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ABSTRACT 

 

AC System Stability Analysis and Assessment for Shipboard Power Systems. 

(December 2004) 

Li Qi, B.E., Xi’an Jiaotong University; 

M.Sc., Zhejiang University 

Chair of Advisory Committee: Dr. Karen L. Butler-Purry 

 

 

The electric power systems in U.S. Navy ships supply energy to sophisticated systems 

for weapons, communications, navigation and operation. The reliability and survivability 

of a Shipboard Power System (SPS) are critical to the mission of a Navy ship, especially 

under battle conditions. When a weapon hits the ship in the event of battle, it can cause 

severe damage to the electrical systems on the ship. Researchers in the Power System 

Automation Laboratory (PSAL) at Texas A&M University have developed methods for 

performing reconfiguration of SPS before or after a weapon hit to reduce the damage to 

SPS. Reconfiguration operations change the topology of an SPS. When a system is 

stressed, these topology changes and induced dynamics of equipment due to 

reconfiguration might cause voltage instability, such as progressive voltage decreases or 

voltage oscillations. SPS stability thus should be assessed to ensure the stable operation 

of a system during reconfiguration.  

In this dissertation, time frames of SPS dynamics are presented. Stability problems 

during SPS reconfiguration are classified as long-term stability problems. Since angle 

stability is strongly maintained in SPS, voltage stability is studied in this dissertation for 

SPS stability during reconfiguration. A test SPS computer model, whose simulation 

results were used for stability studies, is presented in this dissertation. The model used a 

new generalized methodology for modeling and simulating ungrounded stiffly grounded 

power systems.  
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This dissertation presents two new indices, a static voltage stability index (SVSILji) 

and a dynamic voltage stability index (DVSI), for assessing the voltage stability in static 

and dynamic analysis. SVSILji assesses system stability by all lines in SPS. DVSI detects 

local bifurcations in SPS. SVSILji was found to be a better index in comparison with 

some indices in the literature for a study on a two-bus power system. Also, results of 

DVSI were similar to the results of conventional bifurcation analysis software when 

applied to a small power system. Using SVSILji and DVSI on the test SPS computer 

model, three of four factors affection voltage stability during SPS reconfiguration were 

verified. During reconfiguration, SVSILji and DVSI are used together to assess SPS 

stability.  
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 CHAPTER I  

INTRODUCTION 

1.1 INTRODUCTION 

The electric power systems in U.S. Navy ships supply energy to sophisticated systems 

for weapons, communications, navigation, and operation. The reliability and 

survivability of a Shipboard Power System (SPS) are critical to the mission of a Navy 

ship, especially under battle conditions. In the event of battle, various weapons might 

attack a ship. When a weapon hits the ship, it can cause severe damage to the electrical 

systems on the ship. This damage can lead to de-energization of critical loads on a ship 

that can eventually decrease a ship’s ability to survive the attack. Researchers in the 

Power System Automation Laboratory (PSAL) at Texas A&M University have 

developed methods for performing reconfiguration of SPS. Reconfiguration operations 

change the status of open/close of switches in an SPS. These operations are performed 

before or after a weapon hit to reduce the damage to SPS.   

Stability is one critical aspect of system reliability, and stable operations must be 

maintained during reconfiguration. Power system stability is maintained by real and 

reactive power supplied from sources, normally generators. Power systems are stressed 

if the margin of real and reactive power between the supply and the consumption is 

small. Reconfiguration operations change the topology of an SPS and induce the 

dynamics of equipments. When the stability margin is small, the topology changes and 

the dynamics of equipments due to reconfiguration might cause voltage instability, such 

as progressive voltage fall or voltage oscillations. SPS stability should thus be assessed 

to ensure the stable operation of a system during reconfiguration. In the literature, one 

methodology is found for angle stability studies for SPS [1], and no methodology was 
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found for voltage stability analysis and assessment for Alternate Current (AC) radial 

SPS. Therefore, there is a need to develop new methods that can perform such a task. 

To analyze and assess SPS stability, understanding SPS is important and the first 

thing to be done. This dissertation presents the time frames of dynamics of SPS. With 

appropriate categorization of stability problems due to time frames, we can emphasize 

key elements affecting the stability under study. SPS are special power systems, which 

have the features of being isolated, ungrounded, and stiffly connected. The salient 

features of SPS are discussed. These salient features affect SPS stability and contribute 

to the determination of factors involved in SPS stability analysis. 

An effective stability assessment methodology can only be developed based on the 

study of dynamics during SPS reconfiguration. A “computer model” test system 

representing an AC SPS was designed and developed for stability studies. A special 

modeling methodology is required to efficiently model and simulate the dynamics of 

SPS. Due to the feature of stiff connection, inductor and resistor buses emerge. All 

component models on inductor and resistor buses are voltage-in-current-out models and 

the voltage inputs can not be derived from any component model, which creates 

interconnection incompatibility on inductor or resistor buses. The voltage inputs on 

inductor or resistor buses can be generated in artificial ways. In this dissertation, a new 

generalized methodology is presented to model and simulate ungrounded stiffly 

connected power systems such as SPS. Dynamic simulations are performed on the test 

SPS to investigate the dynamic behavior of an SPS during reconfiguration and 

simulation results are used in voltage stability and assessment. 

Power system stability studies whether a system can regain equilibrium after being 

subjected to disturbances. The nature of a stability problem is reflected by synchronism 

between synchronous generators or voltages at buses, which belongs to the study areas 

of angle stability and voltage stability, respectively. Due to the parallel operations of 

generators and the stiff connection of SPS, the synchronism between generators is 

strongly maintained in SPS. Hence, voltage stability is the concern of the stability study 

in this dissertation. Voltage instability occurs in a stressed system, where reactive power 
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margin is small. When a disturbance occurs, voltages in a system can decrease below a 

certain level or oscillate. Bifurcations are detected when voltage instability occurs.  

In this dissertation, two new voltage stability indices are presented to assess voltage 

stability during SPS reconfiguration. The two indices are a static voltage stability index 

(SVSILji) for static voltage stability analysis and a dynamic voltage stability index 

(DVSI) for dynamic stability analysis. SVSILji and DVSI are used together to assess SPS 

stability during reconfiguration. SVSILji is deduced based on the power flow equations at 

steady state. In static analysis, instability is detected if SVSILji is equal to one. As the 

value of SVSILji gets closer to one, the system is more prone to be unstable. DVSI is 

deduced from eigenvalue decomposition and singular value decomposition. DVSI 

detects bifurcations in a dynamic system and thus identifies voltage instability. The 

dynamic index is evaluated with dynamic simulations, which are performed with the 

generalized modeling and simulation method. A zero value of DVSI indicates the 

occurrence of bifurcations and voltage instability. The system is prone to be unstable if 

DVSI is closer to zero. Case studies were performed for SVSILji and DVSI indices on the 

test SPS. Case studies show that SVSILji and DVSI are effective voltage stability indices 

in static and dynamic voltage stability analysis.  

The major contributions of this dissertation are in six areas. First, the time frames of 

dynamic phenomenon were studied for shipboard power systems. The time frames 

classify dynamics in SPS into different types of stability. With proper classifications, 

stability studies concentrate on important factors affecting SPS stability. Secondly, a 

new methodology for modeling and simulating ungrounded stiffly connected power 

systems was developed. The obstacles to utilizing conventional power system simulation 

methods for ungrounded stiffly connected power systems are discussed. This new 

modeling methodology was successfully applied on ungrounded shipboard power 

systems. Thirdly, a study of factors affecting shipboard voltage stability during 

reconfiguration was conducted and four factors were identified as affecting voltage 

stability. The effects of the four factors, loading condition, motor stalling, windup limit 
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in voltage controllers, and interaction between loads and voltage controllers on SPS 

voltage stability, are discussed and analyzed. 

Fourthly, approach to assess SPS stability during reconfiguration was developed. The 

approach includes two new indices, SVSILji and DVSI, for static and dynamic voltage 

analysis. A new static voltage stability index (SVSILji) was developed. The deduction of 

this new index was made from the mathematical formulations of power flows. The 

performance of this new index in static voltage stability analysis and assessment was 

compared with that of three existing static voltage stability indices found in the 

literature. The new index performed better than the three indices. SVSILji was applied on 

the test shipboard power system computer model for stability studies. The test system for 

stability studies was developed from a reduced shipboard power system model 

previously designed in the Power System Automation Lab. The stability studies 

performed on the test SPS consider factors affecting SPS stability. A new dynamic 

voltage stability index (DVSI) was developed to detect bifurcations in dynamic voltage 

stability analysis. Local bifurcations, including both saddle node bifurcation and Hopf 

bifurcation, can be detected by the DVSI. The new index was derived with the 

techniques of eigenvalue decomposition and singular value decomposition. In a study on 

a two-generator-one-motor power system, the bifurcations detected by this new index 

agree with those detected on a conventional bifurcation analysis software package called 

AUTO. This new index was implemented on the test SPS for stability analysis. The 

results show that the bifurcations occurring during dynamic processes of the test system 

can be detected by this new DVSI. 

1.2 ORGANIZATION 

This dissertation consists of seven chapters. In Chapter I, an introduction to this work 

and the organization of the dissertation are given. In Chapter II, the literature on stability 

studies for conventional utility power systems and shipboard power systems (SPS) will 

be reviewed. In Chapter III, stability problems during reconfiguration will be 

formulated. This dissertation will discuss stability problems in SPS and study voltage 
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stability during SPS reconfiguration. Bifurcations will be introduced as causes of voltage 

instability. Steady state and dynamic analysis for voltage stability will be presented as 

different ways to analyze voltage instability. Factors affecting voltage stability in SPS 

during reconfiguration will be described and analyzed. In Chapter IV, a new generalized 

methodology for modeling and simulating ungrounded stiffly power systems will be 

presented. A test shipboard power system for stability studies will be constructed in this 

chapter. The new modeling and simulating methodology will be implemented on the test 

SPS. In Chapter V, a new static voltage stability index (SVSILji) for static stability 

analysis will be deduced. Comparisons of the new index and some indices in the 

literature will be made. The new SVSILji will be illustrated with the test SPS. In Chapter 

VI, a new dynamic voltage stability index (DVSI) for dynamic stability analysis will be 

deduced. The bifurcation analysis results of a small power system by DVSI will be 

compared with those by AUTO, a conventional bifurcation analysis software. The 

effectiveness of the new DVSI will be illustrated on the test SPS. In Chapter VII, 

conclusions will be drawn and some remarks about future work will be given. 
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 CHAPTER II  

LITERATURE REVIEW AND BACKGROUND 

2.1 INTRODUCTION 

In this chapter, the literature on stability and analysis methods will be reviewed and 

summarized. Power system stability is an important factor in power system studies. 

Shipboard power systems (SPS) are special power systems. Stability analysis and 

assessment for AC SPS are the topic of this dissertation.  

Appropriate mathematical models of power systems are necessary as the first step for 

power system stability analysis and assessment. In this chapter, work on the stability of 

utility power systems will be presented first. Work on the stability of SPS will then be 

discussed.  

2.2 POWER SYSTEM STABILITY 

Power System Stability is the ability of an electric power system, for a given initial 

operating condition, to regain a state of operating equilibrium after being subjected to a 

physical disturbance, with system variables bounded so that system integrity is preserved 

[2]. According to the time frames of dynamics, power system stability can be divided 

into steady-state, dynamic, or small signal and transient and long-term stability. The 

main physical nature of instability in power systems could be angle or voltage.  

In this section, modeling work on power systems will be described first. A literature 

review of different categories of stability and various analysis methods for utility power 

systems will then be presented.  

2.2.1 Power System Modeling 

Any power system can be represented by a set of differential algebraic equations 

(DAE) shown as (2.1) and (2.2) [2].  
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),( yxfx =
•

 (2.1)

),( yxg0 =  (2.2)

where 
), yx

x  is a vector of state variables and describes the dynamics of power systems, 

such as the dynamics of exciter control systems. x  could also include specific system 

configurations and operating conditions, such as loads, generation, voltage setting 

points, etc. y  is a vector of algebraic variables and satisfies algebraic constraints, such 

as power flow equations, which is implicitly assumed to have an instantaneously 

converging transient.  

The conventional methods for modeling and simulating power systems can be 

classified into two main categories: 1) nodal admittance matrix based circuit simulation 

methods, such as implemented by EMTP/ATP [3] (The Electromagnetic Transients 

Program/Alternative Transient Program), and 2) differential algebraic equation solver 

based methods, such as implemented in SimPowerSystems Toolbox by Matlab/Simulink 

[4][5]. The essence of nodal admittance matrix based methods is that a power system can 

be represented by an electric circuit of mixed constant impedance and voltage source at 

each time step. For differential algebraic equation solvers based methods, the differential 

equations and algebraic equations are partitioned and solved by explicit numerical 

methods or simultaneously solved by implicit numerical methods. Due to the salient 

features of SPS, the modeling and simulation of SPS could then be different from the 

modeling and simulation of utility power systems, and this will be discussed later.  

2.2.2 Steady State Stability 

The stability of an electric power system is a property of the system motion around an 

equilibrium set, i.e., the initial operating condition [2]. Steady-state analysis consists of 

assessing the existence of the steady-state operating points of a power system. At steady 

state, time derivatives of state variables are assumed to be zero. Consequently, the 

overall DAE equations describing the system are reduced to pure algebraic equations. 

No solution for the algebraic equations means that the system cannot operate under 
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specific conditions. One solution means that a unique operating point exists. Multiple 

solutions means that further investigation is required to study the characteristics of each 

solution and find the stable solution. Conventionally, power flow equations are applied 

to conduct the steady state analysis. In the past, voltage stability was studied by steady 

state analysis methods. 

2.2.3 Dynamic Stability 

Dynamic stability or small signal stability exists when a system is subjected to small 

aperiodic disturbances [2]. The time frame of dynamics in small signal stability is up to 

one second. Initially the operating point of a system is ix . After a disturbance, the 

operating point moves to ii xx ∆+ , where ix∆  is the deviation of the operating point. In 

dynamic stability, the deviation ix∆  is so small that its effects to the system can be 

linearized, which is the theory basis for small signal stability analysis. The linear system 

depends not only on the physical characteristics of the system but also on the 

equilibrium point about which the linearization is performed. The locations of the 

eigenvalues of a system are checked for dynamic stability. The imaginary parts of the 

eigenvalues represent the potential frequencies of the oscillation modes. The real parts of 

the eigenvalues represent the damping factors of the corresponding frequencies. If all the 

real parts of the eigenvalues are negative, then the system is stable.  

The nonlinear behavior of the system can be approximated by the behavior of its 

linear system within a small proximity to the system equilibrium points. The linear 

system is almost equivalent to the nonlinear system in a small neighborhood of the 

equilibrium point. Within the small neighborhood of the equilibrium point, the 

qualitative stability characteristics of the linear system are thus the same as the 

qualitative stability characteristics of the nonlinear system. This approximation is the 

theoretical basis for the application of local bifurcation analysis for dynamic voltage 

stability analysis [6].  
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2.2.4 Transient Stability  

Transient stability exists when a system is subjected to large aperiodic disturbances 

[2]. The time frame of transient stability is up to ten seconds. For transient stability 

analysis, the deviation ix∆  of state variables is large and the nonlinear system model can 

not be linearized. In the study of power systems, without specification, transient stability 

is normally referred to as angle stability. Angle stability is concerned with the ability of 

interconnected synchronous machines in a power system to remain in synchronism after 

being subjected to a disturbance from a given initial operating condition [2]. The 

electromechanical energy conversion in rotating machines is studied for angle stability. 

Indirect and direct methods are used in the study of angle stability. Indirect methods 

are time domain simulation methods. Time domain simulations compute the solution 

trajectories of the state variables from dynamic equations and algebraic equations. The 

stability is observed from the solution trajectories. Indirect methods are reliable and 

accurate, but the computation results can not indicate the stability margin and the 

computation speed is slow for stability assessment [2][7][8].  

Direct methods are suggested in many papers for their speed of computation and 

efficiency in stability assessment. Good summarization on various direct methods is 

made in [7][8]. Basically, Lyapunov functions, usually the energy functions of a system, 

are constructed in direct methods to evaluate stability. However, Lyapunov theorem 

gives only a sufficient but not a necessary and sufficient condition for the determination 

of stability regions. As a result, the stability regions calculated from direct methods are 

conservative or smaller than real stability regions. In addition, it is difficult to construct a 

Lyapunov function for a system with detailed component models included. Most of the 

direct methods are restricted to use with classical second order generator models and 

constant impedance load models. In [8], a third order flux decay generator model (a 

more detailed generator model) was considered for formulating Lyapunov functions.  

Various direct methods use different characteristics of the stability boundary to 

determine the stability region. These methods include Unstable equilibrium point (UEP), 

controlling UEP, Potential energy boundary surface (PEBS), and Equal area criterion 
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(EAC). In the UEP method, the stability boundary is on an unstable equilibrium point 

resulting in the lowest value of the Lyapunov function among all the unstable 

equilibrium points. In the controlling UEP method, the stability boundary is on a 

relevant or controlling unstable equilibrium point or the unstable equilibrium point 

closest to the point where the disturbed trajectory exits the stability region. In the PEBS 

method, the stability boundary is on the points where the maximum value of the 

potential energy occurs along disturbance-on trajectory. The EAC method uses the same 

boundary condition as the PEBS method. However, the characteristics of the maximum 

potential energy are described in a different way. In EAC, the boundary of the region of 

attraction is when the accelerated energy during disturbance-on trajectory is equal to the 

decelerated energy after disturbances are removed.  

2.2.5 Long-Term Stability  

Long-term stability is defined as the ability of a power system to reach an acceptable 

state of operating equilibrium following a severe disturbance that may or may not have 

resulted in the system being divided into subsystems [2]. Long-term stability problems 

are usually concerned with system response to major disturbances that involve 

contingencies beyond normal system design criteria. The disturbances are either so 

severe or long lasting that they evoke the actions of slow response equipment. Therefore, 

long-term stability studies require that the system model include slow response 

component models, which are normally considered unnecessary in transient and dynamic 

stability studies.  

For long-term stability studies, time domain simulations are the only way to evaluate 

stability [9]-[11]. In long-term stability studies, different time scales (fast and slow) are 

modeled and simulated simultaneously. Long-term stability studies thus could be time 

consuming. At present, several specially designed simulation packages, such as 

LOTDYS (Long-Term DYnamic Simulation), ETMSP (ExTended Mid-term Simulation 

Program) and EUROSTAG (STAlilite Generalisée, in French), can be used to simulate 

long-term dynamics. LOTDYS assumes uniform system frequency and neglects fast 
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transients [12]. ETMSP is a better simulation program for including fast transients, but it 

assumes constant frequency in long-term time frames, which is unacceptable when it is 

used for investigating long-term dynamics involving large excursions in system 

frequency [13]. EUROSTAG uses the Gear type implicit integration algorithm, in which 

time step size varies automatically due to the truncation error of the former step [14]-

[17]. EUROSTAG allows the simulation of all dynamics with one invariant complete 

model except for fast electromagnetic transients [14]. In many situations in voltage 

stability studies, slow acting equipment will be involved. Long-term voltage stability 

could be studied by software packages designed for the study of long-term stability.  

The three commercial long-term simulation tools mentioned earlier were developed to 

simulate long-term dynamics in bulk power systems, where transmission systems are 

significant. If a power system is stiffly connected, due to the small shunt capacitances of 

the short lines, the line time constants are small. Therefore, small time steps will be 

introduced into the simulation to guarantee a stable integration algorithm even though 

the small capacitances have little effect on the overall system performance [18][19]. The 

small steps decrease the speed of computation significantly. Consequently, the earlier 

mentioned software packages for long-term stability studies are not applicable in stiffly 

connected power systems. 

2.2.6 Voltage Stability 

Voltage stability is the ability of a power system to maintain steady acceptable 

voltages at all buses in the system under normal operating conditions and after being 

subjected to a disturbance [2]. Voltage stability is not new to the study of power systems 

but is now receiving more and more attention as a result of heavier loading in developed 

power networks. In recent years, voltage instability has been responsible for several 

major network collapses [2]. Voltage instability occurs when a power system is stressed 

[2][6][20]. 

Recently, nonlinear bifurcation theory was applied in a power system voltage stability 

study [6]. The bifurcation points are the thresholds where instability occurs. Some 
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typical types of bifurcation occurring in power systems are saddle node bifurcation 

(SNB), Hopf bifurcation (HB), and singular induced bifurcation (SIB). These 

bifurcations are local bifurcations. SNB has been linked to voltage collapse [6]. HB is 

associated with oscillatory voltage instability [6]. SNB and HB are generic local 

bifurcations [6]. Researchers are unclear as to whether SIB does exist in power systems 

or whether it is just a mathematical concept [6].  

In voltage stability analysis, load characteristics could be critical. In section 2.2.6.1, 

work on loading modeling for voltage stability will be described and discussed. Voltage 

stability can be analyzed by static and dynamic analysis methods. In section 2.2.6.2, the 

literature on these two analysis methods will be reviewed. 

 

2.2.6.1 Load Modeling 

Voltage is maintained by reactive power in power systems. After a system is 

subjected to a disturbance, power of loads tries to be restored to the levels before being 

disturbed. The restored loads increase reactive power consumption after being disturbed 

and can cause voltage instability in stressed power systems. Voltage stability is thus 

closely related to load characteristics [2][6][21][22]. The importance of load modeling in 

voltage stability studies, especially in the location of the bifurcation points and the 

corresponding system dynamic response has been addressed in the literature. Various 

load models have been proposed to capture the basic dynamic voltage response of the 

loads in a power system.  

In [23], the authors examine the characteristics of power systems where induction 

motors constitute a main portion of the load. In their study, a first order induction motor 

model was used and three different induction motor load models were considered. The 

load torques were modeled as constant, linear, and quadratic functions of the induction 

motor rotor speed. Static loads were also included in the system model allowing for the 

examination of the effect of changing the proportion of the total load, which was 

composed of static elements. Fixed voltage and constant generator models were used 

with no generator dynamics considered. Different types of load torque on induction 
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motors can have different effects on voltage stability. The study found that for constant 

load models, saddle node bifurcations occurred at higher voltage levels and at higher 

speeds as compared to the speed dependent mechanical load models. The percentage of 

the total load composed of induction motor load did not affect the nature of bifurcations, 

but it did influence the value of induction motor loading at which the bifurcations 

occurred. The effect on voltage collapse of combined induction motor and impedance 

loads by means of lab measurements and computer simulations using reduced order load 

models is studied in [24]. The study focused on the ability of switching capacitors to 

prevent voltage collapse in heavily loaded systems and the operation of induction motors 

on the lower portion Power Voltage (PV) curves.  

In most voltage stability analysis, studies concentrate on simplified induction motor 

models, and little attention has been placed on the interaction of the different power 

system components. A Hopf bifurcation was detected along with typical saddle node 

bifurcations with a simple two-bus-single-generator system in [25]. The loads in the 

system were modeled as a third order induction motor model and lumped impedance 

elements. The generator was modeled using a dynamic two axis model with an IEEE 

type I exciter. The interaction between the induction motor loads and voltage controllers 

on generators was studied in [26]. It was found that the dynamics of induction motors 

can delay the response of voltage controllers. Voltage oscillatory instability thus could 

be caused by the interaction between voltage controllers and induction motors. 

 

2.2.6.2 Voltage Stability Analysis 

At its earlier development stage, voltage stability used to be analyzed by static 

analysis methods, such as power flows. However, as understanding of voltage stability 

developed, more and more researchers came to believe that voltage stability is dynamic 

stability and dynamic analysis should be applied.  

Static analysis methods could be used to analyze voltage stability problems 

approximately. The equivalence of the occurrence of saddle node bifurcation of the 

algebraic equations to the reduced differential equation modeled by a set of DAE is 
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shown in [27]. Many static studies have been done on voltage stability in transmission 

systems, but hardly any work has been done on voltage stability in distribution systems. 

Several voltage stability indices derived from static power flow analysis were proposed 

for utility power systems. The values of the indices were calculated for each distribution 

line based on load flow results. The line with the largest value was taken as the weakest 

line in a system and received special attention to maintain voltage stability. A voltage 

stability index LQP that neglected line resistance was proposed by Mohamed [28]. A 

fast voltage stability index FVSI was derived in [29] by Musirin. The fast index 

neglected the angle difference between the voltages at both ends of a line. A voltage 

index was represented by the power injected by the load on a local bus and the power 

injected from the other buses in a system in [30]. In [31][32], a voltage stability index 

for distribution systems was derived with the whole distribution network represented by 

a single line equivalent. However, the equivalent index is only valid at the operating 

point at which it is derived and is not adequate for assessing stability when a large 

change of load is involved [32].  

As described earlier, various long-term simulation packages mentioned in section 

2.2.5 could be used for dynamic voltage stability analysis. Voltage magnitudes at critical 

buses are observed during simulations to determine if voltages are stable. With 

differential equations of fast dynamics approximated by algebraic equations, voltage 

stability can be analyzed and assessed by successive static analysis methods, such as 

Quasi Steady State (QSS) analysis [2]. In time domain simulations, differential and 

algebraic equations are partitioned and solved explicitly, or integrated and solved 

implicitly. In QSS, approximated algebraic equations are solved to calculate equilibrium 

points successively. Numerical algorithms, such as the Newton-Raphson algorithm, are 

applied in QSS for incrementally changing the value of parameters. It has been 

suggested that the most effective approach for studying voltage stability is to make 

complementary use of QSS and time domain simulations [2][6]. QSS derives the 

trajectory approximately. Time domain simulations derive the detailed trajectory 

between the equilibrium points derived from QSS analysis when a system is close to 
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bifurcations. The bifurcation points can thus be identified along the trajectory by 

bifurcation detection techniques, such as eigenvalue decomposition (ED) and singular 

value decomposition (SVD) [6]. The minimum singular value can be used to detect 

bifurcations for voltage collapse [6]. However, in a real power system, several small 

singular values could mask the critical singular value, and a method is suggested in [33] 

to unmask the critical singular value. In many long-term stability studies, successive 

static analysis is thus applied for determining long-term stability margins and identifying 

factors influencing long-term stability [2][6][34]. However, numerical difficulties can 

arise as the solution of steady state equations approaches a singular point caused by 

saddle node bifurcation.  

