who reported the vertical displacement at the center of the free 

edge as 3.70331 in  (see also Ashwell [81]). For deep shell, other authors give a value of 

3.6288 in  for the vertical deflection (see Simo et al. [82]). We adopt the latter result as 

the reference solution for this example (wref). The geometric and material data for the 

problem are the following 

  
63 10 , 0.0

600 , 300 , 3 , 0.6981 .
E psi
a in R in h in rad

ν
α

= × =
= = = =

 

 The dead weight loading 0( 0.625 )q psi=  can be expressed in components of 2θ  as  

  ( ) ( )2 2 3 2
0 0sin , cos .P q P qθ θ= =−  
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Fig. 3.19. Barrel vault benchmark with dead weight load. 

 Finally, the boundary conditions on the computational domain are 

 At θ 1 = 0 1 1 1 0u ϕ ψ< > < > < >= = =    (Symmetry) 

 At θ 2 = 0 2 2 2 0u ϕ ψ< > < > < >= = =   (Symmetry) 

 At θ 1 = a/2 2 3 2 0 .u u ϕ< > < > < >= = =  

Here, we are considering free boundary conditions at 2θ α= . 

 The vertical deflection at the point D for uniform meshes of 289 nodes and 1089 

nodes with different p levels is reported in Table 3.12. The analysis is carried out for the 

TSDT and FSDT with various integration rules. It is clearly shown that shear and 

membrane locking is avoided by using high-order elements (Q25 and Q81). Again, 

results obtained with selective and reduced integration are in close agreement with those 

with meshes of 8×8Q25 and 4×4Q81 with full integration. 

 The vertical deflection of the line AD and axial displacement of the line BC are 

depicted in Figures 3.20 and 3.21 and compared with those of Gibson [80]. 
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Table 3.12. Vertical deflection at the center of the free edge (− wD in) of the Barrel vault. 

  Mesh of 289 nodes Mesh of 1089 nodes 
p 

level  Full 
integration 

Selective 
integration

Reduced 
integration

Full 
integration

Selective 
integration 

Reduced 
integration

TSDT 0.838487 3.247487 3.622260 1.726715 3.517603 3.620960 1 FSDT 0.897689 3.247861 3.618373 1.830634 3.517676 3.617874 
TSDT 3.591876 3.613964 3.622168 3.611742 3.617631 3.620785 2 FSDT 3.591688 3.614232 3.617881 3.611326 3.617452 3.617682 
TSDT 3.612094 3.617789 3.622350 3.615259 3.618267 3.620811 4 FSDT 3.611798 3.617730 3.617731 3.614648 3.617669 3.617670 
TSDT 3.614360 3.618341 3.622618 3.617565 3.618798 3.620846 8 FSDT 3.613857 3.617779 3.617780 3.616582 3.617669 3.617670 

 

 

 

Fig. 3.20. Vertical deflection of the curve AD of the Barrel vault. 
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Fig. 3.21. Axial displacement u<1> of the curve BC of the Barrel vault. 

 

Fig. 3.22. Convergence of the vertical deflection wD at the center of the free edge of the 
Barrel vault. 
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 To illustrate the performance of the elements Q25 and Q81, we show in Fig. 3.22 the 

convergence analysis of the vertical deflection at the center of the free edge for different 

p levels (all results for the TSDT). We note that an excellent rate of convergence is 

achieved if high-order elements are employed. 

c. Pinched cylinder with rigid diaphragms 

Another well-known isotropic benchmark for cylindrical shells is the pinched cylinder 

with end diaphragms depicted in Figure 3.23. It has been used by many researchers and 

is identified as one of the most severe tests for both inextensional bending and complex 

membrane states. The pinched shell is supported at each end by rigid diaphragms and 

loaded by two opposed forces acting at midpoint of the shell. Due to the symmetry 

condition of the structure, an octant of the cylinder is considered as computational 

domain.  
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Fig. 3.23. Geometry of the pinched circular cylinder with end diaphragms. 
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 The following geometrical data and material properties are used 

  
63 10 , 0.3

600 , 300 , 3 , 2
E psi
a in R in h in rad

ν
α π

= × =
= = = =

 

with load 1.0P lb=  and boundary conditions as shown 

 At θ 1 = 0 1 1 1 0u ϕ ψ< > < > < >= = =     (Symmetry) 

 At θ 2 = 0, α 2 2 2 0u ϕ ψ< > < > < >= = =   (Symmetry) 

 At θ 1 = a/2 2 3 2 0 .u u ϕ< > < > < >= = =  

 In Table 3.13 we present results for the radial displacement at the point A with 

meshes of 289 nodes and 1089 nodes and different p levels. The analytical solution 

given by Flügge [83] is −1.8248×10-5 in. However, because Flügge neglected the shear 

deformation (classical shell theory) in contrast with the present formulation, we        

adopt as the reference solution (wref) the value reported by Cho and Roh [7] which is     

−1.8541×10-5 in. It is observed that the rate of convergence is slower than those obtained 

for the Barrel vault. Results for Q4 and Q9 elements with full integration are far from the 

reference solution cited before, even for meshes with 1089 nodes. Conversely, we see 

very good convergence ratios for the Q25 and Q81 elements. In all cases, selective and 

reduced integrations overestimate the displacement at the point load. 

 Figures 3.24 and 3.25 show a convergence study for the radial displacement at the 

point A and the axial displacement Bu  (uref = −4.5711×10-7 in) using different p levels 

and elements. Again, all results are obtained using the TSDT. In both cases, the locking 

is overcome by using high-order elements. It is also noted that the convergence of the 

axial displacement Bu  is faster than Aw . 

 Finally, Fig. 3.26 shows a comparison between the radial deflection distribution of 

the line DC with meshes of 4×4Q25 and 4×4Q81 for the present TSDT formulation and 
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the element 8-URI of Kreja et al. [84]. This particular example can be treated as the most 

severe one for the problem considered and is rarely noted in the literature. We note that 

full integration with high p levels gives, in general, excellent results minimizing the 

membrane and shear locking. The result reported for the displacement wD is 5.22×10-8 in 

[85]. All results suggest using at least meshes of 4×4Q25 elements to avoid locking. 

 

 

 

 

Table 3.13. Radial displacement at A (− u<3> ×10 5 in) of the pinched cylinder. 

  Mesh of 289 nodes Mesh of 1089 nodes 
p 

level  Full 
integration 

Selective 
integration

Reduced 
integration

Full 
integration

Selective 
integration 

Reduced 
integration

TSDT 0.251812 1.774684 1.858685 0.550182 1.840790 1.866632 1 FSDT 0.278551 1.779810 1.861183 0.601829 1.846633 1.870120 
TSDT 1.216584 1.836614 1.858427 1.678857 1.859622 1.865619 2 FSDT 1.224521 1.841271 1.860786 1.685528 1.864953 1.868865 
TSDT 1.755459 1.848284 1.857482 1.832276 1.861194 1.864758 4 FSDT 1.758577 1.852522 1.859767 1.834672 1.866060 1.867858 
TSDT 1.831581 1.852502 1.856828 1.846517 1.862194 1.864251 8 FSDT 1.833630 1.856177 1.859076 1.848246 1.866501 1.867271 
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Fig. 3.24. Convergence of the radial displacement u<3> at the point A of the pinched 

cylinder. 

 

Fig. 3.25. Convergence of the axial displacement uB of the pinched cylinder. 
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Fig. 3.26. Radial displacement distribution of the line DC of the pinched cylinder. 

d. Cross-ply laminated cylinder 

Now, bending behavior of laminated cylindrical shells is studied. We consider a simply-

supported cross-ply cylinder under internal sinusoidal pressure (Fig. 3.27). The problem 

was solved analytically by Varadan and Bhaskar [86] using the 3D elasticity theory. 

Because of symmetry conditions, a panel of length a, angle 2α  and radius R is analyzed 

with simply supported boundary conditions at edges 1 0, aθ =  and 2 0, 2θ α= . 

The dimensionless material properties and geometrical data are the following  
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Fig. 3.27. Cross-ply cylinder with simply-supported ends. 

The sinusoidal load can be expressed as 

  
1 2

3
0 sin sin .

2
P q

a
πθ πθ

α

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟= ⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
 

 Since the effect of the laminate in bending response is unknown, full panel is 

considered as computational domain. The imposed simply-supported boundary 

conditions are  

 At θ 1 = 0, a 2 3 2 2 0u u ϕ ψ< > < > < > < >= = = =  

 At θ 2 = 0, 2α 1 3 1 1 0 .u u ϕ ψ< > < > < > < >= = = =  

 Tables 3.14 to 3.17 show results of the present FSDT and TSDT formulations 

compared with the 3D analytical solutions of Varadan and Bhaskar [86] and the exact 

closed-form bending solutions of Cheng et al. [87] (for perfectly bonded layers). The 

results are tabulated for the dimensionless central deflection and stresses of cross-ply 

panels (four different kinds of laminates) and considering ratios 4, 10, 50, 100, 500S = . 

The following quantities are introduced 
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1 1
32 33

0 0

2
0

10 10,

10 .

E Ev v v v
q R S q R S

q S

αα

α βα β σσ

< > < >< > < >

< >< >

= =

=
 

 A mesh of 4×4Q25 is used in the full panel and the stiffness coefficients are 

evaluated using full integration. We observe that both theories give good results 

compared to the 3D solutions. As we expected, these results diverge from the analytical 

solution when we have lower ratio S. In general, the TSDT appears to be more accurate 

than the FSDT especially for thick shells. 

 Figures 3.28 to 3.36 show through-the-thickness distributions of in-surface 

displacements and bending stresses for the three-ply (90o/0o/90o) laminated shell with 

ratios 4, 10, 100S = . Three theories, present FSDT and TSDT, and the 3D solutions of 

Varadan, are compared. Again, we note a better performance of the TSDT over the 

FSDT (thickness distributions of displacements and stresses) for thick panels with 

4,10S = ; as it is clearly seen in figures 3.28 and 3.31. 

 



 70

Table 3.14. Central deflection and stresses of a single-ply (90°) laminated circular 
cylindrical panel under sinusoidal loading (4×4Q25, full integration). 

S  Ref. [86] Present TSDT Present FSDT 
4 2.7830 2.98884 3.13878 

10 0.9189 0.94796 0.94958 
50 0.5385 0.54275 0.54262 

100 0.5170 0.51883 0.51879 
500 

3 , , 0
2
av α< >

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 

0.3060 0.30606 0.30606 
4 0.0981 0.09229 0.07940 

10 0.0663 0.06647 0.06112 
50 0.0845 0.08500 0.08451 

100 0.1190 0.11943 0.11924 
500 

11 , ,
2 2
a hσ α< >

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 

0.2459 0.24640 0.24639 
4 -0.2295 -0.09150 -0.05780 

10 -0.0656 -0.04530 -0.04021 
50 -0.0086 -0.00791 -0.00795 

100 0.0288 0.02905 0.02898 
500 

11 , ,
2 2
a hσ α< >

⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎜⎝ ⎠
 

0.1924 0.19250 0.19249 
4 4.8590 4.50830 3.12988 

10 4.0510 4.17300 3.64722 
50 3.9020 3.94390 3.89663 

100 3.8430 3.87300 3.85435 
500 

22 , ,
2 2
a hσ α< >

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 

2.3060 2.35160 2.34976 
4 -6.9690 -8.03680 -4.75957 

10 -4.5090 -4.79990 -4.30457 
50 -3.9790 -4.01090 -4.01432 

100 -3.8760 -3.88490 -3.89186 
500 

22 , ,
2 2
a hσ α< >

⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎜⎝ ⎠
 

-2.2930 -2.28300 -2.28437 
4 -0.0925 -0.07165 -0.07330 

10 -0.0436 -0.03910 -0.03745 
50 -0.0243 -0.02379 -0.02362 

100 -0.0161 -0.01586 -0.01579 
500 

12 0,0,
2
hσ< >

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 

0.0249 0.02498 0.02498 
4 0.0840 0.09652 0.09529 

10 0.0412 0.04697 0.04570 
50 0.0383 0.03929 0.03932 

100 0.0447 0.04515 0.04518 
500 

12 0,0,
2
hσ< >

⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎜⎝ ⎠
 

0.0611 0.06110 0.06111 
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Table 3.15. Central deflection and stresses of a two-ply (0°/90°) laminated circular 
cylindrical panel under sinusoidal loading (4×4Q25, full integration). 

S  Ref. [86] Ref. [87] Present TSDT Present FSDT 
4 6.1000 5.09696 6.66980 7.32821 

10 3.3300 3.16576 3.44978 3.67150 
50 2.2420 2.23717 2.26272 2.28648 

100 1.3670 1.36665 1.37380 1.37812 
500 

3 , , 0
2
av α< >

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 

0.1005 0.10049 0.10060 0.10061 
4 0.2120 0.20710 0.24272 0.23042 

10 0.1930 0.19098 0.20242 0.20389 
50 0.2189 0.21866 0.22122 0.22223 

100 0.1871 0.18708 0.18838 0.18860 
500 

11 , ,
2 2
a hσ α< >

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 

0.0449 0.04491 0.04509 0.04508 
4 -0.9610 -0.71888 -0.93037 -0.90572 

10 -0.1689 -0.15665 -0.17017 -0.17541 
50 1.6100 1.60510 1.62290 1.63873 

100 2.3000 2.29788 2.30920 2.31605 
500 

11 , ,
2 2
a hσ α< >

⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎜⎝ ⎠
 

0.9436 0.94359 0.94424 0.94427 
4 10.310 12.07122 12.57100 10.38730 

10 10.590 10.95205 11.32900 10.92150 
50 8.9370 8.95433 9.06240 9.02585 

100 5.5600 5.56430 5.62630 5.60604 
500 

22 , ,
2 2
a hσ α< >

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 

0.4345 0.43460 0.44868 0.44816 
4 -1.7890 -1.11616 -1.68620 -1.79515 

10 -1.3430 -1.20498 -1.32470 -1.42100 
50 -0.9670 -0.96152 -0.97207 -0.98588 

100 -0.5759 -0.57495 -0.57771 -0.58073 
500 

22 , ,
2 2
a hσ α< >

⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎜⎝ ⎠
 

-0.0339 -0.03392 -0.03428 -0.03430 
4 -0.20070 -0.16858 -0.20324 -0.21694 

10 -0.12470 -0.11819 -0.12606 -0.13019 
50 0.07840 0.07842 0.07938 0.08080 

100 0.18190 0.18187 0.18279 0.18354 
500 

12 0,0,
2
hσ< >

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 

0.09250 0.09245 0.09252 0.09253 
4 0.28120 0.22653 0.29249 0.32172 

10 0.23250 0.22105 0.24039 0.25724 
50 0.34490 0.34440 0.34835 0.35231 

100 0.34520 0.34514 0.34690 0.34809 
500 

12 0,0,
2
hσ< >

⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎜⎝ ⎠
 

0.10450 0.10448 0.10457 0.10457 
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Table 3.16. Central deflection and stresses of a three-ply (90°/0°/90°) laminated circular 
cylindrical panel under sinusoidal loading (4×4Q25, full integration). 

S  Ref. [86] Ref. [87] Present TSDT Present FSDT 
4 4.0090 3.60671 4.08163 3.79904 

10 1.2230 1.20335 1.18349 1.07135 
50 0.5495 0.54862 0.55044 0.54574 

100 0.4715 0.47110 0.47273 0.47180 
500 

3 , , 0
2
av α< >

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 

0.1027 0.10269 0.10280 0.10280 
4 0.1270 0.12126 0.11545 0.08576 

10 0.0739 0.07231 0.07156 0.06040 
50 0.0712 0.07097 0.07147 0.07061 

100 0.0838 0.08370 0.08414 0.08387 
500 

11 , ,
2 2
a hσ α< >

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 

0.0559 0.05585 0.05604 0.05603 
4 -0.2701 -0.12923 -0.13848 -0.07216 

10 -0.0791 -0.05632 -0.05790 -0.04695 
50 -0.0225 -0.02167 -0.02192 -0.02189 

100 0.0018 0.00197 0.00199 0.00191 
500 

11 , ,
2 2
a hσ α< >

⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎜⎝ ⎠
 

0.0379 0.03788 0.03796 0.03795 
4 6.5450 7.01022 5.72740 3.30200 

10 4.6830 4.69967 4.66530 3.80004 
50 3.9300 3.92646 3.96520 3.90776 

100 3.5070 3.50478 3.53300 3.51579 
500 

22 , ,
2 2
a hσ α< >

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 

0.7895 0.78973 0.80447 0.80400 
4 -9.3230 -10.5280 -11.08700 -4.84184 

10 -5.2240 -5.30760 -5.46550 -4.41580 
50 -3.9870 -3.98701 -4.01660 -3.99775 

100 -3.5070 -3.50626 -3.51520 -3.51627 
500 

22 , ,
2 2
a hσ α< >

⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎜⎝ ⎠
 

-0.7542 -0.75451 -0.74965 -0.75001 
4 -0.1081 -0.08998 -0.09025 -0.07419 

10 -0.0374 -0.03343 -0.03287 -0.02784 
50 0.0118 0.01228 0.01225 0.01225 

100 0.0478 0.04798 0.04812 0.04808 
500 

12 0,0,
2
hσ< >

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 

0.0766 0.07660 0.07665 0.07665 
4 0.1609 0.16242 0.17924 0.14534 

10 0.0729 0.07569 0.07525 0.06597 
50 0.0760 0.07639 0.07670 0.07613 

100 0.1038 0.10393 0.10428 0.10412 
500 

12 0,0,
2
hσ< >

⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎜⎝ ⎠
 

0.0889 0.08886 0.08892 0.08892 
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Table 3.17. Central deflection and stresses of a ten-ply (90°/0°/90°/0°/90°)s laminated 
circular cylindrical panel under sinusoidal loading (4×4Q25, full integration). 

S  Ref. [86] Present TSDT Present FSDT 
4 4.2060 3.90209 4.18634 

10 1.3800 1.31414 1.34037 
50 0.7622 0.76468 0.76546 

100 0.6261 0.62806 0.62820 
500 

3 , , 0
2
av α< >

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 

0.1006 0.10067 0.10067 
4 0.1243 0.11134 0.10011 

10 0.0877 0.08637 0.08160 
50 0.0971 0.09769 0.09719 

100 0.1076 0.10812 0.10793 
500 

11 , ,
2 2
a hσ α< >

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 

0.0516 0.05181 0.05180 
4 -0.2674 -0.12408 -0.09510 

10 -0.0927 -0.07205 -0.06844 
50 -0.0340 -0.03355 -0.03370 

100 -0.0015 -0.00137 -0.00147 
500 

11 , ,
2 2
a hσ α< >

⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎜⎝ ⎠
 

0.0340 0.03408 0.03408 
4 6.6350 5.92790 4.66730 

10 5.8750 5.97930 5.46968 
50 5.5290 5.58740 5.53463 

100 4.6770 4.71560 4.69626 
500 

22 , ,
2 2
a hσ α< >

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 

0.7770 0.79232 0.79177 
4 -8.9700 -9.87600 -7.04297 

10 -6.4620 -6.77990 -6.42938 
50 -5.6060 -5.65260 -5.66983 

100 -4.6700 -4.68270 -4.69327 
500 

22 , ,
2 2
a hσ α< >

⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎜⎝ ⎠
 

-0.7351 -0.73172 -0.73215 
4 0.0972 0.06956 0.07571 

10 0.0406 0.03619 0.03508 
50 -0.0223 -0.02273 -0.02297 

100 -0.0734 -0.07373 -0.07382 
500 

12 0,0,
2
hσ< >

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 

-0.0829 -0.08298 -0.08298 
4 -0.1652 -0.15202 -0.16168 

10 -0.0869 -0.08689 -0.08766 
50 -0.1120 -0.11292 -0.11311 

100 -0.1479 -0.14855 -0.14863 
500 

12 0,0,
2
hσ< >

⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎜⎝ ⎠
 

-0.0949 -0.09501 -0.09501 
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Fig. 3.28. Displacement distribution through the thickness 1v< >  and 2v< >  of a three-ply 

(90°/0°/90°) laminated circular cylindrical panel (4×4Q25, S = 4). 

 
Fig. 3.29. Stress distribution through the thickness 11σ< > and 22σ< >  of a three-ply 

(90°/0°/90°) laminated circular cylindrical panel (4×4Q25, S = 4). 
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Fig. 3.30. Stress distribution through the thickness 12σ< >  of a three-ply (90°/0°/90°) 

laminated circular cylindrical panel (4×4Q25, S = 4). 

 
Fig. 3.31. Displacement distribution through the thickness 1v< >  and 2v< >of a three-ply 

(90°/0°/90°) laminated circular cylindrical panel (4×4Q25, S = 10). 

3 hθ 3 hθ

( )3
1 0, ,v α θ< > ( )3

2 2,0,v a θ< >

-0.50

-0.25

0.00

0.25

0.50

-1.0 -0.5 0.0 0.5 1.0

Present FSDT

Present TSDT

Varadan 

-0.50

-0.25

0.00

0.25

0.50

0 2 4 6 8 10

Present FSDT

Present TSDT

Varadan

-0.50

-0.25

0.00

0.25

0.50

-0.15 0.00 0.15 0.30

Present FSDT

Present TSDT

Varadan

3 hθ

( )3
12 0,0,σ θ< >



 76

 

Fig. 3.32. Stress distribution through the thickness 11σ< >  and 22σ< > of a three-ply 
(90°/0°/90°) laminated circular cylindrical panel (4×4Q25, S = 10). 

