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ABSTRACT

Stochastic Generation of Biologically Accurate

Brain Networks. (December 2005)

Aravind Aluri, B.E.(hons), Birla Institute of Technology and Science Pilani, India

Chair of Advisory Committee: Dr. Bruce McCormick

Basic circuits, which form the building blocks of the brain, have been identified

in recent literature. We propose to treat these basic circuits as “stochastic generators”

whose instances serve to wire a portion of the mouse brain. Very much in the same

manner as genes generate proteins by providing templates for their construction, we

view the catalog of basic circuits as providing templates for wiring up the neurons

of the brain. This thesis work involves a) defining a framework for the stochastic

generation of brain networks, b) generation of sample networks from the basic circuits,

and c) visualization of the generated networks.
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CHAPTER I

INTRODUCTION

A. Introduction

“To extend our understanding of neural function to the most complex human physi-

ological and psychological activities, it is essential that we first generate a clear and

accurate view of the structure of relevant centers, and of the human brain itself, so

that the basic plan and the overview can be grasped in the blink of an eye”. - Santiago

Ramón y Cajal (Nobel Laureate, 1909) [36].

We intend to contribute towards Cajal’s vision of generating a clear and accurate

view of the structure of relevant centers of the brain. In the recent literature, multiple

basic circuits, which form the building blocks of the brain, have been identified. We

propose to treat these basic circuits as stochastic generators whose instances serve to

wire a portion of the mouse brain. Very much in the same manner as genes generate

proteins by providing templates for their construction, we view the catalog of basic

circuits as providing templates for wiring up the neurons of the brain.

B. Motivation

The neuronal connectivity of human and other mammalian brains is so far largely

uncharted. Indeed, anatomically correct network models of the brain do not exist at

present for the mammalian brain of any species; there is simply not enough three-

dimensional (3D) neuro-anatomical data available concerning mammalian brain mi-

crostructure and, specifically, its neuronal location and connectivity. Provided we can

The journal model is IEEE Transactions on Automatic Control.
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generate synthetic brain networks from a small number of basic circuits, we can cast

these neurons into a web-based database of synthetic brain microstructure. This is

the direct (or synthetic) brain construction process. We can then turn the table to the

indirect (or reciprocal) process, and develop algorithms to find basic circuits directly

from the web-based database of synthetic brain microstructure. If we are able to do

that, then at a future date, and not as part of this thesis, we should be able to apply

these same discovery algorithms to extract basic circuits from an empirical web-based

database of brain microstructure (basic circuit mining). Based on empirical datasets

acquired from new three-dimensional microscopes, such as the Serial Block Face Scan-

ning Electron Microscope (SBF-SEM) [11] and the Knife-Edge Scanning Microscope

(KESM) [27], the reconstructed empirical datasets can be continuously mined to find

new basic circuits.

C. Outline of the thesis

Fig. 1 represents the central idea behind this thesis. We propose that brain networks

are often, but not exclusively, arranged in a lattice structure defined by five groups of

input morphological parameters. Lattice structures are known to play a prominent

role in the brain regions such as cerebellum, retina, striate cortex, hypocampus, and

most recently in the hyporeticulum. However, such regularity is presently unknown

to exist in other brain regions. The five input parameter groups that collectively

determine the stochastic generation of biologically accurate brain networks are:

1. cell type, which describes the neuron’s morphology, spatial location and its

statistical parameters
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2. cell packing, that describes the spatial distribution of a particular cell type

3. connection map, that specifies the synaptic assembly between neurons

4. lattice/group, which determines how the repeating microstructure is locally ar-

ranged, and

5. solid model of the brain region, which dictates the global structural organization

of a given portion of the brain (e.g., the manifold underlying the cerebellum)

We theorize that when these groups of parameters are fed into the Network

Stochastic Generator (see Fig. 1) , it generates a morphologically-accurate model of

the brain with tunable levels of detail (XwebDB and YwebDB). However, non-local

connectivity questions are not treated in the presented formalism. XwebDB, which

is a full-blown representation of the brain network, is projected into a simplified

YwebDB, where neurons are represented by (often truncated) multi-compartmental

models. The projected brain network model is then visualized or is run as a simulation

in one of the popular neuro-simulators, such as GENESIS [4] and NEURON [18].
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Cell Packing

Cell Type

Lattice/Group

Connection Map

Solid Model of Brain 

Region
Neuron & Genesis

NeuroConstruct

YwebDB

XwebDB

Network Stochastic 

Generator

Network Statistical 

Analyzer

Projection

Fig. 1. Outline of the thesis

GENESIS and NEURON have both been developed and refined over a period of

years. We complement the capabilities of these simulators by providing anatomical

accuracy to the model brain network using new software tools such as NeuroCon-

struct [15] and NeuGen [12], rather than augmenting the model’s functional aspects.

NeuroConstruct is a software abstraction layer on top of the GENESIS and NEURON

simulators which provides 3D visualization capabilities. NeuGen is a software tool

for generation of morphologically realistic neurons and networks in 3D. We added

capabilities to the existing NeuGen code to help it fit into the role of the “Network
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Stochastic Generator”.

The “Network Statistical Analyzer” can be used to mine through the biologically

observed XwebDB neurons and their YwebDB projections to derive statistical esti-

mates of the parameters groups, which can in turn be used to produce more accurate

brain network models.

D. Background and rationale

This section covers:

1. literature and prior work done by other investigators in this area,

2. our research base, and

3. how this thesis adds to the existing pyramid of knowledge.

1. Canonical or basic circuits

In the recent literature, several basic circuits, which form the building blocks of the

brain, have been identified. Most of the known basic circuits are documented in

Shepherd’s book [37]. The book documents approximately 60 basic circuits, and

their variants.
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Fig. 2. An example of a basic circuit in the brain [13]

Fig. 2 represents the dominant basic circuit in the cerebral cortical networks.

Four neuronal cell types (pyramidal-deep, pyramidal-superficial, inhibitory local, ex-

citatory local), distinguished by their depth of soma in the cortex and the span of

their dendritic and axonal trees are shown. Several fibers shown (axons or their collat-

eral branches) have their somata reside outside the view of the model. Four types of

afferent fibers are shown: those that target distal dendrites, either (1) by direct con-

nection (Input 1, synapses 1a, 1b) or (2) mediated by an inhibitory local cell (Input
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2, synapses 2a, 2b); and those that target proximal dendrites of the pyramidal-deep

cell, either (3) mediated by an excitatory local cell (Input 3, synapse 3) or (4) by

direct connection (Input 4, synapse 4). Efferent fibers (axons 5a or collaterals 5b, 5c

connect pyramidal cells (pyramidal-deep, from the same or adjacent columns) mak-

ing synapses on inter-neurons (inhibitory local), pyramidal cells (pyramidal-deep), or

sub-cortical areas 5a. Inter-neuron axons 6, 7, and 8 connect pyramidal cells [13].

Basic circuits in the mammalian brain are characterized by:

1. the morphology and neurotransmitter type of their participating neurons in a

cortical area or nucleus, and

2. their characteristic interconnection pattern.

Typically, there are 3-6 or occasionally more cell types in each basic circuit. Fig.

2 shows one such basic circuit, first described by Cajal in 1905, now believed to be

replicated at least 100,000 times in the mouse cerebral cortex [36].

Other databases like Southampton Neuroscience Group (SoNG) [8], Laboratory

of Neuroinformatics (Weill Medical College of Cornell University) [14], the Mouse

Brain Web [26], BrainML [5], Kötter’s book [21] and CoCoMac [22] supplement the

information provided in [37].

2. Visualization

Visually, the circuit classes discussed in the Section 1 are represented as multi-

compartmental (or stick-figure) models with ideas borrowed from NeuronDB [32].

