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ABSTRACT

A Thermodynamical Framework for the Solidification of Molten Polymers and Its

Application to Fiber Extrusion. (December 2004)

Krishna Kannan, B.E., PSG Tech, India;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. K.R. Rajagopal

A thermodynamical framework is presented that describes the solidification of

molten polymers to an amorphous as well as to a semicrystalline solid-like state.

This framework fits into a general structure developed for materials undergoing a

large class of entropy producing processes. The molten polymers are usually isotropic

in nature and certain polymers crystallize, with the exception of largely atactic poly-

mers, which solidify to an amorphous solid, to an anisotropic solid. The symmetry of

the crystalline structures in the semicrystalline polymers is dependent upon the ther-

momechanical process to which the polymer is subjected to. The framework presented

takes into account that the natural configurations associated with the polymer melt

(associated with the breaking and reforming of the polymer network) and the solid

evolve in addition to the evolving material symmetry associated with these natural

configurations. The functional form of the various primitives such as how the mate-

rial stores, dissipates energy and produces entropy are prescribed. Entropy may be

produced by a variety of mechanisms such as conduction, dissipation, solidification,

rearragement of crystalline structures due to annealing and so forth. The manner in

which the natural configurations evolve is dictated by the maximization of the rate

of dissipation. Similarly, the crystallization and glass transition kinetics may be ob-

tained by maximization of their corresponding entropy productions. The restrictions
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placed by the second law of thermodynamics, frame indifference, material symmetry

and incompressibility allows for a class of constitutive equations and the maximiza-

tion of the rate of entropy production is invoked to select a constitutive equation from

an allowable class of constitutive equations. Using such an unified thermodynamic

approach, the popular crystallization equations such as Avrami equation and its var-

ious modifications such as Nakamura and Hillier and Price equations are obtained.

The predictions of the model obtained using this framework are compared with the

spinline data for amorphous and semicrystalline polymers.
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CHAPTER I

INTRODUCTION

A. An introduction to structural development of polymers subjected to thermal and

mechanical process

The International Union of Pure and Applied Chemistry (IUPAC) defines polymer

(see Metanomski [41]) as A substance composed of molecules characterized by the mul-

tiple repetition of one or more species of atoms or groups of atoms linked to each other

in amounts sufficient to provide a set of properties that do vary markedly with the

addition or removal of one or a few of the constitutional units. A constitutional unit

is defined as A species of atom or group of atoms present in a chain of a polymer.

Depending upon the polymer and the process that it is subjected to, it can exist in

an amorphous or a semi-crystalline state. When a polymer melt is cooled sufficiently

quickly, it forms an amorphous solid below a certain temperature termed as the glass

transition temperature (see Tobolsky and Mark [80]). For most polymers, the tran-

sition to the glassy state (amorphous solid with no regular structure) happens over

a temperature interval of a few degrees. Above the temperature at which transition

starts towards the glassy state, the material has enough mobility to respond to the

external conditions almost immediately. On the other hand, below this temperature

at which the transition to the glassy state is complete, the intrinsic relaxation time

scale involved is extremely large when compared to the experimental time scale. Ex-

perimental data of Onaran and Findley [46] suggests than the predominantly glassy

polymers behave like a viscoelastic solid. Depending upon the material, there are

many routes to the glassy state. The familiar way is by cooling the liquid sufficiently

The journal model is IEEE Transactions on Automatic Control.
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’fast’. Another way to reach the glassy phase is through chemical reactions. A dis-

cussion of diverse routes to glassy phase can be found in Angell [2]. Here, we shall

restrict ourselves to glass formation through cooling that is relevant in many polymer

processes like fiber spinning and film blowing (see § 2).