 

Fig. 3.33. Stress distribution through the thickness 12σ< >  of a three-ply (90°/0°/90°) 
laminated circular cylindrical panel (4×4Q25, S = 10). 

3 hθ 3 hθ

( )3
11 2, ,aσ α θ< > ( )3

22 2, ,aσ α θ< >

-0.50

-0.25

0.00

0.25

0.50

-0.2 0.0 0.2 0.4 0.6

Present FSDT

Present TSDT

Varadan 

-0.50

-0.25

0.00

0.25

0.50

-8 -6 -4 -2 0 2 4 6 8

Present FSDT

Present TSDT

Varadan  

3 hθ

( )3
12 0,0,σ θ< >

-0.50

-0.25

0.00

0.25

0.50

-0.05 0.00 0.05 0.10

Present FSDT

Present TSDT

Varadan 



 77

 

Fig. 3.34. Displacement distribution through the thickness 1v< > and 2v< > of a three-ply 
(90°/0°/90°) laminated circular cylindrical panel (4×4Q25, S = 100). 

 
Fig. 3.35. Stress distribution through the thickness 11σ< > and 22σ< > of a three-ply 

(90°/0°/90°) laminated circular cylindrical panel (4×4Q25, S = 100). 
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Fig. 3.36. Stress distribution through the thickness 12σ< >  of a three-ply (90°/0°/90°) 
laminated circular cylindrical panel (4×4Q25, S = 100). 

e. Simply-supported and clamped laminated panel 

In this example simply-supported and clamped laminated cylindrical shells are studied. 

Cross-ply and angle-ply for 2, 4 and 10 layers are used in the analysis. In similar way as 

the last example, full panel is taken as computational domain. The physical and 

geometrical features of the problem are the following 
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Simply supported: 

 At θ 1 = 0, a 2 3 2 2 0u u ϕ ψ< > < > < > < >= = = =  (cross-ply) 

 1 3 2 2 0u u ϕ ψ< > < > < > < >= = = =  (angle-ply) 

 At θ 2 = 0, 2α 1 3 1 1 0u u ϕ ψ< > < > < > < >= = = =   (cross-ply) 

 2 3 1 1 0u u ϕ ψ< > < > < > < >= = = =  (angle-ply) . 

Clamped: 

 At θ 1 = 0, a 0iu α αϕ ψ< > < > < >= = =  

 At θ 2 = 0, 2α 0 .iu α αϕ ψ< > < > < >= = =  

 Tables 3.18 to 3.21 show the present TSDT results for central deflections and 

stresses of cylindrical panels with various laminate schemes. Figures 3.37 to 3.40 show 

central deflection curves vs. S for cross-ply and angle-ply laminates with simply-

supported and clamped boundary conditions. Both cases are tabulated for dimensionless 

central deflections and stresses of the panel. The following parameters are utilized 

  
( ) ( )

( )

1
11 1133 23

0 0

22 222
0

10 102, ,0 , 2, , 2

10 2, , 2

Ev v a a h
q R S q S

a h
q S

σα σ α

σσ α

< >< >< >< >

< >< >

= = −

=
 

and  

 ( )12 122
0

10 0,0, 2h
q S

σσ < >< > = −  for simply-supported 

 ( )12 122
0

10 2, , 2a h
q S

σσ α< >< > =  for clamped panels . 

These results can be utilized as a benchmark for other laminated shell formulations. 
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Table 3.18. Central deflection and stresses of simply-supported cross-ply laminated 

circular cylindrical panels under uniform and sinusoidal loading (4×4Q25, 
full integration). 

Scheme S Load 3v< >  11σ< >  22σ< >  12σ< >  

 UL 3.09815 0.42197 1.86990 1.53390 
 20 SL 2.12361 0.05022 2.54050 0.72257 

UL 0.33826 0.50095 -0.97074 0.72642 (0°/90°) 50 SL 0.35165 0.38107 0.66125 0.27258 
 UL -0.02976 0.09916 -1.22470 0.45458 
 100 SL 0.08813 0.25099 0.26264 0.13212 
 UL 2.78534 -1.03020 0.10667 1.35710 
 20 SL 1.93798 -0.98612 0.18218 0.66473 

UL 0.29863 0.32039 -0.09678 0.67785 (0°/90°)s 50 SL 0.34396 0.17660 0.04550 0.26789 
 UL -0.04298 0.09624 -0.10258 0.43364 
 100 SL 0.08742 0.19865 0.01692 0.13138 
 UL 2.92651 -0.76981 3.84210 1.29250 
 20 SL 1.92153 -0.80674 3.31950 0.65870 

UL 0.45636 0.38013 0.02537 0.60142 (0°/90°)5 50 SL 0.34385 0.21493 0.83929 0.26757 
 UL 0.06140 0.22628 -0.73242 0.35598 
 100 SL 0.08745 0.20878 0.31011 0.13137 

 



 81

 

 

 

 
Table 3.19. Central deflection and stresses of clamped cross-ply laminated circular 

cylindrical panel under uniform and sinusoidal loading (4×4Q25, full 
integration). 

Scheme S Load 3v< >  11σ< >  22σ< >  3
12 10σ< >×  

 UL 0.09035 0.00722 1.08520 0.03557 
 20 SL 0.20933 -0.12113 1.79480 0.00689 

UL 0.01390 0.00265 0.40195 -0.01856 (0°/90°) 50 SL 0.10763 -0.02519 1.11330 -0.01511 
 UL 0.00288 0.00020 0.19273 -0.00380 
 100 SL 0.06656 0.02517 0.72040 -0.00979 
 UL 0.08887 -0.02444 0.04782 -0.00051 
 20 SL 0.21752 -0.26960 0.11451 0.31333 

UL 0.01338 -0.00035 0.01635 0.00485 (0°/90°)s 50 SL 0.11444 -0.10857 0.07679 0.02073 
 UL 0.00271 0.00047 0.00750 -0.01168 
 100 SL 0.06875 -0.01526 0.04892 -0.00934 
 UL 0.08757 0.00257 1.14260 0.04814 
 20 SL 0.14195 -0.14821 1.57720 0.04752 

UL 0.01434 0.00389 0.41959 -0.00980 (0°/90°)5 50 SL 0.05440 -0.03731 0.88472 0.00042 
 UL 0.00336 0.00075 0.19856 -0.00952 
 100 SL 0.03561 -0.00265 0.62712 -0.00604 
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Table 3.20. Central deflection and stresses of simply-supported angle-ply laminated 

circular cylindrical panels under uniform and sinusoidal loading (4×4Q25, 
full integration). 

Scheme S Load 3v< >  11σ< >  22σ< >  12σ< >  

 UL 0.13966 0.42055 0.51643 -0.20266 
 20 SL 0.36941 -0.03431 0.91395 -0.75741 

UL 0.018741 0.17481 0.19543 -0.10457 (-45°/45°) 50 SL 0.13268 0.02124 0.41867 -0.65970 
 UL 0.00400 0.08685 0.09696 -0.05563 
 100 SL 0.05607 0.04550 0.19322 -0.52936 
 UL 0.14755 0.38923 0.55008 1.18090 
 20 SL 0.28093 -0.02296 0.85549 -0.15872 

UL 0.02037 0.171490 0.20088 0.39054 (45°/-45°)s 50 SL 0.09159 -0.01608 0.41657 -0.70010 
 UL 0.00437 0.08747 0.09769 0.17200 
 100 SL 0.04109 0.00983 0.21487 -0.70202 
 UL 0.14952 0.39288 0.54280 -0.15640 
 20 SL 0.26489 -0.05495 0.83155 -0.49712 

UL 0.02061 0.17033 0.20022 -0.09383 (-45°/45°)5 50 SL 0.08804 -0.01229 0.39538 -0.45589 
 UL 0.00445 0.08713 0.09759 -0.05190 
 100 SL 0.03994 0.01846 0.20427 -0.39402 
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Table 3.21. Central deflection and stresses of clamped angle-ply laminated circular 

cylindrical panel under uniform and sinusoidal loading (4×4Q25, full 
integration). 

Scheme S Load 3v< >  11σ< >  22σ< >  12σ< >  

 UL 0.12723 0.45180 0.50271 0.42787 
 20 SL 0.23908 0.09751 0.75783 0.59470 

UL 0.01211 0.19479 0.17793 0.15407 (-45°/45°) 50 SL 0.06995 0.06649 0.33903 0.27758 
 UL 0.00121 0.09335 0.08797 0.07482 
 100 SL 0.02386 0.06710 0.15520 0.13541 
 UL 0.13560 0.41205 0.54496 0.46241 
 20 SL 0.20302 0.08501 0.73805 0.60845 

UL 0.01650 0.19064 0.18860 0.16172 (45°/-45°)s 50 SL 0.05332 0.04328 0.33333 0.28345 
 UL 0.00219 0.09790 0.08757 0.07414 
 100 SL 0.02037 0.04133 0.17104 0.15199 
 UL 0.13867 0.40936 0.54298 0.45801 
 20 SL 0.19347 0.06487 0.72295 0.59930 

UL 0.01683 0.18898 0.18890 0.16159 (-45°/45°)5 50 SL 0.05136 0.04003 0.32252 0.27396 
 UL 0.00233 0.09725 0.08821 0.07451 
 100 SL 0.02001 0.04060 0.16609 0.14714 

 



 84

 

Fig. 3.37. Central deflection of simply-supported cross-ply panels under uniform load 
vs. ratio S.  

 

Fig. 3.38. Central deflection of clamped cross-ply panels under uniform load vs. ratio S. 
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Fig. 3.39. Central deflection of simply-supported angle-ply panels under uniform load 
vs. ratio S.  

 

Fig. 3.40. Central deflection of clamped angle-ply panels under uniform load vs. ratio S. 
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3. Spherical shells 

a. Pinched hemispherical shell with 18° hole 

Next, we examine the behavior of a pinched hemispherical shell with 18° hole. This is a 

challenging test for the representation of rigid body motions and it has been chosen from 

the list of standard test problems proposed for shell elements by MacNeal and Harder 

[88]. The example considers a closed isotropic hemispherical shell with two inward and 

two outward forces perpendicular to each other. The hole at the outer and the equator are 

supposed to be free edges so that the problem represents a hemisphere with four point 

loads. Due to the symmetry of the problem, only one quarter of the shell has been 

modeled by a regular mesh as shown in Fig. 3.41. 
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Fig. 3.41. Pinched hemispherical shell with 18° hole: (a) Mesh in Cartesian coordinates, 
(b) Mesh in curvilinear coordinates. 
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 The material properties are 

  76.825 10 , 0.3, 10 , 0.04E psi R in h inν= × = = =  

and a load of 3 1.0P lb= . The imposed boundary conditions for the computational 

domain are 

 At θ 1 = 18°, 90° Free 

 At θ 2 = 0°, 90° 2 2 2 0u ϕ ψ< > < > < >= = =  (Symmetry) . 

  The radial deflection at the point B for uniform meshes of 81, 289 nodes and 1089 

nodes with different p levels is reported in Table 3.22. The reference solution given by 

MacNeal and Harder [88] is 0.094 in. Simo et al. [82] also report a value of 0.093 in for 

the deflection at B. We adopt the former value as a reference solution (uref) for this 

example. The present results correspond to the TSDT and FSDT with full and selective 

integration rules. It is found that using selective integration rule tends to overestimate 

displacements (more flexible). However, meshes of 8×8Q25 and 4×4Q81 with full 

integration are in good agreement with the reference solution. Also, the TSDT and FSDT 

do not present significant difference in the numerical solutions. 

 

Table 3.22. Radial displacement at B (u<3>×10 2 in) of the pinched hemisphere with 18° 
hole. 

  Mesh of 81 nodes Mesh of 289 nodes Mesh of 1089 nodes 

p 
level  Full 

integratio
Selective 
integratio

Full 
integration

Selective 
integration

Full 
integration 

Selective 
integration

TSDT 0.44746 0.75629 4.18446 4.41420 8.64079 8.72217 2 FSDT 0.44850 0.75640 4.18582 4.41518 8.64105 8.72344 
TSDT 8.87609 9.20607 9.30302 9.35750 9.35372 9.37242 4 FSDT 8.87643 9.20610 9.30302 9.35789 9.35370 9.37358 
TSDT 9.28833 9.49682 9.35157 9.39702 9.35881 9.37378 8 FSDT 9.28834 9.49675 9.35154 9.39717 9.35876 9.37458 
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 The performance of the present elements: Q25 and Q81 is investigated in Figure 3.42 

through a comparison with the 8-URI element of Kreja et al. [84] and the mixed element 

of Simo et al. [82]. It is shown a convergence analysis of the radial deflection at the 

point B for different number of nodes. We notice an excellent rate of convergence for 

our Q25 and Q81 elements. It is also observed no presence of membrane or shear 

locking.  

 

 

Fig. 3.42. Convergence of the radial displacement u<3> at the point B of the pinched 
hemisphere with 18° hole. 

b. Full pinched hemispherical shell 

In this example, we study a similar pinched hemispherical shell with no hole on the 

outer. It has the same material properties and geometry as the last problem. The equator 

is to be assumed a free edge and the apex is fixed (see Fig. 3.43). We exploit the 
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symmetry of the problem and only one quarter of the shell has been modeled by 

rectangular meshes. Note that an edge is shrunk to a point (the apex) when it is mapped 

from the parametric space to the Euclidean space. However, it does not cause any 

singularity problems in the numerical solution. 

Free

Apex
A

B

C

Sym.

Sym.

1.0 lb

1.0 lb

1x

2x

3x

1θ

 

Fig. 3.43. Full pinched hemispherical shell 

 The imposed boundary conditions for the computational domain are 

 At θ 1 = 0° 1 2 1 2 1 2 0u u ϕ ϕ ψ ψ< > < > < > < > < > < >= = = = = =  

 At θ 1 = 90° Free 

 At θ 2 = 0°, 90° 2 2 2 0u ϕ ψ< > < > < >= = =  (Symmetry) . 

 The radial deflection at the point B for uniform meshes of 81, 289 nodes and 1089 

nodes with different p levels is reported in Table 3.23. The analytical solution given by 

MacNeal and Harder [88] is 0.0924 in. which is adopted as a reference solution (uref). 



 90

We tabulate values corresponding to the TSDT and FSDT with full and selective 

integration rules. Conclusions similar to those of the last example are obtained from 

these results. 

 Finally, we illustrate in Fig. 3.44 the performance of our elements Q25 and Q81 with 

the element of Balah and Al-Ghamedy [18] and the mixed element of Simo et al. [82] 

which could be considered among the best shell elements. Remarkably, we notice a 

slightly better rate of convergence for our Q81 than those from Simo and Balah. There is 

also no presence of membrane and shear locking for the studied elements. 

 

 

 

Table 3.23. Radial displacement at B (u<3>×10 2 in) of the full pinched hemisphere. 

  Mesh of 81 nodes Mesh of 289 nodes Mesh of 1089 nodes 

p 
level  Full 

integratio
Selective 
integratio

Full 
integration

Selective 
integration

Full 
integration 

Selective 
integration

TSDT 0.38478 0.62816 3.81108 4.05657 8.43507 8.53111 2 FSDT 0.38572 0.62832 3.81255 4.05747 8.43538 8.53216 
TSDT 8.71692 9.07403 9.15037 9.23943 9.24059 9.26234 4 FSDT 8.71734 9.07429 9.15037 9.23973 9.24056 9.26325 
TSDT 9.12865 9.41446 9.23867 9.30633 9.24627 9.26610 8 FSDT 9.12869 9.41470 9.23863 9.30644 9.24623 9.26669 
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Fig. 3.44. Convergence of the radial displacement u<3> at the point B of the full pinched 
hemisphere. 
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CHAPTER IV 

NONLINEAR SHELL THEORY 

This chapter is concerned with the theoretical development of geometrically nonlinear 

shells for finite deformations. The formulation is based on an improved first-order theory 

with seven independent parameters. The shell theory takes thickness changes into 

account (no plane stress assumption) and circumvents the use of a rotation tensor. The 

following brief review, which focuses on studies that have appeared in the open 

literature in the last three decades about nonlinear shear deformation shell theories, 

provides a fine background for the derivation of the present approach. 

 Shell theories are by no means new; studies on deflection of elastic membranes can 

be traced as far back as the first part of the nineteenth century. Since then, the theory of 

shells has been amply researched. It was Naghdi [48] who first incorporated the 

Reissner-Mindlin assumptions to isotropic shells. In a later development, Naghdi [46] 

presented a complete treatise of shell theories in the well-known Encyclopedia of 

Physics. There, he derived two approaches for nonlinear shell theories: the direct 

approach based on the Cosserat continuum theory and the derivation from the 3D 

continuum theory; so-called single-layer theories. 

 The direct approach considers the shell from the beginning as a two-dimensional 

manifold, called Cosserat continuum. The possibility of employing a 2D model for a thin 

shell presents itself in a natural way. Such an approach was conceived of and dealt with 

by the brothers E. and F. Cosserat but remained largely unknown or unnoticed until the 

1950s. It was Ericksen and Truesdell [89] who first rediscovered the theory and Green 

and Naghdi [90] and Green et al. [91] who initiated it. Working along similar lines, Simo 

and co-workers [5, 82, 92] proposed the stress-resultant geometrically exact shell model 
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which is formulated entirely in terms of stress resultants and is essentially equivalent to 

the single director inextensible Cosserat surface. It was denominated “geometrically 

exact” because there was no approximation error in the geometric equations. However, it 

only illustrates the fact that the approximation error is concentrated in the material law. 

Additional applications of the direct approach can be found in references [93, 94]. 

 Regarding the single-layer theories, it seems that the first shear deformation theory 

for geometrically nonlinear laminated shells was given Librescu [95] and Librescu and 

Schmidt [96]. They proposed a refined geometrically nonlinear theory for anisotropic 

composite shallow shells by incorporating transverse shear deformation and transverse 

normal stress effects. The Lagrangian formulation was used to derive the theory and the 

3D strain-displacement relations include some degree of geometric nonlinearity. The 

theory is well-known as the moderate rotation shell theory. Applications of the theory 

can be found in Librescu and Stein [97] and Librescu and Chang [98] to study the 

postbuckling behavior with sensitivity to imperfections of laminated panels. The theory 

was particularized to the first-order theory by Schmidt and Reddy [50] and it was 

utilized by Palmerio et al. [99, 100] and Kreja et al. [84] for finite element applications 

to anisotropic shells. 

 Another important group of shell theories that deal with assumed magnitudes of 

strains and rotations in full nonlinear equations are the finite rotation theories. It was 

Pietraszkiewicz [2, 101] and Pietraszkiewicz and Badur [102] who introduced the idea in 

a formal manner. The set of governing equations and boundary conditions can be 

obtained from a variational principle. Pietraszkiewicz [103] also developed both total 

Lagrangian and update Lagrangian formulations for geometrically nonlinear shells based 

on the Kirchhoff-Love assumptions. Strains and rotations about the normal to the surface 

are assumed to be of the order ϑ , where ϑ  is small compared to unity. Rotations about 
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tangents to the surface are organized in a consistent classification where for each range 

of magnitude of rotations specific shell equations are obtained. The finite rotation theory 

was then applied to composite shells by Başar [104, 105]. Refined high-order shear 

deformation models for composite shells using finite rotations can be found in Başar et 

al. [106] and Balah and Al-Ghamedy [18]. Both approaches utilize the third-order shell 

theory for the analysis of composite shells via finite element methods. 

 Recently, considerable attention has been given to the development of 3D 

constitutive shell models with thickness stretching. These models are able to 

approximately represent three-dimensional effects, in comparison to formulations which 

use reduced elasticity tensor components. The use of unmodified and complete 3D 

material laws within shell analysis has been the major motivation for the development of 

such models. Among the most important works, we can refer to Büchter and Ramm [52], 

Sansour [23] and Simo et al. [53]. Improvements of shell theories to 7-independent-

parameter models have been presented by Braun et al. [76], Büchter et al. [107], and 

Bischoff and Ramm [24, 108]. Further applications of this refined shell theory can be 

found in references [109, 110]. 

 In geometrically exact shell theories thickness change is neglected and hence the 

plane stress assumption has to be introduced. For finite rotation analyses this restriction 

leads to the use of a rotation tensor in order to enforce the inextensibility constraint. The 

rotation tensor is then parametrized by mean of rotational degrees of freedom. 

Depending on the kind of parametrization singularities or other rank-deficiency 

problems can arise during the deformation (see Betsch et al. [111]).  

 On the other hand, the application of 3D constitutive equations in shell theories is of 

special importance (specifically when material nonlinearities are considered) since 

problems related to the incorporation of the plane stress assumption can be automatically 
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avoided. The use of rotational degrees of freedom is circumvented and the plane stress 

condition is achieved numerically. As the thickness becomes small, numerical solutions 

must coincide with those resulting from geometrically exact shell theories using 

parametrizations of a rotation tensor together with the plane stress assumption [112]. All 

these features make shell theories with 3D constitutive laws attractive for applications to 

finite deformations of shells and, therefore, it will be adopted in the present dissertation.  