Continuation methods overcome the singular problem by reformulating the 

differential algebraic equations so that they will remain well-conditioned at all possible 

loading conditions. Continuation techniques are generally composed of two or three 

steps. The first step is a predictor step, the second is a corrector step, and the last step is 

a parameterization routine. At the predictor step, a predictor step of state variables and 

the change of parameters are determined. From the new point, a corrector routine is used 

to calculate the new equilibrium point. A parameterization is used to ensure that the 

Jacobian matrix used in the continuation method does not become singular at saddle 

node bifurcations. UWPFLOW, a publicly available QSS, uses a continuation method to 

detect the voltage stability limit of a power system [34]. Another public program AUTO 

[35] is also mentioned in the literature. AUTO applies a continuation method to solve the 

differential algebraic equations of the system. AUTO has been used for theoretical 

studies of bifurcations in small power systems [6][36]. 

2.3 SHIPBOARD POWER SYSTEM STABILITY 

The stability analysis for SPS is different from stability analysis for conventional 

utility power systems. Little research work has been found in the literature in the area of 

shipboard power system stability.  
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In this section, shipboard power system modeling will first be reviewed. Secondly, a 

method found in the literature for SPS stability analysis and assessment will be 

discussed. 

2.3.1 Shipboard Power System Modeling 

Shipboard power systems are isolated finite inertia power systems. References [37]- 

[43] presented modeling and simulation studies of versatile isolated finite inertia power 

systems from different perspectives. Ross, Concordia and O’Sullivan [37]-[39] modeled 

isolated power systems for designing frequency controllers. Kariniotakis and Stavrakakis 

[40] neglected machine stator transients and network transients. Their methods thus 

derived incorrect simulation results when the transients were large. The objective of 

Sharma [41] was to consider transients in the first five seconds, so detailed models were 

not applied. Fahmi and Johnson [42] divided an isolated power system into several 

subsystems, with phase co-ordinate models then adopted for analysis of each subsystem. 

Limited controller models were included, which would not be appropriate in long-term 

stability studies. Murray, Graham and Halsall [43] concentrated on the modeling of 

synchronous motor drives and the simulation of waveform distortion due to motor drives 

in an isolated power system.  

A test ungrounded delta connected SPS was developed in the Power System 

Automation Lab based on a U.S. Navy combatant ship [44]. The modeling and 

simulations of the test SPS were conducted with Alternative Transient Program (ATP). 

The test SPS comprised various components, including generators, load centers, 

numerous cables, induction motor loads, constant impedance loads, transformers, and 

different types of protective devices. The test SPS provided a platform for studying the 

behavior of SPS. The test system was simulated to aid the development of automated 

failure assessment and restoration for SPS. 

With small shunt capacitance neglected in SPS, there emerges incompatibility when 

the components models are interconnected. The incompatibility problem caused by 

neglecting the capacitances in modeling SPS could be solved by the traditional method 
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of adding auxiliary resistance in systems [8]. Two methods for modeling and simulating 

SPS were proposed in [18][19] to solve the modeling incompatibility. In [18], at each 

inductor bus one component model is reformulated. The reformulated component is a 

nonroot generator or motor. The original physical models of the reformulated 

components are kept, while reformulation changes the mathematical formulation of the 

reformulated component models to facilitate the derivation of bus voltages. The method 

in [19] keeps the original mathematical format of equations and derived bus voltages by 

solving algebraic constraints with an algebraic solver; as a result, the speed of 

computation improved greatly.  

The methods in [18] and [19] used ACSL (Advanced Continuous Simulation 

Language) as the simulation tool. In Mayer’s method [18], the inductor buses in a stiffly 

connected system are first categorized; the standard model of one machine connected to 

each inductor bus is then reformulated to facilitate the deduction of the inductor bus 

voltages. Mayer’s method requires that at least one machine be connected to each 

inductor bus and certain procedures are required to solve the voltages of each inductor 

bus on the basis of the reformulated state space equations of root and nonroot machines. 

Ciezki’s method [19] relies greatly on the simulation language, more specifically, the 

accuracy of the algebraic solver in ACSL.  

2.3.2 Shipboard Power System Stability Analysis 

A stability analysis and assessment method for composite systems was discussed and 

proposed for SPS by Amy [1]. A composite system was modeled as (2.3) and (2.4) [1].  

iiiii uDtxfx +=
•

),(  
(2.3)

iii xHy =  (2.4)

where ix  is the states of the ith subsystem, iu  is the inputs of the ith subsystem, and iy  

represents the outputs of the ith subsystem. iG  and iH  are system parameters. The 

representation of interconnection of subsystems was given by (2.5) [1]. 
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where ijB  describes the interconnections between the inputs of ith subsystem and the 

outputs of the other subsystems. u  is the global inputs to the composite system. G  

represents the parameters associated with the global inputs. A Lyapunov function was 

constructed from the composite model (2.3)- (2.5) to assess system stability [1]. 

Amy considered SPS as a composite system, and each component was taken as a 

subsystem in the composite system [1]. However, the close proximity and tight coupling 

of SPS components increase the order of models to capture dynamics. Further, it was 

difficult to construct a Lyapunov function for a detailed system model. Co-energy was 

used by Amy to construct Lyapunov functions for detailed generator models in SPS [1]. 

He assumed each generator was a lossless “coupling field” where the mechanical and 

electrical interaction takes place. The energy contained within the “coupling field” was 

co-energy. Amy then used the instantaneous co-energy stored in a generator and its rate 

of change for stability analysis and assessment during the transient process [1]. At steady 

state, the co-energy was stationary and the mechanical energy injected into the field was 

extracted as electric power. Co-energy within the field did not directly participate in 

electromechanical energy conversion at steady state. When the system was disturbed, co-

energy in generators increased. After the disturbance, if the excess co-energy stored in 

the coupling field was extracted and converted into the electrical system, the system was 

stable. Otherwise, the system was unstable.  

Co-energy in a three-phase synchronous machine in dq0 variables was written as 

(2.6) by Amy in [1]. 
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where dqI  is the stator currents and RI  is the rotor currents. DQL  is the stator and rotor 

inductance of the generator. A co-energy based Lyapunov function including kinetic 

energy K.E. as (2.7) was then developed by Amy for detailed SPS generator models [1].  
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where J  and ω  are the inertia and rotor speed of the generator. Four other Lyapunov 

functions with different scaling factors on co-energy and kinetic energy were also 

presented [1]. Since a SPS is a composite system, Amy used the summation of the 

Lyapunov function of each individual generator as the system Lyapunov function of a 

SPS [1]. If the derivative of the system Lyapunov was positive, then the system was 

determined unstable. Otherwise, the system was determined as stable. The co-energy 

based Lyapunov function was applied by Amy to analyze stability of a simple two-

generator SPS [1]. In the system, one generator was a super-conducting generator and 

the other was a conventional generator. A short circuit fault was applied at the terminal 

of the super-conducting generator. The critical clearing time for the faults was 

determined as the time instant when the derivative of the system Lyapunov was equal to 

zero.  

The concept of a co-energy based Lyapunov function needs some improvement to be 

feasible in real SPS. In order to assess system stability, Amy believed each relevant 

component in a system should have its own “co-energy based” Lyapunov function [1]. 

However, the implementation of the co-energy concept on components other than 

synchronous generators needs further research work. In addition, because the co-energy 

in generators is normally small, weighting factors were used by him to enlarge the co-

energy in the total energy [1]. These weighting factors are important for assessing 

stability accurately. An efficient way to select the weighting factors is necessary for the 

co-energy based Lyapunov function to be used in stability analysis. 

2.4 CHAPTER SUMMARY 

This chapter addressed the literature on stability. Stability and its analysis methods 

for conventional utility power systems were presented. Different methods of modeling 

and simulations of SPS were reviewed. A stability study method developed for 

shipboard power systems was described and discussed.  
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Chapter III will formulate the stability problems studied in this dissertation.  
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 CHAPTER III  

PROBLEM FORMULATION 

3.1 INTRODUCTION 

The electric power systems in U.S. Navy ships supply energy to sophisticated systems 

for weapons, communications, navigation and operation. At present, there are many 

forms of system configuration for electric power systems in U.S. Navy ships or SPS, 

such as AC radial, AC zonal, and integrated power systems (IPS) [45]-[47]. Some AC 

shipboard power systems (SPS) are ungrounded, having no permanent, low-resistant 

connections between the power system and the structure of the ship [45]. An ungrounded 

power system is used for AC radial SPS to survive the most frequently occurring single-

line-to-hull fault. Figure 3.1 shows the one-line diagram of a typical AC radial SPS [48]. 

In SPS, some generators are in normal operation, and some are back-up or standby 

generators that provide generation in emergencies. In Figure 3.1, four generators are in 

service and two are emergency generators that provide back up power. Typical voltage 

output from the generators is 450 volts AC at 60 Hz. To further enhance survivability of 

an SPS under attack, main switchboards are connected with bus-tie cables in a ring 

configuration. In emergencies, the ring connection provides power supply from the 

generators to the main switchboards through alternate paths. To avoid total generation 

loss under attack, the generators are located in different places on shipboard.  

Circuits downstream of the main switchboards are in radial configuration. The load 

centers are downstream of the main switchboards; while the power panels are 

downstream of the main switchboards or load centers. Loads directly connect to the 

main switchboards, load centers, or power panels. Single-phase loads connect to power 

panels through power transformers. Transformer banks are three, single-phase delta 

connected transformers that reduce the voltage to supply single-phase loads. 

Transformers convert the supply voltage of the distribution system from 450 volts to 120 

volts. Therefore, an SPS could operate under unbalanced conditions. Loads operate at 
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440 or 115 volts at 60 Hz or 400 Hz. 400 Hz loads are usually part of the weapons 

systems and aircraft and aviation equipment.  

Generally, generators, main switchboards, and load center feeders are equipped with 

circuit breakers (CBs), while power panel feeders are equipped with switches or fuses 

[45]. Switchboard protection devices, including an under-frequency module relay, an 

over-power relay, a reverse power relay, and an under-voltage relay protect its 

associated generator/switchboard set [49]. Low voltage protective devices (LVs), such as 

low voltage protection (LVP) and low voltage release (LVR), are installed to protect 

induction motors. LVPs and LVRs isolate the protected motor if the terminal voltage is 

below the drop out voltage. If the terminal voltage is restored to a value above the pick 

up voltage, the LVR switches the load back into the system. LVPs require manual 

operator action to switch the load back into the system.  

There are two categories of loads in the system: non-vital loads and vital loads. Non-

vital loads have one path (normal path) to achieve power supply; while vital loads have 

an extra path (alternate path) to enhance survivability in emergencies. Two kinds of bus 

transfer units (BTs), automatic bus transfer (ABT) units and manual bus transfer (MBT) 

units, are employed to perform this protection function. The switches of a bus transfer 

unit on the normal path of the load are normally closed, while the switches on the 

alternate path are normally open. An ABT automatically switches the load to its alternate 

path if the voltage on the normal path is below the drop out voltage, and returns to its 

normal path when the voltage returns to a value above the pick up voltage. An MBT 

needs manual interaction to change the path of the protected load. 
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Figure 3.1 A Typical AC Radial SPS [48] 
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The reconfiguration phenomenon in SPS is divided into three types. They are static 

reconfiguration, mission reconfiguration, and dynamic reconfiguration. Static 

reconfiguration implies the choosing of the actual shipboard power architecture but also 

includes platform performance upgrades by means of software and open architecture 

based upgrades [50]. Mission reconfiguration means a change in platform state in 

response to varying readiness conditions such as cruise, on-station, anchor, battle, etc 

[50]. Dynamic reconfiguration is a platform response to assure electric power to vital 

loads during damage or failure [50]. Dynamic reconfiguration commonly occurs during 

rapidly changing conditions such as battle. Dynamic reconfiguration is the type of 

reconfiguration that was studied in this dissertation. 

In the event of battle, various weapons might attack the ship. When a weapon hits a 

ship, it can cause damage to the electrical system on the ship. The effects of damage to 

the SPS comprise open and short circuits from damage to equipment [48]. Two types of 

dynamic reconfiguration are being studied by researchers in the Power System 

Automation Lab (PSAL). They are restorative reconfiguration and predicative 

reconfiguration. Reconfiguration operations change the open/closing status of circuit 

breakers, bus transfers, and low voltage protective devices. The multiple closing/opening 

of switches and protective devices changes system configuration and reduces the system 

loss caused by damage.  

For power systems, the process of a system being disturbed can be subdivided into 

three stages: pre-disturbance, disturbed, and post-disturbance [2]. A power system is 

initially operating at an operating point. After being subjected to disturbances, the 

system could regain or lose a state of operating equilibrium. For dynamic 

reconfiguration of SPS, disturbances include the effects of damage, such as open circuits 

and short circuits, and reconfiguration operations. The pre-disturbance stage during SPS 

reconfiguration is up to the instant when the first disturbance occurs. The post-

disturbance stage during SPS reconfiguration is from the instant when the last 

disturbance occurs. The disturbed stage during SPS reconfiguration is the transient 

process after the pre-disturbance stage and before the post-disturbance stage.  
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Stability is an important condition for the success of reconfiguration. During SPS 

reconfiguration, an SPS starts from steady state at the pre-disturbance stage, experiences 

the transient process at the disturbed stage and finally settles down to steady state at 

post-disturbance stage. Stability during reconfiguration studies if a SPS will settle down 

to a state of operating equilibrium at the post-disturbance stage. If instability occurs 

during reconfiguration, a SPS would move to some unknown state. Instability is 

undesirable during the operation of a SPS. Therefore, SPS stability should be analyzed 

and assessed before any reconfiguration operation is undertaken. 

In this section, shipboard power systems and reconfiguration are introduced. This 

dissertation concentrates on stability during dynamic reconfiguration. The complexity of 

a system model and analysis methods for stability studies depends on the type of a 

stability problem and the characteristics of the system studied. In section 3.2, SPS 

dynamics will be categorized according to the results of time frame analysis. In section 

3.3, some salient features of SPS will be presented. The effects of the features on 

stability will be discussed. Based on the classification of SPS dynamics and the features 

of SPS, the stability problems during SPS reconfiguration will be formulated in section 

3.4. Two types of stability issues in SPS, angle stability and voltage stability, will be 

analyzed. Voltage stability problems will be shown to be the main stability problems. 

Four factors affecting voltage stability during reconfiguration in SPS will be analyzed. 

Static and dynamic analysis can be applied for voltage stability analysis. Considering 

static or dynamic effect on voltage stability, the four factors affecting voltage stability 

can be analyzed in static or dynamic analysis. 

3.2 TIME FRAME ANALYSIS OF SPS DYNAMICS 

With appropriate categorization of stability problems, we can emphasize key elements 

that affect stability studies. Time spans or time frames of dynamics can be used to 

classify stability problems. Time frames of power system stability problems for 

conventional utility power systems are given in and [51]. Detailed time frames of 

voltage stability problems for conventional utility power systems can be found in [20]. 
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Classifications of stability problems for conventional systems can be found in [2]. The 

larger a disturbance, the longer the duration of the dynamics due to the disturbance. Due 

to different time frames, stability problems can be classified into small signal or dynamic 

stability, transient stability, or long-term stability. Small signal and transient stability can 

be grouped under short-term stability [2]. The time frame of small signal stability or 

dynamic stability is up to one second, the time frame of transient stability is from one to 

ten seconds, and the time frame of long-term stability is from ten seconds to tens of 

minutes.  

Figure 3.2 shows the time frames of relevant dynamics in AC SPS. Electronic 

transients are defined as the sudden turn-ons of an electronic type load such as radar high 

voltage direct current power supplies or the sudden turn-offs of a radar system by its 

protective device [52]. Military specification requires that the voltage at the terminals of 

the electronic loads recover and stay within the steady state regulation band within 0.02 

second after application of the loads. In the design of a future generation of shipboard 

power system PEBB (Power Electronic Building Blocks), it is suggested that switching 

frequencies of Pulse Width Modulator (PWM) used for a wide range of inverter and 

rectifier applications reduces as power rating of the associated load increases [53]. The 

switching frequencies should be 200HZ, 2KHZ, and 20KHZ with different power 

ratings. The time frame of switching surges of PWM is from 0.005s to 50us. The 

stability of transients of electronic loads and switching surges thus belongs to dynamic 

stability. The time frames of the dynamics caused by machines, fast controllers, 

protective devices, faults and generator removal last no more than ten seconds. The 

corresponding stability problems thus fall into the categories of dynamic and transient 

stability. The time frames of the dynamics caused by slow controllers, nonlinear limits, 

load shedding and incremental loading for restoration could be several minutes. The time 

frames of load increasing on ships are in a ship’s lifetime. The stability of dynamics 

caused by load shedding, incremental loading for restoration, slow controllers, nonlinear 

excitation limits, and load increasing thus belongs to long-term stability. 
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Figure 3.2 Time Frames for Dynamics of AC Shipboard Power Systems 
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constants of controllers in SPS determine the time frames due to controller dynamics. 

The response of some controllers in SPS, such as governors and automatic voltage 

regulators (AVR) take several seconds. These controllers are fast controllers. The 
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gas turbines, could normally take several minutes. These controllers are slow controllers. 

If a voltage controller has nonlinear excitation limits, the response of the limits may take 

several minutes or even longer.  

The response time of protective devices in SPS, including CBs, LVs and BTs, 

determine the time frames of dynamics caused by protective devices. To derive the time 

frame of these dynamics, a two-generator system was modeled. The two generators were 

connected by one line. Simplified component models for generators and lines were then 

used for the analysis for faults and generator removal. Response time curves for faults 

given in [54] were applied to derive the time frames of line-to-line faults, double line-to-

ground faults, and three-phase ground faults, respectively. Response time curves for 

generator removal given in [54] were used to obtain the time frame of generator 

removal.  

The process of some operations determines the time frame of the dynamics caused by 

these operations. Load shedding in SPS due to overloaded generators can be divided into 

several stages. It may take several minutes to complete the whole process. 

Reconfiguration operations for restoration bring de-energized loads back on line. The 

incremental loading due to restoration could last for minutes or hours. On a Navy ship, 

the load profile increases continuously over a ship’s lifetime. Historically, loading could 

increase twenty percent during the lifetime of a ship [1]. 

Comparing the time frames given in [2] and [20], most SPS dynamics have the same 

time frames as utility power systems. However, the time frame of subsynchronous 

resonance of SPS is different from that of utility power systems. To determine the time 

frame for subsynchronous resonance, a one-generator system was modeled. The 

simplified mechanical and electrical systems of the generator in the system were used. 

The frequency range of subsynchronous resonance of SPS was derived following the 

approaches in [55]-[58]. Due to the low inertia of generators in SPS, the derived 

frequency range of SPS was smaller than the frequency range of utility power systems. 

Therefore, the time frame of subsynchronous resonance in SPS is longer than that in 

utility power systems. 
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Reconfiguration comprises a set of control actions to change the system configuration 

and transfer loads. Reconfiguration operations could cause dynamics in SPS, such as the 

dynamics of generators, loads, controllers, and protective devices. As seen in Figure 3.2, 

these dynamics occurring during reconfiguration could fall within the areas of dynamic 

stability, or transient stability. During dynamic reconfiguration, SPS may need to 

respond to major disturbances, such as a hit by weapons. Under this condition, the slow 

dynamics of equipment in SPS, such as start up of generators, may be taken into 

consideration. Some reconfiguration, such as reconfiguration for restoration, could be 

undertaken in several stages. The corresponding reconfiguration operations are thus 

taken sequentially in the long-term. Consequently, the time frames of individual 

dynamics involved in reconfiguration could be short-term (including dynamic or 

transient periods). However, considering the longest possible dynamic response during 

the process of reconfiguration, the stability study during reconfiguration thus falls into 

the category of long-term stability. The stability study occurring during reconfiguration 

extends beyond the time frame of transient stability to include, in addition to fast 

dynamics in short-term periods, the effects of slow dynamics in the long-term. 

3.3 SPS SALIENT FEATURES 

SPS are special power systems. Generally, an SPS is a small isolated or island electric 

power system, relatively small and isolated from neighboring power systems electrically. 

Features of isolated and island power systems can be found in studies [1][37][43]-

[48][59]-[62]. Some salient features of SPS and their effects on SPS stability studies are 

discussed as follows:  

--- The generation of SPS has limited capacity and inertia, and lacks support from 

neighboring power systems. Being small and isolated from other power systems makes 

SPS susceptible to disturbances. Deviations of bus voltages and system frequency from 

nominal values due to disturbances could be large. 

Due to this feature, some common sense experience used in utility power system 

stability analysis would not apply in SPS. In utility power systems, the inertia of a 
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critical generator is much smaller than the total inertia of the rest of the machines of the 

system. An infinite bus thus is able to represent the rest of the system in angle stability 

analysis. The number of machines in SPS is limited. The finite inertia amount of one 

generator is comparable to the total inertia of the other machines in SPS. Thereby, the 

concept of infinite bus is not applicable for SPS stability analysis.  

--- Connecting cables are short in length and transmission is thus not as significant as 

for utility power systems. Shunt capacitance on cables is small. Cables thus have small 

electrical time constants, and electrical transients on cables are short. Due to the short 

cable, the electric transients on networks of SPS are very short and can be neglected 

[18]. 
 Due to the short connecting cables between components, SPS is tightly coupled. The 

generators on ships are strongly synchronized. Due to the tight coupling, interactions 

between types of equipments (for example, interactions between controllers and 

induction motors) are strong. The strong interactions would affect controller dynamics 

and may even cause instability. To observe complete interactions in such a tightly 

connected power system, detailed component models should be employed in SPS 

stability analysis. 

--- Induction motors are predominant in SPS. In utility power systems, motors take 

approximately fifty-seven percent of consumed power, and ninety percent of motors are 

induction motors [20]. On ships, induction motors make up approximately seventy–

eighty percent of total loads [1]. In SPS, it is possible that generators may be connected 

to several paralleled large induction motors. With a large amount of induction motors 

loads, SPS stability analysis and assessment require careful consideration of the 

characteristics of induction motors.  

Induction motors increase nonlinearity in system models and could have adverse 

effects on controller dynamics. The response speeds of induction motors, determined by 

a motor’s inertia and rotor flux time constant, are comparable to the speed of response of 

voltage controllers. The motor dynamics may thus affect the functions of voltage 

controllers adversely. For example, the negative damping of induction motors may 
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induce unstable oscillatory voltage stability in power systems [26]. In such a tightly 

coupled system as SPS, the interactions between motors and controllers are thus greater. 

Higher order models of induction motors may be required to determine the detailed 

effects of dynamic loads on SPS stability. 

If the load torque of a motor exceeds the electrical torque, the motor decelerates. If 

the load torque exceeds the maximum electrical torque of a motor, the motor could stall 

or become unstable. Motor instability belongs to the study of voltage instability 

[2][6][20]. In SPS, due to the small inertia, the speed reduction of motors is large. The 

greatly reduced motor speed would impose large, low power factor “starting currents” on 

the network after the causes of deceleration are removed and motors reaccelerate. The 

more motor speeds are reduced, the larger the reaccelerating currents. The reaccelerating 

currents are the largest when Black Start starts to occur. If the network is not strong 

enough to reaccelerate the motors, system voltage would be depressed and motor speeds 

would continue to decay. The large amount of current drawn by stalled motors would 

reduce system voltage even further and cause motor stalling elsewhere in the system, 

thereby giving rise to cascaded motor stalling [63][64]. The stalling of large induction 

motors and cascaded motor stalling may induce system wide voltage collapse.  

--- An SPS has fast controllers to maintain system frequency and voltage. The fast 

controllers could pull voltages and frequency in a disturbed system back within the 

allowable ranges quickly. For fast controllers, the overshoot of a controller would be 

sacrificed to achieve the prompt control. In SPS, negative damping generated by fast 

response controllers could cause oscillatory instability.  

Basically, an SPS is a system susceptible to disturbances and includes a predominant 

number of induction motor loads. The salient features of SPS should be considered for 

modeling SPS appropriately. These salient features are important for the stability 

analysis and assessment of AC SPS.  
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3.4 STABILITY ISSUES IN SPS 

According to the physical nature of stability problems, they belong to two types: 

angle stability and voltage stability. In this section, both of these types of stability 

problems will be discussed as they apply to AC SPS. 

3.4.1 Angle Stability 

Angle stability is the ability of a power system to maintain synchronism when 

subjected to disturbances [2]. If the angular separation between the synchronous 

generators in a system remains within certain bounds, the system maintains 

synchronism. Any instability that may result occurs in the form of increasing angular 

swings of some generators, leading to their loss of synchronism with other generators. 

The angle stability problem is one of holding disturbed generators in synchronism with 

the remaining generators.  

Angle stability studies the electromechanical oscillations inherent in power systems. 

The electromechanical equation of a synchronous generator can be described by (3.1).  
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where δ  is the rotor angle, ω  is rotor speed. MP  is the mechanical power, and EP  is the 

electrical power. H  is the inertia constant. The electrical power EP  is a function of bus 

voltages and admittance between buses. Based on (3.1), for a power system having two 

finite generators, the angle difference between the two finite generators could be solved 

by (3.2) [65]. Subscripts 1 and 2 indicate variables associated with generators 1 and 2. 
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The mechanical power of each generator is determined by the load assigned to the 

generator and normally assumed to be constant during a transient angle stability study. 

When a generator is disturbed, the electrical power would increase or decrease, and the 
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generator would decelerate or accelerate correspondingly. The angle difference between 

accelerating generators and decelerating generators could increase. If the angle 

difference is over a certain limit, the system becomes unstable. From (3.1), it can be seen 

that angle stability is the ability to maintain or restore equilibrium between 

electromagnetic torque and mechanical torque of each synchronous generator in a 

system.  

