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ABSTRACT

Lattice Boltzmann Equation Simulations of Turbulence, Mixing, and Combustion.

(December 2004)

Huidan Yu, B.S., Zhejiang Normal University, P. R. China;

Ph.D., Peking University, P. R. China

Chair of Advisory Committee: Dr. Sharath S. Girimaji

We explore the capability of lattice Boltzmann equation (LBE) method for com-

plex fluid flows involving turbulence, mixing, and reaction.

In the first study, LBE schemes for binary scalar mixing and multi-component

reacting flow with reactions are developed. Simulations of initially non-premixed

mixtures yield scalar probability distribution functions that are in good agreement

with numerical data obtained from Navier-Stokes (NS) equation based computation.

One-dimensional chemically-reacting flow simulation of a premixed mixture yields a

flame speed that is consistent with experimentally determined value.

The second study involves direct numerical simulation (DNS) and large-eddy

simulation (LES) of decaying homogenous isotropic turbulence (HIT) with and with-

out frame rotation. Three categories of simulations are performed: (i) LBE-DNS in

both inertial and rotating frames; (ii) LBE-LES in inertial frame; (iii) Comparison

of the LBE-LES vs. NS-LES. The LBE-DNS results of the decay exponents for ki-

netic energy k and dissipation rate ε, and the low wave-number scaling of the energy

spectrum agree well with established classical results. The LBE-DNS also captures

rotating turbulence physics. The LBE-LES accurately captures low-wave number

scaling, energy decay and large scale structures. The comparisons indicate that the
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LBE-LES simulations preserve flow structures somewhat more accurately than the

NS-LES counterpart.

In the third study, we numerically investigate the near-field mixing features in low

aspect-ratio (AR) rectangular turbulent jets (RTJ) using the LBE method. We use

D3Q19 multiple-relaxation-time (MRT) LBE incorporating a subgrid Smagorinsky

model for LES. Simulations of four jets which characterized by AR, exit velocity,

and Reynolds number are performed. The investigated near-field behaviors include:

(1) Decay of mean streamwise velocity (MSV) and inverse MSV; (2) Spanwise and

lateral profiles of MSV; (3) Half-velocity width development and MSV contours; and

(4) Streamwise turbulence intensity distribution and spanwise profiles of streamwise

turbulence intensity. The computations are compared against experimental data and

the agreement is good. We capture both unique features of RTJ: the saddle-back

spanwise profile of MSV and axis-switching of long axis from spanwise to lateral

direction.

Overall, this work serves to establish the feasibility of the LBE method as a

viable tool for computing mixing, combustion, and turbulence.
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CHAPTER I

INTRODUCTION

Due to its fascinating complexity and ubiquitous presence in a variety of flows in

nature and engineering, turbulence has attracted a great deal of attention over the last

several decades. Examples include air-fuel mixing in engines of automobiles, aircrafts,

and ships; the transport and dispersion of heat and pollutants in the atmosphere

and the oceans. Turbulence also can cause undesirable consequences. For instance,

it enhances energy consumption in pumping fluid through pipe lines, aircraft and

ships, and automobiles; it distorts the propagation of electromagnetic signals; and so

forth. A major goal of turbulence study is to predict the effects of turbulence and

control them, suppress or enhance them depending on the circumstances, in various

applications. Although turbulence is observed everywhere, it is hard to give a precise

definition. As a matter of fact, turbulence is defined by its characteristics. Some of

the important characteristics of turbulence are given as follows [1]:

• Irregularity or randomness: Turbulent motion appears chaotic. Turbulent flows

become irregular even when initial and boundary conditions are very regular.

• Diffusivity: Turbulent flow enhances momentum, mass, and heat transfer and

expedites mixing.

• High Reynolds number (Re): Turbulent flow occurs due to high inertia forces

and relatively small viscous forces.

• Three dimensional vorticity fluctuations: Turbulent flows are characterized by

high levels of vorticity and vortex stretching which is necessarily a 3D phe-

This dissertation follows the style and format of Computers & Fluids.
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nomenon.

• Dissipation: Turbulence cannot sustain by itself. It needs continuous supply of

energy.

• Continuum: Turbulence is not on molecular level but macroscopic level and the

flow is governed by equations of fluid mechanics. In this study, we demonstrate

that mesoscale description of turbulence is also very effective.

• Turbulent flows are flows: Turbulence is not a feature of the fluid but a fluid

flow.

Because of these characteristics, turbulence has been regarded as a very challenging

research subject. In fact, turbulence research has continuously expanded the horizons

of modern fluid dynamics, mathematical theories, nonlinear physics, computation

potentiality, fluid mechanical measurement techniques, and the like.

In any case, at sufficiently high Reynolds numbers, large-scale fluctuations pro-

duce finer and finer scales due to the nonlinear energy cascade process. Generally, in

a developed turbulence the scale range of motion is of order Re9/4 [2]. There are many

interesting turbulent flows at Re ∼ 104 − 105. In fact, most laboratory turbulence

experiments fall within this range [3]. Hence, a typical turbulence contains order of

109−1010 scales of motion. Obviously, in such instances, it is practical to use statistic

methods to describe turbulence and predict its consequences. A crucial challenge of

turbulence study is the development of efficient computational tools.

A. Numerical computational tools to turbulence

Mathematically, the complex behavior of turbulence can be described with a fairly

simple set of equations called Navier-Stokes (NS) equations. However, analytical
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solutions of these equations are not easy to find even for the simplest turbulent flows

since they are strongly influenced by boundary and initial conditions. Conventionally,

a complete flow solution is a function of space and time and can only be obtained by

numerically solving the NS equations. These numerical solutions are termed as direct

numerical simulation (DNS) of the NS equations .

DNS (NS) resolves all the scales of the considered flow motion with given initial

and boundary conditions. This entails solving the NS equations exactly without any

modelling (see [4] for a review). As mentioned above, turbulence contains a very wide

spectrum of scales: a typical turbulence in engineering applications with Re = 105

contains 1010 scales of motion. With increase of the Reynolds number, the size ratio

of the largest to the smallest scales increases. The DNS approach was not feasible

until the 1970s when computers of sufficient power became available. Conceptually,

DNS is the most desirable approach because of its unrivalled simplicity and accuracy.

However, its computational cost of both memory and speed requirements which are

largely determined by the resolution requirements is extremely high [2]. For instance,

a DNS of a flow past a complete airfoil would require a computer with exaflop (1018

flopsa) [5] capacity to be practical, which is still not currently available. The instan-

taneous range of scales in turbulent flows increases rapidly with the Reynolds number

and hence most practical engineering problems (e.g. flow around a car) have too wide

a range scale to be directly computed using DNS. As a result, the applicability of the

DNS approach is limited to flows of low or moderate Reynolds numbers.

For most high Reynolds number applications, approximate solutions like large-

eddy simulation (LES) (see [6, 7] for reviews), Reynolds averaged Navier-Stokes (RANS)

approaches (see [8] for a review) are more prevalent. LES only resolves those larger

aShort of floating-point operations per second, a common benchmark measurement
for rating the speed of microprocessors
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three-dimensional unsteady turbulent motions and the effects of the smaller-scale mo-

tions are filtered through modelling. While, in RANS, all the scales of motion are

averaged such that only a mean velocity field and Reynolds stresses need to be solved.

The Reynolds stresses introduced by the averaging process are determined by a tur-

bulent closure model. In terms of computational expense, LES lies between RANS

and DNS, and it is motivated by the limitations of each of these approaches. In other

words, DNS can be thought of as the most desirable solution to a turbulent flow prob-

lem which is computationally most intensive, followed by LES which is less intensive

and than RANS which is the least intensive (and also the crudest approximation).

B. Discrete (digital) fluid dynamics vs. continuum fluid dynamics

Conventionally, continuum fluid computation consists of three steps. The starting

point is a set of nonlinear partial differential equations (PDEs), e.g. NS equations,

which are obtained from physical laws such as mass conservation, momentum con-

servation and energy conservation. Then, these PDEs are discretized by various

numerical schemes such as finite differences [9, 10], finite volume [11], finite elements

[12, 13], or spectral methods [14, 15]. Finally, the resulting algebraic equations or

systems of ordinary differential equations (ODEs) are solved by standard numerical

methods. This process is usually referred to as computational fluid dynamics (CFD).

Although it seems straightforward and convenient to use the NS equations to

most fluid problems, unfortunately, solving these equations can be very difficult or

even impossible under some circumstances. An example is inhomogeneous multi-

phase or multi-component flows. In these flows, interfaces between different compo-

nents or phases are dominated by thermodynamics effects due to molecular interac-

tions. It is generally very hard to get a state equation at an interface although this
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equation is required in order to solve the NS equations. Another instance is granular

flow. It is even not clear whether or not there exists a set of PDEs analogous to

the NS equations for a granular system. Apparently, continuum CFD approaches are

not practical in these cases. Meanwhile, discretization from PDEs to ODEs not only

introduces truncation error but also might destroy important conservation properties.

Furthermore, numerical instability is always an important issue that requires careful

consideration [16–18] in CFD approaches.

With the development of computational techniques, it is possible to formulate

simple models for complex systems. The underlying idea of discrete or digital fluid

dynamics (DFD) is the fact that fluid hydrodynamics is not sensitive to the under-

lying details in microscopic physics [19]. As a matter of fact, fluid hydrodynamics is

the result of the collective behavior of numerous molecules in the system and the NS

equations are merely macroscopic statements of conservation laws and constitutive

relations. These conservation laws are the same as those in microscopic dynamics

while the constitutive relations reflect the irreversible nature of the transport coef-

ficients. Changes in molecular interactions can only affect the transport coefficients

but do not alter the form of the macroscopic equations. As a result, it is possible to

simulate the hydrodynamical behavior of fluids without accurately reproducing the

details of the underlying microscopic or mesoscopic dynamics.

The computational philosophy of DFD approaches, lattice-gas automata (LGA)

[20–22] or lattice Boltzmann equation (LBE) [23–25], is vastly different from contin-

uum CFD approaches. Instead of macroscopic dynamic equations, DFD starts from

a discrete mesoscopic equation, e.g. lattice Boltzmann equation. DFD is constructed

from physics laws (mass, momentum, and energy conservation laws) plus necessary

symmetry requirements [20]. It deals with the evolution of particle distribution func-

tions. Interested macroscopic quantities such as density, momentum, and temperature
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are computed from the moments of the distribution functions. DFD approaches are

unconditionally stable (LGA) or show good stability properties (LBE). Meanwhile,

these models only deal with simple arithmetic calculations so that no numerical error

( as in LGA) or reduced numerical error (as in LBE) is introduced. The main source

of error is the modelling error which is minimized by enforcing consistency conditions.

The important features that distinguish to DFD approaches from continuum

CFD approaches are the following:

1. The viscous diffusion counterpart is a local relaxation process (collision opera-

tor) towards a local equilibrium state.

2. The linear convection operator recovers the nonlinear macroscopic advection

through multi-scale expansions.

3. For incompressible flows, the particle distribution function is the only unknown

variable to be determined. The pressure is calculated simply by a state equation.

4. Computation is purely local. The evolution of distribution functions depends

only on their neighboring counterparts. Hence, the potential for parallelization

is excellent.

The incompressible NS equations can be recovered in the nearly incompressible limit

using Chapmann-Enskog technique [26]. There macroscopic quantities can be com-

puted from the mesoscopic distribution functions via simple integration.

For applications to complex fluid systems such as turbulence, DFD is potentially

a better hydrodynamic platform than CFD. The advantages lay both in improved

physical accuracy and better computational characteristics. The main advantages of

DFD are listed as follows:

1. LBE consists of simple arithmetic calculations, hence it is easy to program;
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2. LBE is better suited for large-scale, especially, parallel computing;

3. LBE is ideally suited for handling multi-phase flow with phase transition and

multi-species mixtures where diffusivity is important. CFD solvers can be com-

putationally too expensive for these flows;

4. LBE can handle complex geometry with relative ease. Even computations with

moving boundaries can be handled without loss of computational speed.

Over the last decade, LBE has experienced significant development and is cur-

rently a promising computational method with potential capability for simulating

fluid flows with various physical features ([27–29] and references therein).

C. The objective of the dissertation

The objective of this dissertation is to apply DFD, i.e. LBE models, to compute

turbulence, mixing and reaction. Our ultimate goal is to develop the LBE method as

a reliable computational tool for turbulence and combustion simulations.

The focus areas of this dissertation are:

1. Scalar mixing, especially between species of different molecular weights.

2. Laminar reacting flow.

3. DNS and LES of decaying homogenous isotropic turbulence with and without

frame rotation.

4. LES of turbulent flow issuing from low aspect-ratio rectangular jets at suffi-

ciently high Reynolds numbers.
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CHAPTER II

LATTICE BOLTZMANN METHOD

In this chapter, we first briefly introduce the kinetic theory. Specifically, we describe

the fundamental ideas underlying the Boltzmann description of a fluid system: binary

collision, the Boltzmann’s H-theorem, the equilibrium distribution function, and the

moments of the Boltzmann equation. Then, we introduce the lattice Boltzmann equa-

tion (LBE) models including single-relaxation-time (SRT) LBE model and multiple-

relaxation-time (MRT) LBE model respectively. Finally, we present the numerical

procedures for implementing SRT-LBE and MRT-LBE in implementation.

A. Introduction

It has been well established that a fluid can be described at three levels [20] . (i)

Molecular Dynamics: It is based on Newtonian mechanics and deals with molecular

positions and velocities. The system normally contains order of Avogadro’s number

of molecules. Molecular dynamics description involves tracking the trajectories which

evolve according to Newton-Hamilton equation; (ii) Kinetic Theory: It is based on

equilibrium and non-equilibrium statistical thermodynamics and deals with parti-

cle (mass) distribution functions, namely the density probability of finding a classical

point-like particle (mass) at position �x at time t with particle velocity �ξ. The classical

kinetic equation is the celebrated Boltzmann equation; and (iii) Hydrodynamics: It is

based on macroscopic physical conservation laws and deals with the continuum fluid

behaviors through hydrodynamic variables such as density (ρ), velocity (�u), pressure

(p), temperature (T ), etc. The continuum variables result from the collective average

over a large number of individual trajectories. This is the macroscopic level at which

the fluid system is governed by continuity equation, Navier-Stoke (NS) equations, en-
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ergy equation, etc. Kinetic theory plays as a bridge to relate the molecular properties

to the transport coefficients in the continuum hydrodynamic level.

The Knudsen number, defined as Kn = λ/L, is a convenient measure for cate-

gorizing the flow regimes, see Fig. 1. Here, L is the characteristic dimension of the

macroscopic flow and λ is the mean free path of the molecules. Continuum models

based on NS equations and Euler equations are generally valid when Kn < 0.01, but

can be extended into the slip-flow regime (0.01 < Kn < 0.1) by appropriate treat-

ment of the wall boundary. While discrete particle model based on the Boltzmann

equation governs almost all the flow regimes (Kn < 100). Without question, numer-

ical approaches based on Boltzmann equation will be more fundamental and suitable

for a wider range of practical applications.

Discrete particle model

Continuum model

Knudsen number
Kn

Flow regime  

   

 

 

 

0 0.01 0.1 10 100

Boltzmann equation

Navier-StokesEuler Conservation equations do not form a closed set

continuum flow

(ordinary density)
slip-flow

(slightly rarefied)
transition

(moderately rarefied)

free-molecule flow
(highly rarefied)

Fig. 1. Flow regimes in terms of Knudsen number and governing equations. Adapted from

Anderson [30].

The remainder of this chapter is organized as follows: kinetic theory is briefly

reviewed in Section B; Section C and D describe two lattice Boltzamm models, SRT-

LBE and MRT-LBE, respectively; and Section E presents the numerical implemen-

tation of LBE models.
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B. Background: Kinetic theory

On a macroscopic level, fluid is regarded as continuous and described with partial

differential equations (PDEs) of hydrodynamics, e.g. NS equations. Nevertheless, at

a microscopic level, it has been long known that fluid is indeed made of individual

molecules and is amenable to be described by kinetic theory.

Kinetic theory is based on the following fundamental assumptions:

• The number of molecules is very large. Mean free-path of molecules is much

larger than molecule size.

• Molecules move constantly and randomly with a distribution of velocities.

• Molecules undergo elastic collisions with other molecules and the walls, but

otherwise exert no forces on each other.

• Molecules obey Newton’s laws of motion.

Although the individual molecular motion obeys Newtonian mechanics, directly

solving the fluid system is extremely difficult because of the large number of degrees

of freedom which is in the order of the Avogadro’s number (1023). Fortunately such

an approach is unnecessary. What one is really concerned with in most practical

applications is the gross or bulk behaviors of the fluid which are represented by certain

observable quantities such as density (ρ), velocity (�u), pressure (p), temperature (T ),

and so on. These macroscopic quantities are manifestations of the molecular motions

averaged in space or time. In fact, the primary task of kinetic theory is to construct

the relation between macroscopic quantities and molecular characteristics and explain

macroscopic behaviors in terms of microscopic characteristics. Therefore, a statistical

description of the system becomes imperative.
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1. Boltzmann equation

Let xi (or �x) be Cartesian coordinates of a physical space, and ξi (or �ξ) the molecular

velocity. The crucial task of kinetic theory is the determination of the mass density

distribution function f(�x, �ξ, t) which represents the density weighted probability of

finding a particle at position �x at time t with particle velocity �ξ. Once the distribution

function is known, the macroscopic variables, i.e. the density ρ(�x, t), the momentum

density �u(�x, t), and the internal energy density e(�x, t), the stress tensor σ(�x, t), and

the heat flux vector �q(�x, t), are obtained by the following five moments of the mass

density distribution function f(�x, �ξ, t)

ρ(�x, t) =

∫
f(�x, �ξ, t)d�ξ, (2.1a)

ρ�u(�x, t) =

∫
�ξf(�x, �ξ, t)d�ξ, (2.1b)

ρe(�x, t) =
1

2

∫
�ξ2
0f(�x, �ξ, t)d�ξ, (2.1c)

σ(�x, t) = −
∫

�ξ0
�ξ0f(�x, �ξ, t)d�ξ, (2.1d)

�q(�x, t) =
1

2

∫
�ξ0(�ξ0 · �ξ0)f(�x, �ξ, t)d�ξ, (2.1e)

where �ξ0 = �ξ − �u, the so-called peculiar velocity, is the particle velocity with respect

to the macroscopic fluid flow velocity. It is important to note that �ξ0
�ξ0 �= �ξ0 · �ξ0. In

deed, �ξ0
�ξ0 represents a second order tensor.