 Most formulations of finite rotation shell theories are restricted to isotropic materials 

with few cases of multilayered composite materials [18-20, 106]. However until now, no 

applications for functionally graded shells with finite deformations are found in the 

literature. The finite element implementation of this approach is given in Chapter V. 

A. Notation and geometric relations 

The term Euclidean point space applies to a set E , with elements called points, which is 

related to a Euclidean vector space V . The space E  is also a Euclidean manifold if it is 

equipped with a family of rC -charts [113]. The space V  can be seen as a translation (or 

tangent) space of E . The set 3  is the triple Cartesian product of the space . 

 Let B  be an open set in some topological space defining a body and consisting of 

material particles , ,X Y ∈B… . The body B  is considered in a reference configuration 

:R Rκ → ⊂B B E  and a current configuration :t tκ → ⊂B B E , where RB  and tB  are 

regions (also called placements) of the Euclidean point space E  that is occupied by the 

body B  [114, 115]. 

 We denote by X the place given to the point X by the reference configuration. Then 

  ( ).R= XκX  (4.1) 

Since Rκ  is, by assumption, continuous and invertible 

  ( )
_1 .RX =κ X  (4.2) 
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 We define a motion of B as a mapping of the points comprised by B onto points of 

a three-dimensional Euclidean space E  at the time t, i.e. 

  ( ), .t= X t X , tκ ∀ ∈ ∀ ∈x B  (4.3) 

Substituting equation (4.2) into (4.3) we obtain 

  ( )( ) ( )
_1 , : , .t R t tκ κ χ= =x X X  (4.4) 

Note that the motion χ  also denotes a composition of mappings 
_1

t Rχ=κ κ . 

 In this dissertation we consider a body in which at any time t one dimension of the 

region RB  as well as of the family of regions tB  is always much smaller than the other 

two. Such a body B  will be called a shell (or shell-like body). 

 Let us introduce in the region ( )R tB B  a convected curvilinear coordinate system 

3,2,1},{ =iiθ , such that the surface 03=θ  define the midsurface ( )R tM M  of the 

region ( )R tB B . The coordinate 3θ  is the measure of distance between points RP ∈B  

( )tP ∈B  and ( )R tM M∈ ∈M M , with 3_ / 2 / 2h hθ≤ ≤ , where h is the thickness of 

the shell (Fig. 4.1). 

 We can think that the convected coordinate system moves and deforms continuously 

with the shell as it passes from the reference placement RB  to the deformed one tB . 

The values of these coordinates, defining a generic point RP ∈B , remain constant as P 

moves to its new position denoted by tP ∈B . Fibers are lines of particles in 3θ  

direction extending from the bottom surface to its top surface. Thus, these fibers are 

represented by 3θ  lines in the reference configuration and 3θ  curves in the current 

configuration. Initially, they are normal to the midsurface but, after deformation, they 

become, in general, curved and no longer orthogonal to the midsurface ( )tM  because of 

the shear deformation (see Naghdi [46] and Pietraszkiewicz [2]). 



 

 

97

h/2

rX

e3

e2
e1

M

P
RB

RMh/2 2a

3a

1a 2g1g

1x

3x
1θ

3θ

2θ
2x

 

Fig. 4.1. Shell continuum in the reference configuration. 

 Geometric quantities of the region RB  are denoted by the position vector ( )iθX , 

which is used to define the natural (or covariant) base vectors ig , dual (or contravariant) 

base vectors ig , components , ,j ij
ij ig gδ  of the metric tensor, Christoffel symbols 

,k
ij ijkΓ Γ , spatial covariant derivative operation ||( ) i  as well as other quantities discussed 

in detail in Refs. [46, 47, 49]. Some of these relations are presented below 
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1 2 3
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, ,

, , , ,
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, , ,

, ,
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1 _( )
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, det .

i ii

i j i j i i
i j i j j j

k k i i k
i j ijk ij k j jk

m
ijk mk ij ik j jk i ij k i j k

m ml k
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g g
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θ θ θ
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Γ Γ Γ

Γ Γ
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= = =

⋅= = + =

⋅= = =

Xg X X X

g g g g g g

g g g g g

g g

g g

 (4.5) 

 On the other hand, quantities describing the surface RM  are defined by the position 

vector ( )αθr  of the surface points. With the aid of this vector we define the natural (or 

covariant) base vectors αa , dual (or contravariant) base vectors αa , unit vector 3
3 =a a  

normal to MR, coefficients αβa  and αβb  of the first and second fundamental forms, 
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Christoffel symbols αβλ
λ
αβ ΓΓ ,  with respect to the midsurface ( 3 0θ = ), surface covariant 

derivative operation |( ) i  and also other quantities that can be utilized in this dissertation 

and that we show below 
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 (4.6) 

 We also observe that for shell theories the convected coordinates system iθ  can 

always be chosen in the reference configuration in an appropriate way (Naghdi [46]). 

Hence, without loss of generality we may write the position vector in the region RB  as 

  3
3.= θ+X r a  (4.7) 

 In what follows we shall use some concepts and relations of tensor algebra and 

tensor analysis in the three-dimensional Euclidean point space E  expressed directly in 

an absolute notation (see Refs. [116, 117]). The absolute tensor notation is independent 

of any coordinate system and it makes possible to present many known relations in a 

very simple and compact way.  

 Now we define the tensor product ⊗  of two vectors V∈, vu  which gives a three-

dimensional Euclidean tensor  2⊗ ∈ ≡ ⊗u v T V V  of second order. We can express 

this product as 

  ( ) ( )⊗ = ⋅u v w u v w  (4.8) 

for each ∈w V . If  , , , ( 1, 2,3)i
i i i =g g a …  are bases of V  then any set of nine tensors 

of the type 2, , ,j
i j i j i⊗ ⊗ ⊗ ∈g g g a a g T…  are bases of the space 2T . Hence, any 
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tensor 2∈T T  can be represented in the form 

  .ij ia a j
i j i a j aT T T= ⊗ = ⊗ = ⊗ =T g g g a a g  (4.9)  

 The metric tensor 2∈1 T  in the region RB  can be conveniently represented in three 

different ways 

  

.

i j i
ij i

k l k
kl k
a i j b
i a b j

g

a

µ µ

= ⊗ = ⊗

= ⊗ = ⊗

= ⊗ = ⊗

1 g g g g

a a a a

a g g a

 (4.10) 

  We also use the notation G  for the Riemannian metric in the reference 

configuration such that 

  .i j
ijg= ⊗G g g  (4.11) 

Note that the distinction between G  and 1  is purely formal since =G 1 (see Başar and 

Weichert [118]). Taking the derivative of Eq. (4.7) with respect to iθ  and using Eqs. 

(4.5), (4.6) and (4.10) we obtain the following relations 

  
,

,

a j j b
i i a b

a b ij i j ab
ij i j ab a bg a g a

µ µ

µ µ µ µ

= =

= =

g a g a
 (4.12) 

where 
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a g

 (4.13)  

 Symbols of the type ,a j
i bµ µ  are called “shifters” or “translators”. It is obvious from 

(4.10) that they are components of the metric tensor 2∈1 T  in mixed basis.  

 Next we define the symmetric shifter tensor 2∈µ T , which is a two-point tensor 

that transforms bases from the surface RM  to the region RB . It can be written as 
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follows 

  
-1,i i

i i
b a
a bµ

= ⊗ = ⊗

= ⊗

µ g a µ a g

µ a a
 (4.14) 

and 

  1, , , .j T j b T b
i i a a

− −= = = =g µa g µ a a µ g a µ g  (4.15) 

 In addition, let us introduce the metric tensor A  and the curvature tensor B  of the 

surface RM  as 

  
3, .

a

b

α β α
αβ α

α β α
αβ α

= ⊗ = ⊗

= ⊗ =− ⊗

A a a a a

B a a a a
 (4.16) 

 Notice that the shifter tensor can be expressed in absolute tensor notation as 

  3θ= −µ 1 B  (4.17) 

which can be easily verified. Using equation (4.14) together with (4.13) we obtain   

  
3

3

3 3 3( ) .

i j
j i

b

β α
α β

β β α
α α β

µ µ

δ θ

= ⊗ = ⊗ + ⊗
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µ a a a a a a

a a a a
 

Since a aβ λβ
α αλδ =  and b a bβ λβ

α λα=  equation above becomes 

  

3 3 3

3 3 3

3 3 3
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a b
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Finally, using equations (4.10) and (4.16) we obtain  

  3θ= −µ 1 B   

and the proof is completed. 
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B. Deformation of the shell 

Consider the motion ( ), tχ X  of the shell B  from the reference configuration RB  to the 

current configuration tB . Since a convected coordinate system { }iθ  has been adopted, 

geometric quantities of the region tB  are analogous to those defined in RB  (see Fig. 

4.2). In order to avoid the introduction of new symbols we shall distinguish these 

geometric quantities by putting, in general, and additional bar: , , , , , ,j ij
i ijg g β

αµx g g  

;||, , ( ) , , , , etck
ijk ij iG G 1 G µ … . For these quantities, formulae analogous to (4.5) hold true. 

Similarly, geometric quantities for the surface tM  analogous to those defined for RM  

will also be distinguished by an additional bar: 3 ;|, , , , , , , , , ( ) ,ab k
ab ijk ij ia a b G Gβ

α αβr a a a  

, , etcA B … . Again relations similar to (4.6), (4.10), (4.14) and (4.16) still hold true 

(Pietraszkiewicz [2]).  
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Fig. 4.2. Deformation of the shell. 
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 In the Lagrangian description the displacement of the particle X  from the reference 

configuration to the current configuration is given by the vector ( ), tv X , i.e. 

  
( ) ( ), ,

i j
i j

t t

V V

χ= − −

= =

v X X X = x X

g g
 (4.18) 

given in component form with respect to the region RB . Taking the derivative of 

equation (4.18) with respect to iθ  and using relations (4.5) we obtain 

  , .i i i= +g g v  (4.19) 

 The deformation gradient is defined as the tangent map of the motion ( ), tχ X  such 

that : : R tχ= →F B BT T T . From (4.18) we have 

  ( ) ( ), Grad , Gradt tχ= = +F X X 1 v  (4.20) 

with ( )Grad , tv X  being the material gradient relative to the reference configuration X  

at a fixed time t  [119]. 

 The deformation gradient is a two-point tensor which may be written as 

  .i
i= ⊗F g g  (4.21) 

The proof of this statement is quite simple. Since i
i= ⊗1 g g  and ,Grad i

i= ⊗v v g  (see 

Ref. [118]) we can write Eq. (4.20) as 

  ,

,

Grad

( )

i i
i i

i i
i i i

= + = ⊗ + ⊗

= + ⊗ = ⊗

F 1 v g g v g

g v g g g
 

where (4.19) was used in the last step. 

 Let the displacement vector ( ), tv X  be expanded into a Taylor series in the vicinity 

of the point RM ∈M . Thus 
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where ( ) 3( )k k kθ=∂ ∂v v . Without loss of generality this equation may also be written 

as follow 

  ( ) ( ) ( ) ( ) ( )0 3 1 3 2 2 3 3 3( ) ( ) .i α α α αθ θ θ θ θ θ θ θ= + + + +v u u u u  (4.23) 

 Some researchers utilize the Taylor expansion of the position vector of the current 

configuration instead of the displacement field, i.e. 

  ( ) ( ) ( ) ( ) ( )0 3 1 3 2 2 3 3 3( ) ( ) .i α α α αθ θ θ θ θ θ θ θ= + + + +x x x x x  (4.24) 

Both approaches are equivalent since x  and v  are related by (4.18) and (4.7). 

 Equation (4.23) or its equivalent (4.24) is, indeed, a reduction from a 3D continuum 

theory to a 2D one. Shell equations are now governed by the position vector of the 

midsurface tM  and denoted by 0x  (in this dissertation we call it r ), and some directors 

( 1, )i i k=x , where k  is the order of approximation considered in the formulation. It is 

argued (see Naghdi [46]) that as k →∞  the exact motion of the three-dimensional body 

is recovered.  

 Next we introduce the first assumption for the shell model: 

Assumption 1: The displacement field is considered as a linear expansion of the 

thickness coordinate around the midsurface ( 1k = ). The transverse 

displacement is parabolic through the thickness of the shell. 

 This assumption implies that 

  ( ) ( ) ( ) ( )3 3 2( )α α α αθ θ θ θ θ θ= + +v u ϕ ψ  (4.25a) 

where 0u  and 1u  have been renamed u  and ϕ  respectively, and 

  ( ) ( ) ( ) 3
3, , .i i

i iuα α αθ θ ϕ θ ψ= = =u a a aϕ ψ  (4.25b) 

The underlined term of (4.25a) is included to avoid undesired stiffening effects. The 6-

parameter formulation has a severe deficiency in bending dominated cases with non-
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vanishing Poisson’s ratio ν. The linear displacement field in the thickness direction 

results in a constant normal strain which in turn causes artificial stresses in that direction. 

This problem is called Poisson locking (Bischoff and Ramm [24]). 

 In contrast to other locking problems, errors caused by Poisson locking do not 

diminish with mesh refinement. This is due to the fact that the origin of the stiffening 

lies in the theory itself rather than the numerical solution. To remedy this effect we can 

either use enhanced strain methods or include an additional variable in the formulation 

assuming a quadratically distributed transverse displacement. For the present approach 

we adopt the latter case. Hence, the improvement in the approach is carried out in the 

shell theory, not in the numerical approximation (Sansour and Kollmann [112]). 

 The position vector of the deformed shell can be obtained substituting equations 

(4.7) and (4.25a) into (4.18). Thus 

  
3 3 2

3

3 3 2
3

( ) ( ) ( )

( )

θ θ

θ θ

= + + + +

= + +

x r u a

r a

ϕ ψ

ψ
 (4.26) 

where = +r r u  and 3 3= +a a ϕ . The vector ϕ  is also called difference vector (change 

of the director of the midsurface). It is worthy to point out that the vector 3a  is, in 

general, neither a unit vector nor orthogonal to tM . 

 Note that the configuration of the shell is uniquely determined by the displacement 

vector u  of the midsurface together with the difference vector ϕ  and the additional 

variable ψ , i.e. by seven independent components of these vectors.  

 The deformation gradient F  can be decomposed through equations (4.15) and (4.21) 

as follows 

  1 1

0 1

( )

( ) ( )

i T i
i i

i i
i i

−

− −

−

= ⊗ = ⊗

= ⊗ = ⊗

=

F g g g µ a

g a µ µ a a µ

µ F µ

 (4.27) 
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where 0F  is the surface deformation gradient tensor and is defined by 

  3
0

0
: | .i

iθ =
= = ⊗F F a a  (4.28) 

The tensor 0F  can be seen as a tangent map of the motion of the midsurface M . Using 

equation (4.27) we can obtain 

  1 1ˆ( )i
i

− −= ⊗ =F g a µ F µ  (4.29) 

which will be used in the next section.  

C. Lagrangian description 

In the Lagrangian formulation all kinematic variables are referred to initial configuration 

(that the body occupies at time 0t = ). On the contrary, Eulerian formulations use the 

final configuration to this end (usually utilized in fluid mechanics). 

 Next we define the right Cauchy-Green tensor C  and the right stretch tensor U as 

  2, .T= =C F F U C  (4.30) 

Both tensors are symmetric and positive definite.  

 We now introduce the Green strain tensor E  as a measure of the strain which is 

suitable for a material description. That is 

  

1 ( )
2
1 ( )
2

T

= −

= −

E C G

F F G
 (4.31) 

which is a symmetric tensor by definition.  

 One interpretation of the right Cauchy-Green tensor C  is as the convected metric 

tensor (Marsden and Hughes [120], Fox [60]). The convected metric tensor can be seen 

as the pull-back of the covariant metric tensor G . Thus 
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( )
( )

T

T i j
ij

i j
ij

g

g

Φ∗= =

= ⊗

= ⊗

C G F GF

F g g F

g g

 (4.32) 

where ( )Φ∗  is the pull-back operator. 

 For the definition of the pull-back and push-forward operators the reader can consult 

the books of Başar and Weichert [118] and Holzapfel [119]. The intrinsic meaning of the 

Green strain tensor is one haft of the difference between the convected metric tensor and 

reference metric tensor. Since i j
ijg= ⊗G g g  the Green strain tensor can be expressed 

in components relative to the reference dual basis as 

  1 ( )
2

i j
ij ijg g= − ⊗E g g  (4.33) 

usually used in shell theories. 

 Another suitable measure of the strain in the material description is the Biot strain 

tensor [118] which is given by 

  = −H U G  (4.34) 

where U  is denoted in (4.30). This tensor is closer to the engineering definition of the 

strain tensor. 

 For the Eulerian description the strain state is described by the Euler-Almansi strain 

tensor e  defined as 

  11 ( )
2

−= −e G b  (4.35) 

where T=b FF  is the left Cauchy-Green tensor which is symmetric and positive 

definite. The Almansi strain tensor can be seen as the push-forward of the covariant 

tensor E , i.e. 
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( )

1

1

1

1 ( )
2

1 ( )
2

T

T T

T Φ

− −

− −

− −
∗

= −

⎡ ⎤
⎢ ⎥= −
⎢ ⎥⎣ ⎦

= =

e G F F

F F F G F

F EF E

 (4.36)  

and the Green tensor as the pull-back of the covariant tensor e   

  ( ).T Φ∗= =E F eF e  (4.37) 

 An equivalent expression of (4.33) can be obtained for the Almansi strain tensor by 

using the base vectors ig  in the current configuration. 

 Let equation (4.33) be expanded by the components of the Green strain tensor 

  1 1( ) ( )
2 2ij ij ij i j i jE g g= − = ⋅ − ⋅g g g g  (4.38) 

as follows 

  3 3 3 3

33 3 3 3 3

1 ( )
2

1 ( )
2

1 ( ) .
2

E

E E

E

αβ α β α β

α α α α

= ⋅ − ⋅

= = ⋅ − ⋅

= ⋅ − ⋅

g g g g

g g g g

g g g g

 (4.39) 

Since ig  and ig  are functions of 3θ  we can write ijE  as  

  

4
3 ( )

0
3

3 ( )
3 3

0
2

3 ( )
33 33

0

( )

( )

( ) .

k k

k

k k

k

k k

k

E

E

E

αβ αβ

α α

θ ε

θ ε

θ ε

=

=

=

=

=

=

∑

∑

∑

 (4.40) 

By means of the identities 3 3, 0α⋅ =a a  and 3, 3,α β β α⋅ = ⋅a a a a  we finally obtain the 

component form of the Green strain tensor, namely 
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(0)

(1)
3, 3, 3,

(2)
3, 3, 3, 3,

(3)
3, 3,

(4)

(0)
3 3

(1)
3 3, 3

(2)
3

1 ( )
2
1 ( 2 )
2
1 ( )
2
1 ( )
2
1 ( )
2
1 ( )
2
1 ( 2 )
2
1 (
2

αβ α β α β

αβ α β β α α β

αβ α β α β β α α β

αβ α β β α

αβ α β

α α

α α α

α α

ε

ε

ε

ε

ε

ε

ε

ε

= ⋅ − ⋅

= ⋅ + ⋅ − ⋅

= ⋅ + ⋅ + ⋅ − ⋅

= ⋅ + ⋅

= ⋅

= ⋅

= ⋅ + ⋅

=

, ,

, ,

, ,

,

a a a a

a a a a a a

a a a a a a

a a

a a

a a a

ψ ψ

ψ ψ

ψ ψ

ψ

ψ 3 3,

(3)
3

(0)
33 3 3

(1)
33 3

(2)
33

2 )

( )

1 ( 1)
2
(2 )

(2 )

α

α αε

ε

ε

ε

⋅ + ⋅

= ⋅

= ⋅ −

= ⋅

= ⋅

,

a a

a a

a

ψ

ψ ψ

ψ

ψ ψ

 (4.41) 

where equations 3 3 2
3, ,( )α α α αθ θ= + +g a a ψ  and 3

3,α α αθ= +g a a  were utilized.  

 The displacement of the midsurface u , the difference vector ϕ  and ψ  can be 

written in terms of the contravariant base vectors ia  as 

  

3
3

3
3

3
3 .

u uλ
λ

λ
λϕ ϕ

ψ

= +

= +

=

u a a

a a

a

ϕ

ψ

 (4.42) 

Furthermore, their respective surface covariant derivatives are  

  

3
| 3 3,

3
, | 3 3,

3
, 3 3,

( ) ( )

( ) ( )

u b u u b u

b b

b

λ λ
α λ α αλ α α λ

λ λ
α λ α αλ α α λ

λ
α αλ α

ϕ ϕ ϕ ϕ

ψ ψ

= − + +

= − + +

=− +

,u a a

a a

a a

ϕ

ψ

 (4.43) 
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with components of the surface covariant derivative defined as 

  | ,

| , .

u u uµ
λ α λ α λα µ

µ
λ α λ α λα µϕ ϕ ϕ

Γ

Γ

= −

= −
 (4.44) 

 The second assumption for the shell model is the following: 

Assumption 2: Quadratic and higher-order terms in 3θ  of the Green strain tensor 

components are neglected. 