All ship designs are provided with multiple ship service generators, designed to be 

operated either in split or parallel modes. Parallel operation is emphasized during normal 

operation to provide for continuity of power while minimizing the magnitude of system 

voltage and frequency variations [45]. Split operation is used when maximum reliability 

of ship service power is required and is normally used during battle conditions to avoid 

cascading failures of the entire electric plant [45]. Split plant operation has generators 

operating independently, with each generator serving different groups of electrical loads 

[45]. Since generators operate independently in split operation, angle stability is only of 

concern for generators in parallel operation. Angle stability studies the synchronism 

between multiple generators. Parallel operation of the AC generators in Figure 3.1 is 

illustrated in Figure 3.3. The generators are considered to be paralleled by the associated 

switchboards. 
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Figure 3.3 Illustration of Parallel Operation of Generators in Figure 3.1 

 

 

As described earlier, the generators of SPS have finite inertia. An SPS with two 

generators can thus be analyzed by (3.2). From (3.2), it can be seen that the mechanical 

and electrical power determines the angle difference between generators. For generators 

in SPS, governors are installed to adjust steam or fuel to prime movers. Using governors, 

paralleled generators divide the total load between the various units installed according 

to the capacities of the generators [65]. Generators in SPS are designed to have the same 

capacity. Loads are thus divided equally between the generators. Due to the equal load 

sharing in SPS, the mechanical power of the paralleled generators is equal. (3.2) thus can 

be rewritten as (3.4). Constant H  represents the same inertia of the two finite 

generators.  
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As described earlier, the electrical power of a generator is the function of the voltage 

at buses and admittance between buses. The generators are considered to be paralleled at 

their switchboards and thus have the same terminal voltages. Due to limited space, the 
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lengths of cables between buses to the paralleled generators are of the same order of 

magnitude. Any disturbance downstream in the generator switchboards affects each 

generator almost equally. Therefore, the electrical power difference 21 EE PP −  in (3.4) is 

very small.  

Power tending to bring the generators into synchronism is termed synchronizing 

power. If generators operating in parallel get out of synchronism, there is a circulating 

current between the paralleled generators. The circulating current flows between the 

armatures of the paralleled generators. Because the armature reactance of generators is 

larger than the armature resistance, the circulating current is in phase with the leading or 

accelerating generators. The leading generators then pump electrical power into the 

lagging generators. The accelerating generators tend to slow down while the decelerating 

generators tend to speed up. The circulating current thus tends to pull the out of 

synchronism generators in parallel operation back into synchronism. It is concluded that 

the synchronizing power between paralleled generators is strong [66]. The disturbances 

in SPS thus have little tendency to make the paralleled generators lose synchronism. 

From the analysis earlier, it was found that the most severe disturbances from the 

standpoint of angle stability analysis are the disturbances that make load distribution 

unevenly or occur closely to one generator. In SPS, load distributions are even between 

generators, and any disturbance downstream of the generator switchboards has similar 

closeness to the generators. Angle stability of SPS then could be affected by relatively 

more severe disturbances, such as short circuits upstream of the generators. However, 

when the disturbance occurs at the terminal of a generator, the voltage and frequency 

excursions of generators in SPS are large. In SPS, large excursion of voltage and 

frequency could trip the breakers on switchboards and split generators. For example, the 

Synch Monitor would prevent the paralleling of generators unless the frequency 

deviation is less than two percent, the voltage deviation is less than five percent, and the 

angle difference is less than 30 degrees [49]. The system would go into split operation 

before it becomes unstable.  
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In summary, synchronism between generators in tightly coupled SPS is strong. The 

synchronism is further strengthened by the parallel operation of the generators. Angle 

stability is thus not the main concern for SPS stability.  

3.4.2 Voltage Stability 

In this section, we will focus on the other type of stability problem: voltage stability 

in SPS. First, the concept and classification of voltage stability will be described. 

Bifurcation in voltage stability analysis then will be discussed. Finally, the factors 

affecting voltage stability in SPS will be analyzed. 

 

3.4.2.1 Definition and Classification of Voltage Stability 

Voltage stability is the ability of a power system to maintain steady acceptable 

voltages at all buses in the system under normal operating conditions and after being 

subjected to a disturbance [2][20]. A power system in a given operating state and subject 

to a given disturbance is voltage stable if voltages near loads approach post disturbance 

equilibrium values. The main factor causing voltage instability is the inability of the 

power system to meet the demand for reactive power in the stressed systems in order to 

keep desired voltages [2][20]. Voltage instability occurs if a power system is stressed or 

the consumed reactive power is too large to be compensated by supplied reactive power. 

A power system becomes unstable when voltages decrease below a certain level. 

Voltage instability stems from the attempt of load dynamics to restore power 

consumption beyond the capability of the combined transmission and generation system 

[20]. Two types of voltage stability problems can be observed in power systems. These 

are voltage collapse and unstable voltage oscillation. A power system in a given 

operating state and subject to a given disturbance undergoes voltage collapse if post-

disturbance equilibrium voltages are below acceptable limits [20]. Voltage collapse is 

usually the result of a sequence of events leading to a low-voltage profile in a significant 
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part of the power system [2]. Unstable voltage oscillation is often associated with the 

interactions of controllers and equipment in a power system [2].  

For the purpose of analysis, voltage stability can also be classified into small and 

large disturbance types [2]. Small disturbance voltage stability considers the ability of a 

power system to control voltage after small disturbances [2]. The power system can be 

linearized around an operating point and system stability is analyzed based on the linear 

system. Large disturbance voltage stability analyzes the response of the power system to 

large disturbances such as system faults, loss of generation, or circuit contingencies [2]. 

Determination of large-disturbance voltage stability requires the examination of the 

nonlinear response of the power system over a period of time sufficient to capture the 

performance and interactions of loads and devices such as induction motors, generator 

excitation limiters, and voltage controllers. Large disturbance voltage stability can be 

studied by using nonlinear time domain simulations in short-term periods and static 

analysis in the long-term [6]. The study period of large disturbance voltage stability may 

extend from a few seconds to tens of minutes. 

According to the time frames of the dynamics of interest, the time frames of voltage 

stability problems may vary from a few seconds to tens of minutes. Voltage stability 

problems can thus be separated into short-term and long-term problems [2]. As described 

in section 3.2, stability problems can be classified into small signal, transient, and long-

term problems. Short-term voltage stability comprises small signal and transient 

stability, such as the stability of the dynamics of induction motors and interactions 

between components. The study period of short-term voltage stability is in the order of 

several seconds. Long-term stability involves long-term dynamics, such as dynamics due 

to generator excitation limit and load increase. The study period of long-term voltage 

stability may extend to several minutes.  

 

3.4.2.2 Time Scale Decomposition 

As described earlier, the process of a system going from being reconfigured to 

settling down to a steady state or becoming unstable could be a long one. In SPS, 
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reconfiguration operations change system configurations and cause dynamics. The 

changes of configuration of SPS are abrupt and are represented by algebraic equations. 

All dynamics caused by reconfiguration operations can be modeled by differential 

equations. In contrast to the fast variables of the algebraic equations, the state variables 

of the differential equations can not change abruptly and constitute relatively slower 

variables.  

The dynamics caused by reconfiguration operations can thus be decomposed into fast 

and slow dynamics based on time scales of short-term and long-term modes. Short-term 

voltage stability includes small signal and transient voltage stability. In Figure 3.2, short-

term voltage stability is featured by components, such as induction motors and the 

voltage controllers of synchronous generators. The study period of interest is in the order 

of several seconds. When short-term dynamics have died out some time after 

disturbances, the system enters a slower time frame. As seen in Figure 3.2, long-term 

voltage stability involves slower dynamics such as load increase and excitation limiting. 

The study period of interest may extend to several minutes.  

As described in Chapter II, any power system can be modeled by a set of nonlinear 

Differential-Algebraic-Equations (DAE). In DAE, dynamics are modeled by differential 

equations. For a system with two time scales, dynamics in the system can be 

decomposed into fast and slow dynamics and the corresponding state variables can be 

decomposed into fast and slow variables [6][67]. The differential equation shown as 

(2.1) is thus decomposed into (3.5) and (3.6), which describe the fast state variables fx  

and the slow state variables sx , respectively.  

),,( yxxfx sfss =
•

 (3.5) 

),( yxxfx sfff ,=
•

ε  (3.6) 

where sx  is the slow state vector and fx  is the fast state vector. ε  is a very small 

number. (3.6) is the singular perturbation for fast state variables fx . 
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When ε  is close to zero, differential equation (3.6) can be approximated by the 

algebraic equation shown as (3.7). The system modeled by (2.1) and (2.2) can then be 

approximated by (3.7)-(3.9). 

),,( yxxfx sfss =
•

 (3.7) 

),( yx,xf0 sff=  (3.8) 

),,( yxxg0 sf=  (3.9) 

Equations (3.7)-(3.9) are thus the Quasi-Steady-State (QSS) representations of a system 

having two differential time scales. QSS captures the snapshots of system conditions at 

slow time frames along the time-domain trajectory [2].  

3.4.3 Bifurcation for Voltage Stability Study 

Power systems are basically nonlinear systems. It is thus natural that nonlinear 

analysis techniques such as bifurcation theory are used to study power system voltage 

stability. With system variables decomposed into fast and slow variables, bifurcation 

analysis assumes slowly varying variables as parameters, and it describes qualitative 

changes of stability with changes of parameters [6]. It is noted that an assumption for 

bifurcation theory is that parameters should change slowly. Along a trajectory of a 

system moving with parameters, voltage instability occurs at bifurcation points. In this 

section, the application of bifurcation theory on voltage stability will be discussed.  

Power Voltage (PV) curves are useful for conceptually analyzing and understanding 

voltage stability, and will aid the illustration of the application of bifurcation theory to 

voltage stability. 

 

3.4.3.1 Power System Models for Bifurcation 

According to time scale decomposition shown in section 3.4.2.2, (2.1) and (2.2) can 

be rewritten as (3.7)-(3.9). If the slowly changing variables sx  are considered as 
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parameters p , a set of parameter dependent DAE shown as (3.10) and (3.11) can be used 

to model the system dynamics for voltage stability analysis [6].  

),,( pyxfx =
•

 (3.10) 

0),,( =pyxg  (3.11) 

where x  is a vector of state variables, y  is a vector of algebraic variables, and p  is a 

vector of parameters. The equilibrium points for a system modeled by (3.10) and (3.11) 

should satisfy (3.12) and (3.13). 

)p,y,f(x0 eee=  (3.12) 

0)p,y,g(x eee =  (3.13) 

In power systems, solving DAE shown as (3.10) and (3.11) is complicated. First, the 

algebraic variable y  should be solved from (3.11) in the form of state variable x  and 

parameter p  and substituted into (3.10). After the algebraic variable y  has been 

eliminated from (3.10), the set of DAE is reduced to the differential equation shown as 

(3.14). 

p)F(x,x =&  (3.14) 

Bifurcation analysis for the nonlinear system should be done on (3.14). However, it is 

normally quite difficult in power system analysis to derive the reduced differential 

equations from a set of DAE. This is because the order of differential equations in power 

systems is normally quite high. In the analysis of nonlinear system dynamics for power 

systems, linearization is therefore used to get a local picture of dynamic behaviors 

around an equilibrium point in a nonlinear system [6]. Local bifurcations are detected 

from the linear system. 

At each equilibrium, the nonlinear system modeled by (3.10) and (3.11) can be 

approximated by a system linearized around an equilibrium point. The linearized model 

is shown as (3.15).  
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The matrix uJ  is the unreduced Jacobian matrix of the DAE. If yg  is nonsingular, we 

can eliminate ∆y  to get the reduced model as (3.17). 

∆xJx∆ r=&  (3.17) 

][ x
1

yyxr ggffJ −−=  (3.18) 

In power system analysis, the matrix rJ  is called the reduced Jacobian matrix of the 

DAE. As the parameter variable p changes slowly, the system equilibrium points can be 

solved successively. A reduced Jacobian matrix can be built for each equilibrium point. 

The dynamic behaviors of a system around equilibrium points can then be analyzed 

through the reduced Jacobian rJ  evaluated at each equilibrium point. A reduced 

Jacobian matrix can be derived analytically or numerically. The analytical form of a 

reduced Jacobian matrix is difficult for large systems. In this dissertation work, 

numerical differentiation is used for the derivation of reduced Jacobian matrices. In the 

numerical differentiation method, small perturbations are applied to state variables 

around equilibrium points to derive reduced Jacobian matrices. 

Local bifurcations may occur at any point along the path where the parameters 

change. At bifurcations, different trajectories of equilibrium points intersect each other, 

and thus either bifurcate or disappear [68]. The qualitative structure of the system (3.10)-

(3.11) changes drastically through small perturbations of parameters at a bifurcation 

point [6]. Local bifurcation points are thus critical for dynamic stability analysis of 

nonlinear systems, which deal with local properties such as the dynamic stability of 

equilibrium points under small variations of parameters [68].  

Different types of local bifurcations exist in power systems. Normally, Saddle-Node 

Bifurcation (SNB) and Hopf Bifurcation (HB) are studied for voltage stability. In the 

following sections, the theory of the SNB and HB and their applications on voltage 

stability analysis will be discussed. 
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3.4.3.2 Saddle Node Bifurcation 

An SNB is a point where a pair of equilibrium points meets and disappears with a 

zero eigenvalue [69] as the parameters of a system are changing. One of the two 

equilibrium points is stable (node) while the other is unstable (saddle). The particular 

point is referred to as a saddle-node bifurcation. At an SNB, two equilibrium points (one 

with a real positive and the other a real negative eigenvalue) coalesce and disappear. 

There is at least one zero eigenvalue at an SNB [69].  

Figure 3.4 shows how an SNB occurs with the change of a parameter in a nonlinear 

system. The arrow of the horizontal line shows the direction in which the parameter 

moves. Each plane in the figure represents a snapshot of the system along a time domain 

trajectory, and the parameter is constant at each snapshot. At point A, saddle node 

bifurcation occurs. Before point A, the system is stable. If the system is disturbed, the 

disturbed system goes back to the stable equilibrium point )( ss y,x eventually. The 

stable equilibrium disappears from point A. After point A, if the system is disturbed, it 

would become unstable. 

 

 

 
Figure 3.4 Illustration of Saddle Node Bifurcation 

 

 

PV curves in Figure 3.5 conceptually explain the application of SNB for voltage 

stability analysis. V is the voltage at a critical or representative bus and P is the real 

slow variable

A

)( ss y,x
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power at the bus. There are two PV curves for the selected bus. They are the PV curve 

obtained from the source and the PV curve obtained from the load. The intersections of 

the two PV curves are the system equilibrium points. The load power is constant in the 

long-term and assumed to be the slowly changing parameter for the system. P2 is the 

maximum power of the source PV curve. If the load is less than P2, there are always two 

equilibrium points in the system. When the load is equal to P1, the two equilibrium 

points are S1 and U1. The stable equilibrium point is S1 and the unstable equilibrium 

point is U1. If the load increases to P2, the stable equilibrium and unstable equilibrium 

points coalesce at point X. The system at P2 in Figure 3.5 corresponds to the system at 

point A in Figure 3.4 where an SNB is detected. If the load increases continuously after 

reaching P2, the system is unstable. The voltage corresponding to point X is the voltage 

stability limit. Detection of SNB thus could detect the voltage stability limit. It is noted 

that in this situation, voltage stability limit agrees with the maximum transfer limit of the 

system.  

 

 

 
Figure 3.5 PV Curve Analysis for Saddle Node Bifurcation 
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In the previous example, a power system is assumed to move from one equilibrium 

point to another along the direction of change in the slow variables. At bifurcation 

points, the system becomes unstable. Between the equilibrium points, the system is 

assumed to be stable. Slow dynamics is thus the cause of voltage instability, and fast 

dynamics are assumed to die out before the system moves to the next state of the slow 

variable. However, between equilibrium points, fast dynamics could become unstable 

and cause system voltage instability before the system moves to the next equilibrium 

point. Fast dynamics, instead of slow dynamics, thus become the cause of voltage 

instability. 

Figure 3.6 conceptually explains how instability could be caused by losing transient 

equilibrium in fast dynamics. The load power is constant in long-term and assumed to 

change slowly. The transient load characteristic curves are shown by dotted lines and 

represent fast dynamics. The straight line of long-term load characteristic has two 

intersections with the source PV curve. S is the stable equilibrium and UL is the unstable 

equilibrium. At S, the transient load curve is P(t). There are two transient equilibrium 

points. S is the stable transient equilibrium point, and US is the unstable transient 

equilibrium point. During the transient process, the transient load characteristic curve 

changes with time and the system moves along the source PV curve P(t1). If the transient 

process is long and the transient load characteristic curve moves to P(t1), the two 

transient equilibrium points coalesce at point X where the transient load characteristic 

curve P(t1) and the source PV curve touch. The system becomes unstable during the 

transient process. The voltage corresponding to the touching point X defines the voltage 

stability limit. 
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Figure 3.6 PV Curve Analysis for Losing Equilibrium of Fast Dynamics 

 

 

3.4.3.3 Hopf Bifurcation 

From the definition of saddle node bifurcation, an SNB is characterized by a zero 

eigenvalue at the origin of the complex plane. A system can become unstable following 

parameter variation that forces a pair of complex eigenvalues to cross the imaginary axis 

in the complex plane [69]. The point where a pair of complex eigenvalues crosses the 

imaginary axis in the complex plane is called Hopf bifurcation. At a Hopf bifurcation, 

the system Jacobian has a pair of eigenvalues on the imaginary axis with nonzero 

frequency.  

At a Hopf bifurcation, the stable equilibrium becomes unstable by interacting with a 

periodic orbit or a limit cycle. A periodic orbit means that each state trajectory with 

respect to time is a periodic waveform with the same period and the state vector 

traverses a closed loop in the state space once every period. A periodic orbit is thus a 

steady state oscillation in a nonlinear system. When Hopf bifurcation occurs, a power 

system initially operating at a stable equilibrium typically starts oscillating. It is expected 

that in the vicinity of Hopf bifurcation, either stable or unstable limit cycles exist. Due to 
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the nature of the interaction between the stable equilibrium and the limit cycles, there are 

two types of Hopf bifurcation: subcritical and supercritical.  

At a subcritical Hopf bifurcation, an unstable limit cycle existing prior to the 

bifurcation shrinks and eventually disappears as it coalesces with a stable equilibrium 

point at the bifurcation [69]. Figure 3.7 illustrates subcritical Hopf bifurcation in a 

system. In Figure 3.7, at each snapshot before point A, there is an unstable limit cycle 

around a stable equilibrium point )( ss y,x . If the disturbed system moves only within the 

unstable limit cycle, the system could eventually be attracted back to the stable 

equilibrium point and be stable. The unstable limit cycle shrinks as the system moves 

towards point A. At point A, the unstable limit cycle shrinks to zero and the stable 

equilibrium point )( ss y,x becomes unstable. Any disturbance to the system would lead 

to oscillatory divergence of the variables in the system.  

At a supercritical Hopf bifurcation, a stable limit cycle is generated at the bifurcation, 

and a stable equilibrium point becomes unstable with increasing amplitude oscillations, 

which are eventually attracted by the stable limit cycle [69]. In Figure 3.8, at point A, a 

stable limit cycle is generated and remains in the system after point A. After the 

supercritical Hopf bifurcation, the equilibrium point becomes unstable, resulting in 

growing oscillations toward the stable limit cycle. The voltages of the system appear 

stable and oscillatory. In power systems, the subcritical bifurcation is considered to be 

unstable as voltage oscillations are not allowed.  
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Figure 3.7 Illustration of Subcritical Hopf Bifurcation 

 

 

 
Figure 3.8 Illustration of Supercritical Hopf Bifurcation 

 

 

PV curves in Figure 3.9 conceptually explain the application of Hopf bifurcation for 

voltage stability analysis. At each point on the PV curve, the eigenvalues of the reduced 

Jacobian matrix are calculated. The long-term load characteristic is constant power. 

When the constant load increases to P2, the imaginary parts of a pair of complex 

eigenvalues become positive. The system at S2 in Figure 3.9 corresponds to point A in 

Figure 3.7 or Figure 3.8 where Hopf bifurcation occurs. The voltage corresponding to S2 

is the voltage stability limit. Hopf bifurcation can thus detect the voltage stability limit 

during a dynamic process. It should be noted that Hopf bifurcation normally occurs 

earlier than saddle node bifurcation [6]. In other words, the stability limit defined by 
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Hopf bifurcation is often reached earlier than the limit defined by saddle node 

bifurcation. 

 

 

s  

Figure 3.9 PV Curve Analysis for Hopf Bifurcation 

 

 

As described earlier, instability could be caused by fast dynamics. A stability 

boundary exists around a stable equilibrium. Unstable limit cycles in Figure 3.7 can be 

explained as the stability boundaries of a system. The region within the boundary is the 

region of attraction where the disturbed system can be attracted back to the stable 

equilibrium point. In Figure 3.7, at any point before point A, there is a region of 

attraction around the stable equilibrium point )( ss y,x . If a disturbed system moves out 

of the stability boundary, it can not be attracted back to the stable equilibrium and 

becomes unstable. The system thus loses its stability before the slow variable moves to 

the next state.  

Figure 3.6 explains how instability can be caused by losing transient equilibrium in 

fast dynamics. Figure 3.10 conceptually explains how instability can be caused by losing 

the attraction of fast dynamics. There are two intersections between source PV and long-
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term load characteristic P1. S is the stable equilibrium. The PV curve above unstable 

equilibrium U is the region of attraction. If a disturbance occurs, any point above point U 

can draw the system back to S. During the transient process, the transient load 

characteristic curve can move to P(t1). If the transient process is longer, the transient 

load curve moves to P(t2). In Figure 3.6, the intersections of PV curve with the transient 

load curve P(t1) is above point U, while the intersections of PV curve with P(t2) is below 

U. With the transient load characteristics shown as P(t1), the disturbed system could go 

back to the stable operating point S. However, with the transient load characteristics 

shown as P(t2), the system moves out of the region of attraction and can not move back 

to S. The system thus loses stability due to losing the attraction of fast dynamics. A 

typical example of this transient instability is motor stalling after losing power exceeding 

its allowable time. The voltage corresponding to point U defines the voltage stability 

limit. 

 

 

 
Figure 3.10 PV Curve Analysis for Losing Attraction of Fast Dynamics 
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As shown in Figure 3.7, when a system moves closer to HB, the stability boundary is 

reduced [6]. The degree of ability of a disturbance to move the system out of the stability 

boundary can be large at first. Gradually, the degree of disturbance becomes smaller and 

smaller. The instability caused by fast dynamics occurs more and more easily.  

3.4.4 Factors to Affect Voltage Stability in SPS 

Loads increase slowly on a ship during its lifetime. This long-term load increase can 

deteriorate voltage stability in SPS. System voltages may fall with load increase. The 

reactive power consumed by constant impedance load is less when the supplied voltage 

is lower. However, the reactive power consumption by induction motors increases after 

voltage decreases below a certain level. SPS thus become stressed as loads increase and 

reactive power margin reduces. During reconfiguration, the status of switches is changed 

to transfer loads between different paths. As described earlier, the dynamics of different 

magnitude and time frames could be caused by reconfiguration operations. After 

reconfiguration operations, a system tries to operate on a new stable equilibrium point. If 

the system can not operate on a stable equilibrium point, it becomes unstable.  

In this section, some factors affecting SPS voltage stability for reconfiguration will be 

listed. The factors are loading condition, windup limit, motor stalling, and interactions 

between controllers and loads. The effects of these factors on voltage stability when SPS 

is stressed will be discussed. PV curves will be used for the conceptual analysis of 

voltage stability. Torque speed curves will be used for analysis where induction motors 

are involved.  

 

3.4.4.1 Loading Condition 

The loading conditions at buses, including load level and load factor, can change 

during reconfiguration. The loading condition in the post-disturbance system can be 

different from the loading condition in the pre-disturbance system. The static limit of 
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voltage stability of the post-disturbance system can be reached if the loading level 

increases or the load factor decreases.  

The change of loading condition by reconfiguration can be illustrated in a reduced 

SPS shown as Figure 3.11. In Figure 3.11, a bus transfer is upstream of load1. The 

normal path of load1 is connected to main switchboard1 and the alternate path is 

connected to load center2. If a reconfiguration action transfers load1 from its normal 

path to the alternate path, the load level and load factor on load center2 change. The load 

level and load factor at the switchboard1 and load center2 change too.  

 

 

 
Figure 3.11 A Reduced AC Radial SPS  

 

 

Figure 3.12 shows the cable between switchboard 3 and load center 2. Bus 1 

corresponds to switchboard 3 and bus 2 corresponds to load center 2. The load on bus 2 

is P2+jQ2, where the real power and reactive power are P2 and Q2, respectively. The 

resistance and reactance of the cable is R and X. 
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Figure 3.12 The Cable between Switchboard 3 and Load Center 2 in Figure 3.11 

 

 

Figure 3.13 illustrates the voltage stability analysis when the load condition at load 

bus 2 in Figure 3.12 is changed. The source and load PV curves at the load bus 2 are 

shown in the figure. The load is assumed to be a constant power load. The source PV 

curve is kept the same in pre-disturbance and post-disturbance systems or can shrink 

from curve 1 to 2 due to a decrease in the load factor. As described earlier, detection of 

SNB can detect the maximum power occurring on the source PV curve.  

 

 

 
Figure 3.13 PV Curves with Different Load Factors  
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In the pre-disturbance system, the source PV curve is curve 1 and the load power is 

equal to P21. The constant power load characteristic thus has two intersections to PV 

curve 1. Intersection S1 represents a stable equilibrium point, while the other intersection 

U1 is the unstable equilibrium point. If the load is increased to P23 after reconfiguration 

operations and the source PV curve is kept the same, there are no equilibrium points in 

the system. When the load power is increased to its maximum value, the two equilibrium 

points coalesce and saddle node bifurcation occurs. Voltage stability thus is lost at SNB.  

If the load factor on bus 2 decreases, the source PV curve of the post-reconfiguration 

system shrinks and static limit is reduced. Some reconfiguration operations involve load 

shedding. If the PV curve of the post-disturbance system shrinks to curve 2 due to 

change in the loading factor and the constant power at bus 2 is reduced from P21 to P22 at 

the same time, there are equilibrium points S2 and U2 in the post-disturbance system. If 

the load level does not change, then there is no intersection between PV curve 2 and the 

constant power load characteristic. Saddle node bifurcation thus occurs and the system 

thus loses its voltage stability.  