An example stick figure of a neuron is illustrated in Fig 3.

NeuGen provides means for visualizing brain networks using more complicated

(i.e., having many more compartments) stick-figure models than those shown in Fig. 3
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Fig. 3. An example stick-figure representation of a neuron

, using an open-source visualization tool called OpenDX [35]. NeuGen also generates

the physiological equivalent of the synaptic assembly using the NEURON simulator.

3. Stochastic generation and network formation

To construct more realistic models compared to simple stick-figures, we need to cap-

ture the basic morphological parameters for neurons in the biologically observed neu-

ral network, characterizing each neuron’s dendritic and axonal arbors and soma. Once

we populate a given region in the brain with a stochastically realistic collection of

soma, we can construct synthetic neurons using heuristic models of axon and dendrite

growth [1][28].

We can then begin the assembly of the synthetic brain network by identifying po-

tential synapses using concepts from [19] and [23]. We first identify pairs of “nearby”

neurons that potentially form synapses, thus quickly culling most neuron pairs from

further consideration. After we identify pairs of neurons (typically from axon to den-

drite/soma) as potentially connectable, we examine them with repeated proximity
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tests to identify all appropriate pairs of segments of the desired type within some

threshold distance of one other. NeuGen provides one such approximate implemen-

tation of the proximity labeling algorithm 1. However, a more efficient algorithm was

developed by Lien et al. Using their Probabilistic Road Map (PRM) in our Network

Stochastic Generator is a possible future extension of this thesis, and would draw

upon the previous work by Lien, Morales and Amato [23].

Our approach for the stochastic generation of synthetic brain networks is to fine

tune and extend the code from NeuGen. This allows us to reuse NeuGen’s visualiza-

tion and NEURON model generation features. To this end, we expanded NeuGen’s

capabilities (provided by Jens Eberhard, University of Heidelberg) by extending the

existing class definitions and building new classes to represent basic circuits in the

brain. These classes (built in C++) act as building blocks for the generation of the

cortical network.

4. Network processing and analysis

The darkened arrows and boxes in Fig. 4 indicate the contribution of this thesis to

the interaction diagram of the various components under construction at the Brain

Networks Laboratory (BNL). This diagram can be mapped back to Fig. 1. The dotted

lines in the figure represent the contribution of this thesis.

E. Summary

In this chapter we presented the motivation, the relevant background, and the out-

line of this thesis. The rest of the thesis is organized as follows: Chapters II through

1recent reports indicate an improvement in the algorithm’s performance from
O(n2) to O(n log(n))
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XwebDB

Network Stochastic 

Generator

Neuron/Genesis

NeuroConstruct

YwebDB

Neuron 

Morphology DB
3D Reconstruction3D Scanner

Solid Model of 

Brain Region

Cell Type

Cell Packing

Connection Map

Lattice/Group

Network Statistical Analyzer

Projection

Fig. 4. Flow chart of the proposed brain network processing and analysis at BNL [26]

VI elaborate on the input parameters described in Fig. 1, to the “Network Stochas-

tic Generator”. Chapter VII describes the options for projecting XwebDB on to

YwebDB. The implementation details of our Circuits module in NeuGen are cov-

ered in Chapter VIII . We conclude with a summary of the suggestions for future

extensions to this thesis in Chapter IX.
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CHAPTER II

CELL TYPES

A. Introduction

Cell Type describes a class of similar cells (neurons/glia) by their common morphology

and electrophysiology, the statistical distributions of their morphological and electro-

physiological parameters (drawn from a population of such cells), and their spatial

location (e.g., cortical layer). The cell morphology determines the distribution of

segments and spines needed to represent each axonal/dendritic process. On the other

hand, the cell electrophysiology determines membrane properties, like ion channels,

the neurotransmitter, and neuroreceptors.

The cell type data allows one to design stochastic models that can generate

realistic virtual neurons, based on biologically plausible “rules” and biophysical de-

terminants. A quantitative morphological analysis of virtual neurons generated from

a cell type specification ideally should be statistically indistinguishable from a pop-

ulation of biological neurons from which the model parameters were measured. Cell

types, accordingly, facilitate the creation of accurate computational models of neuron

populations.

B. Data sources

The data sources for cell type information can be classified into two broad categories:

those that concentrate on morphological data and those that emphasize electrophys-

iological data.
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1. Focus on morphology

This subsection refers to data sources that concentrate on the morphological aspect

of cell type.

Ascoli [2] at George Mason University maintain the Virtual Neuromorphology

Electronic Database of the morphology of around 500 neurons in the SWC format.

Ascoli’s lab is specifically interested in the description and generation of dendritic

morphology, and in its effect on neuronal electrophysiology. Their web site also

provides references to data from Cannon’s Southampton archive [8].

“Synaptic Organization of the Brain” by Shepherd [37] has qualitative morphol-

ogy information and analysis about the various cell types in ten primary regions of

the mammalian brain. The book “Cortex: Statistics and Geometry of Neuronal Con-

nectivity” [6] by Braitenberg et al., provides anatomical data on the mouse in a form

useful for modelers, and introduces some novel methods of quantitative neuroanatomy.

In a recent paper, Binzegger et al. [3] gave a quantitative description of the

circuits formed in cat area 17 (primary visual cortex) by detailing the morphology

of 39 types of neurons. The morphometrical data includes the laminar distribution

of dendritic trees, synaptic boutons, and the number of synapses formed by a given

type of neuron.

2. Focus on electrophysiology

This subsection refers to data sources that emphasize the electrophysiological aspect

of the cell type.

The NeuronDB [32], maintained by Senselab at Yale, provides detailed channel

data of approximately 40 unique types of neurons. NeuronDB provides a searchable

database of various types of neuronal properties and also provides tools for compari-
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son of properties across different types of neurons and compartments. Senselab also

maintains models submitted by various authors in their modelDB [30]. ModelDB

provides an accessible location for storing and efficiently retrieving computational

models of neurons.

C. Cell type description

This section is subdivided into two parts. The first part outlines some of the for-

mats and methodologies currently available to describe neuronal morphology and the

second part does the same for neuronal electrophysiology.

1. Focus on morphology

a. L-Neuron

“L-Neuron” [1] is a software package for the generation and description of dendritic

morphology. The program uses mathematic formalism of Lindenmayer systems. L-

neuron can save the generated neurons as compartmental model files that are com-

patible with the GENESIS and NEURON simulators.

b. MorphML and NeuroML

MorphML [31] provides an extensible Markup Language (XML) application for neural

morphology data exchange. This application is consistent with the standard W3C

XML Schema, and therefore can be used across different modeling and simulation

environments. MorphML can be used alone or included within NeuroML documents.

NeuroML [33], on the other hand, is a collection of related XML projects for mod-

eling different aspects and levels of neural systems. At the cell morphology level, the

Cell Standards project, which draws ideas from morphML, Cell builder in NEURON
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and .p files in GENESIS, is currently under progress.

c. CVapp

CVapp [7] is a morphology viewer/editor written in Java for converting between file

formats and to validate contributed cells. The software can be used to verify and

correct neuronal branch morphology. The tool can also be used for reading files in

its own (SWC) or Neurolucida format, saving structures for use in the NEURON or

GENESIS modeling packages and for visualization of the models.

d. NeuGen

NeuGen [12], developed by Jens Eberhardt at the University of Hiedelberg, is a tool for

the generation and description of neuronal morphology of realistic neurons and neural

networks in 3D. The input configuration for NeuGen contains parameters for the dif-

ferent neuron cell type morphologies. The configuration parameters for a base neuron

class (as shown in Table I) are inherited to all its subclasses (specialized neurons).

Table II shows the configuration of one such specialized neuron type (L4stellate).