The principle of equipartition of energy gives the relation between temperature

T and the energy density e as

e =
D0

2
RT =

D0

2m
kBT (2.2)

where D0 is the degree of freedom of individual molecules and m is the mass of

a single molecule. R is the ideal gas constant and kB is the Boltzmann constant.
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For monoatomic (single atom) molecules, D0 = 3 since only translational degree of

freedom is present. In what follows, we shall only consider monoatomic molecules.

The basic governing equation of kinetic theory is the evolution equation for the

distribution function f(�x, �ξ, t) in the presence of molecular collisions. This is the

celebrated Boltzmann equation

∂f

∂t
+ ξi

∂f

∂xi

= J(f) (2.3)

where J(f), a collision operator, models the rate of change of the distribution function

f due to molecular collisions. We shall discuss the details of this operator shortly. If

the collision is to conserve mass, momentum and energy, it is required that

∫
d�ξJ(f)

⎡⎢⎢⎢⎢⎣
1

�ξ

ξ2

⎤⎥⎥⎥⎥⎦ = 0 (2.4)

2. Collision term and its property

Any solution of the Boltzmann equation (2.3) requires an expression of the collision

operator J(f). First, the following assumptions are invoked [31]

1. Only binary collisions between the constituent molecules are considered;

2. Collisions are local in the physical space;

3. The interaction of particles is of sufficiently short range.

Second, the medium is taken to be at the Boltzmann gas limit [31]

N −→ ∞ (2.5a)

m −→ 0 (2.5b)

ϑ −→ 0 (2.5c)
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Nσ2 = constant (2.5d)

Nm = constant (2.5e)

where N , m, and ϑ are the total number of constituent molecules, the molecular

weight, and a parameter which characterizes the range of the inter-particle forces.

Then, the form of the collision function J(f) can be obtained as [32]

J(f) =
1

m

∫
dSd�ξ1|�ξ1 − �ξ|(f ′f ′

1 − ff1) (2.6)

with dS the collision cross section. f ′, f ′
1, f , and f1 are defined as f ′ ≡ f(�x, �ξ′, t),

f ′
1 ≡ f(�x, �ξ′1, t), f ≡ f(�x, �ξ, t), and f ≡ f(�x, �ξ1, t) respectively. �ξ′ and �ξ′1 are the

molecular velocities before a binary collision. After collision, the velocities become

�ξ and �ξ1. �ξ′ and �ξ′1 are related to �ξ and �ξ1 by momentum and energy conservation

constraints.

The collision term has an important symmetry property which can be shown as

follows [31]. Consider another representation of the collision term in Eq. (2.6)∫
d�ξJ(f)ψ(�ξ) =

1

m

∫
dSd�ξ1d�ξ|�ξ1 − �ξ|(f ′f ′

1 − ff1)ψ(�ξ) (2.7)

where ψ(�ξ) is any arbitrary function of �ξ. It is obvious that a simple interchange of

�ξ and �ξ1 doesn’t change the value of the integral on the right-hand side of Eq. (2.7),

such that ∫
d�ξJ(f)ψ(�ξ) =

1

m

∫
dSd�ξ1d�ξ|�ξ1 − �ξ|(f ′f ′

1 − ff1)ψ(�ξ1) (2.8)

Further, replacing the dummy variables �ξ, �ξ1 by �ξ′, �ξ′1, tedious geometrical analysis

of the binary collision process leads to a transformation of the dependent variables

�ξ′, �ξ′1 to �ξ, �ξ1 and gives the following alternate form for this integral (for details see
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Harris [31]) ∫
d�ξJ(f)ψ(�ξ) = − 1

m

∫
dSd�ξ′1d�ξ′|�ξ′1 − �ξ′|(f ′f ′

1 − ff1)ψ(�ξ′)

= − 1

m

∫
dSd�ξ1d�ξ|�ξ1 − �ξ|(f ′f ′

1 − ff1)ψ(�ξ′) (2.9)

Similarly, ∫
d�ξJ(f)ψ(�ξ) = − 1

m

∫
dSd�ξ1d�ξ|�ξ1 − �ξ|(f ′f ′

1 − ff1)ψ(�ξ′1) (2.10)

Combining Eqs. (2.7) - (2.10) to get, finally,∫
d�ξJ(f)ψ(�ξ) =

1

4m

∫
dSd�ξ1d�ξ|�ξ1 − �ξ|(f ′f ′

1 − ff1)[ψ(�ξ) + ψ(�ξ1) − ψ(�ξ′) − ψ(�ξ′1)]

=
1

4

∫
d�ξ1d�ξJ(f)[ψ(�ξ) + ψ(�ξ1) − ψ(�ξ′) − ψ(�ξ′1)] (2.11)

Rewriting Eq. (2.4) according to Eq. (2.11),

∫
d�ξJ(f)

⎡⎢⎢⎢⎢⎣
1

�ξ

ξ2

⎤⎥⎥⎥⎥⎦ =
1

4

∫
d�ξJ(f)

⎡⎢⎢⎢⎢⎣
1 + 1 − 1 − 1

�ξ + �ξ1 − �ξ′ − �ξ′1

ξ2 + ξ1
2 − ξ′2 − ξ′1

2

⎤⎥⎥⎥⎥⎦ = 0 (2.12)

where equality with zero reflects the consequence of the conservation of mass, momen-

tum, and energy, respectively. In a binary collision, this means that if ψ(�ξ) is taken

to be 1, �ξ, and ξ2 corresponding to mass density, momentum, and energy density, the

change in ψ for both molecules must be zero. For this reason, ψ = 1, �ξ, and ξ2 are

frequently called the elementary collision invariants. The most general form for any

collision invariant is a linear combination of these five collision invariants which we

will use later.
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3. H–theorem and equilibrium

Any isolated system, after a long period of time, should reach an equilibrium state.

This can be seen [26, 33] by considering the H function

H(�x, t) =

∫
f ln fd�ξ (2.13)

Differentiating Eq. (2.13) with respect to time we get

∂H

∂t
=

∫
(1 + ln f)

∂f

∂t
d�ξ (2.14)

If we only consider a spatially uniform system, i.e., f depends on t only, the above

equation can be written as

∂H

∂t
=

∫
(1 + ln f)J(f)d�ξ (2.15)

which can be further written as

∂H

∂t
=

1

4m

∫
dSd�ξd�ξ1|�ξ1 − �ξ|(f ′f ′

1 − ff1) ln(
ff1

f ′f ′
1

) (2.16)

with the combination of the Boltzmann equation and the collision operator. Since

(f ′f ′
1 − ff1) ln(ff1/f

′f ′
1) ≤ 0 and all the other terms in the above equation are

positive, as a result,

∂H

∂t
≤ 0 (2.17)

This means that the H function can never increase as time goes and is known as

Boltzmann’s H–theorem. The H–theorem for a nonuniform system can be found in

Harris [31].

The equality in Eq. (2.17) corresponds to the equilibrium state characterized by

ff1 = f ′f ′
1 (2.18)
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This condition can be expressed equivalently as

ln f + ln f1 = ln f ′ + ln f ′
1 (2.19)

The above description of the equilibrium state indicates that lnf in this state is a

collisional invariant, so that

ln fM(�ξ) = A + �B · �ξ + Cξ2 (2.20)

The five constants A, B1, B2, B3, and C above are not arbitrary, since we have an

equal number constraints relating the first five moments of f given in Eqs. (2.1). The

resulting unique value of f obtained for the equilibrium state is

fM(�ξ) =
ρ

(2πRT )3/2
e−(�ξ−�u)2/2RT (2.21)

This equilibrium distribution function is well known as Maxwell-Boltzmann distribu-

tion function.

4. Moments of the Boltzmann equation

Starting from Eqs. (2.1) and using Eq. (2.4), we can derive the zeroth, the first, and

the second moment equations by integrating Eq. (2.3) with respect to velocity �ξ. The

integration results in the conservations of mass, momentum, and energy respectively.

It is important to note the fact that �x, �ξ, and t are independent variables. Hence

�ξ commutes with the operate ∇ and ∂/∂t. However both �ξ0 and �u have no such

commutation property.

• The zeroth order moment of the Boltzmann equation (Eq. (2.3))

∂

∂t

∫
fd�ξ + ∇ ·

∫
�ξfd�ξ =

∫
J(f)d�ξ = 0, (2.22)
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which leads

∂ρ

∂t
+ ∇ · (ρ�u) = 0. (2.23)

• The first order moment of the Boltzmann equation (Eq. (2.3))

∂

∂t

∫
�ξfd�ξ + ∇ ·

∫
�ξ�ξfd�ξ =

∫
�ξJ(f)d�ξ = 0, (2.24)

It should be reiterated that �ξ�ξ represents a second order tensor. Since
∫

�ξ0fd�ξ =

0, the second term of the left-hand side can be written as

∇ ·
∫

(�ξ0 + �u)(�ξ0 + �u)fd�ξ = ∇ · [(ρ�u�u) +

∫
�ξ0

�ξ0fd�ξ] (2.25)

Substitute the second term back and use Eq. (2.23) to obtain

∂�u

∂t
= −(�u · ∇)�u − 1

ρ
∇ ·

∫
�ξ0

�ξ0fd�ξ. (2.26)

• The second order moment of the Boltzmann equation (Eq. (2.3))

1

2

∂

∂t

∫
ξ2fd�ξ +

1

2
∇ ·

∫
ξ2�ξfd�ξ =

1

2

∫
ξ2J(f)d�ξ = 0 (2.27)

The first term on the left-hand side of the above equation yields

∂

∂t
(
1

2

∫
(�ξ0 + �u)2fd�ξ) =

∂

∂t
[

∫
(ξ2 + +u2)fd�ξ] =

∂

∂t
(
1

2
ρu2 + ρε) (2.28)

while the second term yields

∇·1
2

∫
(�ξ0+�u)2(�ξ0+�u)fd�ξ = ∇·[ρ�u(

1

2
u2+ε)+�u·

∫
�ξ0

�ξ0fd�ξ+
1

2

∫
�ξ0ξ

2
0d

�ξ] (2.29)

Hence we get

∂ε

∂t
= −�u · ∇ε− 1

ρ
[∇ · (�u ·

∫
�ξ0

�ξ0fd�ξ)− �u · (∇ ·
∫

�ξ0
�ξ0fd�ξ)]− 1

ρ

∫
1

2
ξ2
0
�ξ0fd�ξ. (2.30)

Therefore, by substituting ε = 3RT/2 we get the macroscopic dynamic equations



18

corresponding mass, momentum and temperature

∂ρ

∂t
+ ∇ · (ρ�u) = 0, (2.31)

∂�u

∂t
+ (�u · ∇)�u = −1

ρ
∇ · σ, (2.32)

∂T

∂t
+ (�u · ∇)T =

2

3Rρ
[∇ · (�u · σ) − �u · (∇ · σ)] − 2

3Rρ
∇ · �q. (2.33)

where σ and �q are stress tensor and heat flux vector defined by Eqs.(2.1).

The study of flow with kinetic theory is largely concerned with attempts to solve

the Boltzmann equation. However, even though the molecular interaction has been

simplified as binary collision, exact solutions of the Boltzmann equation are rare

because of its nonlinearity and integro-differential form. However, we have already

seen how it is possible, without solving the Boltzmann equation, to obtain significant

information from it such as the symmetry property of collision term, H-theorem,

equilibrium distribution function, the moments of the distribution function etc. There

are several outstanding names associated with the effort to solve the Boltzmann

equation: Boltzmann, Maxwell, Hillbert, Chapman, Enskog, and Grad (see Harris

[31]). In this dissertation, we are not going to cover the details about these approaches.

Instead, we shall briefly introduce the lattice Boltzmann method.

C. The single-relaxation-time lattice Boltzmann model

Historically, the lattice Boltzmann BGK (LB-BGK) equation [24, 25] evolved empiri-

cally from Boolean approaches such as the lattice gas automata (LGA) [20, 21]. The

LB-BGK equation was devised to overcome some serious deficiencies of LGA such as

large statistical noise, limited range of physical parameters, non-Galilean invariance,

and implementation difficulty in three dimensions. Recently, it has been shown that

the LB-BGK equation can be derived from the continuous Boltzmann BGK equation
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via discretization in both time and phase space. Details are presented by He & Luo

[34, 35].

The simple single-relaxation-time (SRT) model used in kinetic theory is usually

referred to as the BGK model, after Bhatnager, Gross, and Krook, who introduced

the model in a paper published in 1954 [36]. In this model, the collision term J(f)

in the Boltzmann equation is simplified as

J(f) = −Z(f − fM) (2.34)

Here the Maxwellian distribution function fM is expressed in terms of the local mean

velocity and temperature. Z is the mean collision frequency that may depend on

temperature but not on molecular velocity. Therefore the Boltzmann equation be-

comes

∂f

∂t
+ ξi

∂f

∂xi

= −Z(f − fM). (2.35)

Eq. (2.35) is usually referred to Boltzmann BGK equation.

Integration of Eq. (2.35) along characteristics followed by Taylor series expansion

to the first order in time leads to

f(�x + �ξδt, �ξ, t + δt) − f(�x, �ξ, t) =
1

τ
[f(�x, �ξ, t) − fM(�x, �ξ, t)], (2.36)

where τ = 1/(Zδt) is the dimensionless mean relaxation time and δt is the discretized

time interval. Further discretization in phase space, followed by appropriate approx-

imation of the equilibrium distribution and low Mach number assumption leads to

the SRT-LBE form for isothermal incompressible flow

fα(�x + �eαδt, t + δt) − fα(�x,�eα, t) =
1

τ
[fα(�x,�eα, t) − f (eq)

α (�x,�eα, t)] (2.37)

where f
(eq)
α is the discretized equilibrium distribution function and {�eα} is the discrete
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velocity set, both are lattice model based. We shall present the details of {�eα}, {f (eq)
α }

for D2Q9 SRT-LBE in Chapter 3 and D3Q19 SRT-LBE in chapter 4 respectively. The

fluid density and flow momentum are moments of the distribution given by

ρ =
∑

α

fα =
∑

α

f (eq)
α , ρ�u =

∑
α

�eαfα =
∑

α

�eαf (eq)
α (2.38)

The hydrodynamic equations can be derived from Eq. (2.37) by means of the Chapman-

Enskog analysis (multiple scale expansion) [26].

Although it has been pointed out in Chapter I that the Boltzmann equation

is almost valid for all flow regimes (Kn < 100), LB-BGK equation which uses the

BGK approximation [36] is only valid for small Knudsen number, say Kn ∼ 0.1, due

to the discretization of space and time and the low-Mach number expansion of the

Maxwell-Boltzmann distribution function [34, 35]. However, it is possible to extend

LBE to larger Kn by appropriate treatment of the collision operation.

D. The multiple-relaxation-time lattice Boltzmann model

As it has been shown in Section C, the SRT-LBE is indeed a special finite difference

form of the Boltzmann BGK equation. The most drastic approximation made in the

derivation of the SRT-LBE is the discretization of momentum space �ξ into a very

small set of discrete velocities {�ξα|α = 1, . . . , b} [34, 35]. The discretization of phase

space and time inevitably introduces truncation error and numerical artifacts. It is

highly desirable to reduce the effect of the artifacts.

Very recently, a new LBE model called the multiple-relaxation-time (MRT) LBE,

also referred to as the generalized lattice Boltzmann equation, has emerged. In fact,

the idea of MRT-LBE [37] was presented at the same time as SRT-LBE [24, 25] but

was not utilized for practical problems until recently [38–40]. Like SRT-LBE, the
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formulation of MRT-LBE is lattice based. We shall present a detail MRT-LBE model

in Chapter V. Here, we only introduce the basic idea of MRT-LBE.

In the MRT model, different moments of the distribution function relax at dif-

ferent rates. On the contrary, in SRT model, all moments (hydrodynamic and higher

order) relax at the same rate.

In general, MRT-LBE model has the same basic components as SRT-LBE model

which are

• A discrete velocity (or phase) space defined by a regular D-dimension lattice

together with a set of discrete velocities {�eα|α = 0, 1, . . . , b} connecting each

lattice site to all or some of its neighbors. b is the number of discrete directions;

• A set of mass distribution functions {fα|α = 0, 1, . . . , b} defined in the velocity

space;

• An evolution equation of the mass distribution functions.

The difference is that in MRT model an equal number of moments {mβ|β =

0, 1, . . . , b} of the distribution functions fα are constructed. The collision is executed

in the moment space to achieve different moments relax at different rates. The ve-

locity space V spanned by {fα|α = 0, 1, . . . , b} and the moment space M spanned by

{mβ|β = 0, 1, . . . , b} are transferred through a linear mapping M : |m〉 = M |f〉 and

|f〉 = M−1|m〉. The evolution equation of the MRT-LBE is [38, 39]

|f(�x + �eαδt, t + δt)〉 − |f(�x, t)〉 = −M−1Ŝ[|m(�x, t)〉 − |m(eq)(�x, t)〉], (2.39)

where the Dirac notation of ket |·〉 represents a column vector, e.g.

|f(�x + �eαδt, t + δt)〉 ≡ [f0(�x + �eαδt, t + δt), . . . , fb(�x + �eαδt, t + δt)]
T ,
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with the superscript T the transpose operator and δt the discrete time interval. Ŝ

is the diagonal collision matrix determining different relaxation rates for different

moments and |m(eq)〉 is the equilibria of |m〉.
The construction of the transformation matrix M , the moments |m〉 and their

equilibria |m(eq)〉, and the diagonal collision matrix Ŝ are lattice based. The MRT-

LBE model details for three popular lattice models – D2Q9, D3Q15, and D3Q19 are

given by Lallemand & Luo [39, 40] respectively. In Chapter V, we will describe the

details of a D3Q19 MRT-LBE model for large eddy simulation.

E. Implementation of LBE models

Numerical solving LBE is indeed simple and straightforward. The implementation of

both SRT-LBE and MRT-LBE consists of two computational steps:

• collision

f̃α(�x, t) = fα(�x, t) + Ωα(�x, t) α = 0, . . . , b,

for SRT-LBE: Ωα(�x, t) = −[fα(�x, t) − f
(eq)
α (�x, t)]/τ ,

for MRT-LBE: Ωα(�x, t) = −M−1Ŝ[|m(�x, t)〉 − |m(eq)(�x, t)〉]

• streaming

fα(�x + �eαδt, t + δt) = f̃α(�x, t), α = 1, . . . , b

The computational flowchart is shown in Fig. 2.
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Fig. 2. Computational flowchart for LBE models.
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CHAPTER III

SCALAR MIXING AND CHEMICAL REACTION SIMULATIONS USING

LATTICE BOLTZMANN METHOD*

A. Introduction

The lattice Boltzmann equation (LBE) model has been emerging as a physically ac-

curate and computationally viable tool for simulating laminar and turbulent flows

[23, 34, 35, 42–45]. On the theoretical front, rigorous mathematical proof now exists

demonstrating that LBM is a special finite difference scheme of the Boltzmann equa-

tion that governs all fluid flows [34, 35]. (Recall that the NS equation also has its

basis in the Boltzmann equation.) It has also been shown that LBM can be related

to some conventional computational fluid dynamics methods and the proof brings to

light the advantages of the LBM [46, 47]. Detailed numerical studies with the LBM

demonstrate the physical accuracy and computational viability for solving complex

fluid flow problems [27, 28, 42, 43].