 

3.4.4.2 Windup Limit in AVR 

Synchronous generators are the main reactive power suppliers on ships. The terminal 

voltage magnitudes of the generators are determined by the field excitation voltage 

provided by the excitation systems of the generators. In SPS, automatic voltage 

regulators (AVRs) are installed on generators. AVRs on generators sense the terminal 

voltage of generators and adjust the excitation fields of generators. However, there are 

some nonlinear limiters in AVRs, and the excitation fields of the generators are limited 

by these limiters.  

The diagram of an IEEE type II AVR is illustrated in Figure 3.14 [18] and [19]. A 

nonlinear windup limiter exists in the regulator to limit the output variable RV . If the 

value of RV  is larger than the upper limit maxRV , the output of the windup limit is equal 
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to maxRV . If the value of RV  is lower than the lower limit minRV , the output of the windup 

limit is equal to minRV . 

 

 

Figure 3.14 IEEE Type II AVR 

 

 

The mathematical representation of the AVR in Figure 3.14 is shown as (3.19)-(3.22). 

ES  is the saturation function and can be approximated by a constant [70]. For 

sufficiently small fdE , the excitation field is linear, and ES  is assumed to be zero. 
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When the upper limit of the windup limit in Figure 3.14 is reached, RV  becomes a 

constant. The diagram of the regulator when maxRV  is hit is shown in Figure 3.15. In 
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Figure 3.14, the magnitude of terminal voltage tV  is measured and adjusted to be a 

constant as close to refV  as possible. However, in Figure 3.14, with RV  as a constant, the 

function blocks adjusting tV  in the AVR disappear, and the constant terminal voltage of 

generators can no longer be maintained.  

 

 

 
Figure 3.15 IEEE Type II AVR with Excitation Limit Reached 

 

 

The mathematical representation of the AVR in Figure 3.15 can be written as (3.23). 

At steady state, the excitation field voltage fdE  is solved as (3.24), which is also the 

maximum excitation field voltage. Similarly, when the lower limit minRV  is reached, the 

excitation field voltage is the minimum shown as (3.25). It is shown from (3.24) and 

(3.25) that a constraint exists between the maximum values of maxfdE  and maxRV  or the 

minimum values of minfdE  and minRV .  

fd
E

EE
R

E
fd E

SK
VE

ττ
+

−=
•

max
1  (3.23)

EE

R
fd SK

V
E

+
= max

max  (3.24)

EE

R
fd SK

V
E

+
= min

min  (3.25)

In the earlier analysis, it was shown that reactive power limits of generators are 

related to windup limits in voltage controllers. When system voltages decrease as loads 

EEK τ+
1

Field 
Excitation

+
-maxRV

fdE

ES



 56

increase or faults occur in the system, generators produce more reactive power to 

maintain terminal voltages on the generators. When the limits of these controllers are 

encountered as the generator reactive output increases, the terminal voltages of the 

generators are no longer constant and the inner voltage of the generators becomes 

constant. The inner reactance of the generators becomes a part of network reactance and 

thus consumes reactive power from the generators. A part of reactive power from 

generators is consumed by generator reactance. The reactive power supply to systems is 

reduced and the shortage of reactive power may thus cause voltage instability.  

Figure 3.16 conceptually illustrates the analysis of voltage stability when excitation 

limits are encountered. PV curves before and after excitation limits are shown in this 

figure. Before the excitation limits are encountered, there is one stable equilibrium point 

S and one unstable equilibrium point U in the system. The limits in the excitation 

systems of generators can cause a non-smooth change in a system. When excitation 

limits are encountered, the PV curve changes from the curve before windup limit to the 

curve after windup limit. The static limit of PV curves thus decreases. The equilibrium 

points of the system disappear discretely after the excitation limit is reached. SNB can be 

detected for the disappearance of equilibrium points, and the system becomes unstable 

after the excitation limit is hit.  
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Figure 3.16 PV Curves With and Without Excitation Limit Reached 

 

 

3.4.4.3 Motor Stalling  

The mathematical representation of the first order model of an induction motor is 

described as (3.26).  
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where ET  is the electrical torque, mω  is the rotor angular speed for the mechanical 

system, MT  is the mechanical torque, and H  is the motor inertia. Motors decelerate 

when electromagnetic torques are less than load torques. Figure 3.17 shows some typical 

torque speed curves in induction motors at different voltage levels. When there is a 

disturbance in a system, if the load torque exceeds the maximum electromagnetic torque, 

either due to the increase of load torque or low system voltage, motor instability occurs. 

As described earlier, due to low inertia, induction motors are prone to stall.  

Figure 3.17 illustrates how motor instability can occur after a motor is disturbed. The 

load torque TM is assumed to be constant. If system voltages are reduced, the electrical 

torque decreases from TE1 to TE2 or TE3. The intersections of the load torque and 

electrical torque curves indicate the motor equilibrium points. A stable equilibrium point 
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corresponds to a high speed, and an unstable equilibrium point corresponds to a low 

speed. A motor originally operates at the stable equilibrium point S1 with a high rotor 

speed. If the electrical torque is reduced to TE2, the region of attraction of motor speed is 

from the highest speed to the speed corresponding to the unstable equilibrium point U2. 

For motors following a large disturbance, the motor speed must be higher than U2 to be 

attracted back to the stable equilibrium point S2. If the disturbed motor is operated under 

low voltage for long, the motor can decelerate to a speed lower than the speed at U2. 

Motor speeds will continue to decay and eventually the motors will stall. The lack of 

attraction to the stable region would cause motor instability. If the transient process is 

long and the voltages are reduced such that the electrical torque curve shrinks to TE3, 

there is no equilibrium in the motor. SNB can be detected and the motor will stall 

eventually.  

 

 

   
Figure 3.17 Some Typical Torque Speed Curves of Induction Motors 
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instability occurs. As described in section 3.3, motor instability is related to voltage 

instability, and could induce system wide voltage instability. The motor reaccelerating 

currents become larger if motor speeds are reduced further. The reduction of motor 

speeds is determined by the time duration of motors decelerating or the time duration of 

motors being disturbed. The time duration of motors being exposed to unfavorable 

operating conditions thus basically determines whether motor instability will occur.  

The time duration of motors being disturbed is determined by the response time of 

protective devices in SPS. Low voltage at motor terminals is the main reason why motor 

instability occurs. In many situations, low voltage is caused by faults close to induction 

motors. Protective devices upstream of induction motors, including circuit breakers 

(CBs), motor protections (LVRs and LVPs) and bus transfers (ABTs and MBTs), will 

trip due to low voltage and over current. The tripping time of these protective devices 

basically determines the time duration of motors being under low voltages. The longer 

the tripping time is, the more likely motor instability will occur. 

The tripping time of circuit breakers is decided by the level of over currents. For fault 

currents, the settings of time delays in circuit breakers are instantaneous, short time, or 

long time. The larger the fault currents, the faster the circuit breakers will trip. SPS is a 

tightly connected power system. Low voltages caused by short circuit faults will be felt 

by multiple motors at many locations in SPS. It is more difficult for motors to be 

reaccelerated at multiple locations. Faults in SPS could thus cause multiple motor 

stalling or even system-wide cascaded voltage collapse.  

In SPS, motor low voltage protections and bus transfers are installed closer to motors 

than are circuit breakers. Low voltage protections and bus transfers are set with short 

time delays, and will thus trip rapidly if voltages are under low voltage thresholds. The 

low voltage thresholds of low voltage protections are higher than the thresholds of bus 

transfers. If low voltages occur in a system, then the low voltage protective devices will 

trip earlier than bus transfers. It should be noticed that a time delay is experienced in the 

transfer operation of ABTs and MBTs, which increases the time duration of motors 

being under low voltage. An ABT can take from 60 to 500 milliseconds to complete the 
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transfer, whereas an MBT may take at least 20 seconds since it is depends on operator 

actions [45]. Motor instability can thus occur more easily during the transfer operations 

of MBT. 

In SPS, there are some combinations of low voltage protection and bus transfers for 

motors, including LVR and ABT, LVP and ABT, and LVP and MBT. The motors with 

LVR and ABT installed have the shortest time durations operating under low voltage for 

the automatic reclosing ability of LVR and ABT. The motors with LVP or MBT 

installed are exposed to low voltages for a longer time because manual intervention for 

reclosing or switching is needed. Some motors in SPS, such as high pressure air 

compressors, have no low voltage protection devices or bus transfers associated with 

them. If system voltages are low, these motors are exposed to low voltages for the 

longest time. However, motors without any protective devices are normally small in 

capacity and thus have relatively smaller effects on SPS stability. From the analysis of 

operation time for the combinations of low voltage protections and bus transfers, the 

motors with LVRs and ABTs thus have the smallest effects on voltage stability. The 

motors with LVPs and MBTs have larger effects on voltage stability because their 

response time is longer.  

Further the possibility of motor stalling could increase greatly in SPS in special 

situations. When a casualty occurs, a ship’s personnel are pressured to get the combat 

system back on line as soon as possible [45]. Some steps in the restoration procedures 

may be missed due to the emergency. Additionally, no perfect procedures exist because 

attempting to cover all circumstances in advance is impossible. Two types of power 

applications, soft start and unstable start, can occur in special situations [45]. Soft start 

occurs when power is applied to several parallel connected loads at one time [45]. Soft 

start occurs most often when energizing equipment with several cabinets (for power 

supplies and cooling fans) all connected in parallel. Unstable start occurs when very 

large motors, such as hydraulic pumps and air conditioning units, are inadvertently left 

on line after a casualty. Soft start and unstable start in electric motors can induce large 

reaccelerating currents for long durations and hold system voltages down for several 
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seconds. The combination of line loss, generator regulation, and even failure tripping of 

circuit breakers during soft or unstable start can cause system-wide voltage instability.  

A motor loses its ability to be attracted back to stable equilibrium points as a result of 

being exposed to low voltages or other undesirable conditions for a long time. Motor 

instability is voltage instability, and it may induce system-wide voltage instability. The 

analysis of this voltage instability involves the transient behavior of induction motors, 

and the evolution of motor instability should be analyzed carefully. Dynamic analysis is 

thus required for voltage instability caused by motors.  

 

3.4.4.4 Interaction of Loads and Voltage Controllers 

Voltage controllers on ships, such as automatic voltage regulators (AVR) on 

synchronous generators, are designed by system engineers to adjust voltages within 

certain limits. The parameters of the controllers are set according to expected loading 

condition. However, after ships have been designed and built, other engineers add more 

equipment and thus may ruin the calculations of system engineers [45]. In this situation, 

the same parameter settings of voltage controllers can be inappropriate for loading 

conditions in the future. When an SPS is under reconfiguration, the loading condition in 

the system is potentially continuously changing. The interaction thus changes under 

different loading conditions. In some situations, the interaction may be harmful to the 

system. The interaction of loads and voltage controllers may contribute to unstable 

oscillatory voltage in power systems. This interaction between loads and voltage 

controllers is especially important in SPS because there are many induction motors. The 

dynamics of induction motors have a similar time frame to that of voltage controllers 

and could have adverse effects on SPS stability.  

A simple single-generator-single-load system shown in Figure 3.18 is used to analyze 

the interaction between a load and voltage regulator. Similar analysis can be applied to 

large power systems with multiple loads and multiple voltage controllers. There are two 

buses in the system in Figure 3.18. The generator is connected to bus1 and the load is 

connected to bus2. The load can be dynamic or static. The generator is modeled by a 
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voltage source behind reactance. xd and xd
’ are the reactance and transient reactance of 

the generator. E’ is the magnitude of the voltage source. The load on bus2 is P2 +Q2, 

where the real power and reactive power are P2 and Q2, respectively.  

 

 

 
Figure 3.18 One Line Diagram of a Single-Generator-Single-Load System 

 

 

A simplified first order excitation system is shown as (3.27) [71], and the generator 

and network equation are shown as (3.28)-(3.29) [71]. Reactance 'x is equal to '
dxx + . 

The state variable vector is ][ 'EE fd , and the algebraic variable vector is [ ]2V . As 

described in 3.4.3.1, the Jacobian matrix is studied for bifurcations. If we assume a 

constant power load on bus 2, then the unreduced Jacobian matrix J  of the system in 

Figure 3.18 is (3.30).  
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With the reactance of the generator and line fixed, the Jacobian matrix shown as 

(3.30) is determined by the real and reactive power of the load on bus 2. The eigenvalues 

of the Jacobian matrix is thus determined by P2 and Q2 on bus 2. If the real parts of all 

eigenvalues of the Jacobian matrix are negative, voltage stability in the system is 

maintained. If the loading condition at bus 2 is changed but the parameters of the voltage 

controller are unchanged, the real parts of the eigenvalues of the Jacobian matrix can 

change from negative to positive, and the system becomes unstable. During the change 

of eigenvalues from negative to positive, Hopf bifurcation can be detected.  

This interaction between loads and voltage controllers is more complex if dynamic 

loads, such as induction motors, are involved. If the load on bus 2 is an induction motor, 

the system Jacobian matrix is more complex. A simplified first order differential 

equation shown as (3.33) is applied to model induction motors. The order of the 

differential equations of the motor could be as high as the fifth because of the 

requirement of detail modeling of induction motors in SPS modeling. The state variable 

of the dynamic load, motor slip ms , is added into the state variable vector. Real power 

mP  and reactive power mQ  drawn by the motor are shown as (3.34) and (3.35).  
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Where R  and X  are the resistance and reactance of motors. The subscripts 1 and 2 

represent the variables associated with the stator and rotor windings of the motor, 

respectively. MT  and ET  are the mechanical and electrical torque of the motor. In the per 

unit system, electrical torque ET  is equal to the real power drawn by motor load mP .  

The differential and algebraic equations of the dynamic motor loads should be 

included to derive the Jacobian matrix of the system. From (3.34) and (3.35), the real 

and reactive power of the dynamic load are the function of state variables ms  and 

algebraic variable 2V . The unreduced Jacobian matrix of the system with a dynamic load 

is shown as (3.36).  
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During the dynamic process, the dynamics of induction motors interact with the 

dynamics of voltage controllers. Unstable oscillatory voltages may thus occur because 

the controllers can not provide effective voltage adjustment. From (3.36), the 

characteristics of induction motors are included in the Jacobian matrix. With the 

equilibrium points of the system changing during a dynamic process, the eigenvalues of 

the Jacobian matrix (3.36) change. If the eigenvalues can change from positive to 

negative during the dynamic process, HB can be detected for the unstable oscillations in 

the system. Dynamic analysis is thus required for voltage instability caused by 

interactions in component models.  

3.4.5 Voltage Stability Analysis 

Traditionally, there are two types of analysis methods for voltage stability study: 

static analysis and dynamic analysis. Static analysis involves only the solution of 

algebraic equations and is computationally more efficient than dynamic analysis. 

Dynamic analysis requires the solution of both differential and algebraic equations. 

Dynamic analysis provides more accurate results in voltage stability studies. According 

to the effect of each factor on voltage stability during SPS reconfiguration, the four 

factors to affect voltage stability discussed in the last section will be analyzed in static or 

dynamic voltage analysis.  
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3.4.5.1 Static Analysis 

Static analysis studies the existence of steady state solutions for a system. With a 

system modeled by a set of DAE as (2.1) and (2.2), the differential equations are 

neglected and only the steady state solution of the algebraic equation is studied in static 

voltage analysis for power systems. In power system analysis, the algebraic equations 

normally adopt load flow equations. The steady state solution of the algebraic equations 

can be found by solving (3.44). The existence of steady state solutions of (3.44) indicates 

that there are equilibrium points for the modeled system and that static voltage stability 

is satisfied.  

),( yxg0 =  (3.44) 

As described earlier, a saddle node bifurcation is the disappearance of a system 

equilibrium point. In power systems, saddle node bifurcation is important especially 

when a stable equilibrium point where the power system operates disappears. In some 

situations, the appearance of a saddle node bifurcation of load flow equations can meet 

the same condition where a saddle node bifurcation of DAE occurs [27]. The 

disappearance of steady state solutions of (3.44) thus could meet the same condition at 

which a saddle node bifurcation occurs.  

Static analysis can analyze and assess voltage stability approximately. Static analysis 

has been largely applied in voltage stability analysis and is ideal for studies where 

voltage stability limits for many cases must be determined [6]. 

 

3.4.5.2 Dynamic Analysis 

As understanding of voltage stability developed, more and more dynamics are found 

related with voltage stability. Dynamic analysis is used for voltage stability studies on 

these dynamics. Voltage stability assessment results are more accurate with dynamic 

analysis than static analysis. In dynamic analysis, differential-algebraic equations (2.1) 

and (2.2) are solved explicitly or implicitly at each time step. Local bifurcation could be 

detected for voltage instability during the dynamic process. As described earlier, in some 
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situations, saddle node bifurcations of a system modeled by a set of DAE can be 

detected by solving the algebraic equations in DAE. Another type of bifurcation, Hopf 

bifurcation, can also cause voltage instability. Normally, Hopf bifurcation occurs earlier 

than saddle node bifurcation [6]. Hopf bifurcation is more complex and more often 

caused by interactions between equipments. Complete detection of saddle node 

bifurcation and Hopf bifurcation thus requires the detailed modeling of a system, with 

differential equations for various components included. However, dynamic analysis with 

detailed component models would be time consuming in terms of computation and 

engineering required for analysis of results [6]. 

As described in section 3.4.2.2, the dynamics of a power system can be decomposed 

into slow and fast dynamics, and a power system thus can be represented by its quasi-

steady-state (QSS) equations (3.7)-(3.9). In QSS analysis, a system is assumed to move 

from one equilibrium point to another successively. QSS analysis captures snapshots of 

system conditions at each equilibrium point along a time domain trajectory given with 

change in slow dynamics. It is assumed that the slow variables are constants at each 

steady state. At each equilibrium point, the steady state solution of the system can be 

derived from (3.45)-(3.47). The results from QSS analysis can be considered as the 

approximate replication of time domain simulation. 

sx = constant (3.45) 

)( sfs x,xf0 =  (3.46) 

),,( yxxg0 sf=  (3.47) 

Dynamic analysis, including time domain simulations or simplified QSS modeling, 

permits more accurate assessment of voltage stability problems than is possible with 

static analysis [6]. The results from time domain and QSS simulations can not readily 

provide further information about stability, such as degree of stability. The other 

analytical approaches, such as approaches for detection of bifurcations, should be 

applied on the simulation results to provide further information about stability. 
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3.4.5.3 Analysis Methods of Factors to Affect Voltage Stability 

Four factors to affect voltage stability were discussed in section 3.4.4. The fist factor, 

loading condition including load level and load factor, involves only static change of 

loads caused by SPS reconfiguration. The effect of these static changes during SPS 

reconfiguration on voltage stability should be considered in voltage stability analysis. 

The first factor, loading condition, thus will be studied in static voltage stability analysis.  

The other three factors, motor stalling, interactions between loads and voltage 

controllers, and windup limits, involve dynamics during SPS reconfiguration. The effect 

of the dynamics on voltage stability should be considered in voltage stability analysis. 

Since dynamics can not be modeled in static analysis, static analysis is not applicable for 

analyzing voltage instability caused by dynamics. The three factors, motor stalling, 

interactions between loads and voltage controllers, and windup limits, thus should be 

studied in dynamic voltage stability analysis. 

3.5 CHAPTER SUMMARY 

In this chapter, the stability problems of AC SPS were discussed. The time frames of 

dynamics in SPS were discussed and were used to categorize stability problems in AC 

SPS. Due to the parallel operation of generators in tightly coupled SPS, voltage stability 

was considered as the main concern of AC SPS stability analysis and assessment. 

Bifurcation theory and its application on voltage stability were discussed in this chapter. 

Possible voltage stability problems during reconfiguration in SPS were investigated. 

Four factors to affect voltage stability were described and analyzed by bifurcation 

theory. Two voltage stability analysis methods, static analysis and dynamic analysis, 

were discussed and presented. The four factors to affect voltage stability can be studied 

in the static and dynamic voltage stability analysis. Among the four factors, three factors 

can be analyzed and assessed by two new voltage stability indices presented later.  

In the next chapter, a test SPS that was modeled and simulated to study stability 

during reconfiguration will be discussed. The modeling and simulation strategies for 
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stiffly connected ungrounded SPS will be introduced. The time domain simulation 

results will be applied to static and dynamic voltage stability analysis.  
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 CHAPTER IV  

MODELING AND SIMULATION OF SHIPBOARD POWER 

SYSTEMS 

4.1 INTRODUCTION 

Time domain simulations provide valuable information for stability studies. In 

conventional stability studies, stator and network transients are neglected. In these 

studies, reduced order models only provide an approximation for actual dynamics. 

However, in ungrounded stiffly connected systems, various components are strongly 

coupled through short transmission lines. Due to the strong interactions, simulation 

results neglecting stator and network transients can cause large errors in transient 

stability analysis. Therefore, detailed models should be adopted to simulate the accurate 

dynamics of ungrounded stiffly connected systems such as SPS. 

In this chapter, a new generalized modeling methodology for ungrounded SPS will be 

presented. The methodology will be applied to a reduced SPS. The test SPS will be 

developed and will be used in stability studies in Chapters V and VI. In section 4.2, the 

problems of modeling and simulating ungrounded stiffly connected shipboard power 

systems will be described. In sections 4.3 and 4.4, the new generalized modeling 

methodology, including the detailed component models and the interconnection strategy, 

will be presented. In section 4.5, a reduced SPS modeled and simulated with the new 

modeling methodology will be presented. The results will show that the new 

methodology is an efficient way to model and simulate SPS. In section 4.6, a test system 

will be described. In section 4.6.2, some representative simulation results of the test 

system at normal operation will be presented.  
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4.2 UNGROUNDED STIFFLY CONNECTED SPS 

Shipboard power systems studied in this dissertation are ungrounded power systems. 

Due to size of ships, the cables between equipment on ships are short and components 

are tightly coupled. The short cables thus make SPS stiffly connected systems. Due to 

small shunt and mutual capacitances of short cables, the natural frequencies of short 

electric lines are very large. The time constants of the short cables are small. Small 

integration time steps are required to derive stable and accurate simulation results of SPS 

and normally stiff integration algorithms are needed. The speed of the simulations of 

stiffly connected power systems is reduced significantly due to the stable small 

integration time steps.  

One way to improve the simulation speed is to neglect the small line capacitances. 

The capacitances of short electric lines are so small that they have little effect on system 

dynamics [18]. However, without capacitances, the tie lines are modeled with pure 

resistances and inductances. Ungrounded stiffly connected systems are completely 

isolated from the ground. Inductor and resistor buses emerge in the systems.  

An inductor or resistor bus is a kind of bus where only inductive or resistive 

components are connected [18]. Inductor and resistor buses induce difficulties in 

modeling ungrounded power systems. With naturally interconnected grounded 

components, such as grounded capacitances, the input voltages of inductor and resistor 

buses can be established by grounded components. However, incompatibility occurs 

when only voltage-in current-out inductive or resistive models are interconnected. The 

input voltages of inductor and resistor buses need to be established in artificial ways. 

Traditionally, reformulated current-in voltage-out resistor models have been used to 

derive the input voltages of resistor buses. The derivation of the input voltages of 

inductor buses is more complex. An auxiliary resistor can be paralleled with the 

inductance [57]. An inductor bus is thus changed into a resistor bus and the inductor bus 

voltage can be solved in the same way as a resistor bus.  

As described earlier, conventional nodal admittance matrix based circuit simulation 

methods such as EMTP/ATP [3] and differential algebraic equation solver based 
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methods such as SimPowerSystems [4] are able to model and simulate power systems. 

Without shunt capacitances in an ungrounded system, EMTP/ATP is no longer 

applicable because of the singularity of the system nodal admittance matrix. In 

SimPowerSystems, connecting a current source or nonlinear element in series with an 

inductance is not allowed [4]. Therefore, the inductive lines can not be connected in 

series with synchronous and asynchronous machines. As described earlier, the voltages 

on resistor and inductor buses can be obtained by reformulating the auxiliary resistor 

model. The size of the resistor is the key to achieving a good trade off between 

simulation speed and accuracy. However, it is usually difficult to select one robust 

resistor value for various dynamic simulations. 

This dissertation proposes a new generalized strategy for modeling detailed 

ungrounded stiffly connected power systems. In the new method, the resistor and 

inductor buses are solved in the usual ways. Voltage-in flux-out reformulated reference 

generator models and voltage-current-in voltage-out reformulated line models are used.  

The input voltages of ungrounded stiffly connected systems are derived on the basis of 

the reformulated reference generator and line models. The interconnection procedures 

involve applying Kirchoff Current Law (KCL) on each bus and a set of interconnection 

equations on the reference generator bus. The new generalized method was realized in 

the environment of Matlab/Simulink [5]. Matlab/Simulink is an equation solver program 

that can simulate dynamic systems by solving user-defined mathematical equations with 

given integration rules. 

4.3 COMPONENT MODELS 

Any power system can be modeled by a set of nonlinear differential-algebraic-

equations (DAE) as (2.1)-(2.2). The nonlinear differential equations can be rewritten as 

(4.1).  

BuxxAx +=
•

),( t  (4.1) 
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where A  and B  are the parameter matrices of the nonlinear equations. The standard 

models can be found in [72] and rewritten into the format of (4.1). With x , u , A , and 

B  given, each set of differential equations can be realized in Matlab Simulink [5].  

4.3.1 Park Transformation 

Figure 4.1 shows the relationship between the reference frame d (direct axis) q 

(quadrature axis) 0 and abc. Park Transformation, shown as (4.2) is used to transform all 

electrical quantities from phases a, b, and c into new variables, 0, d and q [72] as (4.3). 

ω  is the relative angular speed of the reference frame dq0 to abc and θ  is the angle 

between reference frame abc and dq0. Inverse park transformation transforms variables 

from reference frame 0dq to abc. The transformation shown as (4.2-4.3) is applied to 

transform the voltage, current, and flux variables of different components into the 

common system reference frame. 

 

 

Figure 4.1 Transformation Between the Reference Frame dq0 and abc  
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(4.2) 

abcqd0 Pff =  (4.3) 

where ∫ +=
t

d
0

)0()( θξξωθ . f  can represent either voltage, current, flux linkage, or 

electric charge.  