The ability of the polymer to form a crystalline structure depends upon the struc-

ture of the molecules themselves. Isotactic and syndiotactic polymers (with regular

structure) form crystalline solids as opposed to the atactic polymers (with no regular

structure) which largely form amorphous solids. Poly ethylene terephthalate (PET)

is largely an atactic polymer that often forms a glassy phase below 78o C. Of course,

under slow cooling conditions and/or with sufficiently large deformation, even PET

solidifies to a semi-crystalline state.

Some polymers like polyethylene, polypropylene, nylon 6, nylon 66 and so forth upon

cooling, unlike glassy polymer such as PET, easily solidifies to a semi-crystalline state.

The temperature at which the polymer melt begins to crystallize is called the crystal-

lization temperature. Polymers do not have a single crystallization temperature and

it depends on the process (thermal and mechanical) to which the polymer is subjected

to. Under quiescent conditions (no deformation), under very slow cooling conditions,

polymers tend to crystallize at what is called equilibrium crystallization temperature.

However, in real processes, the crystallization is triggered at much lower temperature

and deformation elevates the temperature at which crystallization is triggered. X-ray

diffraction studies can be used to identify the type and the amount of crystals present

in the semi-crystalline sample. In one of the studies by Piccarolo et al. [54], isotactic

polypropylene samples were quenched from a melt-like state under quiescent condi-

tions (no deformation). Cooling rates of the order of few hundred degrees per sec were

achieved during the quenching process and differential scanning calorimetry (DSC)

was used to achieve cooling rates of the order of a few degrees per minute. It was
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observed that the higher the cooling rate, the lesser the amount of monoclinic crystals

formed and the larger the amount of mesomorphic crystals (crystals without much

order) with the total crystallinity (sum of monoclinic and mesomorphic crystals) de-

creasing with cooling rate. Thus, the type and the amount of crystals formed during

solidification depends on the thermal history suffered by polypropylene. It is well

known that the crystallization is enhanced by the deformation (flow-induced crys-

tallization) because the stretching bring the polymer molecules close to each other,

which facilitates the crystallization process (see Spruiell and White [75]). On the

other hand, ’fast’ cooling rates tend to suppress the crystallization process and if the

cooling rate is fast enough the polymer may become a glass by totally bypassing the

crystallization route. Thus there is a competition between the cooling rate and the

extend to which a polymer is deformed. Consider a thermal process in which the

polymer melt solidified into a semicrystalline state under ’slow’ cooling conditions of

the order of a few hundred seconds. There is enough time for the crystals that had

formed at some previous time τ (with t being the current time) to grow and perfect

itself for a period of t−τ and this mechanism of crystallization is termed as secondary

crystallization. Such a mechanism is not important for much faster processes such as

fiber spinning. Differential scanning calorimetry is used to characterize the specific

heat capacity and latent energy of the materials. Even in the semicrystalline state,

when the polymer is cooled below a certain temperature, the specific heat capacity of

the semicrystalline polymer shows a sharp decrease just like the differential scanning

thermogram of largely glassy materials such as PET (see Gaur et al. [20]). The crys-

talline phase of the semicrystalline solid does not show any change themselves and

hence the entire decrease in the specific heat capacity of the polymer is attributed

to the liquid-like amorphous portion in the semi-crystalline polymer converting to a

glassy solid (see the 4th objective in §5).
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B. Typical industrial processes

In many of the industrial processes, the polymer is deformed and cooled from a melt-

like state and solidified either to a glassy or a semi-crystalline state depending on the

application. Some typical industrial processes are:

1. Fiber spinning

Fiber spinning involves the following processes. The polymer melt exits the die at

about 300oC, and as the melt exits, it swells to a certain diameter (see figure on

page 35) denoted by ds. Further along the spin line, the melt is continuously drawn.

Cross flow air cools the melt. When the melt reaches a certain temperature (the

glass transition or crystallization temperature), the fiber diameter almost becomes a

constant. The solidified fiber is wound at a certain speed, which is called the take-up

speed. In such a high speed spinning process (take-up speed of ∼ 6000 m/min), the

effect of air drag on the lateral surface of the fiber and inertia is usually included.