The parameters in Table I and Table II are self-explanatory from the comments that

accompany the parameters.
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Table I. Configuration file for a Neuron in NeuGen

neuron
soma

rad 5 # soma radius
deviation # in multiples of soma radius

x 1.0
y 1.0
z 1.0

axon
nparts 100 # number of segments
nbranch 10.0 # number of branches
len_param

z 80.0 # in multiples of soma radius
rad # axon radius

max 0.5
min 0.1

# basic parameters for dendrites
dendrite

rad # radius
max 1.5
min 0.25

gen_0 # for branch generation 0
len_param # in multiples of soma radius

x 20
y 0
z 0

branch_angle # branching angles
min 30
max 60

nparts_density 0.25 # segments per um of geometric distance
nbranch_param 3
siblings

len_param # in multiples of soma radius
x 10
y 0
z 0

siblings
nbranch_param 2 # max 10 sibling generations

nden 12 # number of primary dendrites (apical + basal)
napiden 0 # number of apical dendrites
synapse

rad 1.0 # synapse radius
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Table II. Configuration file for an L4stellate neuron in NeuGen

L4stellate # for L4 stellate neurons
dendrite

rad
max 1.5
min 0.5

gen_0
len_param

x 15
y 0
z 0

branch_angle
min 30
max 60

nparts_density 0.25
nbranch_param 4
siblings

len_param
x 10
y 0
z 0

nbranch_param 2
siblings

nbranch_param 0
siblings

deviation #in multiples of soma radius
x 0.5
y 0.5
z 0.5

axon
nparts 90
nbranch 15.0
len_param

z 75.0

The visualization routines of NeuGen allows one to write the necessary files for a

three-dimensional rendered display of the neurons. The cells are visualized in 3D using
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the Open Visualization Data Explorer (OpenDX) which uses the native OpenDX file

format. Examples of NeuGen neuron type visualizations are shown in Fig. 5.

(a) L4stellate (b) starpyramidal (c) L23pyramidal

Fig. 5. Visualization of neuron types in NeuGen using OpenDX. Blue color denotes

the axon arbor and yellow color denotes the dendritic arbor [12], [35].

2. Focus on electrophysiology

a. NEURON and GENESIS

Cell Builder [34], the Graphical User Interface (GUI) tool in the NEURON simulator,

helps in constructing and managing models of individual neurons. One can specify
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a model’s branching pattern, assign biophysical properties, and import and export

models in a variety of formats.

In GENESIS, one can describe neuron morphology and electrophysiology by gen-

erating the “.p and .g” files using the “GENESIS Scripting Language” [4].

b. NeuroConstruct

NeuroConstruct [15] is a Java-based software tool that can be used to simplify the

modeling of neuron networks. The tool allows cell models and channel/synaptic

mechanisms created with one of the simulators (GENESIS or NEURON) to be im-

ported, visualized, and incorporated in multi-cell networks of neurons. Apart from

good electrophysiological capabilities, NeuroConstruct provides a good interface for

morphology description. Figures 6 , 7 , and 8 show some examples of neuron types

constructed using the NeuroConstruct GUI. We built these neuron models using mor-

phological estimates from [37].
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(a) L23pyramidal (b) L5pyramidal (c) L6pyramidal (d) Stellate (e) Smooth

Fig. 6. Visualization of cortical neuron types in NeuroConstruct [15]
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(a) GanglionOn (b) Amacrine

(c) Horizontal (d) GanglionOff

Fig. 7. Visualization of retinal neuron types in NeuroConstruct [15]
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(a) Xcell (b) Ycell (c) in-
terneuron

Fig. 8. Visualization of thalamic neuron types in NeuroConstruct [15]
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D. Summary

To summarize, cell type is a very important abstraction for brain model description

because these parameters describe cell morphology and electrophysiology, in addition

to the spatial location of the cell. Both NeuroConstruct and NeuGen provide inter-

faces to describe cell morphology and electrophysiology. Fig. 5 shows neuronal types

we generated using NeuGen and Figures 6 , 7 , and 8 show the neuron models we

built using NeuroConstruct. Our NeuroConstruct cell models can be easily used by

other modelers by importing these morphology descriptions into their projects.
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CHAPTER III

CELL PACKING

A. Introduction

Cell Packing describes the spatial distribution of a particular type of cell (neu-

ron/glia). Accurate characterization of this distribution is needed to build realis-

tic models of brain networks. Specifically, cell packing refers to distribution of cells

and not their connectivity. Commonly used examples, such as uniform and random

distributions, are limited in their ability to capture the spatial distribution of cells

in sufficient detail. In this chapter, we propose “Voronoi diagrams” as a possible

modeling tool to overcome these limitations.

B. Background

1. Simple packing patterns

Cell packing is commonly associated with a specific cell type in a given layer. For

example, cell packing is commonly associated with cortical structures in a given layer.

Identical cell packing parameters do not necessarily apply to all cell types in a given

brain region. Existing brain modeling tools do not provide adequate support for cell

packing formats required for building neuronal networks. The only exception, to our

knowledge, is NeuroConstruct [15], developed by Padraig Gleeson, University College

London. NeuroConstruct supports five different types of cell packing, namely:

1. simple regular packing : places cells regularly in 3D, one on top of another

2. one-dimensional regular spaced packing : places a fixed number of cells at regular

spacing in one dimension
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3. random packing : places cells randomly in a given region

4. cubic closed packing (CCP): arranges cells in a body centered or face centered

cubic pattern

5. hexagonal layer packing : places cells in a single layer in hexagonal formation

In 2D Euclidean space, the hexagonal packing (honeycomb where each circle is

surrounded by 6 other circles) has the highest density. The density (proportion of

area filled by the circles of equal diameter) of this arrangement is π√
12

= 0.9069.

However, in 3D Euclidean space, cubic close packing and hexagonal close packing

have the highest density (proportion of space filled by the spheres). In both of these

arrangements, each sphere is surrounded by 12 other spheres, and both arrangements

have an average density of π√
18

= 0.74048 [10].

2. Voronoi diagram

Definition of Voronoi Diagram : Let S be a set of n sites in Euclidean space of

dimension d. For each site p of S, the Voronoi cell V (p) of p is the set of points

that are closer to p than to other sites of S. The Voronoi diagram V (S) is the space

partition induced by Voronoi cells [10].

Definition of Delaunay Triangulation: The Delaunay triangulation of S is the

geometric dual of the Voronoi diagram of S : two sites of S are linked by an edge

in the Delaunay triangulation if and only if their cells are incident in the Voronoi

diagram of S [16].

Voronoi diagram (also called Voronoi tessellation or Voronoi decomposition),

along with Delaunay triangulation (see Fig. 9 ), is a very useful tool for represent-

ing spatial relationships and growth phenomena. The study of Voronoi diagrams:



25

their mathematical properties, their computation, and their generalizations remains

a central theme in computational geometry.

(a) Voronoi (b) Delaunay

Fig. 9. An example Voronoi diagram and its corresponding Delaunay triangulation

Fig. 10 illustrates how the distribution of edges in a Voronoi diagram is much

more uniform for Face Centered Cubic (FCC) cell packing than for random cell pack-

ing.

(a) FCC cell packing (b) Random cell packing

Fig. 10. Structured vs. unstructured Voronoi diagrams respectively
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C. Using Voronoi diagrams in brain networks

Voronoi diagrams have been used in a very broad spectrum of applications ranging

from astronomy to compiler design. In this section, we suggest how Voronoi dia-

grams can be used for biologically accurate modeling of brain networks. For example,

we consider volumetric datasets of Nissl-stained mouse brain tissues from the Brain

Networks Laboratory [26].