In the new modeling strategy, the 0dq reference frame rotating with the rotor of the 

reference generator is selected as the system reference frame. This selection will reduce 

complexity of computation in low-level computers. Because the reference frame of 

generators are in their own rotors, it is necessary to relate variables in one reference 

frame to variables in another reference frame. The transformation can be done directly 

without involving the abc variables in the transformation. The relationship between 

reference frame 1 from which the variables are being transformed and reference frame 2 

to which the variables are being transformed is shown in Figure 4.2. The transformation 

from reference frame 1 to reference frame 2 is shown as (4.4)-(4.5) [72].  

 

 

 

 

 

 



 75

 

Figure 4.2 Transformation between Reference Frames 
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4.3.2 Standard Component Models 

In the new modeling method, three types of standard component models, standard 

synchronous generator models, standard induction motor models, and standard static 

load were used.  
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4.3.2.1 Standard Synchronous Generator Model 

Standard generators use voltages as inputs and currents as outputs. x , u , A  and B  of 

the full order standard synchronous generators in the form of (4.1) are shown as (4.6)-

(4.9) [72].  

[ ]T
QqDFdo iiiiii=x  (4.6) 

[ ]TQqDFdo vvvvvv=u  (4.7) 

)( 1
GG

1
G LωNRLA −− +−= G  (4.8) 

1
GLB −=  (4.9) 



























−
−

−
−
−

−

=

QmQ

mQq

DmRmD

mRFmD

mDmDd

LL
LL

LLL
LLL
LLL

L

0000
0000

000
000
000
000000

GL

 

(4.10)
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(4.12)

where sr  is the resistance on stator windings, Fr , Dr  and Qr  are the resistance on rotor 

windings, 0L , dL  and qL  are the self inductance on stator windings, FL , DL  and QL  are 

the self inductance on rotor windings, mDL  is the mutual inductance between rotor 

windings d and D, mRL  is the mutual inductance between rotor windings F and D, and 

mQL  is the mutual inductance between rotor windings q and Q. 

The mechanical system of the generator can be represented by (4.13)-(4.14) [72].  
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(4.14) 

dqqdE iiT λλ −=  (4.15) 

DmDFmRddd iLiLiL ++−=λ  (4.16) 

QmQqqq iLiL +−=λ  (4.17) 

where bω  is the system base rotation angular speed, H  is the rotor inertia in seconds, 

MT  is the mechanical torque, ET  is the electromagnetic torque, 0i , di  and qi  are the 

currents on stator windings, and Fi , Di , Qi  are the currents on rotor windings. Each 

generator is modeled in its own 0dq reference frame.  

 
4.3.2.2 Standard Induction Motor Model  

Standard induction motor models have voltages as inputs and currents as outputs. x , 

u , A  and B  of the full-order induction machine model in the form of (4.1) can be 

expressed as (4.18)-(4.21) [72]. 
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),,,,( QsDss rrrrrdiag=MR  (4.23) 
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(4.24) 

Where ω  is the rotation angular speed of stator, sr  is the resistance on stator windings, 

Fr , Dr  and Qr  are the resistance on rotor windings, 0L , dL  and qL  are the self inductance 

on stator windings, DL  and QL  are the self inductance on rotor windings, mDL  is the 

mutual inductance between stator windings d and D, and mQL  is the mutual inductance 

between rotor windings q and Q. 

The mechanical system equations for induction motors are modeled as (4.25)-(4.26) 

[72]. 
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dqqdE iiT λλ −=  (4.27) 

DmDddd iLiL +=λ  (4.28) 

QmQqqq iLiL +=λ  (4.29) 

where H  is the rotor inertia in seconds, LT  is the load torque, ET  is the electromagnetic 

torque, 0i , di  and qi  are the currents on stator windings, and Di  and Qi  are the currents 

on rotor windings. 

 
4.3.2.3 Standard Static Load or Line Model  

The static load or connecting line is modeled by constant impedance with resistance 

and inductance connected in series. The static load or line models have voltages on the 
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load or line as inputs and currents as outputs. x , u , A  and B  of the standard static load 

or line model are shown as (4.30)-(4.33) [72]. 

[ ]Tqd iii0=x  (4.30) 

[ ]Tqd vvv0=u  (4.31) 
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(4.36) 

where aar , bbr  and ccr  is  the self resistance on each phase, abL , bcL  and caL  is  the 

mutual inductance between phases, aaL , bbL  and ccL  is  the self inductance on each 

phase, abL , bcL  and caL  is  the mutual inductance between phases, and ω  is  the angular 

speed of the reference frame. 

4.3.3 Reformulated Component Models  

As described earlier, the modeling difficulty with stiffly connected power systems are 

the incompatibility of interconnection on inductor and resistor buses. In this new 

generalized method, reformulated component models are adopted to solve the 

incompatibility and derive bus voltage on inductor and resistor buses. Reformulated 
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component models keep the physical model of components and reformulate the 

mathematical format of the component models. In the new modeling method, three types 

of reformulated component models, reformulated generator models, reformulated line 

models and linear transformer models were developed.  

 

4.3.3.1 Reformulated Generator Model 

In the proposed modeling strategy, the largest synchronous generator in a system is 

chosen as the reference generator, whose model is reformulated from the standard 

generator model described in section 4.3.2. The power of the reference generator is the 

system power base in the per unit system. Instead of using currents as state variables as 

in standard generator models, flux linkages are used as the state variables for the 

reformulated generator model. This reformulation will facilitate the derivation of the 

generator bus voltages in component interconnections.  

[ ]T
QqDFdo λλλλλλ=x  (4.37) 

[ ]T
QqDFdo vvvvvv=u  (4.38) 

dt
dPPLRA

1
1
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−
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)1,1,1,1,1,1(diag=B  (4.40) 

where x , u , A  and B  of the reformulated reference generator model are shown as 

(4.37)-(4.40). GR  and GL  are the same as defined for the standard generator model as 

(4.10)-(4.11). 

 

4.3.3.2 Reformulated Line Models  

In the new modeling method, without shunt capacitance, connecting lines are 

modeled by pure resistors and inductors in series. Figure 4.3 shows a three-phase 

connecting cable model. s and r denote the sending and receiving end of the cable. 

Currents flow through the line from the sending end to the receiving end. The self and 
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mutual impedance (including resistance and inductance) of the three-phase line model 

are shown in the figure, respectively. 

 

 

Figure 4.3 A Three-Phase Connecting Line Model 

 

 

As discussed earlier, the standard line model has voltage differences between sending 

end and receiving end as inputs and currents flowing from sending end to receiving end 

as state variables and outputs. The line model is reformulated from the standard line 

model in section 4.3.2. The reformulated line model, shown as (4.41), has sending end 

voltages and currents as inputs and receiving end voltages as outputs. In this way, the 

reformulated line model can help calculate the input voltages of the inductor or resistor 

bus where the reformulated cable is connected.  
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[ ]T
rrdrq vvv 0=rv  (4.42) 

[ ]T
ssdsq vvv 0=sv  (4.43) 

][ 0iii dq=i  (4.44) 

Subscripts s and r denote the variables associated with the sending and receiving ends of 

lines. Matrix LR  includes self and mutual resistances, and LL  includes the self and 

mutual inductances of three-phase lines. The matrices are the same as in the standard 

line model shown in (4.34)-(4.35).  
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4.3.3.3 Linear Transformer Model  

Transformers are connected in a system at primary and secondary sides. The 

connecting nodes on both primary and secondary sides are inductor buses. Linear 

transformer models thus should be reformulated to facilitate the voltage derivation on 

the two nodes.  

A three-phase linear transformer is modeled by three single-phase linear transformers, 

which distribute power to three-phase loads. Each single-phase linear transformer is 

modeled by a T  equivalent circuit, which includes a linear magnetizing branch plus 

winding resistance and leakage inductance in series on primary and secondary sides. The 

T equivalent circuit of a single phase linear transformer is shown in Figure 4.4. 

Subscripts P and S represent the variables associated with the primary and secondary 

sides of the transformer. Subscript M represents the variables associated with the 

magnetizing branch of the transformer.  

 

 

Figure 4.4 A Single Phase Linear Transformer Model 
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primary side branch, secondary side branch, and magnetizing branch. The magnetizing 

branch can be modeled in the same way as a standard constant impedance load shown as 

(4.30)-(4.36). The primary and secondary sides of the transformer can be modeled as 

two non-coupled lines as (4.41). The linear transformer model can thus be considered as 

rp, lP rS, lS 

rM, lM 

iS iP 
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a combination of one static load model and two connecting line models. The final 

mathematical representation of a single-phase linear transformer shown as Figure 4.4 is 

modeled as (4.45)-(4.62). The magnetizing branch is modeled by (4.45)-(4.48). The 

primary and secondary side branches are modeled by (4.52) and (4.58), respectively.  

[ ]T
MqMdM iii 0=x  (4.45) 

[ ]T
MqMdM vvv 0=u  (4.46) 
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),,( MMM llldiag=ML  (4.50) 
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),,( PPP rrrdiag=PR  (4.53) 

),,( PPP llldiag=PL  (4.54) 
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),,( SSS rrrdiag=SR  (4.59) 

),,( SSS llldiag=SL  (4.60) 

[ ]T
SSdSq vvv 0=Sv  (4.61) 
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][ 0SSdSq iii=Si  (4.62) 

4.3.4 Protective Devices  

The protective devices, including circuit breakers (CBs), low voltage protections 

(LVPs), low voltage release (LVRs), automatic bus transfers (ABTs), and manual bus 

transfers (MBTs), are used in SPS to protect the equipment from overcurrents or low 

voltages. CBs sense the currents flowing through cables and protect the cables against 

over currents. The circuit breakers were modeled according to their time current 

characteristics. LVPs and LVRs sense the terminal voltages of the induction motors and 

protect the motors against low voltages. The function of automatic pick-up was modeled 

for LVRs to pick up the protected motors once voltages are recovered. ABTs and MBTs 

sense bus voltages and protect the loads downstream of the bus transfers against low 

voltages. The function of automatic transfer was modeled for ABTs to transfer the 

protected circuit between its normal and alternate paths. Generator switchboard 

protection logic provides protection for the associated generator/switchboard set. The 

generator switchboard protection logic consists of under frequency, under voltage, over 

power and reverse power relays [49]. Under voltage and under frequency relays protects 

generator/switchboard set from low voltage and low frequency. Over power and reverse 

power relays sense power out of generators and protect generators from overloading and 

being motorized [49]. Over power relays can shed some non vital loads and semi vital 

loads when generators are at 110 percent of rated load [49].  

As described in section 2.3.1, an SPS was modeled and simulated in PSAL to provide 

a platform for studying the transient behavior of SPS [44]. The protective devices 

mentioned earlier were modeled by their principle functions. The CBs, LVPs, LVRs, 

ABTs, MBTs and generator switchboard protection logic were modeled based on the 

functional descriptions of the components in [44][49]. In this dissertation work, each 

type of protective device mentioned earlier was modeled by a combination of existing 

modules in Matlab/Simulink. The selective tripping of some non vita and semi vital 

loads should be studied carefully before over power relays are modeled in SPS, 
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4.4 COMPONENT INTERCONNECTIONS 

The voltages on resistor or inductor buses are necessary to solve system equations. 

With the line capacitances removed, many buses of an ungrounded stiffly connected 

power system become resistor or inductor buses. The voltages of these resistor and 

inductor buses need to be derived artificially. In the new modeling methodology, either a 

reference generator model or a line model should be reformulated to facilitate 

component interconnection on each resistor or inductor bus. During component 

interconnection, the currents of interconnected branches on each bus should satisfy 

Kirchoff’s Current Law (KCL), which states (4.63)  

0
1

=∑
=

K

k
ki

 
(4.63) 

where T
kqkdk iii ][ 0=ki . k denotes the current associated with the kth branch connected 

to the bus. Each current should be in the same system reference frame. 

Figure 4.5 illustrates the interconnection on the reference generator bus. Beside the 

reference generator, there are k1 standard generators, k2 induction motors, k3 static 

loads, k4 reformulated lines, and k5 standard lines connected to the bus. The 

reformulated and standard lines connect the reference bus to its neighboring buses. The 

currents of the motors, static loads, and standard lines are derived from their 

corresponding component models, and the currents of the reformulated lines are 

obtained by applying KCL on the neighboring buses. According to (4.41), the reference 

generator current i  is derived from the summation of the currents of the other 

interconnected branches. The flux linkage λ  is derived from the reformulated reference 

generator model. A set of interconnection equations, shown as (4.64), is then applied to 

obtain the input voltage v  of the reference generator.  

λ
dt

dPPλirv
1

s

−•

+−−=
 

(4.64) 

),,( sss rrrdiag=sr  (4.65) 

),,( 0λλλ dqdiag=λ  (4.66) 
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where sr  is the stator winding resistance, and qλ , dλ  and 0λ  are flux linkages on the 

stator windings.  

 

 

Figure 4.5 Interconnection on a Reference Generator Bus 

 
 

Figure 4.6 illustrates the interconnection on a typical inductor or resistor bus. 

Reformulated line 1 connects the typical bus to a bus whose input voltages are already 

derived. According to (4.63), the currents of reformulated line 1 are equal to the 

summation of the currents of the other interconnected branches. The input voltages of 

the typical resistor or inductor bus are then calculated by applying the reformulated line 

model (4.41) on reformulated line 1.  
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Figure 4.6 Interconnection on a Typical Inductor or Resistor Bus 

 

 

With (4.41) applied on each reformulated line in Figure 4.5 and Figure 4.6, the input 

voltages of each resistor or inductor bus are calculated after the input voltages of the 

reference generator bus are derived. The input voltages of the neighboring buses of the 

reference generator bus are calculated with the input voltages of the reference generator 

bus taken as sending end voltages of (4.41). The derived voltages of a bus are then used 

as sending end voltages to calculate the input voltages of its neighboring buses.  The 

previous procedure is repeatedly applied to each resistor or inductor bus in a modeled 

system.  

System models of ungrounded stiffly connected power systems are formed by 

interconnecting various component models. The input voltages of all component models 

can be calculated from either (4.41) or (4.64). These voltage inputs of the component 

models can be derived according to the interconnection procedures described earlier. 
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4.5 CASE STUDY 

To demonstrate the individual component models and interconnection procedures 

presented here, a delta-connected reduced SPS, shown in Figure 4.7, was modeled and 

simulated. Generators 1 and 2 are running in the system, and generator 3 is a back up 

generator for emergencies. Three generator switchboards are connected in a ring with 

cables to provide more flexibility of system configuration. This reduced SPS has four 

buses: generator switchboards 1, 2, 3, and load center 5. Load center 5 is connected 

downstream of switchboard 2 and upstream of three-phase transformer 1. The 

transformer is in turn connected upstream of unbalanced static load 5. An induction 

motor and a static load are connected under each switchboard and load center. The 

parameters of the reduced SPS can be found in Appendix A. 

 

 

Figure 4.7. A Reduced SPS 
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The reduced SPS is ungrounded and stiffly connected. Each bus in the system is 

either an inductor or a resistor bus. According to the method described earlier, generator 

1 is taken as the reformulated reference generator, generator 2 uses the standard 

generator model, cable 12 is modeled with the standard line model, and the other cables 

are modeled with the reformulated line model.  

The simulation for the reduced SPS was conducted in Matlab/Simulink with selected 

integration algorithm Dormand-Prince ODE5, fixed time step of 0.001 seconds, and 

automatic error tolerance [73]. The parameters of the components are listed in Appendix 

A. Without specification, the parameters in per unit are given with Vbase equal to 450 V 

(rms, line-to-line) and Pbase equal to 3125 KVA. Each generator is modeled with a 

governor with gas turbine and an IEEE Type II Automatic Voltage Regulator (AVR) 

[18][19]. The block diagrams of the models of AVR controllers and governor with gas 

turbine are shown as Figure 3.14 and Figure 4.8. The load torque for every induction 

motor is quadratic modeled as 2ω=LT , which represents a speed-squared load, as in 

fans.  

 

 

 

Figure 4.8 Block Diagram of a Governor with Gas Turbine 

 

 

Figure 4.9-Figure 4.13 show graphs of the representative variables for one simulation 

case of the system shown in Figure 4.7. In this case, at first, generators 1 and 2 were 

C

CK
τ

 

GNGTC

FVτ+1
1  

Reference 
speed 

+
- +

+
s
1

C
ref

C Kp 










ω
ω

+
-

sFW 10

FTτ+1
1

GTC1  + +GTC2
+

+
Torque

0

1

Rotor speed 



 90

running at no-load condition. All static and dynamic loads were then connected into the 

system at one second. Figure 4.9 and Figure 4.10 are the phase AB and BC voltages of 

the generator 2. At one second, the voltages decreased due to the large cold load start-up 

currents from the static and dynamic loads. Due to the function of the governor and 

voltage regulators on the generators, the voltages are pulled back to the nominal values. 

Phase AB and BC currents drawn by the unbalanced load 5 are shown as Figure 4.11 and 

Figure 4.12. As expected, the currents are almost in reverse ratio of the sizes of the 

single-phase loads on phase AB and BC. Phase AB current of motor 1 is shown in 

Figure 4.13. This finally settles down to a value below 0.075. This agrees with the ratio 

of motor demand to system capacity.  
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Figure 4.9 Phase AB Voltage of Generator 2 
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Figure 4.10 Phase BC Voltage of Generator 2 
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Figure 4.11 Phase AB Current of Static Load 5  
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Figure 4.12 Phase BC Current of Load 5 
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Figure 4.13 Phase AB Current of Induction Motor 1 
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As described earlier in section 2.3.1, Mayer developed a method based on 

reformulated component models [18]. Mayer’s method reformulates root machines, 

which could be synchronous or asynchronous machines, to derive the inductor bus 

voltages. Thus, it is required that there must be at least one root machine connected on 

each inductor bus. However, in a real power system, it is possible that there are no 

machines, only inductive components connected on one inductor bus. Mayer’s method 

then could not solve bus voltages for this kind of inductor bus.  

In the new modeling methodology for ungrounded stiffly connected power systems, 

the voltages of both inductor and resistor buses are derived according to the same 

interconnection procedures. The new method reformulates basic elements of a real 

power system, generator and lines, to derive input voltages. The new method is thus 

more generalized than Mayer’s method in that it has no limitation on the types of 

interconnected components on inductor buses. Mayer’s method was used to model a 

one-generator-three-motor SPS [18]. In a paper by the author [74], the same system was 

modeled and simulated by the new generalized method. The simulation results derived 

from the new generalized method and from Mayer’s method agree with each other. The 

simulation results of the reduced SPS demonstrate that the new method is a promising 

modeling methodology for ungrounded stiffly connected power systems. 

4.6 A TEST SHIPBOARD POWER SYSTEM 

As described earlier, a test SPS having the configuration of an AC radial SPS based 

on a surface combatant ship was developed in [44]. A new test SPS was designed from 

the old test SPS for the purpose of stability study. In this section, the new test SPS will 

be described and the simulation results of the new test SPS at normal operation will be 

presented.  
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4.6.1 System Description 

A new test SPS developed for the purpose of stability study is shown as Figure 4.14. 

Each kind of equipment found in the old test system [44] was modeled in the new test 

system. Generators in both test systems have the same capacity. Table 4.1 lists the 

components in the test SPS for stability study. The three phase power of motor loads and 

static loads are shown in Table 4.2 and Table 4.3.  

The factors that affect stability were considered in the test system. In the old test 

system in [44], the percent of the amount of dynamic loads in the total loads was 51.9. 

The percent was raised to 72.5 in the test system. This percent increase reflects the 

feature of the predominant amount of induction motors in SPS and facilitates the study 

of effects of dynamic loads on SPS stability. In order to raise the percent of dynamic 

loads among the total load in the new test system, several induction motors having large 

capacity were developed for the new test SPS; their parameters were derived from an 

auxiliary program named INDMOT from ATP [3]. Several loads having the same 

characteristics in the old test system in [44] were combined and placed in the new test 

system. The total capacity of some combined loads was adjusted to maintain the load 

balance on switchboards. The load torque for every induction motor in the test system 

was modeled as quadratic torque. The cables in the new test SPS were determined 

according to capacity of the cables in the old test SPS. Several cables were paralleled for 

some large loads in the new test SPS. 
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Table 4.1  

Components for Test SPS for Stability Study 

Component Name Components Ratings 

Generators Generator 1, Generator 2, Generator 3 

2.5MW, 0.8 

lagging, 60HZ, 

450V 

Induction Motor loads 
L11, L12, L13, L151, L21, L22, L23, L251, 

L311, L312, L32, L33, L34 

Varying from 20 

to 300KW, 440V 

Three Phase Static Loads L14, L152, L252, L253, L314, L35 
Varying from 60 

to 255KW, 440V 

Single Phase Static Loads L153, L24, L36 115V 

Transformers XFM1, XFM2, XFM3 
3×25MVA, 

450V/120V 

Three Phase Cables 

C01, C02, C03, C11, C12, C13, C14, C15, C151, 

C152, C1531, C21, C22, C23, C241, C25, C251, 

C252, C253, C31, C311, C312, C313, C314, 

C32, C33, C34, C35, C361, C023, C012, C013, 

C11a, C12a, C13a, C14a, C151a, C152a, 

C1531a, C21a, C22a, C23a, C251a, C252a, 

C311a, C312a, C313a,C314a, C32a, C33a, C35a 

450V 

Single Phase Cables C1532, C242, C362, 120V 
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Table 4.2  

Three Phase Power of Induction Motor Loads 
Load Name L11 L12 L13 L151 L21 L22 L23 

P (KW) 300 300 100 100 300 240 100 

Load Name L251 L311 L312 L313 L32 L33 L34 

P (KW) 240 300 240 20 300 240 100 

 

 

Table 4.3  

Three Phase Power of Static Loads 
Load Name L14 L152 L153 L24 L36 

P (KW) 310 60 60 60 60 

Load Name L252 L253 L314 L35 -- 

P (KW) 115 80 80 255 -- 

 

 

The test system for this stability study had three generators with one for emergency 

service. The generators were connected to three main switchboards that formed a ring 

configuration with bus-tie cables. The circuits downstream of the main switchboards 

were distributed in a radial configuration. The generators were ungrounded delta-

connected gas-turbine synchronous machines. There were three load centers downstream 

of the main switchboards. Load center LC15 was downstream of SB1, LC25 

downstream of SB2, and LC31 downstream of SB3. There were fourteen dynamic 

induction motor loads and nine static loads, fed through main switchboards, load center, 

and switchboards. The total consumption of this test system was 3.95 MW. Each of the 

three transformers in the test system was a three-phase transformer bank (three single-

phase transformers) in a delta-delta connection. There were 54 power cables to connect 

various power elements.  

A protection scheme was also designed for this test system. The protective devices 

were circuit breakers for over-current and short-circuit fault protection, ABT and MBT 
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to provide continuous power supply for vital loads, LVR and LVP to provide low 

voltage protection for induction motors, and generator switchboard protection logic to 

provide protection for generator and switchboard group. CBs, ABT, MBT, LVR, and 

LVP are shown in Figure 4.14. In the figure, the symbols  and  denote a closed 

and an open circuit breaker, respectively. The symbol  denotes a bus transfer 

unit, in which  indicates a closed position and  indicates an open position. An 

LVP and an LVR in the closed position is denoted by the symbol , and the open 

position is denoted by . The ratings and settings of circuit breakers were determined 

by the rules provided by military document [75]. All circuit breakers in the test SPS 

were selected from the circuit breakers listed in [76]. The generator switchboard 

protection logic includes under frequency, under voltage, reverse power and over power 

relays. These relays were installed on switchboards 1 and 2. The settings of generator 

switchboard protection logic were determined from the description in [49].  
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Figure 4.14 A Test SPS for Stability Study 
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4.6.2 Simulation Results 

With the new generalized modeling methodology presented earlier in this chapter, the 

test system in Figure 4.14 was modeled and simulated in the environment of 

Matlab/Simulink. The selected integration algorithm was Dormand-Prince ODE5. The 

simulation was run with a fixed time step of 0.001 seconds and automatic error 

tolerance. 

Figure 4.15-Figure 4.19 shows some representative simulation results of the test SPS 

at normal operation shown in Figure 4.14. All loads are on their normal paths. The initial 

condition of generators and loads are set with their steady state values. After a short 

transient process, the test system settled down to its steady state. Figure 4.15 shows the 

phase AB voltage of generator 1. Figure 4.16 shows the phase AB voltage of 

switchboard 3. Figure 4.17 shows the phase A current of induction motor load L11. 

Figure 4.18 shows the rotor speed of motor load L11. Figure 4.19 shows the phase A 

current of static load L14. Phase AB voltages of generator 1 and switchboard 3 settle 

down to a value close to 1.0 p.u.. Current of motor load L11 agrees with the ratio of 

motor demand to system capacity. Angular speed of motor L11 settles down to a value 

below 1.0 p.u.. Current of static load L14 agrees with the ratio of static load L14 demand 

to system capacity. The simulation results at steady state agree with what was expected. 
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Figure 4.15 Phase AB Voltage of Generator 1 
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Figure 4.16 Phase BC Voltage on Switchboard 3 
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Figure 4.17 Phase A Current of Motor Load L11 
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Figure 4.18 Rotor Angular Speed of Motor Load L11 
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Figure 4.19 Phase A Current of Static Load L14 

 

 

4.7 CHAPTER SUMMARY 

In this chapter, a new generalized modeling methodology for ungrounded stiffly 

connected power systems was presented. The new method is more generalized than a 

reformulated model based modeling method reported in the literature by having no 

limitation on the type of interconnected components on inductor buses. The new method 

efficiently solves the modeling incompatibility problems on resistor and inductor buses 

in ungrounded stiffly connected power systems. One reference generator model or line 

model on each resistor and inductor bus is reformulated from its standard model. A case 

study shows that the new modeling method is a promising method for ungrounded stiffly 

connected power systems. A test SPS for the stability study in this dissertation was 

developed. The test SPS was modeled by the new generalized modeling method. Some 

representative simulation results of the test SPS at normal operation were shown.  
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In the next chapter, a new static voltage stability index will be proposed. The new 

index will be applied for static voltage stability analysis and assessment for the test SPS 

developed in this chapter.  
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 CHAPTER V  

STATIC VOLTAGE STABILITY ANALYSIS 

5.1 INTRODUCTION 

In order for a power system to maintain system voltage stability after being subjected 

to a disturbance, equilibrium points of the post disturbance system should exist. The 

static stability analysis for voltage stability in this dissertation studies whether 

equilibrium points of post-disturbance systems exist.  