2. Other processes

Film blowing is a process in which sheets of plastics can be produced. In blow molding,

the polymer melt is blown to take the shape of the die and is cooled to produce the

solidified product (e.g. plastic bottles). In injection molding, the melt is injected into

the die under high pressure so that the melt can flow into all the crevices in the die

cavity.
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C. Need for modeling

1. Design of a process

By controlling the processing conditions such as the cooling rate, rate of deformation

and so forth, one can obtain desired mechanical properties of the final solid because

the amount and orientation of the crystals formed directly influence the mechanical

properties. Thus, by solving the relevant initial-boundary value problems, one can

design the process, without resorting to experiments that are expensive and time

consuming, to achieve desired mechanical properties in the semicrystalline solid.

2. Design of die set

Dies are very expensive and design through experiments alone can be prohibitively

expensive and time consuming. Therefore, one need to develop a model that can

describe the response of a class of polymer of interest. The die cavity has to designed

such that, subject to the functionality requirements of the product in question, desired

mechanical properties are achieved. To this end, relevant initial-boundary problem

is solved repeatedly (using an appropriate model) by altering the cavity geometry so

that desired mechanical properties are achieved; an optimization problem. Of course,

one cannot entirely eliminate the need for experiments. However, much simpler and

fewer experiments could be used to characterize the material.

D. Natural configurations

Many bodies can exist in more than stress-free configurations. As the material is

subjected to a thermomechanical process, the body would attain an intermediate

configuration when the external stimuli in the current configuration are removed.

Such a configuration is termed as an natural configuration and it evolves during a
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thermomechanical process. In this way, we have a family of thermomechanical re-

sponse from an evolving set of natural configurations (stress-free confgurations). The

microstructure associated with the evolving natural configuration may be different

and hence the material symmetry with respect to these configurations may change.

In this way, this framework allows us to incorporate the evolution of symmetry of the

body.

In the case of solidification of molten polymers, there are an infinity of natural config-

urations associated with the melt, related to the breaking and reforming of polymer

network, and the solid formed during the process. The melt and the amorphous solid

is assumed to be isotropic with respect to each of the natural configurations and

the crystalline solid formed at each instant is anisotropic reflecting the crystalline

microstructure. For a detailed discussion, the reader is referred to Rajagopal and

Srinivasa [63] and [64].

E. Earlier approaches

Many of the earlier attempts to describe the solidification of the polymer melt have

been to describe fiber spinning. Most of the synthetic fibers, such as PET, nylon 6,

nylon 66, polyethylene, kevlar and so forth are produced by melt spinning, which have

a plethora of uses, for example, in textile and structural applications. It accounts for

about 15% of the GDP of manufacturing segment (∼ 160 Billion dollars). Thus there

is a lot of interest in describing solidification of polymer melts. It is also relatively easy

to obtain on line experimental data on the velocity, surface temperature of the fiber

and degree of crystallinity estimated from X-ray diffraction patterns besides the type

of crystals formed. Thus, a plenty of experimental data is available for comparison

with the predictions of the theory.
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1. Attempts based on describing the solidification of a polymer to a glassy state

Kase and Matsuo (1967) treated the polymer melt as a Newtonian fluid and ne-

glected air drag and inertia. Fisher and Denn [18] modeled the melt as a Maxwell

liquid and included heat transfer effects. Later, Gagon and Denn [19] used the Phan-

Thien Tanner constitutive equation to model the melt including the effects of air

drag, gravity, inertia, and heat transfer. These simulations are terminated at glass

transition temperature and an ad hoc constant velocity is prescribed for the solidified

region signifying the constant velocity plateau observed in experiments. George [21],

modeled the melt as a Newtonian fluid. By choosing an exponential form for the

elongational viscosity of the melt and letting it to go to a large value, he was able to

capture the plateau in the fiber spinning curves. However, such an effort leads only to

a highly viscous Newtonian fluid; transition to a largely energetic solid phase is not

achieved. The non-isothermal spinning process compares reasonably well with the

experiments. Recently, Ottone and Deiber [47] modeled the melt spinning of PET as

having both the characteristic of PTT and a Newtonian fluid. The calculations com-

pares well with the data, but, once again, the transition to a solid is not considered.