(a) Blood vessels (b) Hippocampal cells

Fig. 11. 3D reconstructions of nissl data from BNL [25]

Fig. 11(a) shows blood vessels (red/transparent), endothelial cells (purple), and

soma (green) reconstruction from Nissl data and Fig. 11(b) shows the 3D visualization

of Nissl-stained hippocampal cells. In Fig. 11(b) , one can clearly see layering of

neurons in the hippocampus region. These neuron layers are analogous to the layers in

a wedding cake. To separate out neurons by layer, one needs to define its normal and

extract a thin slab of cells perpendicular to the normal. The cells in a layer can then be
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collapsed into a plane perpendicular to the normal of that plane. The Computational

Geometry Algorithms Library [9] provides open-source implementation of algorithms

which can be used to study the geometric properties of each layer separately using

2D Voronoi diagrams. Fig. 12 illustrates how Voronoi diagrams turn out irregular if

the extracted slab crosses more than one layer.

Fig. 12. Irregular Voronoi diagram

Neurons within a layer are in general not all of the same kind. Structured

distribution of one cell type in a region doesn’t imply that other cell types in that

region follow the same distribution. Hence, one needs to distinguish between neuron

types by coloring the cell bodies based on some parameter (e.g., proximity to blood

vessels). For example, Fig. 11(a) shows endothelial cells with purple and all the

other kinds of cells (neurons and glial cells) with green. The distinguishing feature of

endothelial cells is that they stick onto the blood vessels (red/transparent) while other

cells do not. Another approach to distinguishing cell types is to plot a histogram of

a parameter (e.g., the logarithmic volume) of the cell bodies to identify potentially

separable classes. Sometimes, if cells from the same layer are classified into different

colors based on some characteristics (e.g., soma volume), one of the cell populations

might exhibit regularity while the other sub-population might not. The position of
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a cell is usually, but not exclusively associated with the center of the soma. For

example, the position of a rod or a cone in the retina is defined not by the cell body

but by the outer cell structure in the retinal sheet. Similarly, the location at which

the dendrite branches determines the position of a bipolar cell in the cerebellum while

the rest of the cell just hangs beneath.

log(volume)

C
e
ll 
P
ro
b
a
b
ili
ty

class I

class II

Fig. 13. Graph of cell probability versus log(volume) of the cell soma.

There are two easily distinguishable classes of neurons in Fig. 11(a) which show

up as two separate clusters in Fig. 13 . Each of these classes can be plotted as a

separate 2D Voronoi diagram for individual analysis. These separate diagrams can

be overlapped finally to obtain the original (multi-colored)distribution.

D. Summary

Voronoi diagrams are extensively used in a wide range of applications. In this chapter,

we proposed some ideas for the application of Voronoi diagrams to modeling cell

packing in brain networks. The prospects of quantitatively classifying cell packing by

this paradigm are promising.



29

CHAPTER IV

CONNECTION MAP

A. Introduction

Connection map specifies the synaptic assembly between neurons, including the iden-

tification of synaptic type (e.g., excitatory/inhibitory). Synapses are cell-cell contacts

found at the end of cell’s thread-like extensions through which the cells communicate.

In electron microscopy these synapses normally can be identified on purely morpholog-

ical grounds. In light microscopy, however, synaptic assembly is generally restricted

to finding “putative synapses” to wire up the neurons. Small diameter fibers and

spines are normally invisible.

B. Background

1. Synapses

Synapses, from the Greek words meaning to “clasp together”, are the contact points

where one neuron communicates with another. The stereotypical and most abundant

synapse in the central nervous system is the asymmetric synapse occurring between an

axon and a dendritic spine. Other synaptic relationships exist and involve different

parts of the neuron. For instance, axo-axonic, axo-somatic, axo-dendritic, dendro-

somatic, and dendro-dendritic synapses can occur and provide alternate mechanisms

for functional communication between neurons [17].

2. Light microscopy (LM) vs. electron microscopy (EM)

Structural and functional classifications of axons, dendrites, and their synapses are

still emerging. The use of electrophysiology, light microscopy (including laser scan-
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ning), serial electron microscopy, and 3D computer-aided reconstruction facilitate the

study of neurons and the intricacies of their synaptic assembly within the brain.

Light microscopy allows one to identify only larger processes and then only a sub-

set of the synapses on these visible processes. Moreover, axon diameters, as measured

in LM, are too inaccurate to reliably determine axonal delays. In contrast, electron

microscopy allows one to identify all neuronal processes and their synapses, but over

a very limited spatial volume. Using EM, one can also see fine details of the interior

structures of cells (nucleus, mitochondria, etc.). This requires sampling at 10 nm

resolution, which is not possible using LM (limited to a sampling resolution of 200

nm). Electron (nano-scale) and light (micro-scale) microscopy can be used at their

respective scales to paint the overall picture of the brain connectivity and establish

rules for identifying putative synapses as likely biologically valid.

3. Synaptic assembly

Assembly (wiring up) of the whole small animal brain network requires identification

of putative synapses because the time required for comprehensive electron microscopy

of the brain is prohibitive.

a. O(n log n) proximity labeling algorithms

Lien et al. identify pairs of “nearby” neurons that potentially form synapses, thus

quickly culling most neuron pairs from further consideration [23]. After they identify

pairs of neurons (typically from axon to dendrite/soma) as potentially connectable,

they examine them with repeated proximity tests to identify all appropriate pairs

of segments of the desired type within some threshold distance of each other. After

neuron segment pairs in the reconstructed mouse brain have been identified as poten-

tially connectable, they employ a series of increasingly precise proximity tests, based



31

on known or measured synaptic affinities, to find all pairs of appropriate segments

within some threshold distance of each other.

b. Deriving physical connectivity from neuronal morphology

In [19], Kalisman et al. present a model that allows prediction of the probability

for the formation of appositions between the axons and dendrites of any two neu-

rons based only on their morphological statistics and relative separation. Statistics of

axonal and dendritic morphologies of single neurons are obtained from 3D reconstruc-

tions of biocytin-filled cells, and a statistical representation of the same cell type is

obtained by averaging across neurons according to the model. A simple mathematical

formulation is applied to the axonal and dendritic statistical representations to yield

the probability for close appositions.

C. Tools for building a connection map

1. Synapses in NeuGen

NeuGen [12] provides an approximate implementation of the proximity labeling algo-

rithm between synthetically generated neurons. NeuGen creates synapses by distri-

butions and/or distance. It uses the NetCon class of NEURON to create an interface

to the simulation program. At the time of this thesis, the algorithm ran in O(n2)

where n is the number of segments in the collection of neurons. Hence, the algorithm

did not scale well for large values of n. However, Eberhardt et al. have recently

reportedly achieved a better complexity of O(n log(n)) by parallelizing the algorithm.
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2. Synapses in NeuroConstruct

In NeuroConstruct, synapses are specified as connections between a number of points

on cells in one cell group to points in another cell group. Some of the factors that

need to be specified in NeuroConstruct are:

1. source cell group: (pre-synaptic cells)

2. target cell group: (post-synaptic cells)

3. synaptic properties: (which cell process contains the synaptic mechanism)

4. the delay

5. firing threshold and weight

6. whether the axons/dendrites grow to meet the post-synaptic connection point

7. method of searching for a connection point (random, closest, etc.)

8. maximum and minimum lengths of the connection

9. various constraints on the number of connections to make between the cells

groups

Fig. 14 shows a synaptic assembly of the cortical region built using NeuGen and

Fig. 15 shows a synaptic assembly of the cerebellar region built using NeuroConstruct.

D. Summary

To summarize, synaptic assembly is a central component of brain network modeling.