With few notable exceptions [48–54], the LBM has been so far used mostly for

single-component, inert and isothermal flows. In this work, we simulate scalar mixing

in a multi-component flow and a chemical reacting flow using the lattice Boltzmann

computational approach. At the continuum level, the mixing example considered

appears as a pure diffusion problem without any advection velocities. However, at

the mesoscopic level, each of the components is associated with non-zero velocities.

Hence, the problem considered is truly more significant than simple passive scalar

mixing. Due to the kinetic nature of the LBE scheme, the extension of this method

*Reprinted with permission from [41] COPYRIGHT 2002 by World Scientific
Publishing Co Pte Ltd / Imperial College Press.
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to cases with non-trivial macroscopic velocity field is straight forward. The second

problem considered is one-dimensional flame propagation in a well-stirred homoge-

neous mixture of propane and air. The flame speed calculated using the LBM is in

good agreement with experimental data. This problem is very similar to the one

solved by Yamamoto [55] but with a sightly different physical field.

The remainder of this chapter is organized as follows. In Section B, the lattice

Boltzmann equations used in the mixing and reacting simulations are presented. The

results from both simulations are presented in Section C. We conclude in Section

D with a brief discussion. The derivation of hydrodynamic equations and mutual

diffusivity for the binary scalar mixing model is presented in Appendix A. Details of

the physical parameters used in the reacting flow simulation are given in Appendix

B.

B. Lattice Boltzmann equations

1. Lattice Boltzmann equations for binary scalar mixing

For the sake of simplicity without losing generality, we adopt D2Q9 lattice model, as

shown in Fig. 3, with the discrete particle velocities �eα and the weighting factor ωα

(α = 0, 1, . . . , 8)

�eα =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(0, 0), α = 0

(cos[(α − 1)π/2], sin[(α − 1)π/2]), α = 1, 2, 3, 4

(cos[(α − 5)π/2 + π/4], sin[(α − 5)π/2 + π/4]), α = 5, 6, 7, 8

(3.1)

and

wα =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
4/9, α = 0

1/9, α = 1, 2, 3, 4

1/36, α = 5, 6, 7, 8

(3.2)
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respectively. The sound speed is cs = 1/
√

3(δx/δt) with δx being the lattice constant

of the underlying square lattice and δt time interval respectively. Normally δx/δt = 1

meaning δx = δt.

 

1e
�

 3e
�

 

2e
�

 

4e
�

 8e
�

 

5e�  6e
�

 

7e
�

 

0e
�

 

Fig. 3. FHP-9bit model: 9 discrete velocities on a square lattice.

Consider a multi-species field: nσ
α denotes the number density distribution func-

tion of a particular species σ with discrete velocity �eα, α = 0, 1, · · · , 8. The number

density and molecular weight of species σ are given respectively by nσ and mσ. Then

mass density of the σ-species is given as

ρσ = mσnσ (3.3)

Number density, mass density and velocity of the mixture are computed by

n =
∑

σ

nσ (3.4)

ρ =
∑

σ

ρσ (3.5)
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and

�u =
1

ρ

∑
σ

(mσ
∑

α

nσ
α�eα) (3.6)

respectively.

Let σ and σ′ denote the two species of interest. The LBE for each species is

nσ
α(�x + �eα, t + 1) = nσ

α(�x, t) + Ωσ
α(�x, t) (3.7)

where the collision operator

Ωσ
α = − 1

τσ
[nσ

α − nσ(eq)
α ] +

Jσσ′
α

mσ
(3.8)

includes an additional term Jσσ′
α which reflects the interaction between two species.

We use the following number density equilibrium distribution function

nσ(eq)
α = wαnσ[1 + 3(�eα · �u′) +

9

2
(�eα · �u′)2 − 1

2
u′2] (3.9)

with

�u′ =
1

ρ

∑
σ

mσ

τσ
(nσ�uσ) (3.10)

The binary interaction term is modelled as

Jσσ′
α = Gfn

(eq)
α (�eα − �u) · [∇xσ + (xσ − ωσ)

∇ρ

ρ
] = −Jσ′σ

α (3.11)

where Gf is a parameter reflecting mutual interaction strength between two species.

xσ and ωσ are molar and mass fractions of the species σ

xσ =
nσ

n
, ωσ =

ρσ

ρ

and

n(eq)
α = wαn[1 + 3(�eα · �u) +

9

2
(�eα · �u)2 − 1

2
u2] (3.12)

The diffusion coefficient of this mixing model in the case that two species have
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equal molecular weight m and equal relaxation time τ can be derived (see Appendix

A)

D = −c2
sρ(τnGf − τ +

1

2
) (3.13)

2. Lattice Boltzmann equations for reacting flow

Here we consider simple one-dimensional flame propagation through a premixed mix-

ture of propane and air. The problem studied is identical to that of Yamamoto [55]

but the physical combustion field is sightly different. The simplifying assumptions

invoked in this study are now listed:

• No external forces in the field and the flow is incompressible.

• The chemical reaction (heat release) does not affect the flow field; temperature

and concentration fields are decoupled and solved separately.

• Nitrogen is inert.

• The transport properties are constants (not functions of temperature).

• Viscous energy dissipation and radiative heat losses are negligible.

• Simple one step reaction is considered

C3H8 + 5O2 ⇒ 3CO2 + 4H2O

and the over-all reaction rate is given by

ωov = κovCC3H8CO2e
−E/RT

where CC3H8 , CO2 , κov and E are concentrations of fuel propane and oxygen,

reaction coefficient and effective activation energy respectively.
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In a reacting flow, the state of the fluid at any given point in space and time can

be completely specified in terms of fluid velocity, composition vector (either in terms

of mass fraction or concentration) and temperature. We will need to develop the

LBE for all these variables. For generating a background flow, the conventional LBM

substeps of collision (relaxation) and streaming (convection) are used. However for

the temperature and concentration fields, there is an extra substep between collision

and streaming substeps to account for the reaction. This is identical to the time-

splitting approach used in continuum methods for chemically reacting flows.

a. Flow field

The background flow-field is obtained using the following stencil for partial pressure

pα(�x + �eα, t + 1) = pα(�x, t) − 1

τp

[pα(�x, t) − p(eq)
α (�x, t)] (3.14)

where

p(eq)
α = wαp[1 + 3(�eα · �u) +

9

2
(�eα · �u)2 − 3

2
u2] (3.15)

The total pressure p (= ρc2
s) and the fluid velocity are calculated using

p =
∑

α

pα

�u =
1

p

∑
α

�eαpα

This is the velocity used for determining the equilibrium distribution functions in

temperature and concentration fields.

b. Temperature and concentration fields

For temperature (T is normalized by Tc = E/R) and concentration (mass ratio Y i, i =

C3H8, O2, CO2 and H2O) fields, there is an extra computational substep, reaction,
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besides conventional computational substeps of collision and advection.

• COLLISION

T̃α(�x, t) = Tα(�x, t) − 1

τT

[Tα(�x, t) − T (eq)
α (�x, t)] (3.16)

Ỹ i
α(�x, t) = Y i

α(�x, t) − 1

τY i

[Y i
α(�x, t) − Y i(eq)

α (�x, t)] (3.17)

where

T (eq)
α = wαT [1 + 3(�eα · �u) +

9

2
(�eα · �u)2 − 3

2
u2] (3.18)

Y i(eq)
α = wαY i[1 + 3(�eα · �u) +

9

2
(�eα · �u)2 − 3

2
u2] (3.19)

and

T =
∑

α

Tα, Y i =
∑

α

Y i
α

Relaxation time-constant τT is determined by thermal diffusivity and τY i ’s are

determined by the diffusivity of corresponding species.

• REACTION

Reaction equation

C3H8 + 5O2 → 3CO2 + 4H2O

ωov = κovC̃C3H8C̃O2e
−1/T̃

Concentrations

C̃i = ρỸi/Mi

Reaction terms

QY i = λi
Mi

ρ
ωov

QT =
Q

ρcpTc

ωov
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where

Ỹ i =
∑

α

Ỹ i
α, T̃ =

∑
α

T̃α

In the above equations, the stoichiometric coefficients (λ’s) for the various

species are: λC3H8 = −1, λO2 = −5, λCO2 = 3, λH2O = 4 and all physical

parameters are listed in Appendix B.

• STREAMING

Tα(�x + �eα, t + 1) = T̃α(�x, t) + wαQT

Y i
α(�x + �eα, t + 1) = Ỹ i

α(�x, t) + wαQY i

C. Simulations

As mentioned above, the primary objective of this work is to investigate the ability of

the LBM to simulate scalar mixing, chemical reaction. Working towards this end, we

perform simulations of two unit problems: one to establish the mixing characteristics

and another to demonstrate the chemical reaction scheme.

1. Non-premixed binary scalar mixing

This problem epitomizes the scalar mixing issues encountered in a typical non-premixed

combustion application. Two species (presumably fuel and oxidizer) are initially seg-

regated and randomly distributed in the computational domain which in the present

case is a square box. Mesh size is set 500 × 500. The two species are generically

labelled as black and white. A typical initial distribution is shown in Fig. 4. The

macroscopic velocity is set everywhere to zero corresponding to a pure diffusion prob-

lem. It should be reiterated here that the mesoscopic velocities are non-zero. At

each time step, particles stream along eight direction with the velocities given by Eq.

(3.1). The initial values for the number densities are nb = 1.0, nw = 0.0 in region of
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Fig. 4. Initial number density distribution for both equal and unequal mass cases.

the black species and nw = 1.0, nb = 0.0 in region of white species. Simulations are

performed for sets: τ b = τw = 1.0 and Gf = 1/30.0. Citing homogeneity of the scalar

field, periodic boundary conditions are used in all directions.

To discretize ∇xσ and ∇ρ in the binary interaction term in Eq. (3.11), we use

central difference operator. Taylor series expansion of each of f(�x + �eα) terms to the

second order leads the following stencil of ∂x1 and ∂x2 :

∂x1 =
1

12

⎡⎢⎢⎢⎢⎣
−1 0 1

−4 0 4

−1 0 1

⎤⎥⎥⎥⎥⎦ , ∂x2 =
1

12

⎡⎢⎢⎢⎢⎣
1 4 1

0 0 0

−1 −4 −1

⎤⎥⎥⎥⎥⎦ (3.20)
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That is

∂x1f(�x) ≈ 1

12
[4f(�x+�e1)+f(�x+�e5)+f(�x+�e8)−f(�x+�e6)−4f(�x+�e3)−f(�x+�e7)] (3.21)

∂x2f(�x) ≈ 1

12
[4f(�x+�e2)+f(�x+�e5)+f(�x+�e6)−f(�x+�e7)−4f(�x+�e4)−f(�x+�e8)] (3.22)

in which f can be xσ and ρσ.

We first compute the mutual diffusivity in a binary mixture by studying the

decay of a sinusoidal concentration wave with small amplitude. The simulation was

carried out on a (128 × 3) rectangular domain. Initially, assume both species have

the same particle density nb = nw = 0.5 at each grid in the whole field. Introduce a

perturbation particle density wave ñ(x) = Asin(λx) with λ = 2π/128 and A = 0.01

into the particle density of black species, i.e. nb(x, 0) = 0.5+ ñ(x). From the diffusion

equation

∂nb

∂t
= D

∂2nb

∂x2
(3.23)

we have an analytical solution expressed as nb(x, t) = nb(x, 0)exp(−Dλ2t). The

mutual diffusivity is obtained by numerically measuring the decay rate of nb

D = − ln nb(x, t) − ln nb(x, 0)

λ2t
(3.24)

where x is an arbitrary grid picked in the computational domain. The results of the

computation of Eq. (3.24) are plotted in Fig. 5 along with the analytical predictions

from Eq. (3.13) for comparison. Two different τ values are used. Fig. 5 shows

that numerical computations (bullets) are in excellent agreement with the analytical

predictions (lines).

The lattice Boltzmann methodology permits simulation of mixing between species

of equal or unequal number and mass densities with equal facility. However, in contin-

uum based methods, mixing between species of unequal mass densities is not straight-
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Fig. 5. Mutual diffusivity D of binary mixture as a function of the interaction strength

Gf . Lines: analytical prediction; Bullets: numerical computation.

forward. This represents a fundamental advantage of the LBM over continuum-based

methods.

a. Equal mass case (mb = mw = 1.0)

The first case studied is mixing of two fluids of equal molecular weight and number

density, hence of equal mass density. This case is interesting as the results can be

directly compared with direct numerical simulation (DNS) of NS equation data of

Eswaran and Pope [56]. In this case, the number density and mass density are

equivalent since the molecular weight of the two species are identical. Fig. 6 (a)

shows the time evolution of the probability density function (pdf) of scalar ρ:

ρ =
ρb − ρw

ρb + ρw
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Fig. 6. Pdf evolution of number density in equal mass case. (a) LBE simulation; (b)

DNS of NS computation from Eswaran and Pope [56].

The corresponding DNS data [56] is shown in Fig. 6 (b). The LBE and DNS data

show excellent qualitative agreement. In particular, the change of the pdf shape

from the initial double-delta shape through a nearly uniform distribution to, finally, a

Gaussian-like distribution is well captured by the LBE results. It deserves to mention

here that many other mixing models do not, even qualitatively, capture the form of

pdf during evolution.

In Fig. 7, the time evolution of the root-mean-square (rms) of scalar fluctuations

(ρ′) obtained from LBE is compared with that from DNS [56]:

ρ′ =
√

< (ρb− < ρb >)2 > (3.25)

where < · · · > implies volume-averaged value. The relaxation time-constant has been

chosen to yield the best agreement. For the optimal time-constant, the agreement is

again excellent. It suffices to say that given the right time-constant, the LBE captures

the DNS behavior well, qualitatively and quantitatively.
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Fig. 7. Evolution of rms scalar (φ) in equal mass case. (a) LBE (φ = 2ρ′) simulation;

(b) DNS of NS computation from Eswaran and Pope [56].

b. Unequal mass case (mb = 2.0,mw = 1.0)

The unequal mass case is particularly interesting since it represents a more practical

problem, mixing between species of unequal mass densities. In this case, the ini-

tial distribution of black and white species is similar to the equal mass case. Thus

the average number density of black and white species are identical. However, the

molecular weight of the black species is twice that of the white species. Hence, the

macroscopic mass density of the black species is twice that of the white species. The

precise definition of the mass density used here is

ρσ =
ρσ − ρσ′

ρσ + ρσ′ =
mσnσ − mσ′

nσ′

mσnσ + mσ′nσ′

and the particle number density is

nσ =
nσ − nσ′

nσ + nσ′
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Fig. 8. Pdf evolution of mass density in unequal mass case (mb : mw = 2 : 1).

In the unequal molecular weight case, mass density and number density are two

independent entities. The evolution of both these quantities are investigated. In Fig.

8, the mass density evolution is given for both species. The mass density goes from

an initial double-delta shape to a Gaussian-like shape centered around the global

average of the respective density. The final pdf shape for each species is clearly not

symmetric. This is easily understood since the overall average density of the black

species is twice that of the white species.

In Fig. 9, the number density evolution is shown. Since the average number

density is identical for both species, the final pdf distribution is symmetric about the

mean value for each species. However, the intermediate forms of the pdf are quite

nonsymmetric, demonstrating that the mixing process in this case is quite different

from the equal-mass case even if the final distributions are similar. A detailed study

of the physics of mixing between species of unequal mass-densities will be undertaken

later.
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Fig. 9. Pdf evolution of number density in unequal mass case (mb : mw = 2 : 1).

2. Reacting flow in a 1-d channel

In this example, we study the ability of LBM to simulate chemical reaction. The

simplest non-trivial case when reaction can be studied without the complicating effects

of mixing is the case of 1-D flame propagation through a homogeneous premixed

mixture.

L

Heat
sourcepu

r

Fig. 10. A schematic illustration of a simple 1-D reacting flow.
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Schematic of the flow simulated is shown in Fig. 10. For this simple case, the

background flow generated from Eq. (3.14) maintains both the pressure and velocity

fields uniform in space and time. A heat source is placed at a location close to the

inlet to ignite the mixture. Once ignition is achieved, the heat source is removed.

At subsequent times the flame propagates to the right. Initial conditions are set as

following: The values of pressure and velocity are set at p = 1, ux = uin = 0.1,

uy = 0.0. Both fields are maintained uniform at all times in this simple case. The

temperature is set at T = 3000K everywhere except at x = 50 where a heat source

is placed with Tsource = 15000K to ignite the mixture. The hot spot is removed after

the mixture ignites. The mass ratio of nitrogen is YN2 = 0.7375. The well-premixed

mixture consists of propane and oxygen with the mass ratios of YC3H8 = 0.2252,

YO2 = 0.0373. The mass fractions of the products are initially set to zero: YCO2 =

YH2O = 0.0. All physical parameters used in this simulation are given in Appendix

B.

Periodic boundary conditions are used at the top and bottom boundaries and the

fully developed boundary condition is applied at the outlet. At the inlet, the initial

conditions are maintained.

In Fig. 11, the flame position is shown as a function of time. The flame location is

identified as the position with the highest reaction rate at any given time. The linear

variation of flame location with time (in Fig. 11) indicates that the flame propagates

at a nearly constant rate. This flame speed can be easily estimated from knowing

the flame position at initial (ti = 0; xfl = 50) and final (tf = 4000; xfl = 406) times.

The flame speed thus calculated is

vf =
xfl(tf ) − xfl(ti)

tf − ti
=

406 − 50

4000 − 0
= 0.0089

in lattice units. Knowing the flame speed, the burning velocity can be easily deter-
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Fig. 11. The flame position evolution with time.

mined:

SL = uin − vf

In the above, uin is the reactant velocity at the inlet (which is maintained uniform

throughout the flow-field). The burning velocity thus obtained will be in lattice units.

This can be converted into metric units as follows:

SL =
uin − vf

uin

· up (3.26)

The resulting burning velocity is SL = 0.11m/s which compares extremely well with
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the value obtained from experiments for a propane-air flame [57].
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Fig. 12. Reaction rate profiles at different times.

Fig. 12 shows that the reaction rate profile in the reaction zone as time evolves.

Simulations indicate that flame behavior is sensitive to the magnitude of the heat

source.