Further, the model is very specific and lacks a general thermodynamic basis and none

of the models discussed above have a general thermodynamic basis and the transition

to a solid phase is never considered.

2. Attempts based on describing the solidification of a polymer to a semicrystalline

solid

Patel et al. [49] used a Newtonian model to fit the fiber spinning data of nylon 6

(solidifies into a semicrystalline solid) obtained by Bheda and Spruiell [4]. To capture

the plateau in velocity after significant crystallization, the viscosity was allowed to
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increase to a large value. While this method is a good early attempt to model the

problem, one does not obtain a solid in the semi-crystalline region and it is difficult

to capture the plateau (e.g. Zieminski and Spruiell [89]). Sun et al. [77] used a vis-

coelastic liquid to simulate the problem (a modified PTT model) with the viscosity

depending on temperature and crystallinity (2-D simulations) for the semicrystalline

regime. Only a part of the data of Bheda and Spruiell [4] was used as the focus

was on low-speed simulations. Doufas et al. [14] and [15], using the conformation

tensor approach, modeled the melt as a viscoelastic liquid (Giesekus fluid) and the

semicrystalline phase as a collection of rigid rods that grow, at the expense of the

melt, and orient during deformation. Equilibrium melting temperature was used as

an initiation criterion for crystallization. The model predictions agree very well with

the experimental data, but the effect of thermal history is not accounted for.

Rao and Rajagopal [73] put into place a general thermodynamic framework to de-

scribe polymer crystallization. The melt was modeled as a viscoelastic liquid and

the semi crystalline solid was modeled as a mixture of elastic solids that are formed

continuously over a period of time and the original viscoelastic liquid. The material

symmetry of the solid that is formed (’average’ orientation of the crystals) at any par-

ticular instant, modeled as an orthotropic elastic solid, depends on deformation that

the melt has suffered. Thus, the response of the final semicrystalline material depends

on the process to which the melt was subjected during the course of crystallization.

The initiation of crystallization would depends on the temperature and deformation,

the crystallization kinetics, the form of the stress, and so forth are obtained in a

systematic manner from thermodynamic considerations. It should be mentioned that

the evolving material symmetry is obtained as a part of the solution to the problem

of interest. Experiments performed on the polymer in the solid-like state (both glassy

and semicrystalline polymers) indicates that it behaves like a viscoelastic solid (see
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Onaran and Findley [46]). The models obtained using this framework can explain

the stress relaxation of semicrystalline polymer because the amorphous part of the

semicrystalline mixture can stress relax. However, unlike crystallization, certain poly-

mer in liquid-like state solidify into a glassy solid (without detectable crystallinity)

and it is usually assumed that the entire polymer melt solidifies into a solid. Since a

glassy solid behaves like a viscoelastic solid (see Onaran and Findley [46]), one needs

a thermodynamical framework that can describe such a transition. Kannan et al. [32]

used the framework of Rao and Rajagopal [73] to develop a model for glass transition

phenomenon by approximating the glassy solid as an elastic solid. Since fiber spinning

is a ’fast’ process, i.e., a typical processing time of about 20 milliseconds, polymer in

the glassy state will have very little time to stress relax and hence, for such processes,

modeling the glassy phase as an elastic solid is a good approximation. However, if

one wants to develop a model with a wider scope of applicability, i.e., for processes

that are slower than fiber spinning such as blow molding, which has a typical cycle

time of about 10 seconds, then it would be appropriate to model the glassy state as

a viscoelastic solid (see objective 2 in §5).