In this chapter, we described some tools for modeliing synaptic assembly and proposed

possible extensions to overcome the tools’ deficiencies. None of the existing tools,
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Fig. 14. Representation of cortical synaptic assembly in NeuGen

to our knowledge, provide a good way of wiring up the network. NeuGen did not

scale well since it used an O(n2) algorithm (Recent modifications have reportedly

improved the performance to O(n log(n))). NeuroConstruct provides no means for

automatic generation of putative synapses. Hence algorithms like those by Lien [23]

and Kalisman [19] need to be integrated into the existing tools to make these tools

more useful for realistic modeling.
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Fig. 15. Representation of cerebellar synaptic assembly in NeuroConstruct
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CHAPTER V

LATTICE/GROUP

A. Introduction

Lattice/group determines how the repeating microstructures in the brain are locally

arranged. A lattice is a regular, periodic configuration of points, particles, or objects

throughout an area or a space. “In mathematics, a lattice (group) in Rn is a discrete

subgroup of Rn which spans the real vector space Rn. Every lattice in Rn can be

generated from a basis for the vector space by considering all linear combinations

with integral coefficients” [38].

B. Background

1. Lattice geometry

Lattice geometry can be represented as (1) the set of all points in n-dimensional

Cartesian space with integral coordinates, i.e., the space of n-dimensional vectors

(xi) whose components are integers, together with (1) a set of edges joining adjacent

points. The points are the lattice “sites” and the edges are the lattice “bonds”. A

vector (xi) is said to be integral if all its components are integers [29].

Lattice geometry can be defined on this basis by the use of a finite number

(usually only one or two) of finite sets of integral vectors {yi}, called “direction

vectors”, such that −1 ≤ yi ≤ +1 for all i. See Section 2 for examples.

2. Examples of lattice geometry

The dimensionality of a lattice is the dimensionality of the Cartesian space used

to define that lattice. Thus, a square lattice is 2-dimensional, a cubic lattice is 3-
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dimensional and so on. The coordination number of a lattice is the size of the sets of

direction vectors required for its definition.

Fig. 16 lists all the possible lattice structures in the 2D Cartesian space. For

example, honeycomb(2,3) indicates that the structure has dimensionality 2 and a

coordination number 3.

(a) square(2,4) (b) semi-triangular(2,5)

(c) triangular(2,6) (d) alternating-triangular(2,6)

(e) double-triangular(2,8) (f) honeycomb(2,3)

Fig. 16. List of all lattice structures in the 2D Cartesian coordinate system

In the 2D Cartesian space, the set of direction vectors for the square lattice in

Fig. 17 are: (1,0), (-1,0), (0,1), (0,-1). Thus the neighbors of the site (1,1) are (2,1),

(0,1), (1,2), (1,0) respectively and the neighbors of the site (2,1) are (3,1), (1,1),
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Fig. 17. Direction vectors for a square lattice in 2D Cartesian space

(2,2), (2,0). Similarly, the three-dimensional cubic lattice has the direction vectors:

(1,0,0), (-1,0,0), (0,1,0), (0,-1,0), (0,0,1), (0,0,-1) and the hypercubic lattice (4D)

has the direction vectors: (1,0,0,0), (1,0,0,0), (0,1,0,0), (0,-1,0,0), (0,0,1,0), (0,0,-1,0),

(0,0,0,1), (0,0,0,-1)

In three dimensions there are fourteen unique regular lattices called Bravais

lattices. A Bravais lattice is a set of points constructed by translating a single point

in discrete steps by a set of basis vectors [10].

�
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�����������

(a) triclinic

Fig. 18. List of 3D Bravais lattices: triclinic
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(a) simple
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(b) centered

Fig. 19. List of 3D Bravais lattices: monoclinic

a

c

a ≠ c

(a) hexagonal

Fig. 20. List of 3D Bravais lattices: hexagonal

Figures 18 through 24 show fourteen 3-dimensional lattices each classified by its

crystal system. In Fig. 18 a, b and, c represent the lengths of the edges and α, β and

γ represent the angles between the edges.

From Fig. 16 and Fig. 18 through Fig. 24, we see that the numbers of available

regular lattice models in 2D and 3D Cartesian space are limited to six and fourteen

respectively. Section 3 explains how this can be used to our advantage in mining

lattice structures in brain networks.
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(a) rhombohe-
dral

Fig. 21. List of 3D Bravais lattices: rhombohedral
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(a) simple
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(b) body-ctr‘d

Fig. 22. List of 3D Bravais lattices: tetragonal
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(a) simple
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(b) body-ctr‘d
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(c) face-ctr‘d

Fig. 23. List of 3D Bravais lattices: cubic
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(b) base-ctr‘d
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(c) body-ctr‘d
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(d) face-ctr‘d

Fig. 24. List of 3D Bravais lattices: orthorhombic

C. Lattice structures in the brain

1. Lattice representation of brain networks

We propose that lattice theory can be used as a modeling tool for capturing the

stochastic regularity in brain regions. A lattice has a minimum repeat module whose

position forms the basis of the regular structure. Models of brain networks, where

possible, should be modularized by the explicit introduction of basic circuits. This

modularization imposes a stochastic lattice structure on the brain network, which

should subsequently simplify parameter search and parallelization of functional com-

putation. Shepherd’s book [37] describes basic circuits for the ten better understood

regions of the brain. The cell types for each basic circuit are identified; generally, cell

packing parameters and lattice/group are not specified. Moreover, few, if any, wiring

diagrams are given for the associated pathways, such as cortico-cortical connections,

cerebellar peduncles, etc.

Fig. 25 illustrates how a single Purkinje cell forms a repeating module in the

cerebellum. The lattice structure comes from the knowledge of the connectivity in-



41

Fig. 25. Repeat module of a Purkinje cell seen in NeuroConstruct

formation.

2. Limitations in applying lattice theory to brain networks

Lattice structures are expected to show up only in selected regions of the brain that

have a regular repeating structure (e.g., cerebellum). In the other brain regions, cell

packing patterns might not show up at all. In that case, a lattice description is

not particularly apt. Also, issues like cell migration (e.g., in the developing cerebral

cortex) might wash out prenatal lattice organization. Our solution for this situation

is to define the degree of conformance of a brain region to a lattice structure on a

scale of zero to one (zero being a totally random distribution and one being a perfect



42

lattice structure). Moreover, lattices may not be the only kind of repeating structure

present in a brain region. More complicated repeat patterns can be searched for

using new tools like GraphEdit (suggested by Dr. Amato). However, it needs to

be experimentally determined how these tools compare against the lattice search

methods.

Another limitation to the straight-forward application of lattice theory to brain

networks is that, in many regions the lattice structure is only locally applicable be-

cause the physical boundaries of the brain region is sufficiently curvilinear that only

piecewise adherence to lattice structure can be ascertained. However, Chapter VI

addresses this issue in more detail.

3. Mining lattice structures in brain regions

The Brain Networks Laboratory [26] plans to perform an exhaustive search of the

various regular lattice structures (2D and 3D) in a given brain region to mine out

lattice patterns. The number of available regular lattice models in 2D and 3D is

very limited. As described in section 1, there are only six (fourteen) distinct regular

lattice structures in 2D (3D) respectively. To our knowledge, no basic circuits in the

vertebrate brain having 3D lattice structure have been identified. The conformance

of a brain region to a lattice structure can be estimated by analyzing the equivalent

Voronoi picture of the region (refer to Chapter III). Voronoi representations can be

used to find parameters that characterize regularity.

D. Summary

In this chapter we proposed applying lattice theory to modeling and basic circuit

mining in brain network. Regular lattice patterns are present all around us in the
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physical world: in crystals and in the biological world: in the segmental structures

commonly seen in plants and animal anatomy. So, it is naturally reasonable to expect

such regularity in some regions of the brain, as indeed seen in the cerebellum, retina,

striate cortex, hypocampus, and most recently in the hyporeticulum.
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CHAPTER VI

SOLID MODEL OF THE BRAIN REGION

A. Introduction

Solid model of the brain region dictates the global geometric organization of a given

portion of the brain (e.g., the manifold, the convoluted sheet of tissue underlying the

cerebrum). In mathematics, a manifold is a geometric space that looks locally, but

not globally, like the Euclidean space Rn (e.g., surface of a sphere).