D. Conclusions

We have simulated scalar mixing and chemical reacting flows using LBM. In the case

of equal-density species mixing, well known results from continuum Naiver-stokes
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simulation are reproduced. The true advantage of the LBM can be seen from the

mixing simulations of species of different molecular weights. The results appear quite

encouraging. Such simulations are very difficult with continuum based methods. The

premixed reacting flow simulations also produce results that are in good agreement

with known data. Based on these simulations, we conclude that LBM can perform

adequately for more complicated turbulent combustion simulations.
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CHAPTER IV

DNS AND LES OF DECAYING HOMOGENOUS ISOTROPIC TURBULENCE

WITH AND WITHOUT FRAME ROTATION

A. Introduction

The lattice Boltzmann method (LBM) [23–25] is rapidly emerging as a physically

sound and computationally efficient method for simulating fluid flow. The lattice

Boltzmann equation is based on the Boltzmann equation instead of the Navier-Stokes

(NS) equations and, in principle, is more general than continuum approaches. By

simplifying the underlying microscopic physics so that only key elements (the local

conservation laws and related symmetries) needed to guarantee accurate macroscopic

behaviors are retained, a computational advantage over traditional methods can be

achieved [27–29, 43]. Consequently, the LBM has found applications in many areas of

flow physics, such as free-surface flows [58], the Rayleigh-Taylor instability between

two fluids [59], multicomponent fluids through porous media [60], viscoelastic fluids

[61, 62], particulate and colloidal suspensions in fluid [63–65], and other complex

systems (cf. [27–29] and references therein).

In an effort to evaluate the capability of the LBM in turbulence, we perform DNS

and LES of decaying homogenous isotopic turbulence in both inertial and rotating

frames of reference. Decaying HIT is an important benchmark problem in the field of

DNS and LES of turbulence. In fact, the first attempt at DNS with incompressible

NS equation involved this problem [66]. Since then several numerical investigations

of decaying HIT have been carried out, including some recent NS studies on decay

exponents and low wave-number spectral scaling [67–70]. Some preliminary studies

of three-dimensional (3D) decaying HIT using LBE have also been performed [71–
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73], but these investigations stop well short of quantitative comparisons with the well

established classical results.

The objective of this work is to perform a comprehensive investigation of de-

caying HIT with LBE-DNS and LBE-LES to establish the suitability of the LBM

for turbulence applications. For this purpose, we perform three type of simulations.

(a) LBE-DNS of decaying HIT in inertial and rotating frame of reference. The de-

cay exponent for the kinetic energy k and the dissipation rate ε are computed and

compared with corresponding NS-DNS results. The low wave-number scalings of the

energy spectrum are studied. The effect of rotation on the kinetic energy decay is

investigated. (b) LBE-LES of decaying HIT in inertial frame of reference. We com-

pute kinetic energy decay, energy spectrum and flow structures using LBE-LES. By

comparing LBE-LES results with the corresponding LBE-DNS results, we observe

that LBE-LES accurately captures large scale flow behavior. We find that the opti-

mal Smagorinsky constant value for LBE-LES is smaller than the traditional value

used in NS-LES approaches. (c) LBE-LES vs. NS-LES. We carry out a comparative

study of the LBE-LES and NS-LES of decaying HIT. We show that the LBE-LES

simulations preserve flow structures more accurately than the NS-LES counterpart.

This is due to the fact that some history/non-local effects are inherent in the LBE

subgrid closure.

The remainder of this chapter is organized as follows. Section B briefly reviews

relevant background on decaying HIT. Section C gives a concise introduction to the

LBM equations for DNS and LES. We present our results in Section D and conclude

in Section E.
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B. Homogeneous isotropic turbulence

The energy spectrum Ê(κ, t) in decaying HIT evolves as

∂tÊ(κ, t) = −T̂ (κ, t) − 2νκ2Ê(κ, t), (4.1)

where κ is the wave-number and ν is the kinematic viscosity, and T̂ (κ, t) represents

the nonlinear energy transfer between modes (cf. Eq. (6.162) in Pope [2]). The kinetic

energy k and dissipation rate ε of turbulence are given, respectively, by

k =

∫
Ê(κ)dκ, and ε = 2ν

∫
κ2Ê(κ)dκ.

It has been long observed that, after a short initial transient period of time, the

kinetic energy k and dissipation rate ε exhibit power-law decay [2]

k(t)

k0

∼
(

t

t0

)n

,
ε(t)

ε0

∼
(

t

t0

)−(n+1)

, (4.2)

where k0 and ε0 are the values of k and ε at the reference time t0 = nk0/ε0. Isotropic

turbulence is typically characterized by the Taylor-microscale Reynolds number

Reλ =
urmsλ

ν
=

√
20

3νε
k, (4.3)

where λ =
√

15νu2
rms/ε is the transverse Taylor-microscale length and urms =

√
2k/3

is the root mean square (rms) of the velocity field �u.

Equation (4.1) admits a continuous class of invariant solutions in the limit

of Re → ∞ [74]. At the large Re, Ê(κ, t) at the low wave-number behaves as

limκ→0 Ê(κ) ∼ κσ, where σ is a time-independent constant (e.g. [75]). For invis-

cid fluids, if Loitsyansky’s integral [76] is an invariant, then σ = 4 and n = 10/7

[77]; if Birkhoff’s integral [78] is an invariant, then σ = 2 and n = 6/5 [79]. It has

been recently shown that time-invariant integral length scale l corresponds to σ = ∞
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and n = 2 and time-invariant Reynolds number corresponds to σ = 1 and n = 1

[80]. Furthermore, the conservation of energy, angular momentum, and helicity lead

to σ = 2, 7, and 1, in the limit of Re → ∞, respectively. The energy conservation of

inviscid fluid uniquely determines the invariant solution of Eq. (4.1), i.e., σ = 2, in

accordance with Birkhoff’s invariant [78]. Despite the apparent simplicity of the de-

caying HIT problem, the relevant flow invariant, asymptotic decay exponent and the

low wave-number scaling are strong functions of the initial spectrum and Reynolds

number. There is still no clear consensus on whether the angular momentum or en-

ergy is the correct invariant. It is also not clear what the conditions are under which

the invariance of either quantity can be observed. Consequently, various results have

been reported [67, 68, 74, 81].

We perform detailed comparisons with established data qualitatively and quan-

titatively on the following important items: (i) energy decay exponent n, (ii) low

wave-number scaling of the spectra, (iii) flow structure, and (iv) effect of rotation on

kinetic energy decay.

C. LBE Formulation for DNS and LES of turbulence

1. Lattice Boltzmann equation for DNS

The LBE with single-relaxation-time approximation due to Bhatnagar, Gross, and

Krook (BGK) [36] for the collision operator is [24, 25]

fα(�x + �eαδt, t + δt) = fα(�x, t) − 1

τ

[
fα − f (eq)

α

]
+ Fα, (4.4)

where fα is the density distribution function with discrete velocity �eα along the αth

direction, f
(eq)
α is the equilibrium distribution function, and τ is the relaxation time

due to the fluid particle collision determining the viscosity ν of the modelled fluid. In
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what follows, we use the LBE model with 19 velocities in three dimensions, i.e., the

D3Q19 model shown in Fig. 13.
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Fig. 13. 3D 19 velocities lattice.

The discrete velocities are:

�eα =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(0, 0), α = 0

(±1, 0, 0)c, (0, ±1, 0)c, (0, 0, ±1)c, α = 1–6

(±1, ±1, 0)c, (±1, 0, ±1)c, (±1, ±1, 0)c, α = 7–18.

(4.5)

The equilibria for incompressible flow [82] are

f (eq)
α = wα

{
δρ + ρ0

[
3�eα · �u

c2
+

9(�eα · �u)2

2c4
− 3u2

2c2

]}
, (4.6)

where δρ is the density fluctuation, and ρ0 is the constant mean density in the system

which is usually set to 1, and c = δx/δt = 1 in lattice units (i.e. δt = δx). The sound

speed of the model is cs = c/
√

3. The total density is ρ = ρ0 + δρ. The weighting
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factors wα for the D3Q19 model are w0 = 1/3, w1–6 = 1/18, and w7–18 = 1/36. The

mass and momentum conservations are strictly enforced:

δρ =
∑

α

fα =
∑

α

f (eq)
α , (4.7a)

ρ0�u =
∑

α

�eαfα =
∑

α

�eαf (eq)
α . (4.7b)

For athermal fluids, the forcing term Fα is [83]

Fα = −3wαρ0
�eα · �a

c2
δt, (4.8)

where �a is the acceleration due to external force. In our simulations, only for rotating

case, we consider the Coriolis force, i.e., �a = −2�Ω×�u, where �Ω is the angular velocity

of the frame of reference.

The hydrodynamic equations derived from Eq. (4.4) via the Chapman-Enskog

analysis are

∂tρ + �∇ · ρ�u = 0, (4.9a)

∂t�u + �u · �∇�u = −�∇p + ν∇2�u + �a, (4.9b)

where p = c2
sρ/ρ0 and the kinematic viscosity ν has the following relation with the

relaxation time

ν =
1

3

(
τ − 1

2

)
cδx. (4.10)

It is important to note that in LBE the strain rate tensor Sij can be obtained

directly from the second-order moment of the non-equilibrium distribution function

as

Sij = − 1

2ρ0c2
sτ

∑
α

eαieαj

[
fα − f (eq)

α

]
, (4.11)

so that the dissipation rate is computed as ε = 2ν
∑

i,j SijSij.
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2. LES extension of lattice Boltzmann equation

For the LES, high wave number Fourier components of the density distribution func-

tion are filtered and the resolved-scale distribution function is separated from the

unresolved part. The filtered form of the LBE for LES is modelled as [84]:

fα(�x + �eαδt, t + δt) = fα(�x, t) − 1

τ ∗ [fα − f
(eq)

α ] + Fα, (4.12)

where fα and f
(eq)

α represent the distribution function and the equilibrium function of

the resolved scales respectively. The effect of the unresolved scale motion is modelled

through an effective collision τt which has been included in the LES effective relaxation

time τ ∗ in Eq. (4.12). The LES effective viscosity ν∗ is then obtained from

ν∗ = ν + νt =
1

3

(
τ ∗ − 1

2

)
cδx, (4.13)

with νt denoting turbulent viscosity usually called eddy viscosity.

To evaluate the fidelity of the LBE-LES simulations, we use the Smagorinsky

model [2, 85] for the small unresolved scale motion. In the Smagorinsky model, the

eddy viscosity νt is calculated from the filtered strain rate tensor Sij = (∂jui +∂iuj)/2

and a filter length scale δx as follows:

νt = (Csmδx)
2S, (4.14)

S =

√
2
∑
i,j

SijSij, (4.15)

where S is the characteristic filtered rate of strain and Csm is the Smagorinsky con-

stant. With Csm and δx given, τt can be obtained from Eq (4.11) [84]:

τt =
1

2

(√
τ 2 + 18

√
2(ρ0c2)−1C2

smδxS − τ

)
. (4.16)

As shown in Eq. (4.11), the filtered strain rate tensor Sij can be computed from the
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second-order moment of the filtered nonequilibrium distribution function directly. In

Eq. (4.16), the filtered strain rate S which is used to determine νt is current in time.

Because the time step in the LBE simulations is relatively small in physical units, we

can also use the value of S of the previous time step and compute νt (νt = c2
sτtδt)

according to Eq. (5.6) instead of Eq. (4.16). We will evaluate both these options.

Furthermore, it is possible to use finite difference approximation for S. We will also

investigate this option.

It is important to point out the salient difference between the LBE-LES and the

NS-LES. In the NS-LES, the eddy viscosity is evaluated and then used to determine

the evolution of the flow fields in the next time step. In the LBE-LES, the eddy viscos-

ity affects the relaxation process of the flow fields as well as other nonhydrodynamic

variables (higher order fluxes). The relaxation process, as described by Eq. (4.12),

does not force the flow fields to immediately attain the expected state specified by

the equilibrium distributions. This preserves more spatio-temporal memory effects in

the LBE-LES which are absent in the NS-LES counterpart. Some preliminary tests

using the LBE-LES have yielded encouraging results [84, 86, 87]. In this work we will

compare the LBE-LES and NS-LES in the fundamental problem of HIT.

In all the results presented in this chapter, we use the single-relaxation-time LBE

obtained from the BGK model for the collision operator. Preliminary computations

of LBE-DNS in an inertial frame using the multiple-relaxation-time(MRT) lattice

Boltzmann model show no distinguishable difference in the results obtained. We will

investigate the use of MRT for LBE-DNS in rotational frame and LBE-LES in the

future work.
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D. Simulation results

All numerical simulations are conducted in a three-dimensional periodic cube with

various resolutions: N3. The initial incompressible homogeneous isotropic velocity

field is generated in spectral space with the following energy spectrum in a prescribed

range κmin ≤ κ ≤ κmax (For further details, see the on-line article: T. Miyauchi and

T. Ishizu, “Direct numerical simulation of HIT decay of passive scalar fluctuation,”

available at http://cfd.me.umist.ac.uk/ercofold/database/test48/test48.html):

Ê(κ, 0) =

⎧⎪⎨⎪⎩ 0.038κm exp(−0.14 κ2), κ ∈ [κmin, κmax],

0, κ /∈ [κmin, κmax],
(4.17)

with random phase and then transferred to physical space. In the above, m is set to

4 or 2 for different simulations.

The initial density fluctuation δρ (or the pressure p) can be consistently obtained

by an iteration procedure. It is important to stress that the preparation of the ini-

tial data is crucial in the LBE-DNS simulations of HIT. The pressure obtained by

solving the Poisson equation from the initial velocity �u0 is inconsistent and insuffi-

cient to initialize the LBE simulation. It is inconsistent because LBE is intrinsically

compressible thus the Poisson equation is not satisfied exactly. It is insufficient be-

cause LBE initial data consists of more than the hydrodynamic variables and the

nonhydrodynamic variables cannot be specified by solving hydrodynamic equations.

By consistently constructing the initial data for the LBE simulation, we are able

to minimize the error due to initialization and the difference between the LBE and

pseudo-spectral simulations [73].
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1. LBE-DNS of decaying isotropic turbulence

a. Inertial reference frame

We first present the results from LBE-DNS of decaying HIT in the inertial frame

at two resolutions: 643 and 1283. All initial spectra are given by Eq. (4.17) in

which m is set to 4 unless indicated otherwise. Fig. 14 shows the evolutions of the

t‘

0.01

0.1

10

0.001 0.01 0.1 1 10

Fig. 14. Time evolution of the normalized kinetic energy k/k0 (solid lines) and nor-

malized dissipation rate ε/ε0 (dashed lines) for 643 (lines and symbols) and

1283 (lines only) by using LBE-DNS.

normalized kinetic energy k/k0 and the normalized dissipation rate ε/ε0 with respect

to normalized time t′ = tε0/k0 for the cases of 1283 and 643. The parameters for both

cases are urms = 0.023 and ν ≈ 0.0017 (τ = 0.505). In the case of 643, the initial

energy spectrum is non-zero in the range 4 ≤ κ ≤ 8, resulting in Reλ ≈ 53. For the

case of 1283, the initial energy spectrum is non-zero in the range 1 ≤ κ ≤ 8, resulting
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in Reλ ≈ 119. In the absence of production, kinetic energy decays monotonically

in time, whereas at early stages the dissipation rate increases. This increase in ε/ε0

is completely consistent with known turbulence physics (explained further below)

and the same phenomenon is also seen in NS-DNS results. Following this period of

increasing dissipation, both the kinetic energy and dissipation decay monotonically.

The decay exponent n of the kinetic energy in these low Reλ simulations varies in

time. Furthermore, Reλ itself is a function of time as the turbulence decays. The

variation of n vs. Reλ in various simulations are shown in Fig. 15. The dependence

of n on Reλ obtained by the LBE-DNS is very similar to that observed in NS-DNS

calculations [68]. The values of n obtained in the present work agree well with the

experimental and numerical NS-DNS data.

In Fig. 16, the upper plot (Fig. 16(a)) shows the compensated energy spectra

[Ê(κ, t)/κ4] of the above 1283 simulation at early times during which cascade is the

dominant process. Initially, the spectrum (dashed line) is narrow and soon the energy

spreads to higher wave numbers (smaller scales) due to the nonlinear cascade process.

This phenomena leads to the increase of the dissipation rate in physical space, as

shown in Fig. 14. This fact, in itself, is significant since advection (the source of

nonlinearity) is handled very differently in LBE. At this stage, the spectrum scales

as Ê(κ, t′) ∼ κ4 at small κ. The bottom plot (Fig. 16 (b)) shows another 1283

simulation which has the same rms of the initial velocity field and ν as the upper

case but the initial non-zero energy is concentrated in the range of 8 ≤ κ ≤ 16,

resulting in Reλ ≈ 67. In spite of the different range of initial energy, the spectrum

still scales as Ê(κ, t′) ∼ κ4.

Next we show results from a set of simulations in which the initial spectrum is

also given by Eq. (4.17) but with m = 2. In Fig. 17, the compensated spectrum

Ê(κ)/κ2 is shown at various times. It is seen that the spectrum now scales as κ2. In
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Fig. 15. Dependence of the decay exponent n = 1/(C2 − 1) on initial conditions and

Reλ. The quantity C2 is depicted in the figure instead of n. Solid lines

represent NS-DNS data from Mansour & Wray [68] and symbols correspond

to the LBE-DNS results of the present work. For the 1283 resolution, •:
urms = 0.0064, kmin = 1, kmax = 8, and ν = 0.01 (τ = 0.53); �: urms = 0.021,

kmin = 8, kmax = 16, and ν ≈ 0.00167 (τ = 0.505); ◦: urms = 0.022,

kmin = 1, kmax = 8, and ν ≈ 0.00167 (τ = 0.505). For the 643 resolution

(×): urms = 0.022, kmin = 4 and kmax = 8, and ν ≈ 0.00167 (τ = 0.505).
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Fig. 16. Compensated energy spectra for two cases of 1283 at early times. (a)

t′ = 0.022, 0.044, 0.066, and 0.088; (b) t′ = 0.0022, 0.022, and 0.088. The

dashed lines represent the initial spectra given by Eq. (4.17) with m = 4.

The spectra scale as Ê(κ, t′) ∼ κ4 at small κ.
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Fig. 17. Compensated energy spectra for a 1283 simulation (urms = 0.023, ν ≈ 0.0017

(τ = 0.505), and Reλ ≈ 141), at early times, t′ = 0.011, 0.017, 0.027. The

dashed lines represent the initial spectra given by Eq. (4.17) with m = 2. The

spectra scale as Ê(κ, t′) ∼ κ2 at small κ.
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summary, as shown in Fig. 18, the low wave-number spectra scale as Ê(κ) ∼ κ4 (Fig.