F. Objectives and proposed methodology

1. Use an existing thermodynamical framework of Rao and Rajagopal (2002) that

takes into account the existence of more than one stress-free configuration (nat-

ural configurations) to develop a model for glass transition phenomenon by

treating the glassy solid as an elastic material. Develop a model and compare

the predictions of the model with the fiber spinning data of PET, which is

largely forms a glassy solid under ’low’ speed spinning conditions.

2. Develop a thermodynamical framework, generalizing the framework of Rao and
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Rajagopal [73], that takes into account the evolution of stress free configura-

tions (natural configurations) to model the transition of a viscoelastic liquid to

a viscoelastic solid by defining various primitives, i.e., Helmholtz potential and

rate of entropy production due to dissipation in the melt and the solid, conduc-

tion and phase change, and arrive at a model that is suited for modeling glass

transition process (treating the glassy solid as a viscoelastic solid) and compare

the predictions of the model in the melt-like and solid-like phase.

3. Using a simplified version of the above framework, i.e., the framework developed

for the transition of a viscoelastic liquid to an elastic solid, develop a model for

flow induced crystallization with flow induced anisotropy. Compare the pre-

dictions of the model with the experimental data available for high speed fiber

spinning including the effects due melt viscoelasticity, drag on the fiber, gravity,

inertia effects, the cooling of the fiber, the initiation of crystallization (that de-

pends on both the temperature and deformation), flow induced crystallization

and the anisotropy of the crystalline phase of the semicrystalline solid.

4. Develop a thermodynamical framework that take into effect the thermal history

of the polymer melt, flow-induced crystallization of an amorphous melt (with

evolution of symmetry) to a semicrystalline state including the effect due sec-

ondary crystallization and transition of amorphous liquid-like polymer in the

semicrystalline solid to a glassy solid below the glass transition.
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CHAPTER II

A THERMOMECHANICAL FRAMEWORK FOR THE GLASS TRANSITION

PHENOMENON IN CERTAIN POLYMERS AND ITS APPLICATION TO

FIBER SPINNING∗

A thermodynamic framework is developed to describe a polymer melt undergoing

glass transition that takes into account the fact that during such a process the un-

derlying natural configurations (stress-free states) are continually evolving. Such a

framework allows one to take into account changes in the symmetry of the material,

if such changes take place. Moreover, the framework allows for a seamless transition

of a polymeric melt to a mixture of a melt and an elastic solid to the final purely

solid state. The efficacy of the model is tested by studying the fiber spinning problem

for polyethylene terephthalate and the predictions agree well with the experimental

results.

A. Introduction

Depending upon the polymer and the process that the polymer is subjected to, it can

exist in an amorphous or a semi-crystalline state. When a polymer melt is cooled

sufficiently quickly, it forms an amorphous solid below a certain temperature termed

as the glass transition temperature (see Tobolsky and Mark [80]). For most poly-

mers, the transition to the glassy state happens over a temperature interval of a few

degrees. Above the temperature at which transition starts towards the glassy state,

∗Reprinted with permission from “A THERMOMECHANICAL FRAMEWORK
FOR THE GLASS TRANSITION PHENOMENON IN CERTAIN POLYMERS
AND ITS APPLICATION TO FIBER SPINNING” by K. KANNAN and K.R. RA-
JAGOPAL, 2002. J. RHEOL., VOL. 46, PP. 977-999. 2002 by THE SOCIETY OF
RHEOLOGY, INC.
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the material has enough mobility to respond to the external conditions almost im-

mediately. On the other hand, below this temperature at which the transition to the

glassy state is complete, the intrinsic relaxation time scale involved is extremely large

when compared to the experimental time scale. As a result, the material appears

to be in a solid state. The ability of the polymer to form a crystalline structure

depends upon the structure of the molecules themselves. Isotactic and syndiotactic

polymers (with regular structure) form crystalline solids as opposed to the atactic

polymers which form amorphous solids. Poly ethylene terephthalate (PET) is largely

an atactic polymer that often forms a glassy phase below 78o C. Here we develop a

theoretical framework for the transition of a polymer from a melt to an amorphous

solid.