 This implies that the underlined terms of the following equation are disregarded 

  

(0) 3 (1) 3 2 (2) 3 3 (3) 3 4 (4)

(0) 3 (1) 3 2 (2) 3 3 (3)
3 3 3 3 3

(0) 3 (1) 3 2 (2)
33 33 33 33

( ) ( ) ( )

( ) ( )

( )

E

E

E

αβ αβ αβ αβ αβ αβ

α α α α α

ε θ ε θ ε θ ε θ ε

ε θ ε θ ε θ ε

ε θ ε θ ε

= + + + +

= + + +

= + +

 (4.45) 

i.e. we consider only linear variation through 3θ  of the Green strain tensor. 

 Another way to express (4.41) is in terms of the triple ( ), ,u ψϕ . In fact, using 

equations α α α= + ,a a u  and 3 3= +a a ϕ  we obtain 

  

(0)
,

(1)
3, 3, , ,

(0)
3 , 3 ,

(1)
3 3, 3 , , ,

(0)
33 3

(1)
33 3

1 ( )
2
1 ( )
2
1 ( )
2
1 ( 2 2 )
2
1 (2 )
2
(2 2 )

αβ α β β α α β

αβ α β β α α β β α β α α β

α α α α

α α α α α α

ε

ε

ε

ε

ε

ε

= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅ + ⋅ + ⋅

= ⋅ + ⋅

= ⋅ + ⋅

, , ,

, , , , , ,

a u a u u u

a u a u a a u u

u a u a

a a a u

a

a

ϕ ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ ϕ ϕ ψ ψ

ϕ ϕ ϕ

ψ ϕ ψ .

 (4.46) 

 With the help of (4.42) and (4.43), Eq. (4.46) is written directly in terms of the seven 

components of the displacement field. This leads to (see Habip [121, 122]) 
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(

)

(

(0)
| | 3 | | 3 | 3 |

2
3 3, 3, 3, 3,

(1)
| | 3 | | 3 | |

| | 3 | 3 |

1 2
2

( )

1 2 2
2

u u b u a u u b u u b u u

c u u u b u u b u u b b u u

b b u b u c u a u

a u b u b u b

λγ λ λ
αβ α β β α αβ λ α γ β β λ α α λ β

λ λ λ γ
αβ α β α λ β β λ α α β λ γ

λ λ λγ
αβ α β β α αβ β λ α α λ β αβ λ α γ β

λγ λ λ
λ β γ α β λ α α λ β

ε

ε ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

= + − + − −

+ + + + +

= + − − − + +

+ − − −

)

( )

3 | 3 | 3 3

3, 3, 3, 3, 3, 3, 3, 3,

(0)
3 3, | 3 3 3, 3

(1)
3 3, | 3 3, 3 3,

2

1
2
1 2
2

u b u c u

u u b u b u b u b u

b b u b b u

u b u a u b u u b u

a u

λ λ
β λ α α λ β αβ

λ λ λ λ
α β β α α λ β β λ α α λ β β λ α

λ γ λ γ
α β λ γ β α λ γ

λ λγ λ λ
α α α α λ λ α γ α λ α α λ

λγ
α α λ α γ α α

ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ

ε ϕ ϕ ϕ ϕ ϕ

ε ϕ ϕ ϕ ϕ ϕ ψ

− +

+ + + + + +

+ +

= + + + − + +

= + + +( )

( )
( )

3

(0) 2
33 3 3

(1)
33 3 3 3

2

1 2 ( )
2
2

b u

a

λ
α λ

λγ
λ γ

ψ

ε ϕ ϕ ϕ ϕ

ε ψ ϕ ψ

+

= + +

= +  (4.47) 

where c b bµ
αβ αµ β=  is the covariant third fundamental form of the reference surface. Note 

that the component (1)
33ε  vanishes when 3 0ψ =  (6-parameter formulation). 

 The Green strain tensor E  can be also represented in a different way. This can be 

done utilizing equation (4.29). First we write the right Cauchy-Green strain tensor as  

  
1ˆ ˆ( ) .

T

T T− −

=

=

C F F

µ F F µ
 (4.48) 

 The tensor F̂  can be expanded as a function of the thickness coordinate 3θ , i.e. 

  3 3 3 2
3, ,

0 3 1 3 2 2

ˆ

( 2 ) ( ) ( )

( ) .

i
i

i
i

α α
α αθ θ

θ θ

= ⊗

= ⊗ + ⊗ + ⊗ + ⊗

= + +

F g a

a a a a a a

F F F

ψ ψ  (4.49) 

The tensor 0F  was defined in (4.28). 

 Hence, the Green strain tensor is given by 
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1

1

1 ˆ ˆ( )
2
ˆ .

T T T

T

− −

− −

= −

=

E µ F F µ Gµ µ

µ Eµ
 (4.50) 

 The shifter µ  is a two-point tensor which relates the region RB  to the reference 

midsurface RM . On the other hand, the tensor Ê  denotes the pull-back (to the 

configuration RM ) of the covariant Green strain tensor E . Then 

  ( )ˆ .TΦ∗= =E E µ Eµ  (4.51) 

Note that the tensor Ê  is a covariant tensor and it is written in terms of the contravariant 

base vectors i j⊗a a . However, the components of Ê  are exactly the same as the Green 

strain tensor E  (with basis i j⊗g g ). 

 The tensor Ê  can be expanded as a function of the coordinate 3θ , i.e. 

  0 3 1 3 2 2 3 3 3 3 4 4ˆ ( ) ( ) ( ) .θ θ θ θ= + + + +E ε ε ε ε ε  (4.52) 

The underlined terms are neglected by assumption 2. Substituting (4.17) and (4.49) into 

(4.50), we obtain 

  

0 0 0 1 0 1 1 0

2 0 2 2 0 1 1 2

3 1 2 2 1 4 2 2

1 1( ), ( 2 )
2 2
1 ( )
2
1 1( ), ( )
2 2

T T T

T T T

T T T

= − = + +

= + + −

= + =

ε F F 1 ε F F F F B

ε F F F F F F B

ε F F F F ε F F

 (4.53) 

where B  is the symmetric curvature tensor given in (4.16). 

 We now consider the following decomposition 

  
0 (0) (0) 3 3 (0) 3 3

3 33

1 (1) (1) 3 3 (1) 3 3
3 33

( )

( )

α β α α
αβ α

α β α α
αβ α

ε ε ε

ε ε ε

= ⊗ + ⊗ + ⊗ + ⊗

= ⊗ + ⊗ + ⊗ + ⊗

ε a a a a a a a a

ε a a a a a a a a
 (4.54) 

where ( ) ( )
3,i i

αβ αε ε  and ( )
33

iε  are given by (4.46) and (4.47). 
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D. Stress resultants and stress power 

Let σ  and S  be the (true) Cauchy stress tensor and the second Piola-Kirchhoff stress 

tensor respectively. We can relate both stresses using the following equation 

  1 Tj − −=S F σF  (4.55) 

where det ( )j = F . The second Piola-Kirchhoff stress tensor is commonly used in 

Lagrangian formulations for geometrically nonlinear analysis. 

 The rate of internal mechanical work (stress power), denoted by int ( )tP , in a 

continuum medium in the region tB  can be expressed as  

  int ( ) : .
t

t dV= ⋅∫ σ D
B

P  (4.56) 

The tensor D  is the symmetric part of the velocity gradient L  which are denoted by 

  

( ) ( ),: = grad ,

1 ( ) .
2

T

t t∂
=

∂

= +

x xL v x
x

D L L
 (4.57) 

The operator grad v  is the spatial gradient relative to the current configuration x  at a 

fixed time t . 

 The pair ( ),σ D  is said to be energetically-conjugate since it produces the energy 

stored in the deformable body. It can be shown that the second Piola-Kirchhoff stress 

tensor is also energetically-conjugate to the rate of Green strain tensor E (Başar and 

Weichert [118], Reddy [123]) 

  ( )int : .
R

t dV= ⋅∫ S E
B

P  (4.58) 

Note that dV jdV= . Like E , the second Piola-Kirchhoff stress tensor S  is transformed 

to the midsurface RM  by 
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( )

1ˆ T

Φ

− −

∗

=

=

S µ Sµ
S

 (4.59) 

which is the pull-back operator of the contravariant tensor S . 

 The stress power of the three-dimensional theory may be expressed in the equivalent 

form 

  
int

0 0 1 1

( )

( )

R

R

t dV

dΩ

= ⋅

= ⋅ + ⋅

∫

∫

S E

M ε M ε

B

M

P
 (4.60) 

where nM  denote the pseudo-stress resultant tensor (or just stress resultant tensor) 

which is symmetric (whenever Ŝ  be symmetric) opposite to its physical counterpart. The 

tensor nM  is defined as 

  
/ 2

0 1 3 3

/ 2
ˆ, 1, .

h

h
dθ µ θ

−
⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫M M S  (4.61) 

The scalar µ  is the determinant of the shifter tensor µ . 

 To prove (4.60) we consider the inner product ( )tr T⋅ =S E S E  in 2T . Then 

  

( ) ( )
( )

-1

0 3 1

ˆ ˆtr tr

ˆ ˆˆ ˆtr
ˆ ( ) .

T T T T

T

θ

−=

= = ⋅

= ⋅ +

S E µS µ µ Eµ

S E S E

S ε ε

 

Since 3dV d dµ θ Ω=  and using the definition (4.61) we obtain 

  

0 3 1 3
int

0 0 1 1

ˆ ( )

( )

R

R

d d

d

θ µ θ Ω

Ω

= ⋅ +

= ⋅ + ⋅

∫

∫

S ε ε

M ε M ε

B

M

P
 

and the proof is completed. 

 Note that the pseudo-stress resultant tensors in Eq. (4.60) are energetically-conjugate 

to the strain resultants iε . The stress resultant tensors may be decomposed in component 
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form as 

  

(0) (0) (0)
0 3 33

3 3 3 3

(1) ( ) ( )1 1
1 3 33

3 3 3 3

( )

( )

N Q T

N Q T

αβ α
α β α α

αβ α
α β α α

= ⊗ + ⊗ + ⊗ + ⊗

= ⊗ + ⊗ + ⊗ + ⊗

M a a a a a a a a

M a a a a a a a a  (4.62) 

where 
( ) ( )

3,
n n

N Qαβ α  and 
( )

33
n

T  are membrane, shear and stretching components of the stress 

resultant tensor respectively. 

E. Equilibrium equations 

To obtain the equilibrium equations we apply the principle of virtual work. It states that: 

A continuum body is in equilibrium if and only if the virtual work of all forces acting on 

the body under a virtual displacement is zero (see Reddy [55]). Thus 

  int ext 0 .δ δ δ= + =W W W  (4.63) 

The first term is the virtual work due to internal forces and the second term is the virtual 

work due to external forces. For the Lagrangian formulation, the conjugate tensors 

giving the internal virtual work are the second Piola-Kirchhoff stress tensor S  and the 

variation of the Green strain tensor δE . Thus 

  0 0 .
R R R

dV dV dSδ δ ρ δ δ
∂

= ⋅ − ⋅ − ⋅ =∫ ∫ ∫S E f v t v
B B B

W  (4.64) 

 The internal virtual work can be reduced in similar fashion to the stress power (see 

section D). Then, we have 

  

int

0 3 1 3

0 0 1 1

ˆ ˆ

ˆ ( )

( )

R R

R

R

dV dV

d d

d

δ δ δ

δ θ µ θ

δ δ

Ω

Ω

= ⋅ = ⋅

= ⋅ +

= ⋅ + ⋅

∫ ∫

∫

∫

S E S E

S ε ε

M ε M ε

B B

B

M

W

 (4.65) 

and using (4.53) we obtain  
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  { }0 0 1 1 0 0 1 1
int ( ) ( ) .

R

dδ δ δ Ω= + ⋅ + ⋅∫ F M F M F F M F
M

W  (4.66) 

 Finally, we compute the variation of 0F  and 1F from (4.49) as 

  
0 3

,

1 3
, 2

α
α

α
α

δ δ δ

δ δ δ

= ⊗ + ⊗

= ⊗ + ⊗

F u a a

F a a

ϕ

ϕ ψ
 (4.67) 

and we obtain 

  
{

}

0 0 1 1 0 0 1 1 3
int ,

0 1 0 1 3
,

( ) ( )

( ) 2( ) .
R

d

α
α

α
α

δ δ δ

δ δ Ω

= + ⋅ + + ⋅

+ ⋅ + ⋅

∫ F M F M a u F M F M a

F M a F M a

M
W ϕ

ϕ ψ
 (4.68) 

 Consider next the external virtual work extδW  (Sansour [23]). We assume that the 

midsurface RM  has a smooth curve R∂M  as a boundary with parameter length s, 

differential length ds  and normal vector n . The boundary of the shell consists of three 

parts: an upper, a lower, and a lateral surface denoted by ,R R
+ −∂ ∂B B  and s

R∂B  

respectively. We make use of the notation 3 3/ 2 / 2
| , |

h hθ θ
µ µ µ µ+ −

= =−
= =  and sµ  for µ  

at the lateral surface. Then, the surface elements can be written as 

  3, , .s sdS d dS d dS d dsµ µ µ θΩ Ω+ + − −= = =  (4.69) 

Introducing these equations in (4.64), we obtain 

 
( )

( )

ext 0

2
3 3 2

0

2
3 3 2

( )
2 4

( )
2 4

( ) ( )

R R

R R

s
R R

R R

s s

s s s

dV dS

h hdV dS

h h dS dS

d ds

δ ρ δ δ

ρ δ θ θ δ

δ δ θ θ

δ δ δ δ δ δΩ

+

−

∂

+ +

∂

− −

∂ ∂

∂

=− ⋅ − ⋅

⎛ ⎞⎟⎜ ⎟=− ⋅ + + − ⋅ + +⎜ ⎟⎜ ⎟⎜⎝ ⎠
⎛ ⎞⎟⎜ ⎟− ⋅ − + − ⋅ + +⎜ ⎟⎜ ⎟⎜⎝ ⎠

=− ⋅ + ⋅ + ⋅ − ⋅ + ⋅ + ⋅

∫ ∫

∫ ∫

∫ ∫

∫ ∫

f v t v

f u t u

t u t u

p u l k p u l k

B B

B B

B B

M M

W

ϕ ψ ϕ ψ

ϕ ψ ϕ ψ

ϕ ψ ϕ ψ

 (4.70) 

with the definitions 
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/ 2
3

0
/ 2

/ 2
3 3

0
/ 2
/ 2 2 2

3 2 3
0

/ 2
/ 2 / 2

3 3 3

/ 2 / 2
/ 2

3 2 3

/ 2

:

:
2 2

: ( )
4 4

: , :

: ( ) .

h

h
h

h
h

h
h h

s s s s s s

h h
h

s s s

h

d

h hd

h hd

d d

d

ρ µ θ µ µ

ρ µθ θ µ µ

ρ µ θ θ µ µ

µ θ µ θ θ

µ θ θ

+ + − −

−

+ + − −

−

+ + − −

−

− −

−

= + +

= + −

= + +

= =

=

∫

∫

∫

∫ ∫

∫

p f t t

l f t t

k f t t

p t l t

k t

 (4.71) 

We may now write extδW  as 

  
ext ( )

( ) .

R

R

s s s

d

ds

δ δ δ δ

δ δ δ

Ω

∂

=− ⋅ + ⋅ + ⋅

− ⋅ + ⋅ + ⋅

∫

∫

p u l k

p u l k

M

M

W ϕ ψ

ϕ ψ
 (4.72) 

 The virtual work done is obtained substituting (4.68) and (4.72) into (4.63) as 

follows 

  

{

}

0 0 1 1 0 0 1 1 3
,

0 1 0 1 3
,

( ) ( )

( ) 2( ) ( )

( ) 0 .

R

R

s s s

d

ds

α
α

α
α

δ δ

δ δ δ δ δ

δ δ δ

Ω

∂

+ ⋅ + + ⋅

+ ⋅ + ⋅ − ⋅ + ⋅ + ⋅

− ⋅ + ⋅ + ⋅ =

∫

∫

F M F M a u F M F M a

F M a F M a p u l k

p u l k

M

M

ϕ

ϕ ψ ϕ ψ

ϕ ψ

 (4.73) 

 Integrating by part over RM  and considering arbitrary variations δu , δ ϕ  and δψ , 

we obtain the following equilibrium equations 

  

{ }

{ }
{ }

0 0 1 1

,

0 0 1 1 3 0 1 1 2

,

0 1 3 3

1: ( ) in

1: ( ) ( ) in

: 2( ) 0 in

R

R

R

a
a

a
a

α

α

α

α

δ

δ

δψ

+ − =

+ + + − =

− ⋅ =

u F M F M a p 0

F M F M a F M F M a l 0

F M a k a

M

M

M3

ϕ  (4.74a) 

and natural boundary conditions 
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0 0 1 1

0 1

3
3

: ( ) on

: ( ) on

: 0 on

s
R

s
R

s
R

n

n

α
α

α
α

δ

δ

δψ

+ − = ∂

− = ∂

⋅ = ∂

u F M F M a p 0

F M a l 0

k a

M

M

M

ϕ  (4.74b) 

for a Neumann boundary problem. In other cases, the natural boundary conditions 

should be applied to a part of the boundary R∂M , i.e. NΓ . Note that /D R NΓ Γ≡∂M  is 

the Dirichlet boundary. 

F. Constitutive equations 

This section addresses the particular case of hyperelastic constitutive equations. The 

shell structure can undergo finite deformations (finite rotations and displacements) while 

the material response remains in the elastic regime. Therefore, no elasto-plastic behavior 

is discussed in this dissertation.  

 The main characteristic of hyperelastic materials (or Green-elastic material [124]) is 

that postulate the existence of a strain energy function Ψ  depending on the deformation 

gradient (or in the present case on the Green strain tensor). The function Ψ  is called 

Helmholtz free energy and describes by definition strain energy per unit of undeformed 

mass. 

 If we have a perfectly elastic material which produces no locally entropy and for the 

specific case of purely mechanical process (isothermal), we can equal the rate of 

mechanical work (or stress power) per unit reference volume to 0eρ . We make use of 

the pointwise statement of the first law of thermodynamics [118, 119] 

  0 0 0 0Dive rρ ρ= ⋅ + −S E q  (4.75) 

where the underlined terms vanish because of the isothermal conditions. We also know 

  e ηΨ Θ= −  (4.76) 

for constant entropy η  and temperature Θ . As a result of (4.76) we have eΨ= . On the 
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other hand, the chain rule yields 

  ( )0 0 0: .ρ ρ ρ Ψ
Ψ Ψ

∂
= = ⋅

∂
E E

E
 (4.77) 

For arbitrary values of E  we obtain 

  ( )
( )

0: .ρ
Ψ∂

= =
∂

E
S S E

E
 (4.78) 

 Let us now apply the linearization of the tensor-value function ( )S E  with respect to 

E  at a point x . Thus 

  ( ) ( ) ( )[ ] ( ), D o∆ ∆ ∆= + +S E E S E S E E EL  (4.79) 

where L  denotes the linearization operator. The second term of the right-hand side is the 

Gâteaux derivative or directional derivative of ( )S E  defined by 

  ( )[ ] ( )
0

0

d dD
d d

ε
ε

ε
ε

ε ε
∆ ∆

=
=

= = +
SS E E S E E  (4.80) 

which is linear in ∆E . Note that the Gâteaux derivative of ( )S E  can also be written as 

  

( )[ ] ( )
( )

( )2

0

D

ρ

∆ ∆ ∆

Ψ
∆

∆

∂
= ⋅ = ⋅

∂
∂

= ⋅
∂ ∂

= ⋅

S E
S E E S E E E

E
E

E
E E

EC

D

 (4.81) 

where 4∈TC  is the fourth-order elasticity tensor. Note that the elasticity tensor can be 

obtained by applying the time derivative of S , i.e. 

  .= ⋅S EC  (4.82) 

 We introduce now an assumption related to the constitutive equations of the shell. 

Some authors consider this conjecture as small strain shell behavior. However, we will 

see that moderate and large strains may still occur. 
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Assumption 3: We consider linear relation between the second Piola-Kirchhoff stress 

tensor S  and the Green strain tensor E . 

 It implies that 

  .= ⋅S EC  (4.83) 

 This expression is easy to derive. We neglect higher-order terms in (4.79) and apply 

the linearization of ( )S E  at the point =x X  (undeformed configuration). Then, we 

obtain  

  ( ),∆ ∆= ⋅S 0 E ECL  (4.84) 

since ( )=S 0 0 . Finally, we change the notation ∆E  to E  and equation (4.84) becomes 

(4.83). Furthermore  

  0
1
2

ρ Ψ= ⋅ ⋅E EC  (4.85) 

which is called linear quadratic constitutive model [60].  

 The tensor C  can be written in terms of convected basis vectors { }ig  in the region 

RB  as 

  ijkl
i j k lC= ⊗ ⊗ ⊗g g g gC  (4.86) 

where the components of C  satisfy the following symmetry conditions 

  .ijkl jikl ijlk klijC C C C= = =  (4.87) 

 The number of independent components of the elasticity tensor C  for an arbitrarily 

anisotropic material is 21, for a monoclinic material with symmetry respect to the 

midsurface is 13, for an orthotropic material is 9, for a transversely isotropic material is 

5, and finally for an isotropic material is 2. 