18 (a)) if m = 4 and Ê(κ) ∼ κ2 (Fig. 18 (b)) if m = 2. This dependence of low-wave

number scaling on initial spectrum is in exact agrement with the results reported in

Mansour & Wray [68] and Huang & Leonard [67].

b. Rotating reference frame.

LBE-DNS of decaying HIT in a rotating frame is also performed. Without loss of

generality, we assume that the frame of reference rotates about the z-axis with the

angular velocity �Ω = (0, 0, ω). The Rossby number is defined as Ro = κpurms/ω,

where κp characterizes the energy containing wave number at t = 0. Here, we use

κp = (κmax − κmin)/2.

The effects of rotation are scale dependent and they are enhanced by increasing

the rotation rate ω (decreasing Ro). In general, it has been well understood that

rotation slows down the cascade and delays the approach to equipartition [88, 89].

These features are captured in Figs. 19 and 20. Fig. 19 shows the evolution of kinetic

energy at various Rossby numbers in a simulation with 1283 resolution. The initial

energy spectrum is non-zero in the range of 1 ≤ κ ≤ 8. As expected, the energy decay

slows down with decreasing Rossby number (or increasing rate of rotation). Closer

examination of the spectra (Fig. 20) shows the tendency to maintain more energy at

the small wave numbers (large scales) when the system rotates. The faster the system

rotates (smaller Rossby number), the more prominent is this tendency.

2. LBE-LES of decaying isotropic turbulence

In the previous section, it was clearly demonstrated that the LBE method is an

accurate DNS tool for turbulence. It is also important to asses the ability of LBE in

the LES context. In this work, we conduct LES of decaying HIT without rotation.
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Fig. 18. Energy spectra for two cases of 1283 above with initial energy concentrating in

the range of 1 ≤ κ ≤ 8 at t′ = 0 and t′ = 0.022 respectively. The initial energy

spectra: (a) E(κ) = 0.038κ4 exp(−0.14 κ2); (b) E(κ) = 0.038κ2 exp(−0.14 κ2)

respectively.
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Fig. 19. Kinetic energy decay in 1283 LBE-DNS with different Rossby number Ro.



60

1E-01

1E+01

1E+03

1E+05

1E+07

1 10

2.0

1.25

1.5

∞

Ro

 

E
 (

κ)
 

κ 

Fig. 20. Energy spectra at t′ = 10.5 with different Rossby number Ro for 643 case:

urms = 0.023, kmin = 1, kmax = 4, and ν = 0.01 (τ = 0.53). The dashed line is

the inertial case (�Ω = �0 or Ro = ∞).

Investigation of the LES of decaying HIT with rotation will be presented in the near

future.

In order to perform close comparisons with DNS results, we perform LES with

the initial large-scales identical to that of 1283 LBE-DNS case (corresponding to the

results presented in Fig. 14). Thus the initial flow fields obtained in the LBE-DNS are

appropriately truncated in spectral space to yield the initial fields for the LBE-LES

for 323 and 643 resolutions. In other words, the initial LBE-LES field is obtained by
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filtering out all wave numbers above 16 for 323 and 32 for 643.

a. Calibration of Csm

Our first exercise is to determine the appropriate Smagorinsky constant for LBE-

LES. Fig. 21 shows the energy spectra at some specific time instant with different

Smagorinsky constant values for both 323 and 643 cases. The instantaneous LES

spectra with resolutions 323 and 643 are compared against DNS spectrum at the

same time. In general, 643 performs better than 323 although at small κ (large scale)

region both 323 and 643 spectra agree well with the DNS spectrum. The comparison

of the kinetic energy decay from the same runs is shown in Fig. 22. From both figures,

we find that Csm = 0.1 yields better results than the typical value of Csm = 0.17 used

in the NS-LES [2]. The need for a reduced Csm in LBE-LES compared with the

NS-LES value can be explained as follows. In the lattice Boltzmann equation there

are nonhydrodynamic variables which are higher order fluxes (∂n
i uj, n > 1). These

higher order fluxes could lead to a higher effective viscosity and other nonlinear effects.

Thus a smaller Csm value in LBE-LES is adequate to achieve the same effect as a

larger Csm in NS-LES. In Fig. 23, we compare the instantaneous flow structure of

uz(i, j, k = N/2, t′) obtained by the LBE-LES with that by LBE-DNS. As shown

in Fig. 23, the LBE-LES appears to capture the flow-field structure quite adequately

even with a coarse resolution of 323. In all subsequent calculations, we use Csm = 0.1.

b. Other methods of S computation

In all the above calculations, we determine S (in the express of νt) from the second

moment of nonequilibrium distribution functions at the current time-step. We now in-

vestigate the other options for determining S which may provide some computational

advantages.
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Fig. 21. Energy spectra at t′ = 0.04796 with different Csm and resolution. Solid line

for LBE-DNS (1283) and symbols for LBE-LES (◦: 643, Csm = 0.1; �: 643,

Csm = 0.17; ×: 323, Csm = 0.1; +: 323, Csm = 0.17).
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Fig. 22. Kinetic energy decay with different Csm and resolution. Solid line for

LBE-DNS (1283) and symbols for LBE-LES (◦: 643, Csm = 0.1; �: 643,

Csm = 0.17; ×: 323, Csm = 0.1; +: 323, Csm = 0.17).
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Fig. 23. Contours of the instantaneous flow field uz(i, j, k = N/2, t′). LBE-DNS

vs. LBE-LES with different resolutions. The 323and 643 LBE-DNS contours

shown here are obtained by truncating the 1283 LBE-DNS data.
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First, we test two different ways to compute the strain rate tensor: (i) from the

second moment of nonequilibruim distribution functions as given in Eq. (4.11) and (ii)

by finite-difference approximation of derivatives Sij = (∂jui +∂iuj)/2. In Fig. 24, we

compare the kinetic energy evolution from both computations with LBE-DNS result

at two resolutions. In the 323 case (Fig. 24, upper), it is seen that the computation

using finite-difference approximation quickly diverges while computation from the

nonequilibrium distribution function moment captures the DNS result. In the 643

case (Fig. 24, bottom), since the resolution is high enough, both computations yield

good results. Next, we test two different ways of computing strain rate S from the

second moment of nonequilibruim distribution functions. In the implicit method, S

of the current time-step is used to yield Eq. 4.16 for νt. In the explicit approach, S

from previous time-step is used (as in Eq. 5.6).

Fig. 25 depicts the contours of the instantaneous flow structure of uz(i, j, k =

N/2, t′) obtained from LBE-LES (323) by using the two formulae to compute νt.

The velocity fields obtained with the two formulae are almost identical, as shown in

Fig. 25; the L2-norm difference between the two velocity fields is less than 0.02%.

Therefore, we verify that the eddy viscosity can be computed by either Eq. (4.16) or

Eq. (5.6) without significant effect on the flow fields.

3. LBE-LES vs. NS-LES

We further compare the LBE-LES with the NS-LES results at 323 resolution and the

results are shown in Figs. 26 – 28.

The initial velocity fields for LBE-LES and NS-LES calculation are nearly iden-

tical. From Figs. 26 and 27, it is seen that the kinetic energy and spectra computed

from LBE-LES are somewhat closer to the DNS results than those calculated from

NS-LES. The difference can be seen more clearly from contours of the instantaneous
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Fig. 24. 323 (upper) and 643 (bottom) kinetic energy decays of LBE-LES with different

ways to compute strain rates vs. LBE-DNS. Solid lines: LBE-DNS; Dashed

lines: LBE-LES, strain rate computed by finite difference; Dashed-dot lines:

LBE-LES, strain rate computed by nonequilibrium distribution functions.
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t'=0.0436 t'=0.109

Fig. 25. Contours of the instantaneous flow field uz(i, j, k = N/2, t′) obtained by

LBE-LES with a resolution of 323 and two different formulae for νt in two

different times. Top row: νt is computed according to Eq. (4.16) and bottom

row: νt is computed according to Eq. (5.6) with one time step lagging in S.
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Fig. 26. Comparison of kinetic energy decay of 323 LBE-LES (◦), 323 NS-LES (∗) and

1283 LBE-DNS (�).
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Fig. 27. Comparison of the energy spectra at t′ = 0.06079 of 323 LBE-LES (◦), 323

NS-LES (∗) and 1283 LBE-DNS (�).
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flow field uz(i, j, k = N/2, t′) at three different times as shown in Fig. 28. By Com-

paring the LBE-LES results (left column) and the NS-LES results (right column)

with the LBE-DNS results (center column), we observe that LBE-LES preserves the

flow structure better than the corresponding NS-LES. The 323 LBE-DNS contours

shown here are obtained by truncating the 1283 LBE-DNS data.

E. Summary and conclusions

In this work we perform DNS and LES of the classical decaying HIT problem with

and without reference frame rotation using the LBM. Three categories of simulations

have been performed. First we conduct the direct numerical simulations by using the

LBM. The well known power-law decay of the kinetic energy is reproduced. The decay

exponents obtained in the LBE simulations are in good agreement with the results

from experimental measurements and NS-DNS calculations. The low-wavenumber

energy spectrum scaling depends on initial conditions. Both κ4 and κ2 scaling are

obtained from appropriate initial conditions consistent with experimental data [67,

68]. The effect of rotation on turbulence, which is to suppress the spectral cascade,

is also well captured.

Second, we conduct a comparative study of the LBE-LES and the LBE-DNS.

Comparisons between 643, 323 LBE-LES and 1283 LBE-DNS show that the large scale

motion is well captured by LBE-LES. A smaller Smagorinsky constant, Csm = 0.1, is

demonstrated to achieve better performance in LBE-LES. By choosing appropriate

Smagorinsky constant, even 323 can adequately capture large scale motions.

Finally we compare both the LBE-LES and NS-LES with with the correspond-

ing DNS results. Our comparisons indicate that LBE-LES has better capability to

preserve flow-field structure than NS-LES.
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LBM-LES, t'=0.006 LBM-DNS, t'=0.006 NS-LES, t'=0.006

LBM-LES, t'=0.015 LBM-DNS, t'=0.015 NS-LES, t'=0.015

LBM-LES, t'=0.06 LBM-DNS, t'=0.06 NS-LES, t'=0.06

Fig. 28. Contours of the instantaneous flow field uz(i, j, k = N/2, t′). The LBE-LES

and NS-LES with a resolution of 323 compared to the LBE-DNS with a res-

olution of 1283 at three different times. The 323 LBE-DNS contours shown

here are obtained by truncating the 1283 LBE-DNS data.
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This work further establishes the LBM as a viable computational tool for turbu-

lence simulations.
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CHAPTER V

D3Q19 MULTI-RELAXATION-TIME LATTICE BOLTZMANN MODEL FOR

LES OF TURBULENCE

A. Introduction

The lattice Boltzmann equation (LBE) [23, 90] is now well established as an accurate

and efficient method for direct numerical simulations (DNS) for flow problems in

recent years (cf. reviews [27–29] and references therein). However, the LBE method

has not been thoroughly investigated in the area of large eddy simulations (LES).

Although LES based on the LBE with Smagorinsky model was proposed early on

[84, 91, 92], it is only recently the LBE-LES has been applied to some more realistic

flows [86, 87, 93–95]. In this paper we will study a turbulent square jet in three

dimensions (3D) with the LBE-LES.

In the LBE literature, the lattice Boltzmann equation with the single-relaxation-

time (SRT) approximation or Bhatnagar-Gross-Krook (BGK) [36] model is the most

popular one [25, 71], due to its simplicity. However, the lattice BGK (LBGK) model

has limitations due to its numerical instability [39] and inaccuracy in boundary con-

ditions [96]. Many of these limitations in the LBGK models can be overcome with

the use of multiple-relaxation-time (MRT) model described in [37–40]. It has been

clearly demonstrated that the LBE models with MRT collision operators have inher-

ent advantages over their LBGK counterparts [37–40, 96]. The LBE model used in

the present work is a three dimensional (3D) 19-velocity (D3Q19) model with MRT

collision operator [38]. We apply the MRT-LBE method for LES of a square turbulent

jet flow.

Turbulent jet emerging from a square exit has been previously studied by means
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of experiments and Navier-Stokes based simulations [97]. In this work we study the

turbulent square jet at Re = 184, 000 using LBM-LES. The remainder of this chapter

is organized as follows. Section B briefly describes the formulation of MRT-LBE with

the Smagorinsky eddy viscosity model for LES. Section C presents the numerical

results for the turbulent square jet by using the LBE-LES and compares the LBE-LES

results with experimental data. We close with a discussion in Section D. Appendices

C and D discuss the calculation of the strain-rate tensor from nonequilibrium moments

and the implementation tips of the D3Q19 MRT-LBE model.

B. D3Q19 MRT-LBE with Smagorinsky model

In the D3Q19 MRT-LBE model [38], the 19 discrete velocities are:

�eα =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(0, 0, 0), α = 0,

(±1, 0, 0), (0,±1, 0), (0, 0,±1), α = 1 – 6,

(±1,±1, 0), (±1, 0,±1), (0,±1,±1), α = 7 – 18.

A set of velocity distribution functions {fα|α = 0, 1, · · · , 18} are defined on each lattice

node �x. For a MRT-LBE model with Q(= 19) velocities, the collision is executed in

the moment space M = R
Q, while the advection is done in the velocity space V = R

Q

[38]. The evolution equation for the MRT-LBE is:

f(�x + �eδt, t + δt) − f(�x, t) = �Ω(�x, t) = −M−1 ·Ŝ·[m − m(eq)], (5.1)

where δt is the time step size and M is a Q×Q matrix which linearly transforms the

distribution functions f ∈ V to the velocity moments m ∈ M via:

m = M · f , f = M−1 · m. (5.2)
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We use the bold-face symbols to denote column vectors as the following:

f(�x + �eδt, t + δt) := (f0(�x, t + δt), . . . , f18(�x + �e18δt, t + δt))
T,

f(�x, t) := (f0(�x, t), f1(�x, t), . . . , f18(�x, t))T,

m := (m0(�x, t), m1(�x, t), . . . , m18(�x, t))T,

m(eq) := (m
(eq)
0 (�x, t), m

(eq)
1 (�x, t), . . . , m

(eq)
18 (�x, t))T,

where T is the transpose operator.

The 19 moments are arranged in the following order: m0 = δρ is the density

fluctuation, m1 = e is related to energy, m2 = ε is related to energy square, m3,5,7 =

jx,y,z are components of the momentum �j = (jx, jy, jz) = ρ0�u, m4,6,8 = qx,y,z are

related to components of the heat flux �q = (qx, qy, qz), m9 = 3pxx, m11 = pww and

m13,14,15 = pxy,yz,zx are related to the components of the symmetric and traceless

strain-rate tensor, m10 = 3πxx and m12 = πww are the fourth order moments, and

m16,17,18 = mx,y,z are the third order moments [38]. The quantity ρ0 is the mean

density in the system, which is usually set to 1. The relaxation matrix Ŝ is diagonal

in the moment space M:

Ŝ = diag(0, s1, s2, 0, s4, 0, s4, 0, s4, s9, s2, s9, s2, s9, s9, s9s16, s16, s16)

= diag(0, se, sε, 0, sq, 0, sq, 0, sq, sν , sπ, sν , sπ, sν , sν , sν , sm, sm, sm). (5.3)

The equilibria of the moments, m(eq), are the functions of the conserved mo-

ments, which are density ρ and flow velocity �u for athermal fluids, i.e., m(eq)(�x, t) =

m(eq)(ρ(�x, t), �u(�x, t)). For the D3Q19 model, the equilibria for the non-conserved

moments are given by [38, 40]:

m
(eq)
1 = −11δρ +

19

ρ0

�j ·�j, m
(eq)
2 = ωεδρ +

ωεj

ρ0

�j ·�j, (5.4a)
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m
(eq)
4,6,8 = −2

3
jx,y,z, (5.4b)

m
(eq)
9 =

1

ρ0

(3j2
x −�j ·�j), m

(eq)
11 =

1

ρ0

(j2
y − j2

z ), (5.4c)

m
(eq)
10 = ωxxm

(eq)
9 , m

(eq)
12 = ωxxm

(eq)
11 , (5.4d)

m
(eq)
13 =

1

ρ0

jxjy, m
(eq)
14 =

1

ρ0

jyjz, m
(eq)
15 =

1

ρ0

jzjx, (5.4e)

m
(eq)
16 = m

(eq)
17 = m

(eq)
18 = 0. (5.4f)

The parameters in the equilibria are chosen as the following to optimize the linear

stability of the model: ωε = ωxx = 0 and ωεj = −475/63 [38]. The density fluctuation

δρ instead of the total density ρ is used in m0, m
(eq)
1 and m

(eq)
2 to reduce the numerical

effects due to the round-off error [38].

The speed of sound in the model is cs = 1/
√

3 in the lattice units of δx = δt = 1.

And the viscosity is

ν =
1

3

(
1

sν

− 1

2

)
c2δt, c :=

δx

δt

. (5.5)

For LES, ν = ν0 + νt, where ν0 and νt are the molecular viscosity and turbulent

viscosity (or eddy viscosity), respectively. In the Smagorinsky model [2, 85], the eddy

viscosity νt is determined from the filtered strain rate tensor Sαβ = (∂αuβ + ∂βuα)/2,

a filter length scale ∆x and the Smagorinsky constant CS:

νt = (CS∆x)
2S̄, S̄ :=

√
2S : S. (5.6)

In the LBE-LES with a uniform mesh, we set ∆x = δx = 1 and CS = 0.1. It should be

noted that in the LBE-LES, all the quantities involved, i.e., ρ, �u and other moments

of f, are filtered quantities. Since we are only concerned with LBE-LES, we do not

use different symbols to distinguish filtered quantities from the unfiltered ones. The

calculation of Sαβ is given in the Appendix C.

The non-slip boundary conditions in the LBE is realized by the bounce-back
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boundary conditions [83]:

fᾱ = fα − 6wα
�jb · �eα = fα − 6wαρb�ub · �eα, (5.7)

where fᾱ is the distribution function of �eᾱ := −�eα, w0 = 1/3, w1−6 = 1/18 and

w7−18 = 1/36 correspond to the velocities of speed 0, 1, and
√

2, respectively; and ρb

and �ub are respectively the density and velocity at the boundary where the bounce-

back collision occurs. In what follows, we assume ρb = ρ0.

In our simulations, the values for the relaxation rates other than sν are chosen

as the following: s1 = 1.19, s2 = s10 = 1.4, s4 = 1.2, s16 = 1.98. These values of

sα are obtained by optimizing the linear stability of the model [38]. The turbulent

square jet has been studied experimentally and numerically [97].