B. Solid modeling of brain regions

Most regions of the brain have complicated and convoluted geometries imposed by

their development. For example, Fig. 26 presents a 3D reconstruction of the human

neo-cortex.

(a) Front view of human cortex (b) Finite-element model for part of the hu-
man neocortical shell

Fig. 26. 3-dimensional reconstruction of the human cortex [26]
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None of the input parameters defined thus far in earlier chapters is capable

of describing the global geometry of brain regions. The lattice models discussed in

Chapter V can at best describe the local structure. Hence, a “solid model of the brain

region” is required as an input parameter to the “Network Stochastic Generator”

(Fig. 1 ) to reproduce the longer-range geometric structure in the brain region. Its

boundary manifold(s), as derived from the solid model of the region, provides the

needed longer-range geometric information.

C. Defining topology using manifolds

Manifolds are of interest in the study of geometry, topology, and analysis. Many

properties of the Euclidian space carry over to manifolds. Manifolds arise naturally

in a variety of mathematical and physical applications as “global objects”. From the

brain perspective, manifolds represent global versus local brain architecture.

D. Summary

In this thesis we do not quantify the manifolds that best describe each of the brain

regions. Such manifolds, represented by piecewise tri-cubic splines, are under con-

struction for the mouse brain in the 3D Mouse Brain Atlas [20]. This chapter serves

as a place holder for future extensions of this thesis and to point out the void that

needs to be filled in for us to be able to build realistic models of the entire brain

regions.
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CHAPTER VII

PROJECTION

A. Introduction

An empirically derived brain network of a mouse or other small animal is at best a

“model” in that it can be constructed only from the superposition of data from mul-

tiple brains and staining technologies. The methodology to project from an observed

brain network (cell distributions, their neuron morphology, and interconnection) to

the topology of a modeler’s network (multi-compartmental models, event-driven spike

processing) is still primitive. For the brain networks we need a theory for Level of De-

tail (LoD), much as exists in computer graphics for objects seen up close to the same

object viewed at a distance. Such a theory exists in part for morphology projection

of brain networks, but it needs to be extended to the electrophysiological domain.

B. Background

1. Projection

In mathematics, a projection p is a linear transformation that remains unchanged if

applied twice: p(u) = p(p(u)) (i.e., it is idempotent). Such transformations project

any point in the vector space to a point in the subspace that is the image of the

transformation. Transforming the point (x, y, z) in three dimensions to (x, y, 0) and

generalizations of this transformation in other dimensions are examples of projec-

tion. Such projections are not reversible since information is lost during the linear

transformation p [39].
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2. Level of Detail (LoD) for 3D graphics

In 1976, Clark first described the benefits of representing objects within a scene at

several resolutions [24]. This concept, commonly known as managing level of detail

(LoD), exploded into existence in the early 1990s with many algorithms, papers, and

software tools were devoted to generating and managing such multi-resolution repre-

sentations of objects automatically. These methods simplify the polygonal geometry

of small, distant, or otherwise unimportant portions of the model, seeking to reduce

the rendering cost without a significant loss in the scene’s visual content [24].

Particularly relevant to brain modelers (among LoD algorithms) are the vertex-

merging schemes operated by collapsing two or more vertices of a triangulated model

together into a single vertex, which in turn can be merged with other vertices. Merging

a triangle’s corners eliminates it, decreasing the total polygon count as shown in Fig.

27(a).

(a) vertex merging

(b) edge collapsing

Fig. 27. Examples of “vertex merging” and “edge collapsing” algorithms
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Edge-collapse algorithms that always merge two vertices sharing an edge, pre-

serve local topology (see Fig. 27(b) ), but algorithms permitting general vertex-merge

operations can modify topology and aggregate objects, enabling drastic simplification

of complex objects and assemblies of objects.

Both vertex merging and edge collapsing algorithms can be applied in the context

of brain networks. The morphology of a neuron can be represented using a tree

representation, which is a special case of a general graph representation for which the

above algorithms are applicable (see Fig. 28).

Fig. 28. Vertex merging and edge collapsing algorithms applied in the context of neu-

ron morphology

C. Projections in brain networks

1. Criteria for good projection in brain networks

Surprisingly little work is available on what constitutes a good projection for a brain

network. The two main criteria that need to be considered when projecting neurons

are 1) geometric and 2) physiological. We need a mathematical framework that en-
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ables us to connect the morphological and electrical structure of the neuron to its

function. Based on insights gained through investigation of detailed neuron models

(for example, from LM reconstructions at the BNL), we can attempt to devise meth-

ods to systematically reduce the complexity of the neuron model while preserving its

essential input/output properties (branches, synapses and channels). For example,

the projection from XwebDB to YwebDB (refer Fig. 4 ) depends on the definition

of Y; i.e, the level of detail required in Y and also whether morphology, physiology

or both is important. These reduced, yet biologically realistic, neuron models then

serve as the basic unit for models of large networks of neurons. Such projections are

required to search for regular lattice patterns. Generally, it is not computationally

feasible to perform such searches on a full-blown model.

2. Compartmental models

NeuronDB provides a general framework for defining the physiology and morphology

(to a very limited extent) of different neuron types using the canonical forms shown

in Fig. 29 .

Fig. 29(a) is a cell with no axon or basal dendrites. Fig. 29(b) is a cell with single

dendrite or multi-polar cell and Fig. 29(c) is a cell with apical and basal dendrites.

The abbreviations for the canonical parts of a neuron are: D, dendrite; S, soma (cell

body); AH, axon hillock (initial segment of the axon); A, axon; and T, axon terminal.

The simplest case is a single dendrite, represented as an equivalent cylinder consisting

of a chain of three compartments designated as (p) proximal, (m) middle, and (d)

distal with respect to the cell body.

There are some existing tools that project detailed structures into simplified

compartmental models. Fig. 30(a) shows a detailed multi-compartmental model of

a cerebellar purkinje cell, created with GENESIS by De Schutter et al. [4]. Visual-
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Fig. 29. Canonical forms as described in NeuronDB [32].

ization is by Leigh using the GENESIS visualizer program. The experimental data

describing the cell morphology was provided by Rapp et al. [4]. Fig. 30(b) represents

a much simpler representation of a purkinje cell that looks like a pitchfork with fewer

compartments (generated using NeuroConstruct).

Fig. 31 is a NeuroConstruct visualization of a network for cells in the cerebellum.

The choice for projection of a cell type is not purely a function of the cell type but

also of its synaptic assembly with other neurons in the basic circuit. For example,

in Fig. 31 the cerebellum module uses a pitchfork projection of the purkinje cells to

accommodate a representative number of bipolar cells.
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(a) Complex Purkinje [4] (b) NeuroConstruct
projection of Purkinje

Fig. 30. Complex and simplified Purkinje cell representations

3. LoD in brain networks

In Fig. 32 , the anatomical model of an individual neuron (Fig. 32(a) ) is projected

onto its stick figure representation (Fig. 32(b) ), and wired into a network of other neu-

rons (Fig. 32(c) ) through the projection of the inter-neuronal connections (synapses).

D. Summary

Level of Detail (LoD), in computer graphics has broad applications and is a well

researched area. However, the concept has not been systematically applied in the

context of brain network modeling. In this chapter, we propose some ideas in this

direction. Some of the existing LoD algorithms can be extended so they can be used

for neuron morphology and physiology projection. Such algorithm development would
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Fig. 31. NeuroConstruct visualization of the cerebellum [15]

constitute an important future extension to this thesis.
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(a) Anatomical model
[12]
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(b) Compartmental
model. Adapted from
[32]

(c) Neuronal network. Adapted from [37]

Fig. 32. LoD in brain networks
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CHAPTER VIII

IMPLEMENTATION

A. Introduction

In this chapter, we discuss the implementation details of our Circuits module in

NeuGen [12], illustrate how one can build small networks of simplified neurons using

NeuroConstruct [15], and how detailed morphologies described in other tools can be

imported into NeuroConstruct.