Depending upon the material, there are many routes to the glassy state. The familiar

way is by cooling the liquid sufficiently ’fast’. Another way to reach the glassy phase

is through chemical reactions. A discussion of the diverse routes to the glassy phase

can be found in Angell [2]. Here, we shall restrict ourselves to glass formation due

to cooling that is relevant in many polymer processes like fiber spinning and film

blowing.

When materials such as PET are deformed, sufficiently above the glass transition

temperature, in the melt-like state, the change in the elastic part of the internal

energy is negligible; most of the work done on the material is dissipated into heat

(energy in thermal form). Therefore, we shall assume that the internal energy of the

polymer melt to be a function of temperature alone. On the other hand, at a given

temperature, the entropy of the material diminishes as the molecules are stretched

during deformation, and it usually increases with increase in temperature. When the

load is released, the material tends to go to a state of maximum entropy (Mark and

Erman [36]) that corresponds to a random configuration of polymer chains that is
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usually stress free. Such materials are primarily entropic in nature. From a molecu-

lar perspective, as the melt is deformed, the inter-molecular junctions are formed and

broken. At any stress-free state, the long chain molecules are randomly arranged. As

a result, from the morphology of the melt, it is reasonable to assume that the melt is

isotropic with respect to the current stress-free state (natural configuration).

Contrary to the behavior of the melt, sufficiently below the glass transition temper-

ature, as the material is being deformed, the change in entropy of the glassy solid

is insignificant (for typical processes like fiber spinning, film blowing and so forth).

However, the change in internal energy due to deformation can be significant. Since

the solid is formed in an amorphous state, it may be reasonable to assume that the

solid that is formed is isotropic. While this assumption is true for materials such as

PET, it is not the case for other polymeric materials that are Isotactic or Syndiotac-

tic.

Usually, the transition from liquid-like to a solid-like phase occurs over a 5 − 10oC

range. In our study, this transitional region is modeled as a mixture of two phases;

both the phases, in this regime are constrained to move together.

The material response over the entire range is described with the help of a unified

model that captures the entropic response in the melt-like regime, a mixture of en-

ergetic and entropic response in the transition region (typically a few degrees), and

finally a solid-like response beyond the transitional interval. We need an initiation

criterion that signals the material, from that of a melt to that of a solid, and we shall

show later that this criterion arises naturally from thermodynamic considerations.

We develop a phenomenological model based on the fact that the polymer has differ-

ent natural configurations (stress-free configurations modulo rigid motions) associated

with the melt like state and the solid state. Natural configurations associated with

the transitional state are determined by knowing the natural configurations of the
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melt and the solid. In fact the polymer in its fluid-like and transitional state has

an infinity of natural configurations (see Rao and Rajagopal [71] and [72], Rajagopal

and Srinivasa [66]). The effectiveness of the model is tested by solving the problem of

fiber spinning of PET. At take-up speeds in excess of about 5000 m/min, significant

crystallization of PET is possible (see Denn [11]). Also, significant deformation of the

fiber in its solid state is also possible. A general theory that can take into account

such eventualities has already been put into place and it also allows for a variety of

generalization of the theory presented here. The interested reader is referred to Rao

and Rajagopal [72] for the details of the general theory.

As the polymer transforms from its state as a melt, through the transitional regime

to its final glassy state, the underlying natural configurations evolve, and its response

can be described by specifying a class of response functions from these natural con-

figurations. Eckart [17] recognized that many bodies can exist in more than one

natural configuration (stress-free state) and developed the kinematics for such bod-

ies. Rajagopal and his co-workers have developed a thermodynamic framework for the

bodies that possess multiple natural configurations that takes cognizance of the fact

that the symmetry associated with different natural configurations could be different.