Three points should be noted here about D3Q19 MRT-LBE-LES model:

1. Although the strain-rate tensor can be directly computed from non-equilibrium

distribution functions in SRT-LBE and from non-equilibrium moments in MRT-

LBE, the latter is more accurate. The reason is as follows: MRT-LBE introduces

a moment representation that makes it possible to only pick up first-order modes

to compute strain-rate tensor components while in SRT-LBE, all modes are not

distinguishable.

2. As pointed out in reference [38], in MRT-LBE-DNS (corresponding to νt = 0),

SRT-LBE-DNS is recovered when set ωε = 3, ωεj = −11/2, ωxx = −1/2, and

si = 1/τ , i = 1, 2, 4, 9, and 16 in Eq. (5.3). The parameter τ is the single

relaxation time. However this statement is not valid for MRT-LBE-LES because

of the presence of eddy viscosity νt.

3. In order to gain efficient computation, all null terms in M, Ŝ, m, and m(eq) in

the collision operator at the right-hand side of Eq. (5.1) should be excluded
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in the iteration. Efficient implementation tips for the collision term of D3Q19

MRT-LBE-LES are given in Appendix D. By doing this, our MRT-LBE-LES

computation is not expensive (only around 5% slower than its SRT counterparts

in terms of the CPU time).

C. LBE-LES for square turbulent jet

In the experimental and numerical study of square jet by Quinn and Militzer [97],

the jet is generated in a 762 × 123 (cm3) settling chamber with a curved contraction

connected to a square jet exit slot of area 4× 4 (mm2), from which the jet ejaculates

into a 2442 × 366 (cm3) chamber. The mean streamwise velocity at the center of the

slot exit u0 is 60 (m/s). The Reynolds number based on the slot side dimension h (4

(mm)), u0 and the viscosity of air is about 184,000.

Our focus in the present work is on the region near the jet exit. We use a

uniform mesh of 1002×500 for the jet chamber, with the jet exit slot area of 202. The

equivalent diameter De (De := 2h/
√

π) of the jet exit is about 22.57. The coordinate

system of the simulation is arranged as follows. The x, y and z axes are parallel

to streamwise, spanwise, and vertical directions. The jet exit slot is situated at the

center of plane x = 0. The periodic boundary conditions are applied in both y and

z directions. We do not use nonslip wall boundary conditions in y and z directions

because a higher resolution are required near the wall and it does not improve the

result much. We impose a uniform velocity and density (pressure) profile for the

jet at the exit: u0 = 0.1 and ρ0 = 1.0. Non-slip and fully developed-flow boundary

conditions are applied at upstream and downstream boundaries, respectively. The

molecular viscosity ν0 is obtained from Re = 184, 000, u0 = 0.1 and h = 20 in lattice

units. Initially, the system is set in a quiescent state of ρ = ρ0 = 1.0 and �u = 0.0
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except the jet exit area where �u = u0
�i. After an initial period of 1000T0 (T0 := De/u0),

the statistics are gathered over a period of 1000T0 to obtain meaningful statistics.

In any jet study, three quantities are of primary interest: (a) the extent of jet

penetration into the ambient; (b) the extent of jet spread or entrainment and (c) the

evolution of the velocity profile of the jet. We now compare the simulation results

with experimental data in these three categories.
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Experiment LBE

Fig. 29. Decay of the mean centerline streamwise velocity ucl(x) normalized by the

maximum velocity uclmax. The experimental data are taken from Fig. 3 in

[97].

The extent of penetration is best quantified by the rate of decrease of the cen-

terline velocity ucl of the jet. Slow decrease of the centerline velocity would indicate
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deeper penetration of the jet into the ambiance. The computed mean streamwise

velocity evolution on the jet centerline is shown in Fig. 29 along with the experimen-

tal result of Quinn and Militzer [97]. The centerline velocity ucl is normalized with

uclmax which is the maximum mean streamwise velocity along the jet centerline. The

maximum centerline velocity uclmax is not at the jet exit but at vena contracta located

approximately at x/De ≈ 1.5. The vena contracta effect is more pronounced in the

experiment [97] than in the simulations. This is due to the difference in the jet exit

velocity profile in the two cases. In the experiment the jet exit profile is not uniform

due to the curvature in the streamlines as they emerge from the plenum chamber

[97]. This profile strongly depends on the plenum chamber geometry and jet-exit

details and can change significantly from one experiment to the other. Here, we do

not attempt to address this issue and use a simple plug (uniform) jet-exit velocity

profile. We focus on the agreement between the simulations and experiment in the

region 2 ≤ x/De ≤ 15. The results show that beyond the vena contracta, the mean

streamwise velocity decreases monotonically. Although the vena contracta effect is

not captured precisely, the LBE results agree with the experimental ones in the region

of interest. To produce better agreement in the jet exit region x/De < 2, a better

physical description of the plenum chamber and finer grid resolution are required.

Fig. 30 shows the near field spanwise profiles of the mean streamwise velocity on

the xy plane at different streamwise locations x/De = 0.28, 2.688, 4.484 and 7.088. In

Fig. 30, yhlf is the velocity half-width of the jet in the spanwise (y) direction, which is

the distance between the jet centerline and the location where the mean streamwise

velocity is half that of the centerline. Very good agreement at all locations along

streamwise direction between the experimental and LBE numerical results is seen. It

is somewhat surprising that the simulations capture the experimental profile in the

pre-vena contracta region (e.g., x/De = 0.28) reasonably well. However, it should
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Fig. 30. Mean streamwise velocity profiles in the central xy plane (z = 0) at different

locations. (a) x/De = 0.28, (b) x/De = 2.658, (c) x/De = 4.484 and (d)

x/De = 7.088. Experimental data (◦) are taken from Fig. 5 in [97].

be noted that the comparisons are for streamline velocity normalized by centerline

velocity.

The next quantity of interest is the jet spread rate. One quantitative measure

of the spread rate is the jet half-width yhlf . Clearly, this will be a strong function of

downstream location. Rapid increase of the jet half-width with down-stream distance

would indicate rapid mixing or spreading. The computed variation of the half-width

with down-stream distance along jet centerline is shown in Fig. 31. Also shown in the
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Fig. 31. Development of the jet half-width yhlf along the jet centerline. Experimental

(◦) and Navier-Stokes (�) data are taken from Fig. 6 in [97].

figure for comparison are the experimental data and Navier-Stokes numerical data

of Quinn and Militze [97]. Again, the agreement between experimental data and

numerical data from LBE simulation and Navier-Stokes computation is good except

the very near region (x/De < 4). In this region, the experiment exhibits a spread-

contract-spread behavior which is not well captured by either LBE or NS methods. It

is not clear whether the observed experimental behavior is due to the vena contracta

effect or a simpler consequence of the jet exit slot geometry. In either case, to capture

this feature it requires a better representation of the plenum chamber flow and the
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details of jet exist geometry, and finer resolution for the overall flow field.

D. Conclusions

In this work we present a preliminary investigation of the capability of the LBE-

LES method for turbulent jet flows. We use the D3Q19 MRT-LBE model with the

Smagorinsky eddy-viscosity model for subgrid turbulence closure. Numerical evalua-

tion of MRT-LBE-LES is performed in a 3D turbulent square jet flow at Re = 184, 000.

The LBE-LES results are compared with experimental data for the following quanti-

ties: the mean streamwise velocity, the spanwise profiles of mean streamwise velocity

at different down-stream locations and the jet spread. Simulation results are in good

agreement with available data. This investigation demonstrates that MRT-LBE is

a viable method for LES of turbulent jet flows. Further studies of turbulent jets of

different configurations are presented in Chapter VI.
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CHAPTER VI

NEAR-FIELD TURBULENT MIXING SIMULATIONS OF RECTANGULAR

JETS USING LATTICE BOLTZMANN METHOD

A. Introduction

Jets and plumes are omnipresent in nature and engineering applications. In recent

years, special attention has been given to the case of jets emerging from non-circular

exits, which are of great interest because of their enhanced entrainment and mixing

properties relative to those of comparable axisymmetric jets (cf. [98] and references

therein). Rectangular turbulent jet features prominently in technological applications

in aerospace, chemical and mechanical engineering fields. Some of these applications

are in smart-combustor propulsion units of both conventional and V/STOL aircraft,

in the dispersion of pollutant effluents, and in boiler furnaces and gas-turbine plants

of electric power utilities. RTJ combines the variable aspect ratio feature of elliptic jet

with the corner (vertex) feature of square jet, which has attracted extensive interest

in experimental investigations [97, 99–113].

In general, the mixing process in a jet shear layers occurs in two stages: initial

bulk mixing or large-scale stirring and, subsequent small-scale mixing characterized by

gradient steepening leading to enhanced molecular diffusion. The first stage is driven

by the generation of large coherent structures that entrain large pockets of ambient

fluid. Then, these large-scale fluctuations cascade down to the small scales creating

steep gradients which accelerate mixing at the molecular level. Large-scale coherent

structures, are intrinsic features of high Reynolds number mixing layer [114]. They

are generally characterized by organized vorticity distributions. Active and passive

control of jets in practical applications entail clear understanding of the dynamics
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and topology of large-scale coherent structures. In particular, formation, interaction,

merging, and breakdown of large-scale coherent structures in jets need investigation.

Experimental and analytical investigations [99, 100, 105] have shown that the flow

field of RTJ may be subdivided into three main regions: (i) Potential core (PC) region

where the axis velocity (ucl) is close to the jet exit velocity in the core since the mixing

which initiates at the jet boundaries has not permeated yet; (ii) Characteristic decay

(CD) region where velocity profiles in the plane of the minor axis are found to be

self-similar, whereas those in the plane of the major axis are nonsimilar, which leads

to the pronounced axis-switching behavior. The axis velocity decays depending upon

the jet exit configuration. In this region ucl is proportional to x−n with n � 1; (iii)

Axisymmetric decay (AD) region where the velocity field is axisymmetric irrespective

of the exit geometry. AD region extends to infinity.

A unique feature of RTJ is the so-called saddle-back spanwise profile of mean

streamwise velocity in the CD region. Saddle-back velocity profiles are clearly evi-

dent in the large AR RTJ flows, say AR ≥ 10 [102, 104, 105, 109, 113]. In the case

of small AR, Masters and Fotheringham[101] and Tsuchiya et al. [106] report their

observations of saddle-back velocity profiles for AR = 6.44 and 5 in their experiments

respectively. However, such saddle-shaped MSV profile is not evident in the experi-

ment of Quinn [109] in which AR = 5. There is still no consensus on the formation

mechanism of this kind of velocity distribution. Van Der Hegge Zijen [115] suggests

that such a profile may be due to the superposition of a uniform stream with the

flow due to a system of vortex rings representing the jet, while Tsuchiya et al. [106]

suggests that the rapid growth of the saddle-back profiles might be due to a region

where the mixing of the spanwise axis is retarded in comparison with that just on

the lateral axis. However, more detailed study of the flow field is needed to clearly

understand the origin of such profiles. Another striking feature of RTJ is called axis-
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switching: the change in direction of the major axis of the jet. This behavior is most

noticeable in low aspect ratio rectangular turbulent jets [101, 102, 106, 110]. Accord-

ing to Gutmark & Grinstein [98], axis-switching results from self-induced Biot-Savart

deformation of vortex rings with non-uniform azimuthal curvature and interaction

between azimuthal and streamwise vorticity.

Many analytical treatments of non-circular jets have been based on linear sta-

bility analysis [116–119]. However, the extent of literature on detailed numerical

simulations of 3D jet flows is very limited. Most numerical simulations have been

performed for round or planar jets. Much less computational data exist for non-

circular jets. Early numerical attempts of RTJs include Grinstein [120], Miller et

al. [121], and Wilson & Demuren [122] with emphasis on the vorticity dynamics in

the near and mid-range fields. Quite recently, Rembold et al. [123] and Feiz et al.

[124] performed DNS and LES of rectangular turbulent jets respectively to investi-

gate velocity profiles. However these studies stop well short of addressing all pertinent

issues.

The objectives of this work are twofold. (1) To systematically investigate the

near-field turbulent mixing features of RTJs which are dominated by large coherent

flow structures. The near-field consists of potential core and characteristic decay

regions. (2) To further evaluate the capability of MRT-LBE model for LES of tur-

bulence at sufficiently high Reynolds number. Emphasis is placed on the near-field

flow statistics of RTJ flow and comparisons with experimental data qualitatively and

quantitatively. Investigation of the detailed physics of the different phenomena will

be performed in the future.

The remainder of this chapter is organized as follows. The flow fields and bound-

ary conditions are described in Section B. Results of near-field mixing features and

comparisons with experimental data are presented in Section C. Finally, we conclude
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with a brief summary in Section D.

B. Coordinate system and boundary conditions

Instead of solving the usual continuum hydrodynamic equations, i.e. NS equations,

the LBE method deals with the evolution of discretized single-particle velocity dis-

tribution functions. The local macroscopic quantities of density, momentum, and

temperature are computed from these distribution functions. In what follows, we use

the LES-MRT-LBE approach presented in Chapter V to perform all the simulations.

Fig. 32 shows the schematic configuration and coordinate system of the flow

field. Exit velocity u0, MSV on jet centerline ucl, half-widths (yhlf - lateral; zhlf -

spanwise), jet width w, height h, and three axis (x - streamwise, y - lateral, and z -

spanwise) are denoted. In the LES-MRT-LBE model, we use CS = 0.1.

The computational domain of the flow field is a (W ×H×L) channel. The inflow

is a uniform velocity u0 issuing from a (w×h) orifice exit. This configuration results in

a jet with an aspect ratio of AR ≡ w/h and an equivalent diameter of De ≡ 2
√

wh/π.

The equivalent diameter is defined as the diameter of a round exit with the same exit

area as the rectangular exit. Jet exit has been simplified as a plane. We apply the

bounce-back boundary condition [83] at jet exit area (x = 0, −w/2 ≤ z ≤ w/2, and

−h/2 ≤ y ≤ h/2). The remainder of the jet exit plane is treated as a solid wall. Fully

developed boundary condition is applied at outflow(x = L) and periodic boundary

conditions in both lateral and spanwise directions. Initially, the velocity field is �u = 0

everywhere in the computational domain except the jet exit area where �u = u0
�i.

The initial density field is uniform. After an initial run of 1000T0(T0 = De/u0),

the streamwise velocity and the square of streamwise velocity are averaged over time

for another 1000T0 to get the mean streamwise velocity u(x, y, z) and streamwise
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Fig. 32. Schematic configuration and coordinate system of the flow field. Adapted from

Tsuchiya [106].

turbulence intensity u′(x, y, z).

In order to compare our numerical results with published experimental data,

we perform simulations of four jets. The details of the four jets and computational

parameters are given in Table I and II.

C. Numerical results and discussions

In this section, we present results from our simulations and compare them with data

wherever possible. The various experimental works present results in terms of different

flow parameters and comparisons are made for all possible variables.
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Table I. Low AR RTJs conducted in this work. units: length–(cm), velocity–(m/s)

Jet u0 w, h AR De Re W,H,L Reference

I 60 1, 1 1 1.1 208000 5, 5, 35 Quinn & Militzer [97]

II 39 1.5, 1 1.5 1.4 36260 5, 3.7, 28 Tsuchiya et al. [106]

III 60 2.6, 1.3 2 2 128000 8.8, 4.4, 30 Quinn [108, 109]

IV 23 5, 1 5 2.5 35000 10, 4.2, 64 Tsuchiya et al. [106]

Table II. Computational grid sizes of the four jets.

Jet Jet exit size Full domain size

I 20 × 20 100 × 100 × 700

II 32 × 24 150 × 100 × 700

III 40 × 20 160 × 80 × 700

IV 70 × 14 210 × 80 × 700

1. Streamwise centerline velocity decay

The decay of the MSV along the jet centerline of all four jets is shown in Fig. 33.

Vena Contracta effect triggered by the sharp-edged exit is evident in all cases as the

centerline MSV increases initially. Beyond this region, the MSV decreases monoton-

ically. The two near-field sub-regions PC and CD are identified in the figure. In the

CD region, the decay exponents of all cases are around −1 which agrees qualitatively

with experimental data. The faster decay of jet IV demonstrates that the mixing in

the RTJ increases as the jet slot AR increases. Thus, in large AR jets, the ambient

fluid is entrained into the core very rapidly.

Fig. 34 shows the LBM MSV decay of jet I along with experimental results
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Fig. 33. Decay of the MSV along the jet centerline by LES-MRT-LBE simulations. �:

jet III; �: jet IV.

of Quinn & Militzer [97] and duPlessis et al. [125]. It must be noted that the

Quinn experiment uses nozzle-type exit whereas in the LBM simulation and duPlessis

experiment the exit is of orifice-type. The Vena Contracta effect is more pronounced

in the Quinn nozzle-exit experiment than LBM simulation or duPlessis measurement.

Beyond this short region, the three datum sets are in qualitative agreement. The

inverse mean velocity decays along the jet centerline for jet I and jet III are shown in

Fig. 35. Here, umax is the maximum MSV on the jet centerline typically located at

Vena Contracta. The agreement between LBM and experiments is excellent. Also,

the decay rates of the two jets show no distinguishable difference since the AR of the

two jets are very close.
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Fig. 34. Near-field MSV decay of jet I compared with experimental data. •:
LES-MRT-LBE simulation result; ◦: experimental data from Quinn [97]; �:

experimental data from duPlessis [125].

2. Spanwise and lateral profiles of mean streamwise velocity

The spanwise and lateral distributions of MSV at various downstream locations for

jet III and IV are presented in Fig. 36 and 37. The velocity profiles in spanwise and

lateral directions are similar for III since the AR is not high enough. For AR = 5,

the behavior in the two directions are dissimilar. The most striking features is the

pronounced saddle-back spanwise velocity profile at x = 2.8De (Fig. 37 (b)). In

general, LES-MRT-LBE data are found to be in good quantitative agreement with

corresponding experimental data.

It has been long known that saddle-back velocity profile occurs on the spanwise
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Fig. 35. Near-field inverse MSV decay along the jet centerline. (a) jet I •:
LES-MRT-LBE simulation result; ◦: experimental data from Quinn [97]. (b)

jet III •: LES-MRT-LBE; ◦: experimental data from Quinn [108].

axis for large AR, AR ≥ 10 [101–105, 108–110, 113]. The saddle-back MSV profiles

are characterized by steep gradients, which should give rise to high production of

turbulence and thus facilitate effective mixing. There are few observations of saddle-

back profiles in RTJs of smaller AR [101, 106]. According to our reference survey,

AR = 5 [106] is the smallest AR in which the saddle-back profile is experimentally

observed. However according to Quinn [109], saddle-back profiles are only evident for

AR larger than 10. He claimed that “saddle-back profiles are barely noticeable in the

AR 5 jet and are absent (or perhaps not detectable) in the aspect ratio 2 jet”. Our

numerical results show that saddle-back profile is not evident in AR = 2 jet (Fig. 36).