 For isotropic materials equations (4.83) and (4.85) are well-defined in the literature. 

In that particular case we have 
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( )

( ) ( )2 2
0

tr 2

tr tr
2

λ µ
λρ µΨ

= +

= +

S E G E

E E
 (4.88) 

which characterizes the so-called Saint-Venant-Kirchhoff material. Here, λ  and µ  

denote the Lamé constants. 

1. Multilayered composite shells 

Fiber-reinforced composites are composed of oriented fibers embedded in a matrix. The 

basic feature of composites with oriented fibers is their anisotropic behavior. When a 

shell consists of several laminae with varying material properties and fiber orientations, 

it is called a laminated composite shell.  

 We assume that layers are perfectly bonded together without any slip among their 

interfaces. It supports the continuity of the displacement field across lamina boundaries. 

It is common practice to represent mechanical behavior of the laminated shell on the 

macroscopic level as a piece-wise homogeneous and anisotropic continuum. The 

behavior of the laminate at a particular layer can be assumed as purely elastic and 

described with a simple hyperelastic orthotropic material law. 

 We first focus our attention to a single lamina L  made of an orthotropic material 

(Fig. 4.3). To calculate at a point P  the components of the elasticity tensor C  associated 

with the convected coordinates { }iθ  in terms of given orthotropic constants, we 

postulate a coordinate system { }iϑ  such that the corresponding base vectors ˆ{ }ie  

coincide at P  with the principal material directions (see Refs. [19, 20, 104, 125]). The 

base vectors ˆ{ }ie  form an orthonormal basis and are oriented differently from layer to 

layer. The third coordinate 3 3θ ϑ=  remains unchanged.  
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Fig. 4.3. A multilayered composite shell. 

 In the coordinate system { }iϑ  we express the elasticity tensor in terms of its 

components ijklC  relative to the fiber reference axis of a lamina L , i.e. 

  ˆ ˆ ˆ ˆabcd
L L a b c dC= ⊗ ⊗ ⊗e e e eC  (4.89) 

which can be arranged in a matrix 6 6ijkl
LC ×⎡ ⎤ ∈⎣ ⎦ M . Here we use the Voigt ordering for the 

components in matrix form. Thus 

  

1111 1122 1133

1122 2222 2233

1133 2233 3333

2323

1313

1212
6 6

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

L L L

L L L

ijkl L L L
L

L

L

L

C C C
C C C
C C C

C
C

C
C

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ = ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (4.90) 

where the components ijkl
LC  are given by (Reddy [54, p. 30]) 

 

1111 2222 33331 23 32 2 13 31 3 12 21

1122 1133 22331 21 31 23 3 13 12 23 2 32 12 31

1212 2323 1313
12 23 13

(1 ) (1 ) (1 ), ,

( ) ( ) ( ), ,

, ,

L L L

L L L

L L L

E E EC C C

E E EC C C

C G C G C G

ν ν ν ν ν ν

ν ν ν ν ν ν ν ν ν
∆ ∆ ∆

∆ ∆ ∆

− − −
= = =

+ + +
= = =

= = =

 (4.91) 
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in which 12 21 23 32 13 31 21 32 131 2ν ν ν ν ν ν ν ν ν∆= − − − − . Note that the tensor LC  is computed 

from (4.91) in terms of nine independent engineering elastic constants. 

 Since we are developing the formulation in convective coordinates associated with 

the basis { }ig , we have to express the elasticity tensor LC  in the same convective 

coordinates by mean of the following transformation (Fig. 4.4) 

  ˆ ˆ ˆ ˆabcd ijkl
L L a b c d L i j k lC C= ⊗ ⊗ ⊗ = ⊗ ⊗ ⊗e e e e g g g gC  (4.92) 

which leads to 

  ˆ ˆ ˆ ˆ( ) ( ) ( )( ) .ijkl i j k l abcd
L a b c d LC C= ⋅ ⋅ ⋅ ⋅g e g e g e g e  (4.93) 

 The base vectors in coordinates iϑ and iθ  are related by 

  ˆ .
i

a ia

θ
ϑ

∂
=

∂
e g  (4.94) 

Thus, equation (4.93) becomes 

  
i j k l

ijkl abcd
L La b c dC Cθ θ θ θ

ϑ ϑ ϑ ϑ
∂ ∂ ∂ ∂

=
∂ ∂ ∂ ∂

 (4.95) 

for a lamina L. 

 

2ϑ

1ϑ

θ
1ê

1g

2g
2ê

2θ

1θ  

Fig. 4.4. Principal material coordinates { }iϑ  and convective coordinates { }iθ . 
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 The coordinate 3θ  is always orthogonal to the midsurface. Since 3 3θ ϑ=  we obtain 

  3 3
3 3ˆ ˆ ˆ0, 0, 1.α

α⋅ = ⋅ = ⋅ =g e g e g e  (4.96) 

For the particular case when the basis vectors { }ig  are orthogonal, we have 

  1 2 1 2
1 1 2 2

11 22 11 22

cos sin sin cosˆ ˆ ˆ ˆ, , ,
g g g g
θ θ θ θ

⋅ = ⋅ = ⋅ =− ⋅ =g e g e g e g e  (4.97) 

where gαα  (no sum) are components of the metric tensor at RB  and θ is the fiber 

direction angle relative to the convective coordinates (Fig. 4.4). 

 We specialize the constitutive equations (4.86) to convected curvilinear coordinates 

with basis { }ig . For orthotropic materials we have 3 0LCαβγ =  and 333 0LCα = , hence  

  

33
33

3 3 3
3

33 33 3333
33

2

.

L L

L

L L

S C E C E

S C E

S C E C E

αβ αβλµ αβ
λµ

α α λ
λ

λµ
λµ

= +

=

= +

 (4.98) 

The above relation can be arranged in matrix form by defining the matrices { } 6 1ijS ×∈M  

and { } 6 1
ijE ×∈M . Then, we obtain 

  

1111 1122 1133 111211

1122 2222 2233 221222

1133 2233 3333 331233

2323 231323

2313 131313

1112 2212 3312 121212

0 0
0 0
0 0

0 0 0 0
0 0 0 0

0 0

L L L L

L L L L

L L L L

L L

L L

L L L L

C C C CS
C C C CS
C C C CS

C CS
C CS

C C C CS

⎡⎧ ⎫⎪ ⎪⎪ ⎪ ⎢⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪=⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭ ⎣

11

22

33

23

13

12

.
2
2
2

E
E
E
E
E
E

⎤ ⎧ ⎫⎪ ⎪⎪ ⎪⎥⎪ ⎪⎢ ⎥ ⎪ ⎪⎪ ⎪⎢ ⎥ ⎪ ⎪⎪ ⎪⎢ ⎥ ⎪ ⎪⎪ ⎪⎢ ⎥ ⎨ ⎬⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎪ ⎪⎢ ⎥ ⎪ ⎪⎪ ⎪⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎪ ⎪⎢ ⎥ ⎪ ⎪⎩ ⎭⎦

 (4.99) 

 The constitutive matrix 6 6ijkl
LC ×⎡ ⎤ ∈⎣ ⎦ M  in the convective coordinates may also be 

obtained by mean of the transformation matrix [ ]T , i.e. 

  [ ] [ ]Tijkl ijkl
L LC T C T⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦  (4.100) 

where [ ] 6 6T ×∈M  is denoted by 
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  [ ]

2 2
11 12 11 12

2 2
21 22 21 22

22 21

12 11

11 21 12 22 11 22 21 12 6 6

( ) ( ) 0 0 0 2
( ) ( ) 0 0 0 2

0 0 1 0 0 0
0 0 0 0
0 0 0 0

0 0 0

c c c c
c c c c

T
c c
c c

c c c c c c c c
×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

+⎢ ⎥⎣ ⎦

 (4.101) 

and ˆi
ij jc = ⋅g e  is given in (4.96) and (4.97). 

2. Functionally graded shells 

Functionally graded materials (FGMs) are a special kind of composites in which the 

material properties vary smoothly and continuously from one surface to the other. These 

materials are microscopically inhomogeneous and are typically made from isotropic 

components. One of the main advantages of FGMs is that it mitigates severe stress 

concentrations and singularities at intersections between interfaces usually presented in 

laminate composites due to their abrupt transitions in material compositions and 

properties. Applications of FGMs are extensive especially in high-temperature 

environments such as nuclear reactors, chemical plants and high-speed spacecrafts. 

 Functionally graded materials (FGMs) considered here are made from a mixture of 

ceramics and metals. It is known that these materials withstand high-temperature 

gradient environments while maintaining their structural integrity. The ceramic 

constituent of the material provides the high-temperature resistance due to its low 

thermal conductivity. On the other hand, the ductility of the metal constituent prevents 

fracture cause by stresses due to high-temperature gradient in a very short period of time. 

Additionally, ceramic-metal FGMs with continuously varying volume fraction can be 

easily manufactured.  

 In this two-phase functionally graded material, the properties are assumed to vary 
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through the thickness of the shell. The materials in the bottom and top surfaces are metal 

and ceramic respectively (Fig. 4.5). Material properties at a point X  are given by a 

combination between metal and ceramic constituents. 

 The symmetry group of this isotropic material body is given by the set 3θ
G  

(inhomogeneous through the thickness) such that the second Piola-Kirchhoff stress 

tensor S  is invariant under 3θ
G , i.e. 

  ( ) ( ) 3
T

θ
= ∀ ∈S E S Q EQ Q G  (4.102) 

for 3 SO(3)θ =G . The set SO(3)  is the proper orthogonal group in the Euclidean three-

dimensional vector space (positive determinant). 

 We also assume a rule of mixtures based on the Voigt model (Ref. [126]). Hence, 

any material property is given by the weighted average of the moduli of the constituents, 

namely 

  ( )3
c c m mf fϖ θ ϖ ϖ= +  (4.103) 

where the subscripts m and c refer to the metal and ceramic constituents and f is the 

volume fraction of the phase. The symbol ϖ  denotes a generic material property like the 

Young’s modulus.  

 The volume fractions of the ceramic cf  and metal mf  corresponding to the power 

law are expressed as (Reddy [54, 127], Praveen and Reddy [128], Reddy and Chin 

[129])  

  1 , 1
2

n

c m c
zf f f
h

⎛ ⎞⎟⎜= + = −⎟⎜ ⎟⎜⎝ ⎠
 (4.104) 

where n is the volume fraction exponent which takes values greater than or equal to zero. 

The value of n equal to zero represents a fully ceramic shell. Conversely, we have a fully 

metal shell as n tends to infinity (Fig. 4.6). 
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Fig. 4.5. Arbitrary functionally graded shell. 

 

 

 

Fig. 4.6. Variation of the volume fraction function cf  through the dimensionless 
thickness for different values of n .  
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 We consider the components of the elasticity tensor ( )3ijklC θ  as a function of the 

thickness coordinate. They can be written in terms of the convected base vectors as 

  ( )3ijkl
i j k lC θ= ⊗ ⊗ ⊗g g g gC  (4.105) 

which can be arranged in a matrix [ ] 6 6ijklC ×∈M  such that 

  [ ]

1111 1122 1133

1122 2222 2233

1133 2233 3333

2323

1313

1212
6 6

0 0 0
0 0 0
0 0 0

.
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

ijkl

C C C
C C C
C C C

C
C

C
C

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (4.106) 

 The components ijklC  at each 3θ  are functions of only two independent variables. 

then 

  

( )

( )

( )

3
1111 2222 3333

3
1122 1133 2233

3
1212 1313 2323

(1 )
(1 )(1 2 )

(1 )(1 2 )

2(1 )

E
C C C

E
C C C

E
C C C

θ ν

ν ν

θ ν

ν ν

θ

ν

−
= = =

+ −

= = =
+ −

= = =
+

 (4.107) 

where ( )3
c c m mE E f E fθ = + . The Poisson’s ratio ν  is considered constant through the 

thickness. Thus  

  ( )3ν θ ν=  (4.108) 

and hence 

  
( )3ijkl ijkl ijkl

c c m m

ijkl ijkl
cm c m

C C f C f

C f C

θ = +

= +
 (4.109) 

where ijkl ijkl ijkl
cm c mC C C= −  and cf , mf  are given in (4.104). 
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G. The geometrically exact shell theory 

We shall point out that, except assumptions 1 and 2, no further kinematic hypotheses 

were used in the derivation of the shell theory. Equation (4.46) and (4.47) are exact 

within the frame of the adopted kinematical model. Consequently, the present model 

allows the shell undergoes finite deformations (no restrictions on displacements and 

rotations). 

 We now consider briefly the geometrically exact shell theory (Simo and Fox [5], Fox 

[60], Sansour and Bednarczyk [93]). This formulation relies on the concept of a Cosserat 

continuum in which the reduction of the three-dimensional equations is carried out in a 

direct manner by considering the continuum to be a two-dimensional surface. We will 

show here that the geometrically exact shell theory can be derived from the three-

dimensional continuum by adopting four assumptions. In that sense our present shell 

formulation is superior to the Cosserat shell theory which can be seen as a subset of the 

present approach. 

 The main assumption for the adopted Cosserat shell model is given next 

Assumption 1: The position vector ( )iθx  is considered as a linear expansion of the 

thickness coordinate around the midsurface. The normal strain in 

assumed to be zero, i.e. 

  ( ) ( ) ( )3
3 3 3, 1.i α αθ θ θ θ= + ⋅ =x r a a a  (4.110) 

 Assumption 1 introduces the inextensibility condition to the kinematic equations of 

the shell (known as the Reissner-Mindlin inextensibility constraint). This assumption 

implies that the normal strain component (0)
33ε  should be zero. Equation (4.41) and the 

last equation of (4.110) lead to 
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  (0)
33 3 3

1 ( 1) 0 .
2

ε = ⋅ − =a a  (4.111) 

The terms (1)
33ε  and (2)

33ε  also vanish since =ψ 0 . 

 This hypothesis considers that the director vector 3a  rotates to 3a  without changing 

its length. The constraint enforces the director to remain straight and unstretched. Most 

shell formulations describe the deformation of the director with the help of a rotation 

tensor Λ . Namely  

  3 3=a Λa  (4.112) 

for SO(3)∈Λ . Thus, the inextensibility condition 3 3=a a  holds automatically.  

 Parametrizations of the rotation tensor Λ  are crucial for the development of finite 

rotation theories based on assumption 1. Finite element formulations for shells require 

two independent rotational degrees of freedom in order to avoid rank-deficiency 

problems. The original three independent parameters needed to describe the proper 

tensor Λ  is reduced to two parameters by neglecting the drilling rotation. 

 These formulations can be classified in two categories independent of the adopted 

rotational parametrizations: additive update structure and multiplicative update structure 

(Betsch et al. [111], Ibrahimbegovic [130]). 

 The first formulation relies on two successive rotations identified with spherical 

coordinates (Ramm [131]). Rotations of the shell elements are limited to 90° or in some 

cases to 180° because singularity problems may arise. However, the update of the 

configuration of the shell is additive which is suitable for finite element 

implementations. 

 The second one is based on the exact description of finite rotations by means of the 

Rodrigues formula and it is considered singularity-free (Simo and Fox [5]). We define 

the exponential map as ˆexp : so(3) SO(3)∈ → ∈Θ Λ  such that 
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0

1ˆ ˆexp
!

N

N N

∞

=

⎡ ⎤= =⎣ ⎦ ∑Λ Θ Θ  (4.113) 

where { }2ˆ ˆ ˆso(3) T= ∈ + =Θ Θ Θ 0T . 

 Next, we introduce the Rodrigues formula 

  
( )2

2
2

sin 2sin 1ˆ ˆ ˆexp
2 ( 2)

⎡ ⎤= = + +⎣ ⎦
θθΛ Θ 1 Θ Θ

θ θ
 (4.114) 

where ∈θ V  is the rotation vector associated to Θ̂  (it can also be understood as an 

eigenvector of Θ̂  such that ˆ =Θθ 0 ). For this case the update of the configuration of the 

shell is multiplicative which leads to a complex update algorithms. 

 In addition to assumption 1, kinematics of the shell may be substantially simplified. 

We introduce further assumptions in the model (see Büchter and Ramm [9]) arriving to 

the so-called geometrically exact shell theory. 

Assumption 2: Quadratic and higher-order terms in 3θ  of the Green strain tensor 

components are neglected. 

Assumption 3: The normal stresses in the thickness direction are neglected, i.e. 
33 0S = . This assumption allows us to reduce the material law by 

condensation of the elasticity tensor. 

Assumption 4: Let the shifter tensor µ  be approximated to the identity tensor. Then 

  ( ), det 1.µ≈ = ≈µ 1 µ  (4.115) 

This is comparable to assume ˆ ˆ,≈ ≈S S E E  in the virtual work statement.  

 The last assumption restrict the application of the formulation to thin shells where a 

relative error in the order of h R  is tolerated ( 20)h R ≥ . 
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CHAPTER V 

VARIATIONAL MODEL AND NUMERICAL SIMULATIONS 

The purpose of this chapter is to develop the finite element formulation for the 

geometrically nonlinear shell theory presented in Chapter IV. We start by applying the 

principle of virtual work to derive the weak form of the equilibrium equations. These 

equations are already reduced to their two-dimensional form after performing the 

integration through the thickness of the components of the elasticity tensor. A consistent 

linearization is then carried out that yields the elemental tangent operator. The finite 

element discretization is introduced by approximating the parametric space of the 

midsurface and the covariant components of the kinematic variables. The highly 

nonlinear system of algebraic equations is solved by an incremental-iterative method. In 

particular, we utilize the incremental Euler-forward method and the iterative Newton-

Raphson method. The cylindrical arc-length method is also implemented for cases in 

which the tangent matrix exhibits singularities. Finally, extensive numerical simulations 

are presented for finite deformation analysis of benchmark problems that include plates, 

cylindrical, spherical and hyperboloidal shells under static loading. 

 As it was established in the last chapter, we adopt the simplest possible shell 

kinematics which allows for a linear distribution of the transverse and normal strains 

over the shell thickness. Accordingly, we have assumed that the position vector of any 

point of the shell body is determined by the equation 

  ( ) ( ) ( ) ( )3 3 2
3 ( )α α α αθ θ θ θ θ θ= + +x r a ψ  (5.1) 

where the vector quantities r  and 3a  were defined in Chapter IV. Hence, the ordered 

triple ( )3, ,r a ψ  characterizes the configuration space of the shell. 



 132

 Instead of the triple ( )3, ,r a ψ  we may consider alternatively the triple of 

displacement vectors ( ), ,u ϕ ψ  as defining the configuration space of the shell such that 

  ( ) ( ) ( ) ( )3 3 2( )α α α αθ θ θ θ θ θ= + +v u ϕ ψ  (5.2) 

where 3
3ψ= aψ . Thus, the abstract configuration of the shell is denoted by the set  

  ( ){ }2 3 3, , : .Φ Φ= ≡ ∈ → × ×uC Aϕ ψ R  (5.3) 

Note that Φ∈C  contains the same amount of three-dimensional information as (5.2) to 

locate at any time arbitrary points in the three-dimensional shell (Fig. 5.1). 

A CD

A B

e3

e2
e1

RM

A

B
C

D

θ ( )r θ

2 3 3:Φ ∈ → × ×A

1θ

2θ

1x

2x

3x

 

Fig. 5.1. Abstract configuration space of the shell. 

A. The weak formulation 

The finite element framework is based on the principle of virtual work. We confine our 

analysis to static cases (no inertial forces). It can be shown that the virtual work 

statement is precisely the weak form of the equilibrium equations and it is valid for 

linear and nonlinear stress-strain relations. 

 We now construct the space of kinematically admissible variations. Let εΦ  represent 
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a single parameter curve of configurations of the shell such that 0|ε εΦ Φ= =  and 

εΦ ∈C  for all values of ε. Then, εΦ  is given by 

  ( ), ,ε ε ε εΦ = + + +u w ψϕ ϑ κ  (5.4) 

which requires only linear operations (the space C  is linear). The Gâteaux (directional) 

derivative, defined as 

  ( ) ( )
0

d
d ε

ε
δ

ε =

=  (5.5) 

is used to describe elements of CT  (the tangent space of C ). That is 

  ( )
0

, , .d
d

ε

ε
δ δ δ δ

ε
Φ

Φ
=

= = u ψϕ  (5.6) 

Therefore, the tangent space to C  at a configuration Φ , denoted by CT , is given by 

triplets 

  ( ){ }3 3, , : .δ δ δ= → × ×uC Aϕ ψT  (5.7) 

 The space of kinematically admissible variations V  follows immediately by 

restricting elements of CT  to be zero on those portions of the boundary where the 

kinematic variables are specified [60]. Thus 

  ( ){ }, , | 0, | 0, | 0
D D D

δ δ δ δ δ δ δΓΦ= ≡ ∈ = = =u uC Γ Γϕ ψ ϕ ψV T  (5.8) 

where DΓ  is the Dirichlet boundary.  