They have demonstrated the efficacy of such a framework by describing successfully a

diverse class of problems: response of multi-network polymers (Rajagopal and Wine-

man [69], Wineman and Rajagopal [85]), twinning (Rajagopal and Srinivasa [61] and

[62]), traditional plastic response (Rajagopal and Srinivasa [63] and [64]), solid to solid

phase transition (Rajagopal and Srinivasa [65]), viscoelastic response (Rajagopal and

Srinivasa [66], Murali krishnan and Rajagopal [42]), anisotropic response of liquids

(Rajagopal and Srinivasa [67]), crystallization of polymers (Rao and Rajagopal [73],

[71] and [72]), superplastic response (Rajagopal and Chandra [60]), growth and adap-

tation of biological materials (Humphrey and Rajagopal [30], Rao et al. [70]). The
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study most relevant to the problem investigated here is that carried out by Rao and

Rajagopal [73] to describe the crystallization of polymer melts. However, all the

above mentioned studies share in common a general thermodynamic framework.

Here, we use a general thermodynamic framework for materials with multiple natural

configurations to study the problem of fiber spinning in polymers such as PET that

are amorphous below the glass transition temperature. We begin by proposing a form

for the rate of entropy production (times temperature) associated with mechanical

working and the Helmholtz potential, defined with respect to these evolving natural

configurations. The rate of entropy production associated with mechanical working

is chosen such that it automatically satisfies the requirement of non-negativity. As

a consequence, using the second law, one can arrive at the functional form for the

stress tensor, entropy, and the internal energy measured with respect to these evolving

configurations. In addition to specifying these class of response functions, we need

an initiation (activation) criterion that determines whether the natural configuration

will change or stay the same, and an evolution equation that determines how the

natural configurations change. In the case of crystallization and growth, we need to

also provide the growth kinetics, i.e., the rate of production of new material or the

rate of conversion. For example, in polymer crystallization, the Avrami equation is

one such example. A central assumption that is used in our study is the following:

amongst all the constitutive relations that are candidates for modeling the process,

the one that is picked is that which maximizes the rate of entropy production. The

framework provides a clear way to associate the manner in which energy is stored or

dissipated, the manner in which entropy is produced, etc.

Previous attempts at solving the fiber spinning problem, where crystallization is

minimal and the glass transition is the dominant phenomena, do not consider the

transition to a solid and the further deformation of the solid. These investigators
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Fig. 1. The figure represents the configurations associated with the amorphous melt.

X is the position occupied by the particle in the reference configuration, κR. x

is the current position of the particle.
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(Fisher and Denn [18], Gagon and Denn [19], Kase and Matsuo [33], Ottone and

Deiber [47]), terminate their simulations at the glass transition temperature; however,

we should recognize that some of these studies were carried out over two decades ago

and were important contributions to the field at their time. Below the glass transition

temperature, the velocity of the spun fiber is taken to be the velocity corresponding

to the glass transition temperature. George [21], in his simulation, assumed a tran-

sition to a highly viscous Newtonian liquid that captured the plateau observed in

the velocity profiles below the transition temperature. Such an approach does have a

snag as it only leads to a liquid model with high viscosity and not to a solid model.

Some authors (Doufas and McHugh [13]) model the solidification of molten PET as

a continuous flow induced crystallization, but with a small final crystallinity as ob-

served in experiments. Their velocity and temperature profiles agree well with the

experiments, as do our results. Our approach is based on the phase change (liquid-like

to elastic solid) that happens over a narrow range of temperatures. The predictions

of our theory also seems to agree well with the experimental results for the velocities

as well as the temperature.