We do observe a mild saddled-back profile in AR = 5 jet (Fig. 37 (b)). Our studies
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Fig. 36. Streamwise mean velocity profiles of jet III at different downstream loca-

tions along with experimental results for comparisons. Spanwise profiles: (a)

x/De=2, (b) x/De=5, and (c) x/De=10; Lateral profiles: (d) x/De=2, (e)

x/De=5, and (f) x/De=10. •: LES-MRT-LBE simulation result; ◦: experi-

mental data from Quinn [108].
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Fig. 37. Streamwise mean velocity profiles of jet IV at different downstream loca-

tions along with experimental results for comparisons. Spanwise profiles:

(a) x/De=0.4, (b) x/De=2.8, and (c) x/De=5.2; Lateralwise profiles: (d)

x/De=0.4, (e) x/De=2.8, and (f) x/De=5.2. •: LES-MRT-LBE simulation

result; ◦: experimental data from Tsuchiya [106].
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also show that the occurrence of saddle-back may be influenced by factors such as

jet-exit geometry, jet-exit velocity profile and boundary conditions.

3. Velocity contours and axis switching

The jet spread rates in the X-Y and X-Z planes are shown in Fig. 38–40 for jet II, III,

and IV respectively. The spread rates are quantified in terms of lateral half-width
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e

Fig. 38. Half-velocity width development of jet II •: LES-MRT-LBE simulation result;

◦: experimental data from Tsuchiya [106].

(yhlf ) and spanwise half-width (zhlf ). Experiments indicate that while yhlf increases

monotonically, zhlf stays nearly constant (even decreases) at early stages and then

grows. The LBM results capture these effects adequately well. The difference in

yhlf and zhlf growth rates leads to the phenomenon of axis-switching in the low

AR jets. Axis-switching is of interest both from fundamental physical and practical

application points of view. Beyond this region, the jet spreads in a similar fashion in
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Fig. 39. Half-velocity width development of jet III •: LES-MRT-LBE simulation re-

sult; ◦: experimental data from Quinn [109].
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sult; ◦: experimental data from Tsuchiya [106].
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both directions. The axis-switching phenomenon is further investigated next.

In Fig. 41, the computed half-width velocity (u/ucl = 0.5) contours of jet II at

different x-locations are directly compared with experimental contours at approxi-

mately the same locations. The simulation mimics the deformation of the jet spread
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Fig. 41. Half-width contour of streamwise mean velocity (u/ucl = 0.5) of jet II at

different x-locations. h is the jet height. (a) experimental data from Tsuchiya

[106]; (b) LES-MRT-LBE simulation result.

from the initial rectangular shape with major axis along spanwise through a rhombus-

like shape at a short distance from the exit to an ellipse with major axis along lateral

direction. This is a typical axis-switching phenomenon at relatively low AR (=1.5).

For AR = 2, the axis-switching behavior is slightly different. Fig. 42 (a)–(d) show

the MSV contour maps of jet III at 0.03De, 0.625De, 3.75De, and 6.25De respec-

tively. The contour levels are 0.45, 0.575, 0.7, 0.825, 0.9. At location x = 0.03De

(Fig. 42 (a)), the MSV distribution is fairly uniform. The contours retain the rect-

angular shape of the jet exit (Fig.42 (b)). The initial close spacing of the contours
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Fig. 42. Mean streamwise velocity (u/ucl) contour development of jet III. (a)

x/De = 0.03 (sharp rectangle), (b) x/De = 0.625 (rounded rectangle), (c)

x/De = 3.75 (oval), and (d) x/De = 6.25 (circle).
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implies high MSV gradients. At the intermediate streamwise station (Fig. 42 (c)),

the contours take on an oval shape with wider spacing implying significant mixing.

From location x = 6.25De (Fig. 42 (d)) onwards, the contours are essentially circu-

lar. The change in shape of the MSV field from rectangular to oval to circular is a

characteristic feature of RTJ flow with larger AR. In Quinn’s experiments [110], this

rectangular–oval–circular transition for AR = 2 has been clearly captured.

According to the instability analysis of Koshigoe & Tubis [117] for elliptic jets,

the initial development of axis switching is characterized by the deformation of the

coherent structures in the elliptic jet. The deformation of the structures and sub-

sequent development of axis switching can be associated with the self-induction of

asymmetrical distribution of vorticity in the elliptic jet, which causes differences in

roll-up locations. According to Tam & Thiess [119], in high AR RTJs, the corner

instability rapidly induces deformation of coherent structures causing them to evolve

in an axisymmetric fashion further downstream. In future work, we will further in-

vestigate the physical mechanisms that cause axis switching.

4. Streamwise turbulence intensity

The streamwise turbulence intensity (u′/ucl) of jets I, III and IV along the jet cen-

terline is shown in Fig. 43 (a)–(c). Corresponding experimental results are also pre-

sented. In all three jets, u′ increases rapidly near the jet exit (or Vena contracta) where

large local shear leads to high values of turbulence production. The LES-MRT-LBE

results are in reasonable qualitative agreement with experimental data. The spanwise

profiles of the streamwise turbulence intensity of jet I at various streamwise locations

are presented with experimental results in Fig. 44. Although the LES-MRT-LBE

simulation captures the profile shapes at each location, the magnitudes of turbulence

intensity are quantitatively different. The values of streamwise turbulence intensity
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Fig. 43. Turbulent intensity distribution along jet centerline. (a) jet I, •:
LES-MRT-LBE simulation result; ◦: experimental data from Tsuchiya [106].

(b) jet III, •: LES-MRT-LBE simulation result; ◦: experimental data from

Quinn [109]; (c) jet IV, •: LES-MRT-LBE simulation result; ◦: experimental

data from Tsuchiya [106].



101

0

0.2

0.4

-2 -1 0 1 2

y/yhlf

u'
/u

cl

0

0.1

0.2

0.3

-2 -1 0 1 2

y/yhlf
u'

/u
cl

(b)

0

0.1

0.2

0.3

-2 -1 0 1 2

y/yhlf

u'
/u

cl

0

0.1

0.2

0.3

-2 -1 0 1 2

y/yhlf

u'
/u

cl

(a)

(c) (d)

Fig. 44. Spanwise profiles of streamwise turbulence intensity of jet I at different

downstream locations along with experimental results for comparisons. (a)

x/De=0.28, (b) x/De=2.658, (c) x/De=4.484, and (d) x/De=7.088. •:
LES-MRT-LBE simulation result; ◦: experimental data from Quinn [97].
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are systematically larger than those of experiments. This difference is amenable to

a simple explanation. In each case, the turbulence intensity is normalized by the

centerline velocity. As can be seen from previous results, the ucl of LES-MRT-LBM

tends to be smaller than the experimental values. Therefore, it is natural that the

u′/ucl ratio will be larger in LES-MRT-LBM than in experiments.

D. Conclusion

We numerically investigate the near-field turbulent mixing features of low AR rectan-

gular jets using the novel LES-MRT-LBE computational tool. The near-field region

is comprised of potential core and characteristic decay regions where mixing is driven

by the large coherent structures. All four jet flows are of sufficiently high Reynolds

numbers ranging from 35000 to 208000 based on equivalent diameter. Computed

flow parameters include MSV, half-velocity width in both spanwise and lateral di-

rections, and streamwise turbulence intensity. The well-known phenomena of RTJ

flow, saddle-back velocity profile and axis-switching, are both captured. The decay

exponent of MSV on the jet centerline in CD region is also computed. Several compar-

isons between LES-MRT-LBE and experimental data show quantitative or qualitative

agreement in near-field region. It is also found that large AR jet mixes faster than

low AR jet. In the case of low AR jet (AR < 5), the MSV profiles in spanwise and

lateral directions are similar. When AR > 5, this similarity is broken: saddle-back

velocity profiles occur on spanwise axis (the long axis) but not on lateral axis (short

axis). As the jet spreads, low AR jets (AR = 1.5 and 2) develop axis-switching from

spanwise to lateral axes.

Overall, this work clearly demonstrates that LES-MRT-LBE is a reliable tool to

simulate near-field of RTJ flows.
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CHAPTER VII

SUMMARY

In this dissertation, we have presented results from applications of lattice Boltzmann

method (LBM) to turbulence, mixing and combustion. Both single-relaxation-time

(SRT) approach and multiple-relaxation-time (MRT) approach are used and both

direct numerical simulation (DNS) and large eddy simulation (LES) are conducted

in this work. In order to evaluate and benchmark the efficiency and effectiveness of

LBM for turbulent, mixing and reacting flows, we revisit a suite of classical problems:

• LES and DNS of decaying isotropic turbulence;

• DNS of decaying isotropic turbulence with frame rotation;

• Low aspect ratio rectangular turbulent jet flow;

• Non-premixed scalar mixing; and

• Premixed reacting flow.

We perform detailed comparisons with Navier-Stokes calculations and experimental

data wherever available. Our inferences are:

• LBM-DNS captures the cascade physics and rotation effects in decaying turbu-

lence very well. The low-wavenumber scaling of the spectra and the final-stage

decay exponent obtained from LBM-DNS are in excellent agreement with ex-

perimental data and DNS-NS results.

• LBM-LES performs very well in decaying isotropic turbulence (without rota-

tion).
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• Comparison with NS-LES using identical closure models and same-order nu-

merical schemes shows the LBM-LES results are somewhat superior.

• Computations of rectangular jet flows show that intricate features such as axis

switching and saddle-back profiles are well reproduced by LBM-LES computa-

tions.

In conclusion, this work validates the use of LBM for turbulence, mixing, and

reaction.
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APPENDIX A

DERIVATION OF HYDRODYNAMIC EQUATIONS AND MUTUAL

DIFFUSIVITY FOR BINARY SCALAR MIXING MODEL

In order to derive the corresponding hydrodynamic equations and mutual diffusiv-

ity for the binary scalar mixing model, we must rewrite the the lattice Boltzmann

equation of the binary scalar mixing model in Chapter III as follows:

nσ
α(�x + �eαδt, t + δt) − nσ

α(�x, t) = − 1

τσ
[nσ

α(�x, t) − nσ(eq)
α (�x, t)] (A.1)

Choose the equilibrium distribution functions to be

nσ(eq)
α = wαnσ[1 +

3(�eα · �uσ(eq))

c2
+

9(�eα · �uσ(eq))2

2c4
− 3(uσ(eq))2

2c2
] (A.2)

where �uσ(eq) is a parameter which will be determined later from the distribution

functions of two species and the interaction between them. c = δx/δt = 1 in the

lattice units.

The number density, mass density, velocity of the σ-species and the number

density, the mass density, velocity of the mixture are calculated by

nσ =
∑

α

nσ
α (A.3)

ρσ = mσnσ = mσ
∑

α

nσ
α (A.4)

�uσ =
1

nσ

∑
α

nσ
α�eα (A.5)

n =
∑

σ

nσ (A.6)

ρ =
∑

σ

ρσ (A.7)
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�u =
1

ρ

∑
σ

ρσ�uσ (A.8)

respectively.

When interaction is absent, both species are ideal gases. In this case, we assume

that the velocities �uσ(eq) of two species are all equal a common velocity �u′. Since

in this case the total momentum of particles of two species should be conserved by

collision operator at each lattice site, it is quite straightforward from Eq. (A.1) to

have

�uσ(eq) = �u′ =

∑
σ

ρσ�uσ/τσ∑
σ

ρσ/τσ

in which ρσ�uσ = mσ
∑

α nσ
α�eα is species σ’s momentum.

Introduce interaction force between two species characterized by interaction strength

Gf

�F σ = c2
snGf [∇χσ + (χσ − ωσ)

∇ρ

ρ
] (A.9)

with χσ = nσ/n and ωσ = ρσ/ρ respectively. This force causes an extra momentum

change to species σ in addition to the momentum exchange caused by conventional

collision. To incorporate this momentum change in the dynamics of the distribution

functions, one can simply define

ρσ�uσ(eq) = ρσ�u′ + τσ �F σ (A.10)

Thus, each species satisfies the mass conservation

∑
α

nσ
α(�x + �eα, t + 1) −

∑
α

nσ
α(�x, t) = 0 (A.11)

and the mixture satisfies the momentum conservation∑
σ

mσ
∑
α

nσ
α(�x + �eα, t + 1) − ∑

σ

mσ
∑

α nσ
α(�x, t)

=
∑
σ

�F σ = 0
(A.12)
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Following the algorithm by Xianwen Shan and Gary Doolen [50, 51], we define

the macroscopic velocity of the whole fluid �u as the average of the momentum values

of species σ before and after collision summed over two species as follows.

The momentum of species σ before collision

mσ
∑

α

nσ
α�eα = mσnσ�uσ = ρσ�uσ (A.13)

while the momentum after collision

(1 − 1

τσ )mσ
∑

α

nσ
α�eα +

mσ

τσ

∑
α

nσ(eq)
α �eα = ρσ�uσ − ρσ

τσ �uσ +
mσ

τσ nσnσ�uσ(eq) (A.14)

so that

ρ�u =
1

2

∑
σ

(ρσ�uσ + ρσ�uσ − ρσ

τσ �uσ +
mσ

τσ nσnσ�uσ(eq)) = ρσ�uσ +
1

2
�F σ (A.15)

by noticing Eq. (A.10).

We now follow the Chapman-Enskog technique of successive approximation [126,

127] to obtain the macroscopic fluid equations of the this model.

Expand the left-hand side of Eq. (A.1) in a Taylor series up to the 2nd order to

get

(∂t + �eα · ∇)nσ
α +

1

2
(∂t + �eα · ∇)2nσ

α = − [nσ
α(�x, t) − (nσ(eq)

α (�x, t)]

τσ (A.16)

Introduce a small parameter ε(which is the Knudsen number), and expand

nσ
α = nσ(0)

α + εnσ(1)
α + · · · , ∂t = ε∂t0 + ε2∂t1 + · · · (A.17)

and remember ∇ → ε∇. Since now the collision operator depends upon the spatial

derivatives of particle number, we chose the leading order distribution functions to
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be the equilibrium distribution about the fluid velocity �u, namely,

nσ(0)
α = wαnσ(0)[1 +

3(�eα · �u)

c2
+

9(�eα · �u)2

2c4
− 3u2

2c2
] (A.18)

to obtain a set of macroscopic equations in terms of the correct fluid variables without

changing the conservation relations. The lattice Boltzmann equation is then satisfied

at the next order when terms that depend on spatial derivatives are included. Since

∑
α

nσ(0)
α = nσ,

∑
σ

mσ
∑

α

nσ(0)
α �eα = ρ�u (A.19)

we get ∑
α

nσ(1)
α = nσ,

∑
σ

mσ
∑

α

nσ(1)
α �eα = −1

2

∑
σ

�F σ (A.20)

Expanding the left-hand side of Eq. (A.16) by (A.17), we have

nσ
α(�x + �eα, t + 1) − nσ

α(�x, t)

� ε[(∂t0 +�eα ·∇)nσ(0)
α ]+ ε2[(∂t0 +�eα ·∇)nσ(1)

α +∂t1n
σ(0)
α +

1

2
(∂t0 +�eα ·∇)2nσ(0)

α ] (A.21)

By substituting above equation into the conversation relations (A.11) and (A.12) and

collecting the first order of ε, we obtain

∂t0ρ
σ + ∇ · (ρσ�u) = 0, σ = 1, 2 (A.22)

∂t0(ρ�u) + c2
s∇ρ�+∇ · ρ�u�u =

∑
σ

�F σ (A.23)

From Eq. (A.22), Eq. (A.23) can be written in the form

(∂t0 + �u · ∇)�u = −1

ρ
∇P (A.24)

where p is the pressure given by

p = c2
sρ +

∑
σ

�F σ (A.25)
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The terms of the 2nd order of ε in the expansion of the mass-conversation relation

yield the following equation for each species

∂t1ρ
σ + mσ∇ ·

∑
α

nσ(1)
α �eα +

mσ

2
∇ · (∂t0

∑
α

nσ(0)
α �eα + ∇ ·

∑
α

nσ(0)
α �eα�eα) = 0 (A.26)

Noticing Eq. (A.22), we can evaluate the third term of Eq. (A.26)

mσ(∂t0

∑
α

nσ(0)
α �eα + ∇ ·

∑
α

nσ(0)
α �eα�eα) = −ωσ∇p + c2

s∇ρσ (A.27)

In order to calculate the 2nd term of Eq. (A.26), we substitute the expansions of Eqs.