 With the help of Eqs. (4.65) and (4.72) we express the weak formulation as 

  ( ) ( ) ( )int ext, , , 0δ δ δΦ Φ Φ Φ Φ Φ= − =G G G  (5.9) 

where  

  ( ) 0 0 1 1
int , ( )

R

dδ δ δΦ Φ Ω= ⋅ + ⋅∫ M ε M ε
M

G  (5.10a) 
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( )ext , ( )

( ) .

R

R

s s s

d

ds

δ δ δ δ

δ δ δ

Φ Φ Ω

∂

= ⋅ + ⋅ + ⋅

+ ⋅ + ⋅ + ⋅

∫

∫

p u l k

p u l k

M

M

G ϕ ψ

ϕ ψ
 (5.10b) 

 The expression shown above depends on the variation of the strains. These are easily 

computed as follows 

  
( )
( )

0 0 0

1 0 1 1 0

Sym

Sym

T

T T

δ δ

δ δ δ

=

= +

ε F F

ε F F F F
 (5.11) 

where 0δF  and 1δF  are given by (4.67). The operator ( )Sym  takes the symmetric part 

a tensor. 

 The stress resultants nM  are obtained by integration through the thickness of the 

second Piola-Kirchhoff stress tensor, i.e. 

  
/ 2

0 1 3 3

/ 2
ˆ, 1, .

h

h
dθ µ θ

−
⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫M M S  (5.12) 

This equation is valid for materials with constant properties or with properties varying 

continuously through the thickness of the shell. On the other hand, through-the-thickness 

integration of multilayered composites should be carried out at each lamina. Then, Eq. 

(5.12) becomes 

  
10 1 3 ( ) 3

1

ˆ, 1, .
L

L

N h
L

hL

dθ µ θ
+

=

⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∑∫M M S  (5.13) 

 For hyperelastic materials, the static part of the weak form of the equilibrium 

equations is the first variation of an elastic potential energy function. This statement is 

known as the principle of minimum potential energy [55, 119]. We define the elastic 

potential function ( ):Π →C  as 

  
( ) 0 ( )

( ) .

R R

R

s s s

dV d

ds

ρΠ Φ Ψ Ω

∂

= − ⋅ + ⋅ + ⋅

− ⋅ + ⋅ + ⋅

∫ ∫

∫

p u l k

p u l k

B M

M

ϕ ψ

ϕ ψ
 (5.14) 
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We set ( ) ( )ˆ ˆΨ Ψ=E E  and therefore  

  ( ) ( )
0

ˆ ˆ
ˆ ˆ .ˆρ

Ψ∂
=

∂

E
S E

E
 (5.15) 

 Let us introduce the two-dimensional function Ξ  of elastic strain energy of the shell, 

measured per unit area of surface RM  

  ( )2
3

2
ˆ ˆh

h
dµ θΞ Ψ

−
= ∫ E  (5.16) 

where ( )0 1: ,Ξ Ξ= ε ε . After some manipulations Eq. (5.14) becomes 

  
( ) ( )0 1

0 , ( )

( )

R R

R

s s s

d d

ds

ρΠ Φ Ξ Ω Ω

∂

= − ⋅ + ⋅ + ⋅

− ⋅ + ⋅ + ⋅

∫ ∫

∫

ε ε p u l k

p u l k

M M

M

ϕ ψ

ϕ ψ
 (5.17) 

which is a two-dimensional statement. The density 0ρ  is not a function of 3θ . 

 The first variation of the potential energy is obtained with the directional derivative 

defined by (5.5). Thus 

  
( ) ( ) ( )

( )[ ] ( )
0

, ,

0 .

d
d

D

ε
ε

δ δ δ
ε

δ δ

Φ Φ Π Φ Φ Π Φ

Π Φ Φ Π Φ Φ
=

= =

= =∇ ⋅ =

G
 (5.18) 

Performing the variation of (5.17) we arrive to 

  
( )

1

0

, ( ) ( )

( ) 0

R R

R

k k

k

s s s

d d

ds

δ δ δ δ δ δ

δ δ δ

Π Φ Φ Ω Ω
=

∂

= ⋅ − ⋅ + ⋅ + ⋅

− ⋅ + ⋅ + ⋅ =

∑∫ ∫

∫

M ε p u l k

p u l k

M M

M

ϕ ψ

ϕ ψ
 (5.19) 

with a new definition of the stress resultants, i.e. 

  0 1
0 00 1, .ρ ρΞ Ξ∂ ∂

= =
∂ ∂

M M
ε ε

 (5.20) 

 Equation (5.19) is a set of highly nonlinear differential equations which are functions 
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of the triple ( ), ,u ϕ ψ  and the curvilinear coordinates { }iθ . Upon discretization, we 

solve this problem by the Newton-Raphson method. 

B. Linearization and tangent operators 

As it was mentioned in the last section, a common and simple technique to solve the 

nonlinear equations is to use the incremental/iterative solution technique of Newton’s 

type. It is an efficient method that exhibits quadratic convergence rate near to the 

solution point. This procedure requires a consistent linearization of the weak form 

generating recurrence update formulas. The nonlinear problem is then replaced by a 

sequence of linear problems which are easy to solve at each iteration and load step. 

 Linearization is a systematic process that relies on the concept of directional 

derivatives (Hughes and Pister [132], Marsden and Hughes [120, p. 226], Bonet and 

Wood [133, p. 146]). We assume that the external forces are conservative (independent 

of Φ ). Applying that procedure to equation (5.9) we obtain 

  ( ) ( ) ( )[ ] ( ), ; , ,D oδ δ δΦ Φ ∆Φ Φ Φ Φ Φ ∆Φ ∆Φ= + +LG G G  (5.21) 

where the underlined term is called consistent tangent operator. Furthermore, we can 

write the tangent operator as 

  

( )[ ] ( )
( )( )
( )( )

, ,D δ δ

δ

δ

Φ Φ ∆Φ Φ Φ ∆Φ

Π Φ Φ ∆Φ

Π Φ ∆Φ Φ

=∇ ⋅

=∇ ∇ ⋅ ⋅

=∇ ∇ ⋅

G G

 (5.22) 

since δΦ  remains constant during the increment ∆Φ . 

 The term ( )( )Π Φ∇ ∇  is nothing but the Hessian operator of the scalar field ( )Π Φ  

which is always symmetric (Liu [134, p. 271]). Therefore, the tangent operator will be 

symmetric if there exists a total potential energy from which the weak form is derived 
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(hyperelastic materials) and if the space of configuration of the shell C  is linear. For 

other cases, e.g. geometrically exact shell theories, we should expect that the consistent 

tangent operator (Hessian operator) and the consistent linearization (second variation of 

the total potential energy) are not the same. For more a detailed explanation of this issue 

the reader can consult the excellent paper of Simo [135]. 

 Next, the iterative solution procedure is discussed. The Newton-Raphson technique 

goes as follows: given a configuration kΦ ∈C , corresponding to iteration k, solve the 

linearized system 

  ( ) ( ), , 0k k kδ δΦ Φ Φ Φ ∆Φ+∇ ⋅ =G G  (5.23) 

where k∆Φ  is the incremental change in the configuration of the shell. This increment is 

used to update the shell configuration 1k kΦ Φ +→ ∈C . Namely 

  1 .k k kΦ Φ ∆Φ+ = +  (5.24) 

It is evident that the use of the triple ( ), ,u ϕ ψ  preserves the additive structure of the 

configuration update of the shell. With the new configuration, the value of ( )1,k δΦ Φ+G  

is calculated. Convergence of the iterative procedure is achieved when this value is zero 

for all δΦ∈V . More details of the incremental/iterative method utilized in the 

numerical solution are given in Section D. 

 The consistent tangent operator is decomposed in two parts: the material tangent 

operator and the geometric tangent operator. Thus 

  ( )[ ] ( )[ ] ( )[ ], , , .m gD D Dδ δ δΦ Φ ∆Φ Φ Φ ∆Φ Φ Φ ∆Φ= +G G G  (5.25) 

The contribution of the external forces vanishes because they are conservative. The first 

term which is the material part is given by 

  ( )[ ] [ ]
1

0

, ( )
R

n n
m

n

D D dδ δΦ Φ ∆Φ ∆Φ Ω
=

= ⋅∑∫ M ε
M

G  (5.26) 
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and the geometric part by 

  ( )[ ] [ ]
1

0

, ( ) .
R

n n
g

n

D D dδ δΦ Φ ∆Φ ∆Φ Ω
=

= ⋅∑∫ M ε
M

G  (5.27) 

 The material part of the tangent operator results from the directional derivative of the 

stress resultants. Using (5.12) we obtain 

  

( )[ ] ( )
2

3 3

2

1 2
3 3

20

,

ˆ( )

ˆ( )

i i

h
i

h

h
i j j

hj

D

d

d

µ θ θ

µ θ θ

Φ ∆Φ ∆ Φ ∆Φ

∆

∆

−

+

−=

=

=

= ⋅

∫

∑∫

M M

S

εC

 (5.28) 

where ( )ˆ ˆ ˆˆ ˆ ˆD ∆ ∆ ∆⎡ ⎤ = = ⋅⎣ ⎦S E E S EC  and Ĉ  is the pull-back of the contravariant fourth-

order elasticity tensor C . Substituting (5.28) into (5.26) we arrive to 

  ( )[ ]
1 1

( )

0 0

, ( )
R

i i j j
m

i j

D dδ δΦ Φ ∆Φ ∆ Ω+

= =

= ⋅ ⋅∑∑∫ ε ε
M

G B  (5.29) 

where j∆ε  is given by (5.11). The components of the tensor ( )kB  are the material 

stiffness coefficients of the shell and are defined as 

  
2

( ) 3 3

2
ˆ( ) , 0,1,2 .

h
k k

h
d kµ θ θ

−
= =∫B C  (5.30) 

 For isotropic plates, the tensor (1)B  vanishes. This means that membrane and 

bending stress resultants are computed directly from membrane and bending strain 

resultants respectively. There are no coupled terms between both effects. 

 Two important facts are pointed out from Eq. (5.29): first, the material part of the 

tangent operator is symmetric whenever the tensor Ĉ  is symmetric; second, Eq. (5.29) is 

valid even for cases in which material nonlinearity occurs, i.e. assumption 3 (4.83) is not 

required. 

 The geometric part of the tangent operator results from the directional derivative of 

the variations of the kinematic quantities multiplying the stress resultants. We compute 
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iδ∆ ε  using (5.11). That is 

  
( )

( )

0 0 0

1 0 1 1 0

Sym

Sym

T

T T

δ δ

δ δ δ

∆ ∆

∆ ∆ ∆

=

= +

ε F F

ε F F F F
 (5.31) 

which are symmetric tensors. The stress resultants are evaluated from the following 

equation 

  
1

( )

0

, 0,1i i j j

j

i+

=

= =∑M εB  (5.32) 

for a symmetric tensor iM . Then, we obtain 

  ( )[ ]
1 1

( )

0 0

, ( ) .
R

i i j j
g

i j

D dδ δΦ Φ ∆Φ ∆ Ω+

= =

= ⋅ ⋅∑∑∫ ε ε
M

G B  (5.33) 

The operator ( )[ ],gD δΦ Φ ∆ΦG  is evidently symmetric. 

 The derivation of virtual internal energy intG  (5.10a) and the tangent operator (5.25) 

is not a trivial task. Even for isotropic materials these expressions have an extremely 

complex form when displacements and rotations are large. To illustrate this fact we 

show in Table 5.1 the number of terms of the virtual strain energy for the present 

theoretical model and different laminated shell geometries. 

C. Finite element discretization 

Similar to the linear deformation cases (see Chapter III, Section C), we construct the 

finite-dimensional space of V  called hpV  such that hp⊂V V . Let A  be the parametric 

space of the midsurface. In tensor-based finite element models, the domain A  is 

discretized into NEL elements such that 

  
NEL

1

e

e=

=A A∪  (5.34) 

for no overlapping subdomains eA  called finite elements.  
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Table 5.1. Number of terms of the virtual internal energy for different physical models 
and geometries. 

Virtual strain energy  
Theory Application Kinematic 

variables Linear Nonlinear Total 

Beam (Euler-
Bernoulli)* 

Moderate 
rotations 2 2 3 5 

Navier-Stokes 
2D equations** - 3 10 4 14 

Beam (Present)* Finite 
deformations 5 13 109 122 

Cylindrical 
shells (Sanders) 

Moderate 
rotations 5 106 193 299 

Rectangular 
plates (Present) 

Finite 
deformations 7 136 2245 2381 

Circular plates 
(Present) 

Finite 
deformations 7 232 5197 5429 

Cylindrical 
shells (Present) 

Finite 
deformations 7 264 5474 5738 

Spherical shells 
(Present) 

Finite 
deformations 7 666 19630 20296 

Hyperboloidal 
shells (Present) 

Finite 
deformations 7 699 19424 20123 

 * Isotropic cases. **Newtonian fluid with constant viscosity. 

 The geometric quantities describing the shell surface (fields , ,b a aαβ αβ ) are taken 

exactly at every Gauss integration point. Therefore, there is no approximation of the 

midsurface. The natural coordinates αθ  are mapped on the biunit square, using high-

order Lagrangian polynomials. Namely 

  ( ) ( )( ) ( )

1

, ( ) ,
m

j j

j

Nα
αξ η θ ξ η

=

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑ eθ  (5.35) 

where α
αθ= eθ , m is the number of nodes of the element and ( )( ) ,jN ξ η  are Lagrangian 

interpolation functions at the node j. 
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 Following the concept of isoparametric elements, we use the same Lagrangian 

polynomial degree for the interpolation of the covariant components of the kinematic 

variables, i.e. 

  
( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1 1

( ) ( ) 3
3

1

, , ,

,

m m
hp j j i hp j j i

i i
j j

m
hp j j

j

u N N

N

ξ η ϕ ξ η

ψ ξ η

= =

=

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜= =⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

∑ ∑

∑

u θ a θ a

θ a

ϕ

ψ

 (5.36) 

where ( ) ( ) ( )
3( , , )j j j

i iu ϕ ψ  denote the nodal values at j of the kinematic variables. The 

Lagrangian polynomials are defined by (3.17) and (3.18). 

 The relations (5.36) are then substituted into equations (5.9) and (5.25) and the result 

into (5.23) arriving to a system of highly nonlinear algebraic equations which can be 

written in matrix form by means of the stiffness and tangent matrices. The actual 

computation of the entries of the stiffness and tangent matrices is carried out by 

symbolic algebra subroutines written in MAPLE. This program, which functions as a 

pre-processor for the FORTRAN program, allows us not only to generate these matrices 

in MAPLE language but also to convert them to FORTRAN statements for any adopted 

theoretical model and shell geometry. 

D. Solution procedure 

1. The incremental Newton-Raphson method 

As mentioned before, The Newton-Raphson method is utilized for solving the system of 

nonlinear algebraic equations. Let Φ̂  be a configuration solution of the shell (vector 

quantity). The finite element method leads to a matrix equation of the form 

  ( )Φ̂ = 0R  (5.37) 
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where the vector ( )Φ̂R  is called the residual (out of balance) force vector defined by  

  ( ) ( ) ( )int extˆ ˆ ˆ .t t t t∆ ∆Φ Φ Φ+ += −F FR  (5.38) 

The vector extt t∆+ F  denotes the externally applied nodal loads and intt t∆+ F  is the vector of 

internal forces at the time t t∆+  (Bathe [68], Reddy [123]). 

 For a static analysis, the time variable t is a dummy variable used to describe the 

increment load application and corresponding solution vector. Equation (5.37) must be 

satisfied at each time t and it can be solved iteratively. We start from the initial 

configuration and then proceed incrementally. If the configuration at the iteration (i−1), 
( 1)t t i∆ Φ+ −  is known, we apply the linearization of the equilibrium equations (5.37) as 

  ( ) ( )
( 1)

( 1) ( )ˆ HOT
t t i

t t i i

∆

∆

Φ

Φ Φ ∆Φ
Φ + −

+ − ⎡ ⎤∂
⎢ ⎥= + +
⎢ ⎥∂⎣ ⎦

R
LR R  (5.39) 

where ( )i∆Φ  is the incremental vector solution for the iteration i. We define the tangent 

matrix as 

  
( 1) ( 1)

int
( 1)

t
t t i t t i

t t i

∆ ∆

∆

Φ Φ
Φ Φ+ − + −

+ −
⎡ ⎤⎡ ⎤∂ ∂⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

FK R  (5.40) 

for external forces extt t∆+ F  configuration independent. Finally, assuming that there is 

equilibrium at the configuration Φ̂  and neglecting higher-order terms, equation (5.39) 

becomes 

  
( )

( )

( 1) ( ) ( 1)
t

int ( 1) ext .

t t i i t t i

t t t t i t t

∆ ∆

∆ ∆ ∆

∆Φ Φ

Φ

+ − + −

+ + − +

=−

= −

K

F F

R
 (5.41) 

 Considering that the configuration solution is known for the time t, a predictor is 

computed by a tangential incremental solution. Then, it is corrected by iterating equation 

(5.41) until an appropriate convergence criterion is satisfied (predictor-corrector 

method). At the time t t∆+  the initial conditions for starting the iterative scheme are the 
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following 

  (0) int (0) int (0)
t t , , .t t t t t t t t t∆ ∆ ∆ Φ Φ+ + += = =K K F F  (5.42) 

The update of the configuration solution is  

  ( ) ( 1) ( ) .t t i t t i i∆ ∆Φ Φ ∆Φ+ + −= +  (5.43) 

 The relations (5.41) and (5.43) constitute the full Newton-Raphson scheme. Notice 

that a tangent matrix is calculated at each iteration and a given load step. We should also 

expect that for sufficiently close predictor solution, the convergence rate is quadratic. 

2. The arc-length method 

The Newton-Raphson method is adequate for most nonlinear system of equations. 

However, for cases in which the equilibrium path contains limit points and bifurcation 

points (buckling of shells) the method fails. The response of the structure beyond the 

limit point is called postbuckling response. At that point the tangent matrix will be 

singular and the structure will be unstable. 

 To solve problems with limit and bifurcation points, an arc-length method can be 

used. The arc-length method was introduced by Riks [136, 137] and Wempner [138] 

with later modifications by Crisfield [139, 140] and Ramm [141] (see Reddy [123], 

Bathe [68] and Crisfield [142] for a detailed explanation of the method). The basic idea 

is to introduce a load multiplier that increases or decreases the intensity of the applied 

load. The load is assumed to vary proportionally during the response calculation. 

Equation (5.38) is rewritten as  

  ( ) ( )int extˆ ˆ, .t t t tλ λ∆ ∆Φ Φ+ += − =F F 0R  (5.44) 

 Note that the load parameter λ  becomes a variable. Equation (5.44) represents a 

system of n equations with 1n+  unknowns. Hence, we need an additional equation 
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which is used to determine the load multiplier. We introduce a spherical arc-length 

constraint. This is a constraint equation between the total displacement and load 

increments ( )iΦ  and ( )iλ  at the time t t∆+ , i.e. 

  ( )( ) ( ) ( ) ( ) ( ) 2 ext ext 2, ( ) ( ) 0i i i i i Lλ β λΦ Φ Φ ∆= ⋅ + ⋅ − =F FK  (5.45) 

where L∆  is the assumed arc-length for the step and β  is a normalizing factor that takes 

care of the different dimension of the variables. The vector ( )iΦ  and the scalar ( )iλ  are 

incremental (not iterative) quantities related to the last converged equilibrium state. It is 

implicitly understood that the total incremental quantities are referred to the time t t∆+ . 

Consequently, they never use left superscripts (Fig. 5.2). 

 

 

 

Fig. 5.2. Spherical arc-length procedure and notation for one degree of freedom system 
with 1β = . 

( )2 2 ext, λΦ F
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 Within the load step t t∆+ , the total increments ( )iΦ  and ( )iλ  are defined by  

  
( ) ( )

( ) ( ) .

i t t i t

i t t i tλ λ λ

∆

∆

Φ Φ Φ+

+

= −

= −
 (5.46) 

The linearization of equation (5.44) is then applied around the configuration solution 
( 1)t t i∆ Φ+ − . This leads to 

  ( ) ( )
( 1) ( 1)

( 1) ( ) ( )ˆ HOT.
t t i t t i

t t i i iλ
λ∆ ∆

∆

Φ Φ

Φ Φ ∆Φ ∆
Φ + − + −

+ − ⎡ ⎤ ⎡ ⎤∂ ∂
⎢ ⎥ ⎢ ⎥= + + +
⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

R R
LR R  (5.47) 

After some manipulations equation (5.47) becomes 

  
( )

( )

( 1) ( ) ( 1) ( ) ext
t

( 1) ( ) ext int ( 1)( )

t t i i t t i i

t t i i t t i

λ

λ λ

∆ ∆

∆ ∆

∆Φ Φ ∆

∆ Φ

+ − + −

+ − + −

=− +

= + −

K F

F F

R
 (5.48) 

where ( )i∆Φ  and ( )iλ∆  are the displacement and load increments at the iteration i.  