B. Circuits in NeuGen

We extended NeuGen to support basic circuits. To this end, we made some design

changes and modified the NeuGen software. The following subsections cover these

design changes and modifications.

1. Extension to Neuron class

We extended the Neuron class in NeuGen to support new neuron types that occur

in basic circuits. For example, NeuGen currently supports four types of neurons

namely L4 spiny stellate neurons, L2/3 pyramidal cells, L5 pyramidal cells, and L4

star pyramidal cells. We added support for a new neuron type, the “smooth neuron”,

which is a representative of the chandlier, basket, and other inhibitory cell types

present in the cortex.

Fig. 33 illustrates the current neuron class hierarchy in NeuGen. The cell types:

Spiny Neuron, Starpyramidal Neuron and Smooth Neuron inherit directly from the

neuron class. L23pyramidal and L5pyramidal Neuron types inherit form the Pyra-

midal Neuron class which in turn inherits from the Neuron class. We currently use
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Neuron

L4stellateNeuron PyramidalNeuron SmoothNeuron StarpyramidalNeuron

L23PyramidalNeuron L5PyramidalNeuron

Fig. 33. Neuron class hierarchy in NeuGen [12]

dummy parameters for the Smooth Neuron. But, one needs to make changes only to

the param.neu file to model this neuron type better.

2. Definition of Circuit class

We implemented a new Circuit class in NeuGen to support basic circuits. The circuit

class is at a hierarchial level between the Net class and the Neuron class. Fig. 34

represents the class design of the Circuit class. The Circuit class contains a list

of neurons, connections (synapses), and is defined by a set of parameters known as

CircuitParams. Section 4 describes the circuit parameters in detail.

Circuit

valarray< Neuron * >

neuron_list

list< Cons >

synapse_list

const int

d

int

nsynapse

Frand

draw_number

CircuitParams

parameter

instance

CSPContainer

synapselist

auto_ptr< std::vector< std::string > >

keys

CNPContainer

keys

auto_ptr< CircuitParams >

ap_instanceneuronlist

Fig. 34. Circuit class implementation in NeuGen



56

We modified the existing Net class such that it now has a list of Basic Circuits

and a list of Neurons. The Basic Circuit in turn consists of a list of its constituent

Neurons. The new Net class hierarchy is illustrated in Fig. 35 .

Cpart.hpp

Axon.hpp

Neuron.hpp

Cellipsoid.hpp

Dendrite.hpp

Circuit.hpp

Net.hpp

Spneuron.hpp

Spine.hpp

Fig. 35. The new Net class hierarchy in NeuGen. The Circuit class has been added

at a hierarchial level between the Net class and the Neuron class

Fig. 35 shows the dependencies between the header files to illustrate the new

network class hierarchy in NeuGen. Spneuron.hpp file contains definitions of special-

ized neurons types like those described in Section 1. The file Cellipsoid.hpp contains

definition of the soma and the file Cpart.hpp contains definition of the segments. The

files Dendrite.hpp, Axon.hpp, and Spine.hpp contain definitions of the dendrites, the

axons, and the spines respectively.
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3. Definition of CircuitParams class

We defined new classes to represent the circuit parameters. Fig. 36 shows the class

hierarchy of CircuitParams class which contains the list of synapses in the CSP-

Container class and the list of neurons in the CNPContainer class. The neuron

parameters are defined by the CircSomaParam class and the synapse parameters are

defined by the CircSynapticParam class. Fig. 37 illustrates the details of these classes.

CircuitParams instance

CSPContainer

synapselist

auto_ptr< std::vector< std::string > >

keys

CNPContainer

keys

auto_ptr< CircuitParams >

ap_instanceneuronlist

Fig. 36. CircuitParams class hierarchy
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CircSomaParam

Parameter< float >

x
y
z

ConfigParser

parserParameter< T >

parser

string

last_miss

const char *

path

vector< std::pair< std::string, std::string > >

result

float

value

bool

valid

valid

< float >

T

value

(a) Neuron parameters

CircSynapticParam

Parameter< int >

level1
level2
part1
part2

neuron1
neuron2

ConfigParser

parserParameter< T >

parser

string

last_miss

const char *

path

vector< std::pair< std::string, std::string > >

result

int

value

bool

valid

valid

< int >

T

value

(b) Synapse parameters

Fig. 37. CircSomaParam and CircSynapseParam classes in NeuGen

The CircSomaParam class needs the (x,y,z) coordinates of the cell’s soma while

the CircSynapticParam class needs the neuron ID, part, and level parameters of the

two neurons involved in the synapse. A detailed description of these input parameters
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is given in Section 4, which explains the specifics of the input parameters.

4. Definition of Circuit.neu configuration file

We defined a new configuration file called “circuits.neu” to specify the circuit param-

eters. An example “circuits.neu” file is shown in Table III.

Table III. Configuration file for a simple circuit in NeuGen

Circuit
neuronlist

neuron1
id 0
type starpyramidal
soma0

x 500
y 300
z 500

neuron2
id 1
type smooth
soma0

x 650
y 300
z 700

synapselist
synapse1

id 0
type 0
strength 5.0
synaptic_param

neuron1 1
part1 2 # parts 0-> Soma, 1->Dendrite and 2-> Axon
level1 0 # Level 0-> proximal, 1-> middle, and 2-> distal
neuron2 0
part2 1
level2 0

synapse2
id 1
type 1
strength 7.0
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synaptic_param
neuron1 1
part1 2
level1 2
neuron2 0
part2 2
level2 1

In Table III, the neuronlist entry lists all the neurons present in the circuit,

their identification numbers, and their soma locations. We specify the soma locations

based on heuristics or intuition. The neuron’s dendritic and axonal arbors grow

from that location. When two neurons need to be connected, we grow a synapse

“vector” between them. Even though, it violates “proximity labeling”, this is the

only solution to connect two neurons which are placed spatially afar. The synapselist

entry specifies the synapse vectors between the neurons from the neuronlist. Each

synapse has an identification number, type (inhibitory or excitatory), strength, and

synaptic parameters (synaptic param).

The synaptic param field specifies the source segment and the destination seg-

ment of the synapse. The source or destination segment is identified by three hierar-

chial parameters, namely: 1) neuronID, 2) part within a neuron, and 3) level within

a part of the neuron. A neuron is identified by the identification number from the

neuronlist. The part of a neuron is identified by a number. Part number “0” indi-

cates that the part is a soma, the number “1” indicates a dendrite, and number “2”

indicates an axon.

Similarly, the level within a part is identified by a number. Level number “0”

represents the proximal (to the soma) segments of the part. Levels “1” and “2”

represent the middle and distal parts respectively. In our implementation, we selected

the first segment in a level as the representative segment of that level. Each part in the
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neuron is divided into different levels each containing an equal number of segments.

We currently implemented the following types of synapses in the code: axo-dendritic,

axo-axonic, axo-somatic and dendro-dendritic. Other types of synapses, if found in

the literature, can be easily added into the new class definition at a later point in

time. Also, to make a connection between two distant neurons, code can be added to

move the neurons closer or extend the axonic arbor to make a connection.

5. Definition of CircuitParser class

We added the CircuitParser class (which inherits from the Configparser class) to read

and parse the circuits.neu configuration file described in Section 4 .