In this Chapter, a new static voltage index will be presented. The new index is applied 

to each cable in a SPS system. The cable with the maximum value of the new index is 

the weakest cable in the system. The part of SPS below generator switchboards can be 

taken as a radial distribution system. For the radial part of SPS, the index could indicate 

the level of stability at each bus. The bus with the maximum value of the new index is 

thus the most sensitive to voltage instability. In section 5.2, the deduction of the new 

static voltage stability index will be presented. In section 5.3, the performance of the 

new index will be compared with the performance of some other voltage stability indices 

found in the literature. In section 5.4, the index will be applied on the test SPS developed 

in Chapter IV.  

5.2 STATIC VOLTAGE STABILITY INDEX 

Figure 5.1 shows a two-bus power system. Sending bus 1 is connected with a source 

and receiving end bus 2 is connected with a load. The two buses, sending bus 1 and 

receiving bus 2, are connected by a connecting line L21 with impedance 21Z . the power 

flow on the connecting line at the receiving end bus 2 is 21S . The current flowing from 

bus 1 to bus 2 is 21I . 
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Figure 5.1 A Two-Bus Power System 

 

 

The power flow on the connecting line 21S , the voltages on sending bus 1V  and 

receiving bus 2V , and the line impedance 21Z  are defined as (5.1)-(5.4).  

212121 jQPS +=  (5.1) 

22222 sincos δδ VjVV +=  (5.2) 

11111 sincos δδ VjVV +=  (5.3) 

212121 jXRZ +=  (5.4) 

The real power and reactive power are 21P  and 21Q . The line resistance and reactance 

are 21R  and 21X . The voltage magnitude and angle are V  and δ . The subscript 1 and 2 

denote variables associated with bus 1 and bus 2.  

According to power flow concept in the line, the power flow into the receiving end 

bus 2 from the sending end bus 1 21S  is derived as (5.5).  
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(5.5) 

where 1212 δδδ −= , and 2121 δδδ −= . The sign “*” indicates the conjugate of the 

associated variable.  

Separating (5.5) into real and imaginary parts, we have a real power balance equation 

(5.6) and a reactive power balance equation (5.7). 

Sending 
End Bus 1 

Receiving 
End Bus 2 

Z21 

S21 

Load 

G
I21

Source 
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(5.7) 

Taking the magnitude of the sending end bus voltage as the unknown variable, we can 

rearrange (5.6) and (5.7) into two quadratic equations (5.8) and (5.9).  
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(5.8) 
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(5.9) 

Subtracting (5.8) from (5.9), we obtain (5.10).  
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(5.10)

Multiplying (5.10) by 2121 XR  and making simplifications, we obtain (5.11) in the form 

of the sine of the angle difference 21δ . 
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(5.11)

Adding the results of the multiplication of (5.8) by 
21

21

R
X  and the multiplication of 

(5.9) by 
21

21

X
R , we obtain (5.12). 
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(5.12)

Multiplying (5.12) by 2121 XR , and making simplifications, we obtain (5.13) in the form 

of the cosine of the angle difference 21δ . 
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(5.13)

Applying the trigonometric identity on (5.11) and (5.13), we derive (5.14). 
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With 2V  as the unknown variable, (5.14) can be written as a quadratic equation (5.15). 
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(5.15)

There are four solutions for the quadratic equation (5.15). The four solutions are shown 

as (5.16). 
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(5.16)

Two variables a  and b  are defined as (5.17) and (5.18). (5.15) thus can be written in the 

form of a  and b  as (5.19). a  and b  are two real numbers and b  must be positive. 
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(5.19)

Among the four solutions of 2V , two are positive, the other two are negative. 

Because voltage magnitude must be a non-negative number, the two negative solutions 

are not true solutions. Among the two positive solutions, one has a high value and the 

other a low value. In power systems, voltages must be maintained close to system 

voltage, which is the base voltage in a per unit system. Voltage magnitude in per unit 

thus should be high and close to the value of one. The low positive solution is thus not a 

feasible solution for a real power system.  

As described earlier, the voltage magnitude 2V  must be a positive number in a real 

system. To derive a positive feasible solution for a real system, the expression under 
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square root signs of (5.19) should be positive. Therefore, two inequality equations (5.20) 

and (5.21) must be satisfied to obtain a real and positive solution for (5.15).  

042 ≥−± baa  (5.20)

042 ≥− ba  (5.21)

As defined earlier, b  is larger than zero. If a is negative or zero, (5.20) can not be 

satisfied. Thus, a  must be positive. One inequality equation (5.22) is derived as the 

solution for the inequalities equations (5.20) and (5.21).  

120 ≤<
a

b
 

(5.22)

From the deduction earlier there exists a feasible solution for a real power system if 

(5.22) is satisfied. If (5.22) is not satisfied or the inequality equation (5.23) is satisfied, 

there is no feasible solution for a real system.  

12
>

a
b

 
(5.23)

Substituting (5.17) and (5.18) into 
a

b2 , a new voltage static stability index SVSIL21 can 

be defined as (5.24) for the two-bus system in Figure 5.1. 
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(5.24)

SVSIL21 is the stability index derived from the power flow on the line between 

sending bus 1 and receiving bus 2 in the two-bus system. SVSIL21 is a real number and 

indicates whether there are solutions for the two-bus system. SVSIL21 indicates the 

steady state voltage stability of the line and thus can indicate the stability level of the 

two-bus power system. If the SVSIL21 is less than one, there are solutions for (5.15) and 

the system is stable. If the SVSIL21 is equal to one, there are two equal solutions for 

(5.15) and the system is at stability boundary. If the SVSIL21 is larger than one, there is 

no solution for (5.15). The system becomes unstable or steady-state voltage collapse 

occurs. The closer to one the value of SVSIL21 is, the closer the system is operating to 

voltage instability.  
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SVSIL21 in a more general sense can be deduced on any line in a power system. 

Figure 5.2 shows one-line diagram of a line in a power system. In the figure, a line Lji 

connects two buses i and j in the system with impedance Zji. This line is connected to 

other lines to form a network. On the line Lji in the system, the current flowing into bus j 

from bus i is Iji. The power flow into receiving bus j from line Lji is Sji. If this system is a 

radial power system, the power transmitted through the line could be the summation of 

the load demand at the receiving end bus j. At the sending end bus j, according to power 

flow concept in the line, (5.25) thus is satisfied. The similar procedures to deduce 

SVSIL21 for the two-bus system are applied for (5.25). 

 

 

 
Figure 5.2 One-line Diagram of a Line in a Power System 

 

 

∗∗ −
== )(

ji

ji
jjijji Z

VV
VIVS )(

jiji

ji
j jXR

VV
V

−

−
=

∗∗

jiji

jij

jXR

VVV

−

−
=

∗ 2

jiji

jjijiji

jXR

VjVV

−

−+
=

2
)sin(cos δδ

 

(5.25)

Equation (5.26) can be derived from (5.25).  
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(5.26)

A more generalized static voltage stability index (SVSILji) thus is derived for any line 

in a power system.  

Sending 
End Bus i 

Receiving 
End Bus j 

Iji Sji 

Zji 
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(5.27)

SVSILji is the stability index of any line between two buses in an interconnected power 

system. SVSILji is a real number. If the SVSILji is less than one, there are solutions for 

(5.26). If the SVSILji is equal to one, there are two equal solutions for (5.26). The closer 

to one the value of SVSILji is, the lower sustainable load the line is operating with. If the 

SVSILji is larger than one, there is no solution for (5.26). Nonexistence of steady-state of 

a system agrees with the occurrence of voltage collapse in a system. SVSILji thus can be 

used to study voltage collapse in a system. 

In an interconnected power system, SVSILji is calculated on all lines in a shipboard 

power system. If the values of SVSILji for all lines in a system are less than one, a system 

is statically stable. If SVSILji of at least one line is equal to one, the whole system is at its 

stability boundary. If SVSILji of at least one line is larger than one, the whole system 

loses its stability and voltage collapses. In the radial part of a shipboard power system, 

there is only one line connecting between two buses. SVSILji calculated on the line then 

can indicate the stability level of the receiving end bus of the line. The maximum value 

of SVSILji thus identifies not only the line operating closest to its stability boundary but 

also the bus closest to voltage collapse.  

5.3 COMPARISON OF STATIC VOLTAGE STABILITY INDICES 

The performance of the new index is compared with some other indices found in the 

literature. Three other static voltage stability indices FVSI, LQP, and VSI were proposed 

by [28], [29], and [30], respectively. They are written as (5.28), (5.29), and (5.30). The 

static voltage stability index proposed in this dissertation is shown as (5.24).  
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Subscripts i and j denote variables related with sending end and receiving end of a line 

respectively. For all the indices, including the new index SVSILji, the value of one 

indicates the stability boundary. Voltage is statically stable when the index value is 

larger than zero and less than or equal to one. The closer to one the index value is, the 

closer the system is to voltage instability. 

The simple two-bus system shown as Figure 5.1 is used as an example system to 

compare the three indices and the new index. All variables are expressed as per unit 

values. The bus voltage at the sending end bus is assumed to be the one in the power 

flow. The real power of the load at receiving bus 2 increases from zero to 2.4 p.u.. The 

values of the voltage stability indices were calculated at each load level. The impedance 

of the line was varied to represent long and short connecting lines (LL and SL). The 

power factor of the load at the receiving end bus 2 was varied to represent high and low 

power factors (HPF and LPF). There are four combinations with different line lengths 

and load factors. They are LL and HPF, LL and LPF, SL and HPF, and SL and LPF. 

Each of the four combinations represents one situation at which the four voltage indices 

were compared. The different values of the line impedance and power factors are shown 

in Table 5.1 and Table 5.2.  

 

 

Table 5.1  

Line Impedance 

Line Impedance 

LL 0.17+j0.0205 

SL 0.085+j0.01 
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Table 5.2  

Load Power Factors 
Power Factor Value 

HPF 0.9 

LPF 0.6 

 

 

Figure 5.3-Figure 5.6 show the performance comparison of the four voltage indices at 

different situations with different combinations of line length and load factors. The PV 

curve indicates the change of voltage on bus 2 at the receiving end of the line with the 

change of real power at bus 2. In each figure, the PV curve at each different situation is 

drawn. The voltage at bus 2 decreases as real power at bus 2 is increased. At point A of 

the PV curves, voltage instability occurs. The power at point A is thus the maximum 

allowable power of the load at bus 2.  

Figure 5.3 and Figure 5.4 compare the four indices when the line is short and the 

power factor of the load is high and low, respectively. All indices increase as the real 

power of the load increases. When voltage instability occurs, indices SVSILji and VSI 

reach one. The other two indices are below one. LQP is the closer of the two to one. It is 

found that voltage instability occurs at a lower load level with the low power factor. This 

is because the load with the low power factor demands more reactive power and draws 

more current through the line. The voltage drop on the line is larger. Voltage instability 

with the low power factor thus occurs at a lower load level than that with the high power 

factor.  

Figure 5.5 and Figure 5.6 compare the four indices when the line is long and the 

power factor of the load is high and low, respectively. The same observations from 

Figure 5.3 and Figure 5.4 can be made from Figure 5.5 and Figure 5.6. It can also be 

seen that voltage instability with the long line occurs at a lower load level than that with 

the short line. The long line has larger line impedance, which causes larger voltage drop 
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on the line. Voltage instability with long lines thus occurs at a lower load level than with 

short lines.  

Among the three indices found in the literature, LQP neglects the angle difference 

between sending bus and receiving bus. To improve calculation speed, FVSI neglects 

line resistance. From the performance of the indices shown in the figures, LQP and FVSI 

are not as accurate as the new index SVSILji. VSI gradually approaches the value of one 

as the load power is increased. However, when the maximum allowable power is 

reached, VSI begins to decrease. The value of VSI is less than one once the load power 

is larger than the maximum allowable power and the voltage on bus 2 is unstable. 

SVSILji increases continuously after the voltage on bus 2 enters an unstable region. The 

value one clearly separates the stable voltage region from the unstable region. From the 

earlier description, it can be concluded that SVSILji has the best performance among the 

four indices. VSI is second best, LQP is third, and FVSI is fourth. 
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Figure 5.3 Performance Comparison of Various Static Voltage Stability Indices with SL 

and HPF  
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Figure 5.4 Performance Comparison of Various Static Voltage Stability Indices with SL 

and LPF 
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Figure 5.5 Performance Comparison of Various Static Voltage Stability Indices with LL 

and HPF 
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Figure 5.6 Performance Comparison of Various Static Voltage Stability Indices with LL 

and LPF 

 

 

5.4 CASE STUDY 

The effectiveness of the static voltage stability index (SVSILji) is demonstrated on the 

test shipboard power system developed in Chapter IV. The diagram of the test system is 

shown in Figure 4.14. There are in total 54 cables in the test system. Each transformer in 

the test SPS is connected between cables. Impedance of transformers and the connected 

cables were added up and considered as impedance of one cable. Totally 51 cables were 

studied in the test system for static analysis.  

SVSILji was calculated for each of the 51 cables in the test system according to (5.24). 

To calculate SVSILji with (5.24), voltage magnitude | 2V |, real power P2 and reactive 

power Q2 flowing through the line need to be known. The values of SVSILji of the 51 

cables were calculated in two ways. One way is through static analysis. The other way is 
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through the results from time domain simulation. The values of | 2V |, P2, and Q2 were 

calculated in each of the two ways.  

Throughout the calculations in static analysis, the output voltages of generators were 

assumed to be 1.0 p.u. and each load was represented by a constant power load model at 

nominal rating. With the output voltages of generators assumed to be 1.0 p.u., voltage 

magnitudes at other buses in the test system were obtained using (5.19). For the radial 

part of the test system, the power flowing through a cable was calculated as the power 

summation of loads at the receiving end of the cable. The power flowing through a load 

cable was calculated as the load power. The power flowing through a load center cable 

was calculated as the power summation of loads under the load center. It was assumed 

that each of the two generators supplied half of total load demand in the test system. The 

loads on switchboards 1 and 2 and were supplied by generators 1 and 2, respectively. 

The loads on switchboard 3 were supplied by generators 1 and 2 through cables C013 

and C023. The power flowing through tie line cables C013 or C023 thus were equal to 

the half of total load demand minus the load demand on switchboard 1 or 2. At normal 

operation, the power of all loads was set equal to their nominal values, and all loads 

having two supplying paths were supplied through their normal path. The SVSILji value 

of each cable at normal operation was calculated and is shown in the second column in 

Table 5.3.  

The test system at normal operation was modeled and simulated in time domain by 

the methodology described in Chapter IV. From simulation results at steady state, 

voltage magnitude | 2V |, real power P2 and reactive power Q2 flowing through cables 

could be derived. Since time domain simulation results were in the reference frame of 

0dq, the voltages and power were calculated by (5.31)-(5.33). 

2
2

2
22 qd VVV +=

 
(5.31)

))Re(( *
212 IVVP ⋅−=  (5.32)

))Im(( *
212 IVVQ ⋅−=  (5.33)
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where V is equal to qd jVV +  and I is equal to qd jII + . Vd and Vq are d- and q-axis 

voltages. Subscripts 1 and 2 denote variables associated with sending and receiving 

buses of a cable. I is the current flowing through a cable. * denotes the conjugate of a 

variable. Using the steady state simulation results at normal operation of the test SPS, 

the SVSILji value of each cable were calculated again. The results are shown in the third 

column in Table 5.3.  

From Table 5.3, it can be seen that the SVSILji values of all cables in the test system 

at normal operation are small. The SVSILji value of C012 is zero. This is because the 

voltages on switchboards 1 and 2 were equal at steady state and no current flowed 

through the tie lie C012. Since the alternate cables were not connected in the system at 

normal operation, their SVSILji values are thus shown as zero in the table. SVSILji of 

cable C03, which can connect the back up generator 3 to switchboard, is also zero, since 

the generator is not connected. 

From the comparison of the second and third column of Table 5.3, it can be seen that, 

using the same calculation equation as (5.24), the SVSILji values computed from values 

calculated in static analysis are larger than the SVSILji values computed from values 

calculated from the simulation results. SVSILji is deduced based on static power flow. 

The assumption of unit voltage at generator output and the usage of constant power load 

models in static analysis are the reasons for larger SVSILji values in static analysis than 

time domain simulations. Therefore, SVSILji derived in static analysis is more 

conservative in stability assessment than derived from time domain simulations. SVSILji 

in static analysis can be applied to predict the voltage stability level of each cable or 

each load bus of post-disturbance systems. A SVSILji value less than one (such as 0.9) 

indicates a poor level of stability after a system is disturbed.  

 

 

 

 



118 

 

Table 5.3  

SVSILji Values of Cables at Normal Operation 

Cable Name SVSILji from Static Analysis 
SVSILji from 

Simulation 

C01 0.0020 0.0019 

C02 0.0020 0.0019 

C11 0.0737 0.0699 

C12 0.0801 0.0760 

C13 0.0473 0.0450 

C14 0.0382 0.0374 

C15 0.0450 0.0428 

C151 0.0205 0.0191 

C152 0.0139 0.0132 

C1531+C1532+T1 0.0783 0.0716 

C21 0.0735 0.0698 

C22 0.0931 0.0883 

C23 0.0312 0.0298 

C241+C242+T2 0.0215 0.0213 

C25 0.0792 0.0743 

C251 0.0902 0.0813 

C252 0.1010 0.0882 

C253 0.0151 0.0138 

C31 0.0707 0.0660 

C311 0.1123 0.1001 

C312 0.1883 0.1678 

C313 0.0328 0.0295 

C314 0.0189 0.0171 

C32 0.0557 0.0523 

C33 0.0323 0.0304 

C34 0.0569 0.0534 

C35 0.0581 0.0549 

C361+C362+T3 0.1388 0.1255 

C023 0.0277 0.0264 

C012 0 0 
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     Table 5.3 Continued 
C013 0.043 0.0408 

C03, C11a, C12a, 

C13a, C14a, C151a, 

C152a, C1531a, 

C21a, C22a, C23a, 

C251a, C252a, 

C311a, C312a, 

C313a, C314a, C32a, 

C33a, C35a 

0, 0,0, 

0, 0,0, 

0, 0,0, 

0, 0,0, 

0, 0,0, 

0, 0,0, 

0,0 

0, 0,0, 

0, 0,0, 

0, 0,0, 

0, 0,0, 

0, 0,0, 

0, 0,0, 

0,0 

 

 

In SPS, important loads normally have two paths. These are the normal path and 

alternate path. To study the SVSILji values of alternate cables, all loads having two paths 

were switched from their normal path to their alternate path. The consumed power of 

each load was kept at the nominal level. The SVSILji values of all cables at this situation 

are shown in Table 5.4. Due to the different cable lengths, the SVSILji values of cables of 

normal paths and alternate paths were different. As described earlier, the SVSILji value 

of each cable in a radial system indicates the voltage stability level at the receiving end 

bus of the cable. Therefore, when a load is switched from the normal path to its alternate 

path, the SVSILji values of some buses will increase or decrease. From both the SVSILji 

values in Table 5.3 and the SVSILji values in Table 5.4, it can be seen that the voltage 

stability level at some buses decreased after their loads were switched from their normal 

path to their alternate path. For example, the SVSILji value of cable C23 in Table 5.3 is 

0.0312 and the SVSILji value of cable C23a in Table 5.4 is 0.1261. The bus 

corresponding to the terminal of load L23 was thus more sensitive to voltage instability 

after the load was switched from its normal path to its alternate path.  
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Table 5.4  

SVSILji Values of Cables When Loads are on Alternate Paths 
Cable Name SVSILji 

C01 0.0024 

C02 0.0020 

C15 0.0221 

C151 0.0201 

C25 0.021 

C253 0.0142 

C34 0.0571 

C361+C362+T3 0.1394 

C023 0.00520 

C013 0.0545 

C11a 0.019 

C12a 0.0423 

C13a 0.1444 

C14a 0.0418 

C151a 0.0201 

C152a 0.0659 

C1531a+C1532+T1 0.0204 

C21a 0.0479 

C22a 0.0239 

C23a 0.1261 

C251a 0.0379 

C252a 0.0418 

C311a 0.0519 

C312a 0.1072 

C313a 0.0161 

C314a 0.0350 

C32a 00310 

C33a 0.0765 

C35a 0.0250 
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Table 5.4 Continued 
C03, C11, C12, 

C13, C14, C152, 

C1531+C1532+T1, 

C21, C22, C23, 

C241+C242+T2, 

C251, C252, C31, 

C311, C312, C313, 

C314, C32, C33, C35,  

C012 

0, 0, 0, 

0, 0, 

0, 

0, 0, 0, 

0, 

0, 0, 0, 

0, 0, 0, 

0, 0, 0,0, 

0 

 

 

As described earlier, if a SVSILji value is closer to one, a cable is closer to static 

voltage stability boundary. From Table 5.3 and Table 5.4, it can be seen that, when loads 

are kept at nominal levels, most SVSILji values of the cables in the test system are less 

than 0.1. The cables in the test SPS are thus far away from the stability boundary. In 

other words, the cables in the test system are not stressed at all. This is because of the 

short length of the cables in the test SPS. Among all cables in the test system, four cables 

in the test system had SVSILji values larger than 0.1. From Table 5.3, it is found that the 

SVSILji value of cable C312 is the maximum, which is shaded in Table 5.3. Therefore, 

among all cables in the test system, cable C312 is the cable most sensitive to voltage 

instability when the system is at normal operation. The receiving end bus of cable C312, 

which is connected to load L312, is the critical bus and the most sensitive to voltage 

instability when the test SPS is at normal operation.  

With the other conditions at normal operation unchanged, the real power of load L312 

was increased gradually. The relationship between the real power level PL312 and the 

SVSILji of cable C312 is shown in Figure 5.7. The SVSILji value of C312 increased as 

the load level of L312 increased, which indicates that cable C312 became more and 

more stressed as the load level of L312 increased. From the figure, the SVSILji value of 

C312 reached one as PL312 is increased to a level around 3.02. For PL312 equal to 3.02 

p.u., the SVSILji values of all cables in the test system at normal operation are shown in 
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Table 5.5. It is seen in the table that the SVSILji of cable C312, shaded in Table 5.5, is 

larger than one. Voltage instability is thus found on cable C312 by SVSILji in this static 

voltage stability analysis.  
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Figure 5.7 The Relationship between SVSIC312 and PL312 
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Table 5.5  

SVSILji Values When PL312=3.02 p.u. 
Cable Name SVSILji Cable Name SVSILji 

C01 0.0023 C251 0.0902 

C02 0.0023 C252 0.1010 

C11 0.0737 C253 0.0151 

C12 0.0802 C31 0.1337 

C13 0.0473 C311 0.1209 

C14 0.0382 C312 1.0036 

C15 0.0450 C313 0.0351 

C151 0.0205 C314 0.0202 

C152 0.0139 C32 0.0562 

C1531+C1532+T1 0.0784 C33 0.0326 

C21 0.0735 C34 0.0574 

C22 0.0931 C35 0.0586 

C23 0.0313 C361+C362+T3 0.1401 

C241+C242+T2 0.0215 C023 0.0584 

C25 0.0792 C013 0.0365 

C03, C012,C11a, 

C12a, C13a, C14a, 

C151a, C152a, 

C1531a, C21a, C22a, 

C23a, C251a, C252a, 

C311a, C312a, C313a, 

C314a, C32a, C33a, 

C35a 

0,0,0, 

0,0,0, 

0,0, 

0,0,0, 

0,0,0, 

0,0, 

0,0,0, 

0,0 

-- -- 

 

 

SVSILji can be implemented in SPS reconfiguration. For each reconfiguration 

operation, SVSILji values of all cables of post-disturbance systems should be calculated. 

The maximum SVSILji at each operation can be used as an indicator of system stability. 

If there are several reconfiguration operations to choose from, the system stability 

indicators of different operations should be compared. It is suggested that the operation 
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with the minimum system stability indicator should be recommended for 

reconfiguration. In addition, if a reconfiguration operation leads to a poor level of system 

stability, the reconfiguration operation should be avoided. The value of the level to 

indicate a poor level of system stability should be chosen according to the situation of a 

real system.  

In static analysis, the largest SVSILji value shows the weakest line or bus in a system. 

However, in static analysis, the dynamics of a system are not considered. A system can 

be already unstable during its dynamic process before the system is evolved to the point 

where instability is indicated in static analysis. In this sense, SVSILji is more useful for 

contingency ranking, which chooses the cases most likely to be unstable among many 

cases. The maximum SVSILji of each contingency is used to determine system stability 

level. These SVSILji values are ranked in contingency ranking. Voltage instability is 

more likely to occur in these contingencies with the largest SVSILji values. In this 

chapter, it was shown that cable C312 is the weakest cable for voltage instability in the 

test system at normal operating point (loads at 1.0 p.u. and on normal paths). In the 

dynamic stability analysis in the next chapter, the dynamic instability caused by the load 

increase of L312 will be studied.  

5.5 CHAPTER SUMMARY 

In this chapter, based on the solvability of load flow equations, a new static voltage 

stability index (SVSILji) was deduced. The performance of the new index was compared 

with other static voltage stability indices in the literature. The new index was determined 

to indicate voltage instability more accurately. SVSILji was applied on the test system 

developed in Chapter III. The SVSILji values were calculated and indicated the voltage 

stability level of each cable or bus in the test system. It was shown that cable C312 in the 

test system was the most sensitive to voltage instability when loads were at nominal 

levels and all loads having two paths were supplied power from normal and alternate 

paths. The load L312 is thus the critical load in the test system at this operating point.  
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In the next chapter, a new dynamic voltage stability index will be presented. The new 

dynamic index will be applied to analyze and assess voltage stability of the test SPS 

developed in Chapter IV.  
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 CHAPTER VI  

DYNAMIC VOLTAGE STABILITY ANALYSIS 

6.1 INTRODUCTION 

In Chapter V, a static voltage stability index was presented for static analysis. Static 

analysis can only detect voltage stability for a statically modeled system. With dynamics 

modeled by differential equations, dynamic analysis can provide more accurate results in 

voltage stability studies. In dynamic analysis, bifurcations of a dynamic system 

including both saddle node bifurcation and Hopf bifurcation are detected where 

instability occurs.  