 To solve (5.48) we may rewrite this equation as 

  
( )( 1) ( ) ( 1)

t

( 1) ( ) ext
t

t t i i t t i

t t i i

∆ ∆

∆

∆Φ Φ

∆Φ

+ − + −

+ −

=−

=

K

K F

R
 (5.49) 

and hence, 

  ( ) ( ) ( ) ( ) .i i i iλ∆Φ ∆Φ ∆ ∆Φ= +  (5.50) 

 The total displacement and load increments are computed as 

  

( ) ( 1) ( )

( 1) ( ) ( ) ( )

( ) ( 1) ( ) .

i i i

i i i i

i i i

λ

λ λ λ

Φ Φ ∆Φ

Φ ∆Φ ∆ ∆Φ

∆

−

−

−

= +

= + +

= +

 (5.51) 

Substituting (5.51) into the spherical arc-length constraint (5.45) gives a quadratic 

equation in ( )iλ∆  whose solution is the following 

  ( )( ) ( ) ( ) 2 ( )
1 2 3, ( ) 0i i i ia a aλ λ λΦ ∆ ∆= + + =K  (5.52) 

where 



 146

  

( ) ( ) ext ext
1

( ) ( 1) ( ) ( 1) ext ext
2

( 1) ( ) ( 1) ( ) 2 ( 1) 2 ext ext
3

2 ( ) 2

( ) ( ) ( ) ( )

i i

i i i i

i i i i i

a

a

a L

β

βλ

β λ

∆Φ ∆Φ

∆Φ Φ ∆Φ

Φ ∆Φ Φ ∆Φ ∆

− −

− − −

= ⋅ + ⋅

= ⋅ + + ⋅

= + ⋅ + − + ⋅

F F

F F

F F

 (5.53) 

which can be solved for ( )iλ∆ . Then, the update of the configuration of the shell (5.51) 

is completely defined. 

 Equation (5.52) yields two different solutions: ( )
1

iλ∆  and ( )
2
iλ∆ . Hence, we arrive to 

two configuration of the shell, i.e. 

  
( ) ( 1) ( ) ( ) ( )
1 1

( ) ( 1) ( ) ( ) ( )
2 2 .

i i i i i

i i i i i

λ

λ

Φ Φ ∆Φ ∆ ∆Φ

Φ Φ ∆Φ ∆ ∆Φ

−

−

= + +

= + +
 (5.54) 

We should choose a solution that lies closest to the previous total displacement 

increment ( 1)iΦ − . This procedure can be implemented by finding the solution of 

minimum angle α between ( 1)iΦ −  and ( )iΦ . Namely 

  
( )( ) ( 1)

4 5
2 2cos

( ) ( )

ii i a a
L L

λα ∆Φ Φ
∆ ∆

− +⋅
= =  (5.55) 

where 

  
( ) ( 1) ( ) ( )

4
( ) ( )

5 .

i i i i

i i

a

a

Φ Φ Φ ∆Φ

Φ ∆Φ

−= ⋅ + ⋅

= ⋅
 (5.56) 

 We now discuss the effect of the parameter β  in the numerical solution. Crisfield 

[139] and Ramm [141] independently concluded that, for practical problems, the 

external load vector has a little influence on the final response. Therefore, we can set 

0β =  which leads to a cylindrical rather than spherical constraint (5.45). This approach 

is called the cylindrical arc-length method. 

 At any initial load step, we shall assume a predictor solution. For the present 

cylindrical arc-length method the predictor solution is computed by the forward-Euler 

tangential method. That is 
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1(1) (1) (0) ext

t

(1) 1 ext
t

( )

( ) .

t t

t

λ

λ

∆Φ
−+

−

=

=

K F

K F
 (5.57) 

Note that (1) (1)Φ ∆Φ=  and (1) (1)λ λ∆= . Substituting (5.57) into equation (5.45) with 

0β = , we obtain 

  (1)

(1) (1)
.Lλ ∆

∆Φ ∆Φ
=±

⋅
 (5.58) 

The sign is taking positive if the tangent matrix t
t K  is positive definite. Otherwise, for 

negative definite tangent matrix we take the negative value of (1)λ . 

  Finally, the update of the configuration of the shell is calculated by  

  
( ) ( 1) ( )

( ) ( 1) ( )

t t i t t i i

t t i t t i iλ λ λ

∆ ∆

∆ ∆

Φ Φ ∆Φ

∆

+ + −

+ + −

= +

= +
 (5.59) 

or using the total increment 

  
( ) (0) ( ) ( )

( ) (0) ( ) ( )

t t i t t i t i

t t i t t i t iλ λ λ λ λ

∆ ∆

∆ ∆

Φ Φ Φ Φ Φ+ +

+ +

= + = +

= + = +
 (5.60) 

at the time t t∆+ . The additive relation (5.59) is valid for all degrees of freedom of the 

present finite element model. This is a great advantage over geometrically exact shell 

theories in which complex multiplicative update algorithms are required. 

E. Numerical simulations 

In this section, numerical simulations of the finite element approach for composite 

laminates and functionally graded shells are presented. An extensive verification is 

carried out for the present 7-parameter shell formulation by comparing our results with 

those found in the literature. In particular, we use the recent paper of Sze et al. [143] of 

popular benchmark problems for nonlinear shell analysis (because of the tabulated data). 

Furthermore, a parametric study is also done for bending behavior of multilayered 



 148

composites and functionally graded ceramic-metal shells.  

 Regular meshes of Q25, Q49 and Q81 high-order elements with seven degrees of 

freedom per node were utilized in the finite element analysis (see Table 3.1). By 

increasing the p level or refining the finite element mesh, we mitigate locking problems. 

Therefore, there is no need to use tricky mixed interpolations techniques (for lower-order 

elements such as assumed strain elements or MITC elements) or reduced integration in 

the evaluation of the stiffness coefficients (i.e., full Gauss integration rule is employed in 

all examples). 

1. Plates 

a. Cantilever strip plate 

The first example is a cantilever strip plate under end shear distributed force. The length 

L is set to be 10 and width 1b =  with ratio 100L h = . For the analysis, a mesh of 

4×1Q25 elements is enough to reach good convergence (Fig. 5.3). The material 

properties are prescribed to be 

  71.0 10 , 0.0E ν= × =  

where E and ν are the Young’s modulus and the Poisson’s ratio, respectively. 

 

Fig. 5.3. Geometry of cantilever strip plate under end shear force. 
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 Figure 5.4 shows the axial and transverse deflections of the tip of the plate versus the 

distributed shear loading q and compares the present results with those of Sze et al. 

[143]. Sze et al. use the ABAQUS commercial program for their examples which utilizes 

a bilinear element with hourglass stabilization (6 degrees of freedom per node). An 

excellent agreement is found between both formulations.  

 In Fig. 5.5 is illustrated the deformed configuration of the plate for different shear 

loading stages q. It is clearly seen that the plate undergoes large displacements. We do 

not consider in this problem a following loading (for that case the tangent operator 

would have another term due to the external load). The shear force remains in the same 

direction during the deformation.  

 

 

 

Fig. 5.4. Tip-deflection curves vs. shear loading q of the cantilever strip plate. 
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Fig. 5.5. Deformed configurations of the cantilever strip plate under end shear force 
(loading stages 1,2, ,15q = … ). 

 Next, we consider a composite laminated plate with the same geometric data and 

loading conditions as the last example. The material properties of the lamina are as 

follows 

  

6 6
1 2 3

6 6
12 13 23

12 13 23

1.0 10 , 0.3 10

0.15 10 , 0.12 10
0.25, 0.25

E E E

G G G
ν ν ν

= × = = ×

= = × = ×

= = =

 

for a transversely isotropic material. 

 The tip transverse deflection versus the distributed shear force is shown in Fig. 5.6 

for different laminate schemes. As expected, the lay-up (90°/0°/90°) shows the most 

flexible response while the cross-ply laminate (0°/90°/0°) exhibits the stiffest response. 

It is observed that due to the non-symmetry of the angle-ply scheme (-45°/45°/-45°/45°) 

the plate displays lateral displacements in the direction 2θ  (Fig. 5.3). Nevertheless, the 

values are so small in comparison to the transverse displacements that can be neglected. 

Y

X

Z
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Fig. 5.6. Tip-deflection curves for laminate cantilever plate. 

b. Roll-up of a clamped strip plate 

A clamped strip plate is subjected to a bending distributed moment on the other end  

(Fig. 5.7). This is a classical benchmark problem for large deformation analysis and it 

has been considered in Refs. [92, 94, 111, 143]. In fact, this problem tests the capability 

of the finite element model to simulate finite rotations on shells. The analytical solution 

of this example corresponds to the classical formula 1 M EIρ = . Thus, the tip 

deflections can be derived to be  

  

1

3

sin 1

1 cos

u k M
L M k

u k M
L M k

< >

< >

⎛ ⎞⎟⎜= −⎟⎜ ⎟⎜⎝ ⎠

⎛ ⎞⎛ ⎞⎟⎜ ⎟⎜= − ⎟⎟⎜ ⎜ ⎟⎟⎜ ⎟⎜ ⎝ ⎠⎝ ⎠

 (5.61) 

where k EI L= . For max 2M kπ= , the beam rolls up into a complete circle.  
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Fig. 5.7. Cantilever strip plate under end bending moment. 

 The material properties and geometry of the plate are chosen as 

  
61.2 10 , 0.0

12.0, 1.0, 0.1 .
E
L b h

ν= × =
= = =

 

 Figure 5.8 depicts the tip displacement of the cantilever strip plate versus the end 

bending moment. For the present results a regular mesh of 8×1Q25 elements was 

utilized in the finite element discretization. The total loading is applied in 200 equal 

steps. The Newton method exhibits an excellent rate of convergence with less than 3 

iterations per load step. The agreement between the present results and the computed 

analytical solution (5.61) is excellent.  

 Figure 5.9 shows the undeformed and deformed configuration of the strip plate for 

various load stages. The last two deformed configurations demonstrate the ability of the 

present approach to handle extreme rotations of the plate (up to 360° and 720° 

respectively). Geometrically exact shell models with parametrizations of the rotation 

tensor based on two independent angles or spherical coordinates (see Betsch et al. [111]) 

are not able to reach deformed configurations beyond 180° because the tangent stiffness 

matrix becomes rank-deficient. 
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Fig. 5.8. Tip-deflection curves vs. end moment M of the cantilever strip plate. 

 
Fig. 5.9. Deformed configurations of the cantilever plate under end bending moment 

(loading stages max 0.125,0.25, ,1, 2M M = … ). 
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c. Torsion of a clamped strip plate 

Similar to the last example, this problem exhibits large rotations and displacements. A 

torsional moment is applied to the end of an initially flat strip plate leading to torsional 

rotations up to 270° (Fig. 5.10). This example was analyzed by Simo et al. [92] (with the 

geometrically exact shell theory) and by Park et al. [144]. For the present case, we 

consider the following material properties and geometry 

  
612.0 10 , 0.3

10.0, 1.0, 0.1 .
E
L b h

ν= × =
= = =

 

 The torsional moment is an external loading which is treated as a secondary variable 

(related to a rotation θ ) in finite element models with rotational degrees of freedom. 

Nevertheless, for the present approach the virtual work caused by the torsional moment 

T should be transformed into secondary variables related to the degrees of freedom 1ϕ  

and 3ϕ , i.e. 

  1 1 3 3T M Mδθ δϕ δϕ= +  (5.62) 

where θ  is the rotation around the axis 2θ  and iM  is a secondary variable related to iϕ .  

 

Fig. 5.10. Cantilever strip plate under end torsional moment. 
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 The rotation θ can be expressed in terms of 1ϕ  and 3ϕ  by the relation 

  1

3

tan .
( 1)
ϕ

θ
ϕ

=
+

 (5.63) 

Applying the variation of (5.63) and substituting the result into (5.62) leads to 

  

3
1 2

1
3 2

( 1)T
M

T
M

ϕ
λ
ϕ
λ

+
=

=−

 (5.64) 

where 2 2
3 1 3( 1)λ ϕ ϕ= = + +a . 

 At each iteration i and load step t t∆+ , the secondary variables are computed by Eq. 

(5.64) using the previous configuration solution ( 1)t t i∆ Φ+ − . Yet, the value of the moment 

M remains constant during the load step. This procedure should be applied to problems 

in which moments are involved as external loadings (e.g., the roll-up of a clamped 

beam). 

 Figure 5.11 shows the transverse deflections at the points A and B of the strip plate 

subjected to a torsional moment. The finite element simulation is performed with two 

different regular meshes of 1×8Q25 and 1×4Q81 elements in a full computational 

domain. The displacements at A and B are found to be equal but with opposite sign 

(maximum value of 2b ). 

  Figure 5.12 depicts the deformed finite element mesh of the cantilever plate for 

various load stages. In the last configuration (for M = 1000), the plate displays rotations 

up to 270°. At that level of deformation convergence of the Newton-Raphson method is 

more difficult to achieve. The number of iterations of the Newton-Raphson method 

increases when the loading increases. 
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Fig. 5.11. Transverse deflection curves at points A and B vs. the torsional moment T of a 
cantilever strip plate. 

 
Fig. 5.12. Deformed configurations of the clamped strip plate under torsional moment 

(loading stages 250,500,750,1000T = ). 
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d. Postbuckling of a strip plate 

We now consider bucking and postbuckling behavior of an isotropic plate subjected to 

compressive load (Fig. 5.13). This example shows the robustness of the present model to 

deal with pre-buckling and postbuckling response of shells. The following material 

properties and geometry, given by Massin and Al Mikdad [145], are used here 

  
112.0 10 , 0.3

0.5, 0.075, 0.0045
E
L b h

ν= × =
= = =

 

with moment of inertia 10
1 5.7 10I −= × . 

 To activate the postbuckling equilibrium path we have to include a small 

perturbation in the system. Otherwise, only inplane displacements in the plate will occur 

(which is called the fundamental equilibrium path that beyond the critical load will be 

unstable). For the secondary path, we assume that the compressive load is applied with 

an imperfect angle of 1 1000  (0.0573°). That is, in addition to the inplane compressive 

load there is a small out of plane loading that causes the postbuckling response of the 

plate. 

 

 

Fig. 5.13. Postbuckling of a strip plate under compressive load. 

1θ

2θ

3θ

h

L

b

q



 158

 The tip displacement of the plate vs. the axial load is illustrated in Fig. 5.14. It is 

clearly observed a well-defined prebuckling stage ( crF P≤ ) and postbuckling stage 

( crF P≥ ). It is remarkable to see the accuracy of the critical load calculated by the 

present approach versus that obtained by Euler’s formula ( 2 2
1 4crP EI Lπ= ) which is 

1124.2096crP = .  

 We also compare the present results with the analytical solution of Timoshenko 

[146]. We notice some differences (but still small) between both formulations, in 

particular, in the inplane displacement 1u< > . This can be attributed to the fact that the 

analytical solution of Timoshenko considers the plate inextensible while in the present 

formulation membrane deformations are taken into account. Finally, Fig. 5.15 shows 

various deformed configurations for the strip plate under axial compressive loading. 

 

 

Fig. 5.14. Tip deflection curves vs. the compressive force F qb=  of a cantilever strip 
plate. 
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Fig. 5.15. Postbuckling configurations of the clamped strip plate under compressive load 

(loading stages 1125,1500,2000, ,7000F = … ). 

e. Annular plate under end shear force 

Next, we examine an annular clamped plate subjected to a distributed shear force (Fig. 

5.16). This beautiful benchmark problem was considered by Büchter and Ramm [9], 

Sansour and Kollmann [112], Brank et al. [19] and Sze et al. [143], among others. The 

geometry and elastic material properties for the isotropic case are given by 

  
621.0 10 , 0.0

6, 10, 0.03i e

E
R R h

ν= × =
= = =

 

for a maximum distributed force of max 0.8q = .  

 In the present simulation the plate is modeled by polar coordinates. However, the 

problem can be solved by using the standard Cartesian coordinates as well. A regular 

mesh of 1×5Q49 elements (p level equal to 6) is considered in the present analysis, 

because solutions obtained by the element Q25 are too stiff and suffer from locking. 

X Y

Z
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Computation is performed by the Newton-Raphson method with 80 load steps (with 

equal load steps of 0.04). The standard convergence tolerance for the residual forces is 

set to be 61.0 10−× . 

 

 

Fig. 5.16. Annular plate under end shear force. 

 The shear load versus displacement curves for two characteristic points are depicted 

in Fig. 5.17. Solutions obtained with the present formulation are in good agreement with 

those obtained by Sze et al. [143]. Figure 5.18 shows the deformed configuration of the 

isotropic annular plate for various load levels. It is seen that the plate undergoes large 

displacements at the corresponding loading of 3.2F = .  

 We also study the bending behavior of the annular plate for multilayered composites 

with the same geometry as the isotropic case. The material properties of the lamina are 

as follows 

  

6 6
1 2 3

6 6
12 13 23

12 13 23

20.0 10 , 6.0 10

3.0 10 , 2.4 10
0.3, 0.25 .

E E E
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ν ν ν

= × = = ×

= = × = ×

= = =
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Fig. 5.17. Transverse displacement curves at points A and B vs. shear force 4F q=  of 
the cantilever annular plate. 

 
Fig. 5.18. Deformed configurations of the annular plate under end shear force (loading 

stages 0.2,0.4,0.8,1.6,2.4,3.2F = ). 
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 The deflections at the point B versus the shear force are shown in Fig. 5.19 for 

different laminate schemes. Like the isotropic case, we consider for this problem full 

computational domain. We note that the laminate (-45°/45°/-45°/45°) exhibits the stiffest 

response. However, the plate still undergoes large displacements. Finally, Fig. 5.20 

shows the deformed configuration for a composite angle-ply annular plate under a shear 

loading 1.8F = . From a qualitative standpoint, the deformed configuration for the 

laminated plate is quite similar to the corresponding configurations for isotropic plates. 

 

 

 

Fig. 5.19. Displacement at B vs. shear force 4F q=  of the annular plate for various 
laminate schemes.  
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Fig. 5.20. Deformed configuration of the annular plate under end shear force. Anti-
symmetric angle-ply (-45°/45°/-45°/45°), loading 1.8F = . 

2. Cylindrical shells 

a. Cylindrical panel under point load 

We study the behavior of cylindrical panels under central point load (Fig. 5.21). This is a 

well-known benchmark problem for nonlinear analysis of cylindrical shells which is 

particularly popular due to the snapping behavior. The problem has been considered in 

Refs. [19, 92, 139, 141, 143, 147]. The cylindrical arc-length method is used to follow 

the nonlinear path because the response of the structure goes beyond the limit point. The 

following cases are analyzed here: an isotropic panel, two cross-ply composite panels 

with schemes (0°/90°/0°) and (90°/0°/90°), an angle-ply laminate (-45°/45°/-45°/45°), 

and a laminate (30°/-60°/-60°/30°). All plies in the same laminate are equal in thickness. 

The material properties for the isotropic case are 

  23102.75 N/mm , 0.3E ν= =  

with geometrical data 

X Y

Z
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  508mm, 2540mm, 25.4,12.7, 6.35 mm, 0.1 .a R h radα= = = =  

The material properties for the multilayered composites studied here are 

  

2 2
1 2 3

2 2
12 13 23

12 13 23

3300 N/mm , 1100 N/mm

660 N/mm , 440 N/mm
0.25, 0.25 .

E E E

G G G
vν ν

= = =

= = =

= = =

 

 The panel is hinged at the edges 2θ α=±  and free at 1 2aθ =± . Due to the 

symmetry of the structure, a quarter of the shell is taken as computational domain for 

symmetric laminates. The boundary conditions for this example are  

 At 1 0θ =  1 1 0u ϕ< > < >= =    (Symmetry) 

 At 2 0θ =  2 2 0u ϕ< > < >= =   (Symmetry) 

 At 2θ α=  1 2 3 1 0u u u ϕ< > < > < > < >= = = =  

 At 1 2aθ =  Free . 

For other cases (e.g. antisymmetric laminates), we analyze the full panel, i.e 

 At 1 2aθ =±  Free 

 At 2θ α=±  1 2 3 1 0 .u u u ϕ< > < > < > < >= = = =  

 
Fig. 5.21. Cylindrical shallow panel under point load. 
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 In the following examples regular meshes of 4×4Q25 elements are used in a quarter 

of the shell. Figure 5.22 shows a comparison between the present central deflection 

results with those obtained by Sabir and Lock [147] for an isotropic shell with thickness            

h = 25.4 mm. They are in good agreement. Since there is no presence of limit points, this 

problem can be solved by the Newton-Raphson method. 

 If we reduce the thickness of the panel the response of the shell is dramatically 

different. Figures 5.23 and 5.24 show the load-deflection behavior of the shallow shell 

under point load with thickness 12.7, 6.35 mmh = , respectively. In addition to the 

isotropic panel, two symmetric cross-ply laminates are included in the analysis, namely 

(90°/0°/90°) and (0°/90°/0°). Results obtained by Sze et al. are also reported for 

comparison reasons. The arc-length method is used in these examples. 

 We see from Fig. 5.23 that the structure, for the three studied cases, exhibits a limit 

point (the tangent matrix becomes singular). Beyond the limit point, the response of the 

panel will be unstable with possibility to occur a snap through. On the other hand, we 

observe from Fig. 5.24 a chaotic behavior of the panel, in particular, the corresponding 

load-deflection curve for the laminate (0°/90°/0°). For this laminate the response exhibits 

not only horizontal but also vertical tangents (8 in total). At some specific load level we 

can expect up to five different configuration solutions. The results shown in Fig. 5.23 

and 5.24, obtained with the present formulation are in complete agreement with those 

reported in the literature [143]. 