ConfigParser

CircuitParser InternaParser OutConfParser ParamParser

Fig. 38. Configuration parser classes in NeuGen

Each parser shown in Fig. 38 feeds into the ConfigParser class. The Inter-

naParser class reads in from Interna.neu, which is a configuration file for expert

users. OutConfParser class reads from the OutputOptions.neu file, which contains

output options for the NeuGen software. The ParamParser class reads in from the

Param.neu file, which contains the proximity labeling, neuron population, and neuron

morphology description parameters.

6. Modification to OpenDX visualization output

We modified the writetoDX function in the Net class to handle visualization for

circuits. Fig. 39 shows an example basic circuit containing two neurons and two



62

synapses between them. The figure is a visualization generated using OpenDX[35]

from the configuration file described in Section 4. The neuron on the right is neuron0

and the one on the left is neuron1. There is an axo-dendritic synapse between the

axon of neuron1 (level0 ) to the dendrite of neuron0 (level0 ). The second synapse

is of axo-axonic type between the axon of neuron1 (level2 ) to the axon of neuron0

(level1 ).

Fig. 39. A simple basic circuit in NeuGen which has one axo-axonic and one axo-den-

dritic synapse

7. Modification to NEURON simulation output

We modified the writetoHocfile function in the Net class to handle NEURON simu-

lations for circuits. Fig. 40 shows the visualization of the simulation generated from

the configuration file described in Section 4. NEURON simulation output (.hoc files)

generated by NeuGen contains default electrophysiological parameters. These param-
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eters can be adjusted through the NEURON GUI for running the actual simulations.

Fig. 40. A simple basic circuit generated by NeuGen, visualized in the NEURON sim-

ulator (the synapses are not explicitly shown)

8. Network of basic circuits

The architecture of the Net class, after including the circuits, looks like the description

in Fig. 41.
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Net

valarray< Neuron * >

neuron_list

list< Cons >

synapse_list

valarray< Circuit * >

circuit_list

const int

d

Frand

draw_number
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nsynapse
npyramidal

nnf_synapses
ncircuit
nneuron

nL5pyramidal
nL4stellate
nsmooth

nstarpyramidal
nL23pyramidal

NetParams

parameter

instance

(a) Net class parameters

Net.hpp

iostream

Fork.hpp

Neuron.hpp

valarray

Config.hpp

Randint.hpp

Parameter.hpp

list

string

fstream

cmath

Spneuron.hppCircuit.hpp

memory

CircuitParams.hpp

(b) Net class

Fig. 41. The new Net class dependency chart in NeuGen

The broader problem now is, how does one grow the entire network from the basic

circuits? The simple strategy of stochastically placing these circuit templates and

connecting them is obviously flawed because many other factors need to be considered

to build a realistic model. The lattice theory (Chapter V) and solid model (Chapter

VI) concepts need to be used here to get a realistic growth model. This part is a

possible future extension of this thesis. The framework we proposed in this thesis

for building lattice models of the brain (see Fig. 1) , lays down the guidelines for the

extensions.
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C. Circuits in NeuroConstruct

NeuroConstruct[15] is a useful tool for building 3D network models. This section

illustrates: 1) how one can build small networks of simplified neurons using Neuro-

Construct and 2) how detailed morphologies described in other tools can be imported

into NeuroConstruct.

1. Sample circuits

We built some circuit models to explore NeuroConstruct’s ability to model neuronal

circuits. Fig. 42 represents the morphological network model of two regions of the

brain: the neocortex and the retina. For the neocortex (shown in Fig. 42(a)), the

defining basic circuit was taken from Fig. 12.15 of [37] and for the retina (shown in

Fig. 42(b)), the defining basic circuit was taken from Fig. 1.13a of [37]. The figures

also illustrate NeuroConstruct’s 3D Java visualization capabilities.
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(a) Cortex (b) Retina

Fig. 42. Network representations of two brain regions: cortex and retina, implemented

and visualized in NeuroConstruct

2. Models imported from NeuGen

The morphology information generated in NeuGen can be imported into NeuroCon-

struct via the NEURON output generated by NeuGen. The example in Fig. 43 shows

one such cell imported into and visualized in NeuroConstruct. The morphology was

first generated by NeuGen and then imported through the NeuronMorpholgyReader

which reads NEURON’s .hoc files into NeuroConstruct.



67

Fig. 43. Cell morphology visualization in NeuroConstruct of a cell generated in Neu-

Gen

D. Summary

NeuGen, in its current form, can only build a network of individual neurons. We have

extended the tool to handle basic circuits. Extending the tool further to support a

network built by the “wiring up” of these basic circuits is still under development.

NeuroConstruct is another useful tool for building small networks of simplified neu-

rons. But the tool, in its current beta form, doesn’t scale well for morphologically

accurate neurons or for large networks. The framework that we discussed in this

thesis for building biologically accurate brain networks can help in extending both

NeuGen and NeuroConstruct to overcome their limitations.
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CHAPTER IX

CONCLUSIONS AND FUTURE WORK

The major contribution of this thesis has been to place on a more rigorous basis the

concept of basic circuit, as the fundamental replicating modules of mammalian brain

microstructure. The search for basic circuits (basic circuit mining) has been trans-

formed into the identification of the 1) cell types, 2) cell packing, 3) connection map,

4) lattice/group, and 5) solid model defining the replicated microstructure of a brain

region. Methodologies for identifying each of the above five constituent parameter

groups defining the brain network in a given mammalian brain region have been elu-

cidated. This chapter concludes by briefly pulling together the suggestions for future

work made throughout the thesis.

1. No current tool fully supports a brain network by the “stochastic wiring up”

of basic circuits. For example, NeuGen in its current form, can only build

a network of individual neurons. We have extended the tool to handle basic

circuits. Extending the tool further is still under development.

2. We must accurately characterize the spatial distribution of the various types

of neurons in order to build realistic models of the brain. Commonly used

distributions (e.g., uniform, random) are limited in their ability to capture

the spatial distribution in sufficient detail. Hence, we propose that Voronoi

diagrams be used to quantitatively classify cell packing patterns for modeling

the brain networks.

3. None of the existing brain modeling tools provide an accurate way of wiring

up the network. The limitation of NeuGen [12] is that it did not scale well

since it used an O(n2) algorithm (recent modifications have reportedly improved
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the performance to O(n log(n))). NeuroConstruct [15] provides no means for

automatic generation of putative synapses. Hence, algorithms like those by Lien

et al. [23] and Kalisman et al. [19] need to be integrated into the existing tools

to make these tools more useful for realistic modeling.

4. Regular lattice patterns are present all around us in the physical world (e.g.,

crystals) and biological world (e.g., plants, segmental architecture of verte-

brates). So, it is only natural to expect such regularity in the brain. A lat-

tice/group can determine how a repeating microstructure in the brain is locally

assembled into a cortical area or brain region. If only selected regions in the

brain exhibit lattice structure, this finding can go a long way in the simplifica-

tion of that region’s computational model.

5. Most regions of the brain have complicated and convoluted geometries imposed

by their neurodevelopment. While lattice models can describe the local struc-

ture efficiently, a Solid model of the brain region (e.g., the manifold, the con-

voluted sheet underlying the cerebrum) is needed to reproduce the more global

geometric structure in the brain region.

6. A theory for Level of Detail (LoD), much as exists in computer graphics, is

badly needed for projection in brain networks. Such a theory exists in part

for morphology projection of brain networks, but needs to be extended to the

electrophysiological domain. Some of the existing LoD algorithms in graphics

can be extended so they can be used for neuron morphology and physiology

projection. Such algorithm development would constitute a major extension to

this thesis.
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Paraphrasing Cajal again [36], to grasp the architectural plan of the brain, we need to

first generate a clear and accurate view of the structure of the relevant brain centers.

We hope that the ideas discussed in this thesis contribute towards that grand vision.
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