(A.17) into the lattice Boltzmann equation (A.1) and obtain

∂t0

∑
α

nσ(0)
α �eα + ∇ ·

∑
α

nσ(0)
α �eα�eα = − 1

τσ [ρσ(�u − �u′) +
∑

α

mσnσ(1)
α �eα] + �F σ (A.28)

Multiplied by τσ and summed over all the components, above equation becomes

ρ(�u − �u′) =
∑

σ

τσ �F σ +
1

2

∑
σ

�F σ +
∑

σ

τσωσ∇p − c2
s

∑
σ

τσ∇ρσ (A.29)

∑
α

mσn
σ(1)
α �eα in Eq. (A.28) can then be solved by substituting Eqs. (A.29) and

(A.27) into Eq. (A.28). Combining Eq. (A.26) with the first order equation (A.22),

we obtain the following equation at the second order

∂ρσ

∂t
+ ∇ · (ρσ�u) = −τσ∇ · �F σ + (τσ − 1

2
)∇ · [c2

s∇ρσ − ωσ∇p] + ∇ · ωσ[
∑

k

(τ k +
1

2
)�F k

+∇p
∑

k

τ kωk − c2
s

∑
k

τ k∇ρk] (A.30)

The continuity equation of the whole fluid at the 2nd order is obtained by summing

over two species of the above equation

∂ρ

∂t
+ ∇ · (ρ�u) = 0 (A.31)
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It is known that diffusion occurs among species when the velocities of the species

differ. Mathematically, the diffusion of the constituents is described by a local velocity

of the fluid mixture which is obtained by averaging the velocities of the constituents

through mass, mole, or volume [128]. Here we use the mass fluxes of the species in our

calculation following the treatment presented by Chapman and Cowling [26]. Again,

we average mass fluxes before and after collisions to get the overall mass flux because

of the momentum change of each species

ρσ�uσ =
mσ

2
[
∑

α

nσ
α�eα + (1 − 1

τσ
)
∑

α

nσ
α�eα +

1

τσ

∑
α

nσ(eq)
α �eα] (A.32)

By applying the same Chapman-Enskog technique above, after tedious but straight-

forward manipulations [50, 51], the relative mass flux of species σ is obtained

ρσ(�u − �uσ) = −τσ �F σ + (τσ − 1

2
)[c2

s∇ρσ − ωσ∇p] + ωσ[
∑

k

(τ k +
1

2
)�F k

+∇p
∑

k

τ kωk − c2
s

∑
k

τ k∇ρk] (A.33)

The relative velocity �uσ − �u on the left side of the above equation causes the motion

of species σ. It is noted that the right-hand side terms of Eq. (A.30) are exactly what

the divergence operator acts on in the right-hand side of above equation. Therefore,

we can simply rewrite Eq. (A.30) as the continuity equation of species σ

∂ρσ

∂t
+ ∇ · (ρσ�uσ) = 0 (A.34)

which demonstrates that each species satisfies its own continuity equation at 2nd

order. Following the convention in the diffusion literature, we define the mass flux of

species σ as �jσ = ρσ(�u − �uσ). As a result, Eq. (A.30) can be simply expressed as

(∂t + �u · ∇)ρσ + ∇ · �u = −∇ ·�jσ (A.35)
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By assuming the incompressibility of the fluid, i.e. ∇ · �u = 0. Setting the same

molecular mass (mσ = m) and relaxation time (τσ = τ), we obtain the following

advection-diffusion equation

(∂t + �u · ∇)ρσ = −∇ · c2
sρ(τnGf − τ +

1

2
)∇χσ (A.36)

The diffusion coefficient in the mixture is

D = −c2
sρ(τnGf − τ +

1

2
) (A.37)
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APPENDIX B

PHYSICAL PARAMETERS USED IN THE REACTING FLOW SIMULATION

• Reaction coefficient κov = 9.9 × 107[m3 · mol−1 · s−1]

• Universal gas constant R = 8.315[J · mol−1 · K−1]

• Effective activation energy E = 30[kcal · mol−1] = 1.26 × 105[J · mol−1]

• Heat of overall reaction Q = 2.05 × 106[J · mol−1]

• Density of pre-mixed mixture ρ = 1.2[kg · m−3]

• Heat capacity cp = 29.1[J · mol−1 · K−1] = 103[J · kg−1 · K−1]

• Kinetic viscosity ν = 1.6 × 10−5[m2 · s−1]

• Thermal diffusivity κ = 2.2 × 10−5[m2 · s−1]

• Diffusivity

DC3H8 = 1.1 × 10−5[m2 · s−1], DO2 = 2.1 × 10−5[m2 · s−1]

DCO2 = 1.6 × 10−5[m2 · s−1], DH2O = 2.2 × 10−5[m2 · s−1]

• Mass weight

MC3H8 = 4.4 × 10−2[kg/mol], MO2 = 3.2 × 10−2[kg/mol]

MCO2 = 4.4 × 10−2[kg/mol], MH2O = 1.8 × 10−2[kg/mol]

• Equivalent ratio

φ =
YC3H8/YO2

0.276
= 0.6
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• Length of the 1-D channel L = 16.7[mm]

• Physical velocity up = 1.0[m · s−1]
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APPENDIX C

STRAIN-RATE TENSOR OF D3Q19 MRT-LBE MODEL

In MRT-LBE, it is known that the strain rate tensor can be computed directly from

the nonequilibrium moments. Following is a general derivationa of strain rate tensor

in D3Q19 MRT-LBE model (not limited to LES) so that no any following quantity

is filtered.

The MRT-LBE can be written as

|f(�x + �eαδt, t + δt)〉 − |f(�x, t)〉 = −M−1Ŝ[|m(�x, t)〉 − |m(eq)(�x, t)〉] (C.1)

Taylor expanding the first term on the left-hand side up to the first order in δt, the

above equation becomes

δtDt|f(�x, t)〉 = −M−1Ŝ[|m(�x, t)〉 − |m(eq)(�x, t)〉], (C.2)

where

Dt = diag(∂t, ∂t + �e1 · ∇, . . . , ∂t + �e18 · ∇).

Therefore,

|m(�x, t)〉 − |m(eq)(�x, t)〉 = −δtΛ̂MDtM
−1|m(�x, t)〉 (C.3)

where

Λ̂ = diag(0,
1

s1

,
1

s2

, 0,
1

s4

, 0,
1

s4

, 0,
1

s4

,
1

s9

,
1

s2

,
1

s9

,
1

s2

,
1

s9

,
1

s9

,
1

s9

,
1

s16

,
1

s16

,
1

s16

).

Up to the first order in the Champman-Enskog expansion

|m(�x, t)〉 � |m(0)(�x, t)〉 + |m(1)(�x, t)〉

aBased on a private note from Dr. Li-Shi Luo.
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and notice

|m(0)(�x, t)〉 = |m(eq)(�x, t)〉

we have

|m(1)(�x, t)〉 = −δtΛ̂MDtM
−1|m(0)(�x, t)〉 (C.4)

Neglect the nonlinear and other higher terms (in view of the Chapman-Enskog

analysis) and get the following 12 non-zero non-equilibrium moments

m
(1)
1 � 38(∂xjx + ∂yjy + ∂zjz)

3s1

δt, (C.5)

m
(1)
2 � (3ωε + 2)(∂xjx + ∂yjy + ∂zjz)

3s1

δt, (C.6)

m
(1)
4 � 42∂tjx + (44 − 10ωε)∂xρ

63s4

δt, (C.7)

m
(1)
6 �=

42∂tjy + (44 − 10ωε)∂yρ

63s4

δt, (C.8)

m
(1)
8 �=

42∂tjz + (44 − 10ωε)∂zρ

63s4

δt, (C.9)

m
(1)
9 � −4∂xjx − 2∂yjy − 2∂zjz

3s9

δt, (C.10)

m
(1)
10 � 2∂xjx − ∂yjy − ∂zjz

3s2

δt, (C.11)

m
(1)
11 � −2∂yjy − 2∂zjz

3s9

δt, (C.12)

m
(1)
12 � ∂yjy − ∂zjz

3s2

δt, (C.13)

m
(1)
13 � −∂xjy + ∂yjx

3s9

δt, (C.14)

m
(1)
14 � −∂yjz + ∂zjy

3s9

δt, (C.15)

m
(1)
15 � −∂xjz + ∂zjx

3s9

δt. (C.16)

The 6 strain-rate tensor components Sij = (∂iuj +∂jui)/2 can be computed from Eqs.

(C.5), (C.10), (C.12), and (C.14) – (C.16) straightforwardly as follows.
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Sxx = −s1m
(1)
1

38ρ0δt
− s9m

(1)
9

2ρ0δt
, (C.17)

Syy = −s1m
(1)
1

38ρ0δt
+

s9m
(1)
9

4ρ0δt
− 3s9m

(1)
11

4ρ0δt
, (C.18)

Szz = −s1m
(1)
1

38ρ0δt
+

s9m
(1)
9

4ρ0δt
+

3s9m
(1)
11

4ρ0δt
, (C.19)

Sxy = −3s9m
(1)
13

2ρ0δt
, (C.20)

Syz = −3s9m
(1)
14

2ρ0δt
, (C.21)

Sxz = −3s9m
(1)
15

2ρ0δt
. (C.22)
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APPENDIX D

EFFICIENT IMPLEMENTATION OF COLLISION TERMS

Due to the transformation between the velocity space and the moment space each

time step, the MRT-LBE model has apparently lower computational efficiency than

the counterpart of the SRT-LBE model. Therefore, it’s very important to apply

optimization technique in coding the collision term. Following is the implementation

tips of D3Q19 MRT-LBE model. The tips are subject to ωε = ωxx = 0, s2 = s10, and

s9 = s13 as reference [38] suggested.

(i) Avoid matrix calculation in the transformations between velocity space

V and moment space M.

Noticing the inverse transformation matrix M−1 and the diagonal collision matrix

in Eq. (5.1) are both constant, the matrix multiplication M−1Ŝ should be computed

before the iteration as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 c1 c4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 c2 c5 0 c7 0 0 0 0 c9 c10 0 0 0 0 0 0 0 0
0 c2 c5 0 c7 0 0 0 0 c9 −c10 0 0 0 0 0 0 0 0
0 −c2 −c5 0 0 0 −c7 0 0 −c11 c12 c13 −c15 0 0 0 0 0 0
0 −c2 −c5 0 0 0 c7 0 0 −c11 c12 c13 −c15 0 0 0 0 0 0
0 −c2 −c5 0 0 0 0 0 −c7 −c11 c12 −c13 c15 0 0 0 0 0 0
0 −c2 −c5 0 0 0 0 0 c7 −c11 c12 −c13 c15 0 0 0 0 0 0
0 c3 c6 0 c8 0 c8 0 0 c11 c14 c13 c16 c17 0 0 c18 −c18 0
0 c3 c6 0 −c8 0 c8 0 0 c11 c14 c13 c16 −c17 0 0 −c18 −c18 0
0 c3 c6 0 c8 0 −c8 0 0 c11 c14 c13 c16 −c17 0 0 c18 c18 0
0 c3 c6 0 −c8 0 −c8 0 0 c11 c14 c13 c16 c17 0 0 −c18 c18 0
0 c3 c6 0 c8 0 0 0 c8 c11 c14 −c13 −c16 0 0 c17 −c18 0 c18
0 c3 c6 0 −c8 0 0 0 c8 c11 c14 −c13 −c16 0 0 −c17 c18 0 c18
0 c3 c6 0 c8 0 0 0 −c8 c11 c14 −c13 −c16 0 0 −c17 −c18 0 −c18
0 c3 c6 0 −c8 0 0 0 −c8 c11 c14 −c13 −c16 0 0 c17 c18 0 −c18
0 c3 c6 0 0 0 c8 0 c8 −c9 −c12 0 0 0 c17 0 0 c18 −c18
0 c3 c6 0 0 0 −c8 0 c8 −c9 −c12 0 0 0 −c17 0 0 −c18 −c18
0 c3 c6 0 0 0 c8 0 −c8 −c9 −c12 0 0 0 −c17 0 0 c18 c18
0 c3 c6 0 0 0 −c8 0 −c8 −c9 −c12 0 0 0 c17 0 0 −c18 c18.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where

c1 ≡ 5s1

399
, c2 ≡ 11s1

2394
, c3 ≡ 4s1

1197
, c4 ≡ s2

21
,

c5 ≡ s2

63
, c6 ≡ s2

252
, c7 ≡ s4

10
, c8 ≡ s4

40
,

c9 ≡ s9

18
, c10 ≡ s2

18
, c11 ≡ s9

36
, c12 ≡ s2

36
,
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c13 ≡ s9

12
, c14 ≡ s2

72
, c15 ≡ s2

12
, c16 ≡ s2

24
,

c17 ≡ s9

4
, c18 ≡ s16

8
.

(ii) Avoid using LOOP to reduce computation time since there are many

null components in Ŝ and non-equilibrium moments.

Null terms are s0 = s3 = s5 = s7 = 0, m
(1)
0 = m

(1)
3 = m

(1)
5 = m

(1)
7 = 0, and

m
(eq)
10 = m

(eq)
12 = m

(eq)
16 = m

(eq)
17 = m

(eq)
18 = 0. Instead, express collision terms on a

direction basis. Notice that in all cis, i = 1− 18, only those in Eq. (D.1) are updated

each time step for LES and others should be pre-computed before iteration, notate

m
(1)
α = mα − m

(eq)
α , the collision terms in Eq. (5.1) are computed as follows:

Ω̄0 = c1m
(1)
1 − c4m

(1)
2 ,

Ω̄1 = c2m
(1)
1 + c5m

(1)
2 + c7m

(1)
4 − c9m

(1)
9 + c10m10,

Ω̄2 = c2m
(1)
1 + c5m

(1)
2 − c7m

(1)
4 − c9m

(1)
9 + c10m10,

Ω̄3 = c2m
(1)
1 + c5m

(1)
2 + c7m

(1)
6 + c11m

(1)
9 − c12m10 − c13m

(1)
11 + c15m12,

Ω̄4 = c2m
(1)
1 + c5m

(1)
2 − c7m

(1)
6 + c11m

(1)
9 − c12m10 − c13m

(1)
11 + c15m12,

Ω̄5 = c2m
(1)
1 + c5m

(1)
2 + c7m

(1)
8 + c11m

(1)
9 − c12m10 + c13m

(1)
11 − c15m12,

Ω̄6 = c2m
(1)
1 + c5m

(1)
2 − c7m

(1)
8 + c11m

(1)
9 − c12m10 + c13m

(1)
11 − c15m12,

Ω̄7 = −c3m
(1)
1 − c6m

(1)
2 − c8m

(1)
4 − c8m

(1)
6 − c11m

(1)
9 − c14m10 − c13m

(1)
11

−c16m12 − c17m
(1)
13 − c18m16 + c18m17,

Ω̄8 = −c3m
(1)
1 − c6m

(1)
2 + c8m

(1)
4 − c8m

(1)
6 − c11m

(1)
9 − c14m10 − c13m

(1)
11

−c16m12 + c17m
(1)
13 + c18m16 + c18m17,

Ω̄9 = −c3m
(1)
1 − c6m

(1)
2 − c8m

(1)
4 + c8m

(1)
6 − c11m

(1)
9 − c14m10 − c13m

(1)
11

−c16m12 + c17m
(1)
13 − c18m16 − c18m17,

Ω̄10 = −c3m
(1)
1 − c6m

(1)
2 + c8m

(1)
4 + c8m

(1)
6 − c11m

(1)
9 − c14m10 − c13m

(1)
11
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−c16m12 − c17m
(1)
13 + c18m16 − c18m17,

Ω̄11 = −c3m
(1)
1 − c6m

(1)
2 − c8m

(1)
4 − c8m

(1)
8 − c11m

(1)
9 − c14m10 + c13m

(1)
11

+c16m12 − c17m
(1)
15 + c18m16 − c18m18,

Ω̄12 = −c3m
(1)
1 − c6m

(1)
2 + c8m

(1)
4 − c8m

(1)
8 − c11m

(1)
9 − c14m10 + c13m

(1)
11

+c16m12 + c17m
(1)
15 − c18m16 − c18m18,

Ω̄13 = −c3m
(1)
1 − c6m

(1)
2 − c8m

(1)
4 + c8m

(1)
8 − c11m

(1)
9 − c14m10 + c13m

(1)
11

+c16m12 + c17m
(1)
15 + c18m16 + c18m18,

Ω̄14 = −c3m
(1)
1 − c6m

(1)
2 + c8m

(1)
4 + c8m

(1)
8 − c11m

(1)
9 − c14m10 + c13m

(1)
11

+c16m12 − c17m
(1)
15 − c18m16 + c18m18,

Ω̄15 = −c3m
(1)
1 − c6m

(1)
2 − c8m

(1)
6 − c8m

(1)
8 + c9m

(1)
9 + c12m10 − c17m

(1)
(14)

−c18m17 + c18m18,

Ω̄16 = −c3m
(1)
1 − c6m

(1)
2 + c8m

(1)
6 − c8m

(1)
8 + c9m

(1)
9 + c12m10 + c17m

(1)
(14)

+c18m17 + c18m18,

Ω̄17 = −c3m
(1)
1 − c6m

(1)
2 − c8m

(1)
6 + c8m

(1)
8 + c9m

(1)
9 + c12m10 + c17m

(1)
(14)

−c18m17 − c18m18,

Ω̄18 = −c3m
(1)
1 − c6m

(1)
2 + c8m

(1)
6 + c8m

(1)
8 + c9m

(1)
9 + c12m10 − c17m

(1)
(14)

+c18m17 − c18m18.

Define

a1 ≡ c1m
(1)
1 , a2 ≡ c4m

(1)
2 , a3 ≡ c2m

(1)
1 , a4 ≡ c5m

(1)
2 ,

a5 ≡ c7m
(1)
4 , a6 ≡ c9m

(1)
9 , a7 ≡ c7m

(1)
6 , a8 ≡ c11m

(1)
9 ,

a9 ≡ c10m10, a10 ≡ c12m10, a11 ≡ c13m
(1)
11 , a12 ≡ c15m12,
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a13 ≡ c3m
(1)
1 , a14 ≡ c6m

(1)
2 , a15 ≡ c7m

(1)
8 , a16 ≡ c8m

(1)
4 ,

a17 ≡ c8m
(1)
6 , a18 ≡ c14m10, a19 ≡ c16m12, a20 ≡ c17m

(1)
13 ,

a21 ≡ c18m16, a22 ≡ c18m17, a23 ≡ c8m
(1)
8 , a24 ≡ c17m

(1)
15 ,

a25 ≡ c18m18, a26 ≡ c17m
(1)
14 ,

above collision term expression can be further simplified as

Ω̄0 = a1 − a2,

Ω̄1 = a3 + a4 + a5 − a6 + a9,

Ω̄2 = a3 + a4 − a5 − a6 + a9,

Ω̄3 = a3 + a4 + a7 + a8 − a10 − a11 + a12,

Ω̄4 = a3 + a4 − a7 + a8 − a10 − a11 + a12,

Ω̄5 = a3 + a4 + a15 + a8 − a10 + a11 − a12,

Ω̄6 = a3 + a4 − a15 + a8 − a10 + a11 − a12,

Ω̄7 = −a13 − a14 − a16 − a17 − a8 − a18 − a11 − a19 − a20 − a21 + a22,

Ω̄8 = −a13 − a14 + a16 − a17 − a8 − a18 − a11 − a19 + a20 + a21 + a22,

Ω̄9 = −a13 − a14 − a16 + a17 − a8 − a18 − a11 − a19 + a20 − a21 − a22,

Ω̄10 = −a13 − a14 + a16 + a17 − a8 − a18 − a11 − a19 − a20 + a21 − a22,

Ω̄11 = −a13 − a14 − a16 − a23 − a8 − a18 + a11 + a19 − a24 + a21 − a25,

Ω̄12 = −a13 − a14 + a16 − a23 − a8 − a18 + a11 + a19 + a24 − a21 − a25,

Ω̄13 = −a13 − a14 − a16 + a23 − a8 − a18 + a11 + a19 + a24 + a21 + a25,

Ω̄14 = −a13 − a14 + a16 + a23 − a8 − a18 + a11 + a19 − a24 − a21 + a25,

Ω̄15 = −a13 − a14 − a17 − a23 + a6 + a10 − a26 − a22 + a25,

Ω̄16 = −a13 − a14 + a17 − a23 + a6 + a10 + a26 + a22 + a25,
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Ω̄17 = −a13 − a14 − a17 + a23 + a6 + a10 + a26 − a22 − a25,

Ω̄18 = −a13 − a14 + a17 + a23 + a6 + a10 − a26 + a22 − a25.
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