In this Chapter, using the techniques of eigenvalue decomposition (ED) and singular 

value decomposition (SVD), a new dynamic voltage stability index (DVSI) will be 

deduced to detect bifurcations in a dynamic power system. In section 6.2, the eigenvalue 

decomposition (ED), singular value decomposition (SVD) and their application to 

bifurcation detection will be introduced. Based on ED and SVD, a new dynamic voltage 

stability index (DVSI) will be deduced in section 6.3. In section 6.4, the results of 

bifurcation detection from the new index will be compared with the results derived from 

AUTO, an existing software package for bifurcation analysis. In section 6.4, the index 

will be applied to the test SPS developed in Chapter IV.  

6.2 EIGENVALUE DECOMPOSITION AND SINGULAR VALUE 

DECOMPOSITION 

As described in Chapter III, a reduced Jacobian matrix, rJ , describes a linear system 

and approximates a dynamic nonlinear system around its equilibrium points. In voltage 

stability studies, a reduced Jacobian matrix is thus studied for the local bifurcations of a 

power system. Eigenvalues and singular values of a reduced Jacobian matrix will be 

used for developing a new voltage stability index to detect local bifurcations in this 
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chapter. In this section, some basic knowledge of eigenvalue decomposition (ED) and 

singular value decomposition (SVD) will be introduced. The related applications of ED 

and SVD on bifurcation detection will also be described.  

 

6.2.1 Eigenvalue Decomposition 

The eigenvalue decomposition for a reduced Jacobian matrix rJ , assuming that is 

diagonalizable, can be written as (6.1) [2].  

∑=
n

n
T

nnr vuJ µ  (6.1) 

where nµ  is the nth eigenvalue. nu  and nv  are the nth left and right eigenvectors. nu  and 

nv  are defined as non zero vectors. A zero eigenvalue or a pair of pure imaginary 

eigenvalues emerges when a saddle node bifurcation or a Hopf bifurcation occurs. 

According to the eigenvalue decomposition shown as (6.1), the linearized system 

modeled by rJ  can be decomposed into several modes [2]. Each mode has an 

eigenvalue and right and left eigenvectors associated with it. A mode represents a 

transient behavior with a single time constant or a single damping and frequency [2]. 

The system behavior is the result of many modes acting at once. For a monotonically 

growing or decaying mode, the associated eigenvalue nµ  is a real positive or negative 

number, which describes modal damping. For an oscillatory mode, the associated 

eigenvalue nµ  is a complex number, which describes modal damping and frequency. 

Right eigenvector nv  gives mode shapes or relative activities of state variables when the 

nth mode is excited. The magnitude of the right eigenvectors of different eigenvalues 

show the extent of the activities and the angles show the phase displacements of the 

activities. Left eigenvector nu  weighs the contribution of these activities to the nth mode. 

The maximum entry in the right eigenvector corresponds to the critical state variable in a 

system, and the maximum entry in the left eigenvector pinpoints the most sensitive 

direction for change of the system [2]. 
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6.2.2 Singular Value Decomposition 

Any matrix can be decomposed by an orthonormal singular value decomposition 

(SVD). The singular decomposition of a reduced Jacobian matrix rJ  is shown as (6.2) 

[69].  

∑
=

=∑=
N

n
nnn

T

1

T
r vuVUJ σ  (6.2) 

where U and V are N by N orthonormal matrices. nu  and nv  are the nth left and right 

singular vectors and nth columns of matrices U and V. nu  and nv  are non zero vectors. 

Σ  is a diagonal matrix and can be written as (6.3) [69].  

{ })()( rr JJΣ ndiag σ=  (6.3) 

where )( rJnσ  is the nth singular value of matrix Jr. nσ  is a non negative real number. 

If the matrix rJ  is singular, then there must be at least one zero singular value among 

all singular values [69]. Therefore, there must be at least one zero singular value at 

saddle node bifurcations. Since singular values are non negative numbers, the minimum 

singular value of the system Jacobian matrix )(min rJσ  is equal to zero at a saddle node 

bifurcation. When a system is near a singular point, the minimum singular value of the 

system Jacobian matrix is close to zero. In power systems, the minimum singular value 

indicates the distance between an operating point and a saddle node bifurcation point [6]. 

The application of singular value decomposition on voltage stability analysis thus 

focuses on monitoring the smallest singular value up to the point when it becomes zero. 

The minimum singular value is a relative measure of how close the system is to a 

singular point. 

6.3 DYNAMIC VOLTAGE STABILITY INDEX 

A new dynamic voltage stability index is deduced based on the eigenvalue 

decomposition and singular value decomposition described in the previous section. From 

the eigenvalue decomposition, the nth complex eigenvalue of a reduced system Jacobian 
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matrix rJ  can be defined as (6.4). Subscripts R and I indicate the real and imaginary 

parts of the eigenvalue.  

InRnn j µµµ ⋅+=  (6.4) 
The corresponding right eigenvector v  for the complex eigenvalue is (6.5). 

][ InRnn vvv ⋅+= j  (6.5) 
For the nth right eigenvector and eigenvalue of a matrix, (6.6) is satisfied [2]. 

nnr vvJ ⋅=⋅ nµ  (6.6) 
Substituting the nth complex eigenvalue and right eigenvector defined by (6.4) and 

(6.5) into (6.6), we obtain (6.7).  

][)(][ InRnInRnr vvvvJ ⋅+⋅⋅+=⋅+⋅ jjj InRn µµ  (6.7) 
Arranging (6.7) into real and imaginary parts, we can derive (6.8) and (6.9). 

0vvIJ InRnr =⋅+⋅⋅− InRn µµ )(  (6.8) 

0vvIJ RnInr =⋅−⋅⋅− InRn µµ )(  (6.9) 

Equations (6.8) and (6.9) can be rewritten in the format of (6.10) with Rnv and Inv  as 

unknown variables. 

0
v
v

IJI
IIJ

In

Rn

r

r =







⋅








⋅−⋅−

⋅⋅−

RnIn

InRn

µµ
µµ

 (6.10) 

Since eigenvectors of any matrix are defined as nonzero vectors, (6.11) should be 

satisfied. Equation (6.12) can be derived from (6.11).  

0
IJI

IIJ

r

r =







⋅−⋅−

⋅⋅−

RnIn

InRn

µµ
µµ

 (6.11) 



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



⋅

⋅
=








⋅−

⋅
I0

0I
JI

IJ

r

r

Rn

Rn

In

In

µ
µ

µ
µ

 (6.12) 

Among all eigenvalues of the system Jacobian matrix, an eigenvalue whose absolute 

value of its real part is the smallest is selected. This eigenvalue is defined as minµ  by 

(6.13).  

minminmin IR j µµµ ⋅+=  (6.13) 
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Substituting (6.13) into (6.12), we define a matrix A as (6.14). A new dynamic voltage 

stability index DVSI thus is defined as (6.15). )(min Aσ  is the minimum singular value of 

the matrix A. 









⋅−

⋅
=

r

r

JI
IJ

A
min

min

I

I

µ
µ

 (6.14) 

( )Aminσ=DVSI  (6.15) 

Hopf bifurcations are characterized by a pair of purely imaginary eigenvalues 2,1HBµ , 

which are defined as (6.16) and (6.17).  

IHBRHBHB j µµµ ⋅±=2,1  (6.16) 

0=RHBµ  (6.17) 
Since the real parts of this pair of purely imaginary eigenvalues are equal to zero, their 

absolute real parts are the smallest. minµ  thus is equal to 1HBµ  or 2HBµ . At Hopf 

bifurcation, the matrix A is written as (6.18). According to (6.12), substituting the zero 

real parts of 2,1HBµ  into the right hand side of (6.12), we derive (6.19). Therefore, A is 

equal to zero or singular at Hopf bifurcations.  









⋅

⋅±
=

r

r

JI
IJ

A
IHB

IHB

µ
µ

m
 (6.18) 









⋅

⋅
=








⋅

⋅
=

I0
0I

I
I

A
0

0
0

0

RHB

RHB

µ
µ

 (6.19) 

Saddle node bifurcations are characterized by at least one zero eigenvalue SNBµ , 

which is defined as (6.20)-(6.22). 

ISNBRSNBSNB j µµµ ⋅+=  (6.20) 

0=RSNBµ  (6.21) 

0=ISNBµ  (6.22) 

Since the real part of SNBµ  is equal to zero, minµ  is equal to SNBµ  at saddle node 

bifurcations. At saddle node bifurcation, the matrix A is written as (6.23). The matrix A 
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is equal to the right hand side of (6.12). Substituting the zero real parts of SNBµ  into the 

right hand side of (6.12), we derive (6.24). Therefore, A is equal to zero or singular at 

saddle node bifurcations.  









=








⋅

⋅
=

r

r

r

r

J
J

JI
IJ

A
0

0

ISNB

ISNB

µ
µ

 (6.23) 


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⋅

⋅
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


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
⋅

⋅
=

I0
0I

I
I

A
0

0
0

0

RSNB

RSNB

µ
µ

 (6.24) 

In summary, according to (6.19) and (6.24), the matrix A is equal to zero or singular 

at either saddle node bifurcations or Hopf bifurcations. In practical applications, DVSI is 

calculated at each point on the system trajectory along with the change of a bifurcation 

parameter. At saddle node bifurcations or Hopf bifurcations, DVSI will be equal to zero. 

At the other points, DVSI will be larger than zero.  

The minimum singular value of the Jacobian matrix ( )rJminσ  has been used in a 

stability method to analyze voltage stability [6]. This minimum singular value shown in 

(6.25) is called DVSI1 in this dissertation.  

( )rJmin1 σ=DVSI  (6.25) 
The development of DVSI and DVSI1 uses the technique of singular value 

decomposition. The minimum singular values are critical singular values and can detect 

bifurcations. In applications of the minimum singular values on bifurcation detection in 

real power systems, the masking effect on critical singular values of small and slowly 

changing singular values was observed [33]. Several small singular values can be 

obtained in real power systems with the change of bifurcation parameters. These small 

singular values are almost constant with the change of bifurcation parameters. The small 

singular values indicate the relationship between the local area in voltage stability 

studies and the other areas of a system [33]. However, these small singular values do not 

indicate the stability level of a system. The critical singular value decreases as 

bifurcation parameters change, but not enough to be included in the group of small 

singular values being computed. The critical singular value is thus masked by those 

small and slowly changing singular values. These small singular values are not the 
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critical singular values to reflect voltage stability and should be filtered out. In this 

dissertation work, the singular values are calculated with the change of bifurcation 

parameters. Small, almost constant singular values are deleted to derive the critical 

singular value. 

The bifurcations of a system can be detected by calculating DVSI during dynamic 

analysis. When DVSI is close to zero, the system is closer to voltage instability. Using 

both DVSI and DVSI1, the types of bifurcations can be determined. A zero value of 

DVSI of (6.23) means that either saddle node bifurcation or Hopf bifurcation occurs in a 

system. If the value of DVSI of (6.23) is equal to zero and DVSI1 of (6.25) is not equal 

to zero, the detected bifurcation is a Hopf bifurcation. If both the values of DVSI of 

(6.23) and the DVSI1 of (6.25) are equal to zero, the detected bifurcation is a saddle 

node bifurcation. It should be noted that in theoretical studies the zero values of DVSI 

indicate where bifurcations occur. However, a perfect zero value is not practical in real 

situations. We believe that a small value, such as 10e-4, is small enough as the threshold 

for finding bifurcations.  

6.4 COMPARISON OF BIFURCATION DETECTION 

The new dynamic voltage stability index (DVSI) presented earlier is based on ED and 

SVD on Jacobian matrices. As described earlier, a Jacobian matrix is derived from the 

linearization of a nonlinear system. A Jacobian matrix thus can represent the local 

behavior of the nonlinear system around its equilibrium points, but not exactly the same 

behavior as the original nonlinear system. As described earlier in section 2.2.6.2, a 

software package called AUTO can be used directly to analyze bifurcations in dynamic 

nonlinear systems [35]. AUTO uses predicator-corrector algorithms as well as 

specialized continuation methods for following equilibriums and periodic orbits to detect 

locations and types of bifurcations of a nonlinear system. In this section, with a small 

power system, the results of bifurcation detection by the new DVSI will be compared 

with the results of bifurcation detection by AUTO.  
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A small two-generator-one-motor power system shown in Figure 6.1 is used for 

comparison of bifurcation detection between the new DVSI and AUTO. There are three 

buses in the system and the three buses are connected in a ring configuration. One 

generator is connected on each of buses 1 and 2. An induction motor load is connected 

on bus 3. The parameters of the system can be found in Appendix B.1 [77].  

 

 

 
Figure 6.1 A Two-Generator-One-Motor Power System 

 

 

As described earlier, differential-algebraic equations are used to model power systems 

in dynamic analysis. The induction motor in the system was modeled by a differential 

equation shown as (6.26), where the mechanical torque was a quadratic function of the 

motor speed. 

ME
m TT

dt
d

−=
ω

 (6.26) 

2
mM KT ω=  (6.27) 

where eT  and MT  are the electrical and mechanical torque of the motor, respectively. 

mω  is the motor speed. K is the load torque at synchronous speed. The value of K is 

slowly changed to simulate changes of the mechanical load of the induction motor. K 

M

G1 G2 

1 2 

3 
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thus indicates the changes in the load power demand of the motor. K is used as the 

bifurcation parameter. The component models of the system can be found in Appendix 

B.2 [77]. 

A time domain simulation was conducted on the system shown in Figure 6.1 in the 

environment of Matlab. The simulation results of the motor speed ω  and the voltage on 

bus 3 V3 with the change of the mechanical load level of K are shown in Figure 6.2 and 

Figure 6.3, respectively. From the figures, the responses of the motor speed ω  and the 

voltage V3 monotonically decrease after a certain mechanical load level is reached. Since 

it has quadratic torque, the motor does not stop completely. The motor eventually moves 

to a stable equilibrium corresponding to a low rotor speed and the voltage V3 decreases 

to a low level.  
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Figure 6.2 Motor Speed with Change of K  
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Figure 6.3 Voltage on Bus 3 with Change of K 

 

 

The Jacobian matrix of the test system was derived from the simulation results at each 

mechanical load level K. DVSI was calculated from the Jacobian matrix. Figure 6.4 

shows the values of DVSI with the continuous change of K. The values of DVSI1 with 

the continuous change of K are shown in Figure 6.5. From Figure 6.4, three bifurcations 

are detected before the system becomes unstable. As described earlier, the types of 

bifurcations can be determined from the values of DVSI and DVSI1. From Figure 6.5, 

the values of DVSI1 at the first two bifurcations are not equal to zero, and the value of 

DVSI1 is equal to zero at the third bifurcation. Therefore, the first two bifurcations are 

Hopf bifurcations and the third bifurcation is a saddle node bifurcation. The system 

begins to oscillate after the first Hopf bifurcation and begins to collapse at the saddle 

node bifurcation. The value of the mechanical load level K at each bifurcation point is 

shown in Figure 6.4 and Figure 6.5. They are 0.555 p.u. at the first Hopf bifurcation 

HB1, 1.396 p.u. at the second Hopf bifurcation HB2, and 2.089 p.u. at the saddle node 

bifurcation SNB.  
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Figure 6.4 DVSI with Change of K 
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Figure 6.5 DVSI1 with Change of K 
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Some AUTO calculation results of bifurcation analysis for the system in Figure 6.1 

are shown in Table 6.1. Each row in the table is a point on the system trajectory. The 

point number is listed in the PT column. The system trajectory can be separated into 

different branches. The branch number is listed in BR column. TY indicates the type of 

solution, which can be a normal start, end point, or a bifurcation point. EP represents the 

normal start or end point of a branch. The start point is input manually and the point 

where AUTO begins calculation. The end point is solved by AUTO. HB and LP indicate 

Hopf bifurcation and saddle node bifurcation, respectively. Each row is also a solution of 

the studied system. The solutions are labeled in the LAB column. PAR(0) is the first 

bifurcation parameter in an array of bifurcation parameters and is the mechanical load 

level K in this study. The first four state variables are U(1), U(2), U(3), and U(4). U(1), 

U(2) and U(3) are voltage magnitude on bus 1, voltage magnitude and angle on bus 2, 

respectively. U(4) is bus voltage V3.  

Four bifurcations were detected for the system by AUTO. The four rows that list the 

four bifurcations are shaded in Table 6.1. The first three bifurcations agree with HB1, 

HB2, and SNB detected by DVSI. As described in section 2.2.6.2, with the continuation 

method, AUTO can detect bifurcations even after a saddle node bifurcation is met where 

a system collapses in time domain simulation. The fourth bifurcation occurs after the 

two-generator-one-motor system collapses and thus can not be detected from the 

simulation results.  
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Table 6.1  

AUTO Results for the System in Figure 6.1 
BR PT TY LAB PAR(0) U(1) U(2) U(3) U(4) 

1 1 EP 1 1.000000
E-03 

9.597185
E-01 

9.597179
E-01 

7.270550
E-02 

9.473133
E-01 

1 23 HB 2 5.545999
E-01 

9.591953
E-01 

9.589629
E-01 

5.300364
E-02 

9.433852
E-01 

1 30 -- 3 8.890904
E-01 

9.575954
E-01 

9.573059
E-01 

4.154264
E-02 

9.360759
E-01 

1 41 HB 4 1.396167
E+00 

9.528676
E-01 

9.526007
E-01 

2.471077
E-02 

9.157948
E-01 

1 60 -- 5 2.037438
E+00 

9.371377
E-01 

9.370515
E-01 

5.650223
E-02 

8.482893
E-01 

1 66 LP 6 2.089189
E+00 

9.305440
E-01 

9.304543
E-01 

5.843056
E-02 

8.189627
E-01 

1 90 -- 7 1.432063
E+00 

9.091803
E-01 

9.088130
E-01 

4.582237
E-02 

7.194150
E-01 

1 96 LP 8 1.254447
E+00 

9.062433
E-01 
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The complete bifurcation diagram of the system, or the trajectory of the bus voltage 

V3 changing with the mechanical load level K of the induction motor, was generated by 

AUTO. The diagram is shown in Figure 6.6. The first three bifurcation points detected 

by AUTO are indicated in the bifurcation diagram. The straight dot dashed lines in the 

figure indicate the mechanical load levels at which bifurcations occur. With the complete 

bifurcation diagram, the situation of the solution for the system can be shown. The 

number of intersections between the KV3 curve and mechanical load level K changes 

first from one to three, then from three to one as K increases eventually. Each 

intersection represents one equilibrium point in the system. The upper part of the KV3 

curve always represents the feasible solutions of the system. With the change in 

mechanical load level K, the system moves along the upper part of the KV3 curve until 

SNB is met. When K increases further, V3 decreases to a low level and is almost 

unchanged after SNB. 
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Figure 6.6 Complete Bifurcation Diagram from AUTO 

 

 

The bifurcation detection results of the new index DVSI agree with the results of 

AUTO. AUTO can detect the exact positions and types of bifurcations in a nonlinear 

system. However, power systems are normally large and may comprise a large number 

of differential equations and algebraic equations. The algebraic variables must be 

substituted explicitly before AUTO can be applied to detect bifurcations in a nonlinear 

system [35]. This significantly limits the ability of AUTO to solve bifurcations for large 

power systems. The calculation of DVSI is based on time domain simulations. However, 

as described in section 3.4.3.1, the Jacobian matrix can be obtained by numerical 

differentiation. The explicit solutions of algebraic equations are not required by the 

calculation of DVSI, which makes it easier to use DVSI to detect bifurcations in large 

power systems.  
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It is noted that two Hopf bifurcations were detected in the system in Figure 6.1. To 

better explain the behavior of the system after Hopf bifurcations, the eigenvalues with 

the change of mechanical load level K in the nonlinear system are shown in Figure 6.7. 

In areas A and B in Figure 6.7, the first and second Hopf bifurcations occur. Eigenvalues 

in area A and area B are conjugates to each other. Either of them can thus be used to 

show the system behavior between the two Hopf bifurcations. Area A is enlarged and 

shown in Figure 6.8. It is seen from Figure 6.8 that a pair of eigenvalues first crosses the 

imaginary axis from negative plane to positive plane and then from positive plane to 

negative plane. At the first crossing, the first Hopf bifurcation HB1 is detected. At the 

second crossing, the second Hopf bifurcation HB2 is detected. The system is in stable 

operation before the first Hopf bifurcation point. The system then becomes oscillatory 

unstable between the first and the second Hopf bifurcation. However, the oscillation 

magnitude is too small to be observed from the simulation results shown in Figure 6.2 

and Figure 6.3. The system becomes stable again after the second Hopf bifurcation until 

the saddle node bifurcation is reached where the system begins to collapse.  
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Figure 6.7 Root Locus of the Power System in Figure 6.1 for Stability Study 
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Figure 6.8 Enlarged Root Locus of Area A in Figure 6.7 

 

 

The Jacobian matrix derived from the linearization can represent the local behavior of 

a nonlinear system. From the results shown earlier, the bifurcations detected by DVSI 

agree with the bifurcations detected with AUTO. The new voltage stability index DVSI 

can thus be used to detect local bifurcations in a nonlinear system.  

6.5 COMPARISON OF QSS AND SIMULATION 

As described earlier in section 3.4.2.2, the QSS method can be used in voltage 

stability studies. In the QSS method used in this study, the differential and algebraic 

equations of the system in Figure 6.1 were solved as a set of algebraic equations with the 

bifurcation parameter K increased successively. After the saddle node bifurcation, QSS 

could no longer be solved due to the singularity of the system Jacobian matrix.  

The KV3 curves derived from time domain simulation and QSS are compared in 

Figure 6.9. Some details of the KV3 curves away from and close to the saddle node 
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bifurcation are enlarged and shown in Figure 6.10 and Figure 6.11. When the system is 

away from the saddle node bifurcation with K changed from 1.0118 p.u. to 1.0228 p.u., 

the results from QSS and time domain simulations are close. When the system is closer 

to the saddle node bifurcation with K changed from 2.03 p.u. to 2.012 p.u., the 

differences between the results are larger. The range of K from 1.0118 p.u. to 1.0228 

p.u. is between the two Hopf bifurcations HB1 and HB2. As described earlier, the 

magnitude of the unstable oscillation between the two Hopf bifurcations are small. 

Therefore, the results of QSS and time domain simulations are close. However, if the 

oscillation magnitudes are large, the results after Hopf bifurcations from QSS and time 

domain simulations would not be as close as shown in Figure 6.10. 
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Figure 6.9 Results of Comparison between Simulation and QSS 
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Figure 6.10 Results of Comparison between Simulation and QSS (K=1.0118~1.0228) 
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Figure 6.11 Results of Comparison between Simulation and QSS (K=2.03~2.102) 
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The biggest advantage of the QSS method is that QSS requires much less time to 

solve a system than do time domain simulations. QSS can thus replace time domain 

simulations when a system is not close to bifurcations. In the case study shown later, 

QSS and time domain simulations will be used complementarily to analyze bifurcations. 

The QSS method is first applied and the approximate positions of bifurcations are 

detected. Time domain simulations are then conducted around these approximate 

locations to find the exact location of bifurcations. In this way, a large amount of time 

that would be spent on time domain simulations can be saved and the system trajectory 

is accurate enough for bifurcation detection. 

6.6 CASE STUDIES 

In this section, two cases are studied on the test shipboard power system developed in 

Chapter IV. The diagram of the test system was shown in Figure 4.14. The first case 

studies voltage stability with load L312 increased in the test system. In Chapter V, static 

analysis detected voltage instability when the mechanical load level of load L312 was 

increased to 3.02 p.u.. However, in dynamic analysis, voltage instability can possibly 

occur before L312 is increased to 3.02 p.u.. As described earlier in section 3.3, when 

load torque increases on an induction motor, motor stalling or local voltage instability 

can occur. This voltage instability occurs during dynamic processes and will be assessed 

by dynamic indices DVSI and DVSI1. The second case studies voltage stability with the 

system load level increased in the test system. As discussed in section 3.4.4.4, the 

parameters of voltage controllers may no longer be appropriate after loads are increased. 

The interaction of loads and voltage controllers can cause voltage instability. The 

voltage instability caused by this interaction will also be assessed by dynamic indices 

DVSI and DVSI1.  

To achieve the objectives of saving time and deriving accurate results simultaneously, 

QSS and time domain simulations were complementarily employed to conduct dynamic 

analysis. At first, a bifurcation parameter, such as the mechanical load level of L312 was 
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increased successively. At each level of a bifurcation parameter, time domain 

simulations were run until the system reaches steady state. The simulation results at 

different steady states were used as the results of QSS. From QSS analysis, bifurcations 

were detected approximately. Time domain simulations were then run around the 

approximate bifurcations with a bifurcation parameter increased continuously. From 

time domain simulations, bifurcations were detected accurately. 

The first case study studies voltage stability induced by motor stalling with the 

mechanical load level of L312 increased. In this dynamic analysis, differential equations 

were used to model the dynamic load L312. The rotor dynamics of induction motors 

were modeled by (6.28). ET  and MT  represent electrical and mechanical torque of motor 

L312, respectively. mω  is the speed of motor L312. 

ME
m TT

dt
d

−=
ω

 (6.28) 

In practical applications, the mechanical torque of an induction motor operates in one of 

three categories. These categories are constant torque, linear torque, and quadratic 

torque. The constant torque is independent of the motor speed. It has many applications 

in many kinds of loads, such as air condition (AC) compressors, gear shift, anchor 

windlass, cranes, crabs, and belt conveyors for load transportation. The linear torque and 

quadratic torque are dependent on the motor speed. The demanded torque on the rotor 

increases as the speed increases. Examples of loads with linear torques are electric wood 

saw, planers, and piston pumps. Examples of loads with the quadratic torques include 

fans and pumps. The three types of mechanical torque are modeled as (6.29)-(6.31). 