 We also notice that the level of deformation of the shell is still relatively small. No 

large displacements and rotations occur during the deformation. Therefore, we can 

obtain good approximations for this problem using simpler shell formulations (e.g. the 

theory of Sanders [148], the moderate rotation theory [95], etc). 
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Fig. 5.22. Deflection at the center of the shallow panel under point load (h = 25.4mm). 

 

Fig. 5.23. Deflection at the center of the shallow panel under point load (h = 12.7 mm). 
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Fig. 5.24. Deflection at the center of the shallow panel under point load (h = 6.35 mm). 

 Next, we investigate the behavior of the cylindrical panel for two different stacking 

sequences: (-45°/45°/-45°/45°) and (30°/-60°/-60°/30°). Again, two thicknesses are 

considered in the analysis ( 12.7, 6.35 mmh = ) that leads to a thin panel with ratio 

200,400S =  (recall S R h= ). Since it is unknown the response of antisymmetric 

laminates, full panel is modeled with appropriate boundary conditions. A regular 8×8 

mesh of Q25 elements (p level equal to 4) is used in the present analysis. 

 Numerical results concerning the central deflection at the point load are shown in 

Fig. 5.25 and 5.26. We see that the thicker panel exhibits standard limit points, whereas 

the thinner panel shows complex equilibrium paths with snap-through and snap-back 

behavior. 
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Fig. 5.25. Deflection at the center of the cylindrical panel under point load (Laminated 

shell, 8×8Q25, h = 12.7 mm). 

 

 
Fig. 5.26. Deflection at the center of the cylindrical panel under point load (Laminated 

shell, 8×8Q25, h = 6.35 mm). 
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b. Functionally graded panel under point load 

We now consider nonlinear solutions for functionally graded shells. It is studied for the 

first time a shallow FGM panel under point load with the same geometry and boundary 

conditions as those of the last example. The material properties of the inhomogeneous 

panel vary continuously through the thickness of the shell. Yet, the shell is still isotropic 

with constant material properties in each surface. We use the rule of mixture to calculate 

the material properties from the ceramic and metal constituents. Young’s modulus and 

Poisson’s ratio for zirconia (ceramic material) and aluminium (metal material) are the 

following 

  
151 , 0.3
70 , 0.3 .

c c

m m

E GPa
E GPa

ν
ν

= =

= =
 

Note that the Poisson’s ratio is constant. 

 In Fig. 5.27 and 5.28 we show central deflection vs. point load curves of the present 

7-parameter formulation with different volume fraction exponent n (from fully metal to 

fully ceramic) for thicknesses 12.7, 6.35 mmh =  respectively. We recall that fully 

ceramic behavior is achieved as 0n =  and fully metal as n →∞ . Rectangular meshes 

of 4×4Q25 elements in a quarter of the panel are used in the analysis. As we expect, the 

pattern of the central deflection curves are similar to that of the isotropic and 

homogeneous shell (Fig. 5.23 and 5.24), i.e. standard limit points and complex 

equilibrium curves with snap-through and snap-back behavior. It is also found that the 

bending response of FGM shells lie in between that of the fully ceramic and fully metal 

shell. 
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Fig. 5.27. Deflection at the center of the cylindrical panel under point load (FGM shell, 

4×4Q25, h = 12.7 mm). 

 

 
Fig. 5.28. Deflection at the center of the cylindrical panel under point load (FGM shell, 

4×4Q25, h = 6.35 mm). 
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c. Pull-out of an open-ended cylindrical shell 

The cylindrical shell with free ends is subjected to two opposite loads (see Fig. 5.29). 

The shell undergoes finite displacements and rotations, which provides a severe test for 

finite element formulations. This example was considered in Refs. [19, 112, 143, 144, 

149] among others. The following material properties and geometrical data is used in the 

analysis 

  
610.5 10 , 0.3125

10.35, 4.953, 0.094 .
E
L R h

ν= × =
= = =

 

 Due to the symmetry conditions of the problem, only an octant of the shell is 

modeled using 2×2Q81 elements. Results obtained by Q25 element are too stiff and 

suffer from locking. The analysis is carried out by the Newton-Raphson method with 80 

load steps (with equal load steps of 500). The adopted error tolerance for the residual 

was 1.0×10-6. 

 

 

 

Fig. 5.29. Pull-out of a cylinder with free edges. 
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 Figure 5.30 shows the radial displacements at the point A, B and C of the shell. It is 

noticed that the response of the shell has two different regions: the first is dominated by 

bending stiffness with large displacements; the second, at load level of 20000P = , is 

characterized by a very stiff response of the shell. Converged solutions obtained by the 

present model are compared with the results obtained by Sze et al. [143]. Our results 

agree well with the reference solution for the three curves considered. In Fig. 5.31 the 

undeformed and five different deformed configurations of the cylindrical shell are 

depicted. 

 

 

 

 

Fig. 5.30. Radial displacements at points A, B and C vs. pulling force of the cylinder 
with free edges. 
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Fig. 5.31. Deformed configurations of the cylinder under pulling forces (loading stages 
5000,10000,20000,30000,40000P = ). 
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d. Pinched semi-cylindrical shell 

Another well-known benchmark example for finite deformation is the semi-cylindrical 

shell under point load (Fig. 5.32). This problem has been investigated by Stander et al. 

[150], Balah and Al-Ghamedy [18] and Brank et al. [19] among others [143]. The length 

of the cylinder is L = 3.048, the thickness and radius are h = 0.03, R = 1.016 

respectively. The analysis is carried out for isotropic and composite materials. The 

material properties are 

  72.0685 10 , 0.3E ν= × =  

for isotropic material and 

  
1 2 3

12 13 23

12 13 23

2068.5, 517.125
795.6, 198.8942

0.3, 0.3

E E E
G G G

vν ν

= = =

= = =

= = =

 

for composites with geometrical data 

  304.8, 101.6, 3.0 .L R h= = =  

 

Fig. 5.32. Clamped semi-cylindrical shell under point load. 
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 The problem is modeled using regular meshes of 4×4Q81 and 5×5Q81 elements to 

describe haft of the semi-cylinder. The load applied to the shell is increased (in 40 equal 

load steps) up to P = 2000. Figure 5.33 shows the deflection at the point A versus the 

point loading for the isotropic shell. Comparisons of the present results with those of Sze 

et al. are in close agreement. We see that the present results are slightly stiffer. Note that 

the corresponding solutions with a mesh of 4×4Q81 are quite involved with those of 

5×5Q81. Figure 5.34 shows similar results for symmetric cross-ply shells. In this case, 

the agreement of the present solutions with those of Sze et al. is excellent. Finally, Fig. 

5.35 depicts various deformed configurations for the isotropic shell while Fig. 5.36 

shows the final configuration for the laminate (0°/90°/0°). 

 

 

 
Fig. 5.33. Deflection at the point A of the clamped semi-cylindrical shell under point 

load (isotropic shell). 
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Fig. 5.34. Deflection at the point A of the clamped semi-cylindrical shell under point 
load (symmetric cross-ply laminated shell). 

 
Fig. 5.35. Deformed configurations of the clamped semi-cylindrical shell under point 

load (isotropic shell, loading stages 600,1300,2000P = ). 
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Fig. 5.36. Final configuration of the clamped semi-cylindrical shell under point load. 
Laminate (0°/90°/0°), P = 2150. 

3. Spherical shells 

a. Pinched hemisphere with 18° hole 

The pinched hemispherical shell is considered as one of the most severe benchmark 

problem for nonlinear analysis of shells. It was treated before in Refs. [20, 92, 143, 149]. 

The shell has an 18° hole at the top and is subjected to two inward forces at 0° and 180° 

longitude on the equator, and two outward forces at 90° and 270° longitude on the 

equator, respectively (Fig. 5.37). The material and geometric properties are as follows 

  
7

max

6.825 10 , 0.3
10.0, 0.04, 400 .

E
R h P

ν= × =
= = =

 

 We take advantage of the symmetry of the problem and only model one quadrant of 

the shell. The nonlinear analysis is performed by the Newton-Raphson method with a 

regular mesh of 8×8Q25 elements. The total load is applied in 80 equal load steps. 

 

X
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Fig. 5.37. Geometry of the pinched hemisphererical shell with 18° hole. 

 The boundary conditions for the problem were given in Chapter III section D-3 when 

we solved the linear problem. To avoid rigid body displacements in the response of the 

structure, we have to impose an additional condition at the point B 

  At 1 22, 0θ π θ= =  1 0 .u< > =  

That is, the vertical displacement of B is zero. 

 Figure 5.38 shows a plot of the pinching load versus the radial deflection curves at 

the point B and C. The present solutions are compared with those of Sze et al. [143]. It is 

observed that our results are a little stiffer than solutions of Sze et al., but in general they 

are in good agreement. The rate of convergence of the Newton method is quite 

acceptable. The average of iterations per load step is 3. The final configuration of the 

pinched hemisphere without any magnification is shown in Fig. 5.39. 
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Fig. 5.38. Radial displacements at the points B and C of the pinched hemispherical shell 
with 18° hole. 

 

Fig. 5.39. Initial and final configurations of the pinched hemispherical shell with 18° 
hole, P = 400. 
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b. Full pinched hemisphere 

The last numerical simulation in this section is the full pinched hemispherical shell under 

two inward and two outward opposite forces (Fig. 5.40). In this case, we consider a full 

hemisphere with no hole. Similar to the previous example, the shell is modeled by using 

spherical coordinates. The geometric data is as follows 

  max10.0, 0.04, 400 .R h P= = =  

 The nonlinear analysis is performed for an isotropic shell with material properties: 
76.825 10 , 0.3E ν= × =  and two laminated shells with lamina properties 

  

7 7
1 2 3

7 7
12 13 23

12 13 23

6.0 10 , 2.0 10

1.125 10 , 0.7692 10
0.3

E E E

G G G
vν ν

= × = = ×

= = × = ×

= = =

 

and stacking sequences (90°/0°/90°) and (0°/90°/0°). 

 

Fig. 5.40. Geometry of the full pinched hemispherical shell. 

Free

Apex
A

B

C

Sym.

Sym.

P/2

1x

2x

3x

1θ

P/2



 181

 A regular mesh of 2×2Q81 elements is used in the analysis. Note that the one edge of 

the finite element mesh in the parametric space of the midsurface is shrunk into the apex 

(coerced mesh) in the Euclidean point space E . This does not cause, however, any 

singularity problems in the solution. 

 Figure 5.41 shows the radial deflections at the point B and C versus the point loading 

for full pinched hemisphere. Besides the isotropic material, laminates with stacking 

sequences (0°/90°/0°) and (90°/0°/90°) are also considered. As expected we note that the 

laminate (0°/90°/0°) exhibits the most flexible response. Again we observe good rate of 

convergence of the Newton-Raphson method. The average of iterations per load step is 

4.3 for a total of 20 load steps. The final configuration of the full pinched hemisphere is 

depicted in Fig. 5.42 for the laminate (0°/90°/0°). 

 

 

Fig. 5.41. Radial displacement curves at B and C of the full pinched hemispherical shell 
(2×2Q81). 
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Fig. 5.42. Initial and final configurations of the full pinched hemispherical laminated 
shell (0°/90°/0°), P = 400. 

4. Other shell geometries 

a. Composite hyperboloidal shell 

Next, we examine the behavior of a composite hyperboloidal shell under two inward and 

two outward point loads (Fig. 5.43). This beautiful example demonstrates the robustness 

of the present finite element model and its applicability to arbitrary shell geometries and 

very strong nonlinearities. The problem was considered by Başar et al. [106], Wagner 

and Gruttmann [151] and more recently by Balah and Al-Ghamedy [18]. The material 

properties of the lamina are 
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( )

1 2

3 3 2
0 1

7.5, 15.0, 20.0, 0.04

1 ( / )

R R L h

R x R x C

= = = =

= +
 

where 20 3C = . 

 The analysis is carried out for two composite laminates (90°/0°/90°) and (0°/90°/0°) 

using the Newton-Raphson method. Due to the symmetry conditions only one octant of 

the shell has to be discretized. The loading is applied in 120 equal steps. In Fig. 5.44 and 

5.45 we show the load deflection curves for the laminates (90°/0°/90°) and (0°/90°/0°) 

respectively. Meshes of 2×2Q81 and 4×4Q81 elements are utilized in the analysis. The 

present displacements for 4×4Q81 elements are larger than those reported by Başar et al. 

[106] or those reported by Balah and Al-Ghamedy [18]. Deformed configurations of the 

hyperboloidal shell for the two stacking sequences are illustrated in Fig. 5.46 (4×4Q81). 

 

 

Fig. 5.43. Geometry and loading conditions of the composite hyperboloidal shell. 
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Fig. 5.44. Deflections at the points A, B, C and D of the pinched hyperboloidal shell. 

Laminate: (90°/0°/90°). 

 

 
Fig. 5.45. Deflections at the points A, B, C and D of the pinched hyperboloidal shell. 

Laminate: (0°/90°/0°). 
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Fig. 5.46. Configurations of the pinched hyperboloidal laminated shell: (a) Undeformed 

state, (b) Deformed state for P = 600 and laminate (0°/90°/0°), (c) Deformed 
state for P = 495 and laminate (90°/0°/90°). 
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CHAPTER VI 

CONCLUSIONS 

A. Summary 

In this dissertation we have proposed a tensor-based finite element model for the 

analysis of shell structures. Firstly, the formulation was applied to linear deformations 

based on a novel and consistent third-order shear deformation shell theory for bending of 

composite shells. The first-order shear deformation shell theory was also developed as a 

subset. In both theories derived herein, no simplification other than the assumption of 

linear elastic material is made in the computation of stress resultants and material 

stiffness coefficients. They are integrated numerically without any approximation in the 

shifter. A conforming high-order element was derived with 0C  continuity across the 

element boundaries in order to avoid locking problems. Applications of the model to 

laminated composites and functionally graded materials were presented to verify the 

validity of the approach. 

 Secondly, we consider a consistent shell formulation for the nonlinear analysis of 

multilayered composites and functionally graded shells. A simple tensor-based 

displacement finite element model was developed and a family of Lagrangian elements 

with high-order interpolation polynomials was employed. Again, the flexibility of this 

element precludes any possible membrane or shear locking. We perform applications of 

this element to finite deformations of shells. The first-order shell theory with seven 

parameters is derived with exact nonlinear deformations and under the framework of the 

Lagrangian description. This approach takes into account thickness changes and, 

therefore, 3D constitutive equations are required. Numerical simulations for plates, 



 187

cylindrical and spherical shells showed the validity of the present approach and the 

accuracy of the developed shell element. 

B. Concluding remarks 

The main conclusions that we can draw from the numerical results obtained in this work 

are as follows: 

1. The tensor-based finite element formulation described the mathematical shell 

model in a natural and simple way by using curvilinear coordinates. Complex 

matrix transformations to Cartesian coordinates were not required. Hence, the 

geometry of the midsurface was not approximated and no further errors were 

introduced in the model. The geometric parameters of the midsurface were 

computed exactly at each Gauss point. 

2. The family of high-order elements with Lagrangian interpolations developed 

herein, showed to be free of membrane and shear locking. In particular, the 

element Q81 (with interpolation polynomials of eight degree) performed very well 

in the numerical examples for linear analysis. Even for extreme benchmark 

problems for finite deformations, the Q81 element demonstrated to be robust and 

efficient. The implementation of this element was also quite simple without any 

tricky interpolation techniques (as low-elements such as MITC and enhanced strain 

elements). Full integration rule was applied in all examples. 

3. The consistent third-order shear deformation theory developed here showed an 

excellent performance to predict linear displacements and stresses of shells made 

of laminated composites and functionally graded materials. The cubic distribution 

of the displacement and strain field can describe the complex behavior of 

laminated shells with good accuracy when it is compared with analytical 3D 
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solutions. The zigzag effect in through-the thickness distributions of membrane 

displacements and stresses, which usually arises in thick shells, can be reproduced 

by this theory. In that aspect, it was observed that the third-order theory gave better 

results than first-order theories (based on the Reissner-Mindlin assumptions) for 

most problems examined. 

4. An improved first-order theory that incorporates thickness stretching was elegantly 

and beautifully derived by using absolute tensor notation. This type of notation, 

which is index free, allowed us to present complicated equations in a compact and 

simple way without referring any coordinate system. The model has seven 

independent parameters with transverse normal strains being linear through the 

thickness of the shell. Therefore, the plane stress state was not enforced anywhere. 

Since thickness changes were included in the model, full 3D constitutive equations 

were utilized. The use of a rotation tensor was avoided by not considering 

rotational degrees of freedom. This is very attractive for implementation purposes 

since they circumvent complex rotation updates in the configuration of the shell. 

The extensive numerical simulations for different shell geometries as well as 

various kinds of materials, showed the accuracy of the formulation. 

5. Regarding the numerical implementation, the use of symbolic computation allowed 

us to derive the stiffness and tangent matrices for the different models as well as 

geometries in this work. With simple subroutines written in MAPLE, we could 

generate functionals of complex structures and derive from them weak 

formulations of, virtually, any shell geometry. Furthermore, the stiffness and 

tangent matrices obtained with these subroutines were easily transformed to 

FORTRAN statements. The entries of these matrices were imported to the 

FORTRAN finite element code developed herein. 
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C. Recommendations 

There are several areas for future research as possible continuation of this work. Among 

them we have: 

1. From the point of view of engineering design and analysis, shells with intersections 

and cut-outs are of primary interest. For modeling that kind of structures powerful 

mesh generations are required. Due to the robustness and efficiency of 

quadrilateral high-order elements showed in this dissertation, it is interesting to 

develop high-order triangular elements using Lagrangian interpolations. This can 

bring together shell analyses and automatic meshing techniques available in 

various commercial codes. 

2. Since large displacements and rotations are allowed in the model, it is probable that 

material nonlinearities will occur during the deformation of the shell. Therefore, to 

have a more realistic shell behavior, nonlinear material models need to be 

developed and incorporated in the present formulation. 

3. Another important research direction is in developing a continuum damage 

mechanic (CDM) model for characterization of damage evolution and propagation 

in the shell using the present formulation. The finite element model has to be 

extended to include strong discontinuities in the displacement field. Crack and 

fatigue failures can be also investigated. 
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APPENDIX A 

KINEMATIC RELATIONS 

In this appendix, the explicit form of the kinematics of plates and shells for infinitesimal 

deformations is presented. For convenience, we express the equations in terms of the 

physical components of displacements and strains [48, 49]. Namely 
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and then, we define ijε< >  as 
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A. Plates 

1. First-order shear deformation theory 

The strain field equations are 
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2. Third-order shear deformation theory 

The strain-displacement equations are 
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Now, we define the auxiliary functions 
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 The membrane strain components are 
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and the shear strain components are 
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B. Cylindrical shells 

1. First-order shear deformation theory 

The strain field equations are 
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where the underlined term is neglected and 

  (0) (0) (0)3
11 1 ,1 22 2 ,2 12 1 ,2 2 ,1

1 1, , 2
u

u u u u
R R R

ε ε ε< >
< > < > < > < > < > < > < >= = + = +  

 



 206

  

2 ,2 3(1) (1)
11 1 ,1 22 2 ,2 2

1 ,2 2 ,1(1) (2)
12 2 ,1 11

(2) (2)
22 2 ,2 12 2 ,12

1,

2 , 0

1 1, 2

u u
R R

u
R R

R R

ε ϕ ε ϕ

ϕ
ε ϕ ε

ε ϕ ε ϕ

< > < >
< > < > < > < >

< > < >
< > < > < >

< > < > < > < >

+
= = +

= + + =

= =

 (A.10) 

with constant shear strains 
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2. Third-order shear deformation theory 

The strain-displacement equations are 
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where the underlined term is neglected. We define the auxiliary functions as 
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 The membrane strain components are 
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and the shear strain components 
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C. Spherical shells 

1. First-order shear deformation theory 

The strain field equations are 
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where the underlined term is neglected and 
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and the shear strain components 
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2. Third-order shear deformation theory 

The strain-displacement equations are 
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where the underlined term is neglected. We define αψ< >  as 
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 The membrane strain components are 
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and the shear strain components  
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The constants 1 2,k k  and 3k  are given by 
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APPENDIX B 

MATERIAL STIFFNESS COEFFICIENTS FOR FGM PLATES  

In this appendix we present the exact values of the material stiffness coefficients for 

functionally graded plates. From equation (2.48) we have 
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 The coefficients Cαβγλ  and 3 3Cα γ  are defined by 
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which are functions of 3θ . In the equation above cf  is the volume fraction function of 

the ceramic constituent and cm c mC C Cαβγλ αβγλ αβγλ= − , 3 3 3 3 3 3
cm c mC C Cα γ α γ α γ= − . The through-

the-thickness integral (B.1) is solved analytically, i.e 
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for bending-membrane material stiffness coefficients and 
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for shear material stiffness coefficients. The constant n denotes the volume fraction 

exponent and h is the thickness of the shell. 
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