KTM =  (6.29) 

mM KT ω=  (6.30) 
2

mM KT ω=  (6.31) 

where K is the load torque at synchronous speed. The value of K is slowly changed to 

simulate changes of the mechanical load of the induction motor and indicates the 

changes in the load power demand of the motor. K is the bifurcation parameter in this 

case study. In section 4.6.2, the mechanical torque of all motor loads was modeled as 



 

 

146

quadratic torque to demonstrate the simulation results of the test system at normal 

operation. However, the three types of mechanical loads have different effects on 

voltage stability [23]. In this case study, the mechanical torque of motor load L312 is 

modeled by the three different types of mechanical torques respectively, and voltage 

stability for various mechanical torque models with the change of mechanical load level 

K of motor L312 is studied. 

The simulation results of the motor terminal voltage VL312 and the motor speed with 

the change of bifurcation parameter K for various load torques are shown in Figure 6.12 

and Figure 6.13. The motor terminal voltage was computed by (6.32).  

22
qd vvv +=  (6.32) 

where dv  and qv  are voltages on the d- and q-axis of motor L312. From these figures, it 

can be seen that, with the same system and motor data, different situations arise if the 

mechanical load torque is modeled differently. With constant load torque, the voltage 

collapses and motor stalling occurs after the mechanical load level K was increased to 

2.19 p.u.. With linear torque, the voltage and motor speed drops to low values after the 

mechanical load level K was increased to 2.6 p.u.. With quadratic torque, the voltage 

continuously changes and the motor continuously works at all mechanical load levels.  
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Figure 6.12 Voltage VL312 with Change of K for Various Load Torques  
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Figure 6.13 Motor Speed WL312 with Change of K for Various Load Torques 
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The values of DVSI and DVSI1 with mechanical load level of L312 increased were 

calculated from the results from QSS and time domain simulations. In this case study, 

the masking effect described in section 6.3 was observed during the calculation of the 

minimum singular values for DVSI and DVSI1. Four small and slowly changing 

singular values were found from calculating DVSI and two small and slowly changing 

singular values were found from calculating DVSI1. These small singular values were 

not critical singular values reflecting voltage stability and were thus filtered out for 

deriving the final values of DVSI and DVSI1.  

After the masking singular values were filtered out, the critical singular values 

indicating voltage stability with various load torques is shown. Figure 6.14 shows the 

values of DVSI and DVSI1 with the change in mechanical load level K when the 

mechanical load torque was constant. Figure 6.15 shows the values of DVSI and DVSI1 

when the mechanical load torque was linear. Figure 6.16 shows the values of DVSI and 

DVSI1 when the mechanical load torque was quadratic. DVSI and DVSI1 have the same 

values in Figure 6.14-Figure 6.16. Thus, only saddle node bifurcations occurred in the 

system. When the mechanical load was constant, the mechanical load level where the 

saddle bifurcation occurred was around 2.19 p.u.. When the mechanical load was linear, 

the mechanical load level was around 2.6 p.u.. No bifurcation was detected when the 

mechanical torque was quadratic.  
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Figure 6.14 DVSI and DVSI1 with Constant Mechanical Torque 
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Figure 6.15 DVSI and DVSI1 with Linear Mechanical Torque 
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Figure 6.16 DVSI and DVSI1 with Quadratic Mechanical Torque 

 

 

From Figure 6.14-Figure 6.16, the three different types of mechanical load torques 

have different effects on voltage stability. The most vulnerable situation occurred when 

the motor operated under constant load torque. The saddle node bifurcation point 

occurred at a higher voltage level and at higher speed than when the load torque was 

speed dependent. In the case of constant torque, values of the load torque above the 

bifurcation value imply motor stalling and eventually voltage collapse at terminal 

voltage of motor L312. However, the instability may be alleviated if the load torque is 

dependent on speed. The voltage and motor speed decreased at the saddle node 

bifurcation when the load torque was linear. If a system is strong, the stable operation 

may be maintained even after the voltage is low and the motor speed significantly 

decreases. The situation is even less critical when the load torque is a quadratic. Figure 

6.12 and Figure 6.13 indicate that the bus voltage remains stable even though the motor 

operates at an unacceptable low speed if the load torque is quadratic.  
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The second case study examines the voltage instability induced by inappropriate 

parameter settings of voltage controllers when the load level of a system is increased. 

For the test SPS shown in Figure 4.14, at normal operation, all loads were operated at 

nominal power. A system load level parameter was used on all loads in the test system. 

This load level parameter KL, as a coefficient, was used to adjust the output currents of 

each load, whose summation is the input of generators. In this case study, the system 

load level KL was the bifurcation parameter. This load level parameter KL was assumed 

to be one at normal operation. QSS and time domain simulations were complementarily 

applied as discussed earlier. KL was increased successively in QSS and continuously in 

time domain simulations. When the system load level KL increased, the voltage at 

generator terminals decreased. The voltage controllers on the generators in the test 

system responded to the low terminal voltage and adjusted the terminal voltage as close 

to 1.0 p.u. as possible. However, when the system load level KL increased to a certain 

level, voltage drop was out of the adjustment range of the voltage controllers of the 

generators or the settings of the voltage controller were not appropriate for the increased 

system load level KL. Voltage in the test SPS thus became unstable. In this case, voltage 

oscillations were caused by a Hopf bifurcation before voltage collapse was caused by a 

saddle node bifurcation.  

Figure 6.17 shows the terminal voltage of generator 1 Vtg1 with the change of system 

load level KL. Similar behavior occurred for generator 2. The generator terminal voltage 

Vtg1 was derived according to (6.32), with dv  and qv  being the d- and q-axis voltages of 

generator 1. It can be seen that when load level KL was increased to a value around 2.3, 

the generator terminal voltage decreased suddenly to almost zero. Since generators were 

the only power suppliers in the test system, the system thus collapsed. The dynamic 

behavior of the terminal voltage at the range of KL from 1.3 to 2.3 is enlarged and shown 

in Figure 6.18. It can be seen that the terminal voltage of generator 1 oscillated before 

the system finally collapsed. 
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Figure 6.17 Terminal Voltage Vtg1 with Change of System Load Level KL 
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Figure 6.18 Terminal Voltage Vtg1 with Change of System Load Level KL (KL=1.3~2.3) 
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DVSI and DVSI1 were computed to detect bifurcations for the dynamic process when 

system load level KL was increased. In this case study, the masking effect on critical 

singular values was also observed. When system load level KL was increased, four small 

and slowly changing singular values were found from calculating DVSI and two small 

and slowly changing singular values were found from calculating DVSI1. These small 

singular values were not critical singular values and were thus filtered out for deriving 

the final values of DVSI and DVSI1.  

After this masking effect was removed, Figure 6.19 shows the change of DVSI and 

DVSI1 when the system load level increased from 1.0 to 2.4.. From the DVSI values, it 

can be seen that two bifurcations occurred in the system. The first bifurcation occurred 

when the load level was around 1.4. The second bifurcation occurred when the load level 

was around 2.3. Between the two bifurcations, the DVSI values were smaller than the 

DVSI1 values. Using both the DVSI and the DVSI1 values, the first bifurcation is 

identified as a Hopf bifurcation and the second one is identified as a saddle node 

bifurcation. In the range of KL from 1.3 to 2.3 shown, some oscillations were observed 

from the complementary results of QSS and time domain simulations in Figure 6.18. 

These oscillations are also reflected in the values of DVSI and DVSI1 in Figure 6.19. 

The system trajectory between the Hopf bifurcation and the saddle node bifurcation 

consisted of a large amount of points. To save bifurcation analysis time, not all points 

between the Hopf bifurcation and saddle node bifurcation were analyzed by DVSI and 

DVSI1. The oscillations in Figure 6.19 are thus not as smooth as those shown in Figure 

6.18. However, the trends in the changes of DVSI and DVSI1 can still be observed. 
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Figure 6.19 DVSI and DVSI1 with Change of System Load Level KL 

 

 

6.7 CHAPTER SUMMARY 

In this chapter, a new dynamic voltage stability index (DVSI) was deduced with the 

techniques of eigenvalue decomposition and singular value decomposition. The new 

index DVSI can detect local bifurcations in a dynamic power system, including both 

Hopf bifurcations and saddle node bifurcations. Another index DVSI1 was used to detect 

only saddle node bifurcations. The results of bifurcation detection for a two-generator-

one-motor system by DVSI and DVSI1 were compared with those by AUTO, an 

existing bifurcation detection software package. The results of the indices and AUTO 

agreed with each other. DVSI and DVSI1 were also applied on the test system developed 

in Chapter IV. DVSI and DVSI1 detected the bifurcations in the test system while the 

dynamic process of the mechanical load level of the motor load L312 increased 

gradually. The results confirmed that the factor of the motor stalling affects voltage 

stability, which was discussed in Chapter III. DVSI and DVSI1 indicated a Hopf and a 
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saddle node bifurcation for the test system when the system load level was increased. 

The results in turn confirmed that the interaction of loads and voltage controllers is a 

factor affecting voltage stability in SPS, which was also discussed in Chapter III.  

In the next chapter, conclusions and future work will be discussed. 
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 CHAPTER VII  

CONCLUSIONS AND FUTURE WORK 

7.1 SUMMARY 

Researchers in the Power System Automation Lab at TAMU have developed methods 

for performing SPS reconfiguration. Reconfiguration operations change the status of 

open/closing of switches in an SPS before or after a weapon hit to reduce the damage to 

the system. As one critical aspect of system reliability, stable operations must be 

maintained during SPS reconfiguration. When the stability margin is small, the topology 

changes and dynamics of equipments due to reconfiguration might cause voltage 

instability, such as progressive voltage fall or voltage oscillation. SPS stability thus 

should be assessed to ensure the stable operation during reconfiguration. In this 

dissertation, methods for analyzing and assessing stability during reconfiguration were 

developed and implemented on AC shipboard power systems. 

Time domain simulations provide valuable information for stability studies. 

Shipboard power systems studied in this dissertation were ungrounded and stiffly 

connected. Detailed models were used to simulate the accurate dynamics of shipboard 

power systems. Due to the negligible effects on dynamics, line capacitances were 

ignored to improve simulation speeds. Inductor buses and resistor buses emerge in 

ungrounded stiffly connected power systems. Interconnection incompatibility is thus 

induced when only voltages-in-currents-out component models are interconnected at 

resistor or inductor buses. A new generalized modeling and simulation methodology was 

discussed in this dissertation for effectively modeling ungrounded stiffly connected 

power systems. This new methodology reformulated the mathematical equations of 

certain component models to solve interconnection incompatibility problems. Generally, 

to model a system, one reference generator model or cable model on each resistor or 

inductor bus is reformulated from its standard model. This method was implemented in 

the environment of Matlab/Simulink for modeling and simulating ungrounded shipboard 
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power systems. Simulation results showed that the new methodology is promising for 

modeling and simulating ungrounded stiffly connected power systems. 

A test shipboard power system model was designed and developed for stability 

studies. This test system was comprised of three synchronous generators, three 

transformers, nine constant impedance loads, 14 induction motor loads, 54 cables, and 

various protective devices. A protection scheme was designed and implemented for this 

test system. The factors affecting shipboard power system stability studies, such as 

system stress and dynamic loads, were studied for the test SPS. The new generalized 

modeling and simulation methodology was implemented on the test SPS. The simulation 

results from the test system were used for stability analysis and assessment. 

The stability problems of shipboard power systems, especially during reconfiguration 

operations, were formulated. Shipboard power systems are special power systems. 

Salient features of SPS include finite inertia and capacity, short connecting lines, 

predominant dynamic loads, and fast response controllers. Effects of these salient 

features on SPS stability were discussed. The time frames of dynamics classified 

stability problems in SPS into the categories of dynamic stability, transient stability and 

long-term stability. Due to large disturbances and the involvement of slow response 

equipment, stability problems occurring during SPS reconfiguration were extended 

beyond the areas of dynamic and transient stability to long-term stability. Stability 

problems are generally classified into angle stability and voltage stability according to 

the nature of the stability problems. Due to the tight interconnection and the parallel 

operation of generators, strong synchronism or angle stability is maintained in SPS. In 

this dissertation, voltage stability during SPS reconfiguration was studied. 

Four factors affecting voltage stability in SPS during reconfiguration/restoration were 

identified. These factors were loading condition, motor stalling, windup limit in voltage 

controllers, and interactions between loads and voltage controllers. Loads are transferred 

from one bus to another bus during SPS reconfiguration. Voltage stability limits could 

be violated if the load at a bus increases or the power factor of the load decreases. 

Induction motors are the predominant type of loads in SPS. An induction motor could 
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lose its stability when the mechanical torque is increased or the motor is exposed to low 

voltage for a long time. Motor instability may even induce system-wide voltage 

instability. Voltage stability is maintained by reactive power in power systems, which is 

mainly supplied by synchronous generators in SPS. When the windup limits of the 

voltage controllers are encountered, the inner voltage of the generators becomes 

constant. A part of reactive power is consumed by the inner reactance of generators. The 

reactive power supplied to SPS is reduced and the shortage of reactive power may thus 

cause voltage instability. In SPS, synchronous generators are installed with voltage 

controllers to control voltages within certain limits. When additional equipment is 

installed on a ship, the settings of voltage controllers may no longer be appropriate. This 

interaction between voltage controllers and loads may be harmful to the system and 

induce unstable oscillatory voltage in SPS. Considering static or dynamic effects on 

voltage stability, the four factors affecting voltage stability were analyzed in static or 

dynamic voltage stability.  

A new static voltage stability index (SVSILji) was deduced for static voltage stability 

analysis based on power flow concept in lines. If SVSILji is larger than zero and less than 

one, voltage stability is satisfied. If SVSILji is equal to one, voltage instability occurs. 

SVSILji indicates the voltage stability level of a line in a power system. If a SVSILji is 

closer to one, the corresponding line is operating closer to its stability boundary. The 

minimum SVSILji indicates the line operating closest to voltage instability. Compared 

with three existing indices [28]-[30] for a two-bus power system, SVSILji assessed 

voltage stability more accurately. SVSILji studies the existence of steady state of a power 

system. SVSILji is the stability index for each line connecting two buses in a power 

system. If at least one SVSILji exceeds one, voltage instability, more specifically voltage 

collapse, occurs. SVSILji was performed on the test SPS developed for stability studies. 

SVSILji was calculated for all cables in the test system. When all loads operated at their 

nominal values on either normal or alternate paths, the cable that was operating closest 

to stability boundary was identified. When the load connected to the cable was increased 

above 3.02 p.u., voltage instability occurred. 
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With the techniques of eigenvalue decomposition (ED) and singular value 

decomposition (SVD), a new dynamic voltage stability index (DVSI) was deduced for 

detecting local bifurcations, including saddle node and Hopf bifurcations, in dynamic 

systems. DVSI can analyze and assess voltage stability for dynamic voltage stability 

analysis. When DVSI is equal to zero, local bifurcations are detected and voltage 

instability occurs. A comparison of results of bifurcation detections for a small power 

system by DVSI and AUTO [35], a conventionally used bifurcation analysis software 

package, agreed with each other. Also DVSI was performed on the test system SPS. QSS 

(Quasi-Steady-State) and time domain simulations were used complementarily to 

determine the parameters required by DVSI. This combination improved the accuracy 

and speed of bifurcation detection. The voltage stability of a dynamic process, during 

which the mechanical load of one motor was increased gradually, was assessed by 

DVSI. Three different types of mechanical torque were modeled for the motor load and 

their effects on voltage stability were studied. Bifurcations were detected for constant 

and linear mechanical torques at mechanical load levels around 2.19 p.u. and 2.6 p.u., 

respectively. No bifurcation was detected for quadratic mechanical torque. The voltage 

stability of another dynamic process, during which system load level was increased, was 

also assessed by DVSI. Two types of bifurcations were detected. The first bifurcation 

was a Hopf bifurcation occurring at the system load level of 1.4. The second bifurcation 

was a saddle node bifurcation occurring at the system load level of 2.3. 

7.2 CONCLUSIONS 

Two new voltage stability indices SVSILji and DVSI were discussed in this 

dissertation. SVSILji is suitable for static voltage stability analysis and DVSI for dynamic 

voltage stability analysis. Compared with some existing indices on the line of a detailed 

two-bus system, SVSILji is a better index for static voltage stability analysis. DVSI 

detects bifurcations in dynamic voltage stability analysis. Considering the singularity of 

a matrix at local bifurcations, DVSI can detect both saddle node bifurcation and Hopf 

bifurcation in dynamic systems. 
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Results of voltage stability assessment by SVSILji are conservative. This is because 

SVSILji is deduced from power flow formulations. In static voltage stability analysis, 

static component models are used. While in dynamic voltage stability analysis, dynamic 

component models are used. Since the dynamics of a system are not modeled in static 

analysis, voltage instability during a dynamic process can only be detected in dynamic 

analysis. A system can become unstable during a dynamic process before the system is 

developed to the point where instability is indicated in static analysis. Dynamic voltage 

stability analysis can thus be more accurate than static voltage stability analysis. In the 

static voltage stability analysis discussed in Chapter V, with the real power of a static 

load model increased to a certain level, voltage instability in the statically modeled test 

system was detected by SVSILji. In the dynamic stability analysis discussed in Chapter 

VI, the instability occurring during the increase of that load in the dynamically modeled 

test system was analyzed by DVSI. Each type of mechanical torques for the load was 

studied. Voltage instability caused by the stalling of the motor load occurred during the 

dynamic process of increasing load L312 with constant or linear mechanical torque. The 

load levels where voltage instability, caused by motor stalling during the dynamic 

process of increasing the load, occurred in dynamic analysis were lower than the load 

level where voltage instability occurred in static analysis.  

SVSILji and DVSI can be used together for stability assessment. Several 

reconfiguration operations are possible for a shipboard power system. The SVSILji value 

of each cable in the system is calculated for each possible reconfiguration operation first. 

The maximum SVSILji value of one reconfiguration operation is used to indicate the 

system stability level for the corresponding reconfiguration operation. All possible 

reconfiguration operations are ranked by sorting the maximum SVSILji values in 

ascending order. The smallest maximum SVSILji value indicates the operation with the 

highest stability level. DVSI then is calculated for the first reconfiguration operation to 

find whether there is any instability during the dynamic process of the reconfiguration. If 

there is not any instability, this operation is thus selected as the appropriate 

reconfiguration operation. If there is any instability during the dynamic process, the first 
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reconfiguration operation should not be selected. Alternatively, the second 

reconfiguration operation is assessed by DVSI. The same procedure of assessing 

stability by DVSI is applied on the ranked reconfiguration operations until a stable 

operation is found or until all ranked possible reconfiguration operations are assessed 

and the search is exhaustive.  

Among the four factors discussed in Chapter III as affecting voltage stability for SPS 

reconfiguration, three factors were confirmed by the two new indices, SVSILji and DVSI. 

The factor of windup limits in voltage controllers could not be confirmed. Windup limits 

could limit the reactive power supplied by generators. If the windup limit is reached, the 

stability limit is reduced and voltage instability can be induced. However, the 

mechanisms causing voltage instability after windup limits are reached are not well 

understood. Voltage instability caused by windup limits were thus not able to be created 

in time domain simulations for the test system. The effect of windup limits in voltage 

controllers on SPS voltage stability could not be justified. 

7.3  FUTURE WORK 

A new methodology was developed for modeling and simulating ungrounded stiffly 

connected power systems, such as shipboard power systems. For small-scale shipboard 

power systems, the simulation speed is fast and predictable. However, with large-scale 

shipboard power systems, such as the test system developed for stability studies, the 

simulation is slow. The modeling and simulation method were realized in 

Matlab/Simulink. In the future work, some advanced measures in Matlab/Simulink to 

enhance the speed of simulating dynamic systems, such as real time workshop, should be 

investigated. Proper measures could thus improve the speed of SPS simulation with the 

new modeling methodology. 

A test shipboard power system was designed for stability studies. In Chapter IV, the 

mechanical torque of all induction motor loads was modeled as a quadratic function of 

motor speed. However, the type of induction motor loads in a real SPS varies. Mainly, 

there are three types of mechanical torques for induction motors in SPS. The three types 
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are constant, linear, and quadratic, which can have different effects on voltage stability. 

In future studies, the mechanical torque for each induction motor in the test SPS should 

be modeled according to its actual load type. For example, a steering gear in SPS should 

be modeled with constant mechanical torque. 

In static voltage stability analysis, component models are static. Dynamic loads, or 

induction motors, were thus modeled by static models having constant power and a fixed 

power factor. For induction motors, the real power and power factor of an induction 

motor are not constant and change at different equilibrium points. The conservative 

assessment of voltage stability by SVSILji is partly due to the constant power models of 

induction motors. An induction motor at steady state can be represented by an equivalent 

circuit of constant impedance. The constant impedance in the equivalent circuit is based 

on the motor speed at steady state, which is different at different equilibrium points. A 

more accurate model for induction motors at steady state should thus be investigated for 

more accurate results of SVSILji in static voltage stability analysis.  
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APPENDIX A  

PARAMETERS OF A REDUCED SPS  

A reduced shipboard power system shown as Figure 4.7 consists of generators, 

voltage controllers, governor with gas turbine, induction motors, static loads, cables, and 

linear transformers. The parameters of each type of component are shown as follows. 

 

Table A.1 Synchronous Generator Parameters 

Parameters rs (p.u.) rkq’ (p.u.) rfd’ (p.u.) rkd’ (p.u.) lls (p.u.) llkq’ (p.u.) 
Value 0.00515 0.0613 0.0011 0.02397 0.08 0.3298 

Parameters llfd’ (p.u.) llkd’ (p.u.) lmq (p.u.) lmd (p.u.) H (s) -- 
Value  0.13683 0.33383 1.0 1.768 2.137 -- 

 

Table A.2 Parameters for IEEE Type II Voltage Controller 

Parameters KA TA WRMAX VRMIN KF TF1 

Value 400 0.01 8.4 0 0.01 0.15 

Parameters TF2 KE TE A B TR 
Value 0.06 1 0.1 0.1 0.3 0 

 

Table A.3 Parameters for Governor with Gas Turbine 

Parameters KC TC TFV TFT WF10S 

Value 22.5 0.55 0.01 0.05 0.23 

Parameters C2GT C1GT CGNGT WMAX -- 
Value 0.251 1.3523 0.5 1.0 -- 

 

Table A.4 Parameters for Induction Motors  
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Parameters Pbase (KW) Vbase  (KV) rs (p.u.) lls (p.u.) 

Value 192.6 0.44 0.0198 0.06 

Parameters lm (p.u.) rr’ (p.u.) llr’ (p.u.) H (s) 

Value 2.7963 0.0531 0.0529 0.98 

 

Table A.5 Parameters for Static Loads 

Load Name Parameters Value Unit 

Raa,Rbb,Rcc 10,10,10 Per unit 
SL1 

   

Raa,Rbb,Rcc 8,8,8 Per unit 
SL3 

Laa,Lbb,Lcc 6,6,6 Per unit 

Raa,Rbb,Rcc 10,20,10 Per unit 
SL5 

   

 

Table A.6 Parameters for Cables 

Parameters Value (p.u.) 

Raa,Rbb,Rcc 0.0205 

Raa,Rbb,Rcc 0.005478 

Laa,Lbb,Lcc 0.169 

Laa,Lbb,Lcc 0.1607 

 

Table A.7 Parameters for Linear Transformers 

Parameters N (KV/KV) R1 (p.u.) L1 (p.u.) R2 (p.u.) 
Value 0.45/0.115 0.3477 0.002478 0.024691 

Parameters L2 (p.u.) Rm (p.u.) Lm (p.u.) -- 
Value 1.25. 6380.81 24.91 -- 
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APPENDIX B  

PARAMETERS AND MODELS OF A TWO-GENERATOR-ONE-

MOTOR POWER SYSTEM 

A two-generator-one-motor power system shown as Figure 6.1 consists of generators, 

voltage controllers, motors and lines. The parameters of each type of component are 

shown in the tables of section B.1. The mathematical representations of the component 

models are shown in section B.2. 

B.1 PARAMETERS  

Table B.1 Generator Parameters 

Parameters xd(p.u.) xq (p.u.) xd’ (p.u.) Td0’ (s) 
Value 0.8958 0.8645 0.1198 6 

 

Table B.2 Line Parameters 

Parameters Xe (p.u.) 
Value 0.1 

 

Table B.3 AVR Parameters 

Parameters KE (p.u.) TE (p.u.) 
Value 30 0.5 

 

Table B.4 Induction Motor Parameters 

Parameters X1m (p.u.) R1m, R2m (p.u.) X2m (p.u.) Xm (s) H (s) 
Value 0.8958 0.8645 0.1198 6 1.5 
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B.2 MATHEMATICAL MODELS  

Generators G1 and G2 in the two-generator-one-motor system were modeled as a set 

of differential equations as (B.1)-(B.8). 
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where '
qE  is the generator voltage on q axis. '

0dT  is transient time constant on d axis. dx  

is reactance on d axis. '
dx  is transient reactance on d axis. V  is the voltage magnitude 

on a bus. fdE  is the excitation field voltage. AT  is the time constant of exciter. AK  is the 

gain of exciter. 1GMP  is the mechanical power from prime mover. H  is the generator 

inertia. ω  is the rotor angular speed. 0ω  is the system base angular speed. δ  is the rotor 

angle. θ  is the angle of voltage on a bus. The subscripts 1 and 2 of the generator 

variables represent variables associated with generator G1 and generator G2. The 

subscripts 1, 2, or 3 of variable V  denote variables associated with bus 1, 2 or 3. 

Induction motor M in the system were modeled as a differential equation as (B.9).  



 

 

175

mm
m TsK

dt
ds

−−= 2)1(  (B.9) 

Where ms  is the motor slip. mT  is the mechanical torque. K  is the mechanical load level 

of the motor. 

The algebraic equations at bus 1 are shown as (B.10) and (B.11) 
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The algebraic equations at bus 2 are shown as (B.12) and (B.13). 
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where b  is the suseptance of a line between two buses. The subscripts of b denote the 

number of the two buses. The algebraic equations at bus 3 are shown as (B.14) and 

(B.15). 
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(B.15) 

where mR  and mX  are resistance and reactance of a motor. The subscripts 1 and 2 

represent the variables associated with the stator and rotor of the motor.  
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