B. Kinematics

Let κR(B) and κt(B) denote (see Fig. 1) the reference and the current configuration

of the body B. We shall, for the sake of convenience, suppress B in the notation

κR(B), etc. By the motion of a body we mean a one to one mapping that assigns to

each point X ∈ κR, a point x ∈ κt, for each t, i.e.,

x = χκR
(X, t). (2.1)
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We shall assume that the motion is sufficiently smooth to render all the following

operations meaningful.

The deformation gradient, FκR
, and the left and right Cauchy-Green stretch tensors

BκR
and CκR

are defined through

FκR
=

∂χκR

∂X
, BκR

= FκR
FT

κR
, and CκR

= FT
κR

FκR
. (2.2)

Let κp(t) be the stress-free state (natural configuration) associated with the current

configuration κt of the body. For homogeneous deformations Fκp(t)
denotes the defor-

mation gradient between these two configurations. In general Fκp(t)
may not be the

gradient of a mapping (see Rajagopal and Srinivasa [63]).

The mapping G (see Fig. 1) is defined through

G = FκR→κp(t)
= F−1

κp(t)
FκR

. (2.3)

In a manner similar to that used in Eq. (2.2), the left Cauchy-Green stretch tensor

associated with the instantaneous response from the natural configuration κp(t) is

defined as

Bκp(t)
= Fκp(t)

FT
κp(t)

. (2.4)

We introduce the principal invariants of Bκp(t)
through

Iκp(t)
= tr(Bκp(t)

), IIκp(t)
=

1

2

{

[

tr(Bκp(t)
)
]2 − tr(B2

κp(t)
)
}

, and, IIIκp(t)
= det(Bκp(t)

).

(2.5)

The velocity gradients, L and Lκp(t)
, are defined through

L = ḞκR
F−1

κR
and Lκp(t)

= ĠG−1, (2.6)

where the dot signifies the usual material time derivative. The notation in Eq. (2.6)2

is somewhat inconsistent with the rest of the notation that has been introduced, but
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we shall use it nonetheless in view of its prior use in the literature.

The symmetric parts of L and Lκp(t)
are given respectively, by the following two

equations:

D =
1

2
(L + LT ), and Dκp(t)

=
1

2
(Lκp(t)

+ LT
κp(t)

). (2.7)

The upper convected Oldroyd derivative of Bκp(t)
,

5

Bκp(t)
, is given through

5

Bκp(t)
= Ḃκp(t)

− LBκp(t)
− Bκp(t)

LT = −2Fκp(t)
Dκp(t)

FT
κp(t)

. (2.8)

As we shall require the material, both in molten state as well as in its glassy state to

be incompressible, we shall require that

det(Bκp(t)
) = 1

(

or tr(Lκp(t)
) = 0

)

and tr(L) = 0. (2.9)

We also introduce the natural configuration κr associated with the amorphous solid

that is being formed. Is is important to recognize that κr is not the same as κR and a

few comments about the configuration κr from which the kinematical measurements

for the solid in the glassy state is measured are in order. The solid is assumed to be

born in a stress-free state, and the configuration in which the solid is formed (κr) is

the reference configuration of the solid. Thus, as the glass transition proceeds, more

and more of the solid is born in different natural configurations.

C. Restrictions imposed on constitutive equations

1. The second law of thermodynamics

The usual practice is to use the dissipation inequality to place restrictions on the con-

stitutive equations and the constitutive equations obtained are both necessary and

sufficient as the arbitrariness of the processes are invoked. Dissipation inequality is

obtained by proposing an inequality for the entropy (relating the total specific en-
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tropy and the entropy supplies, i.e., Clausius-Duhem inequality) and by eliminating

the radiation term between the energy balance and the Clausius-Duhem inequality.

There are some drawbacks to using the dissipation inequality when applied to some

problems involving thermal heating by radiation as one needs to specify a constitutive

equation for radiant heating term. The dissipation inequality places no restrictions

on the radiant heating term directly although the Clausius-Duhem inequality places

restrictions. Second, the constitutive equations holds only for certain processes and

hence arbitrariness of processes cannot be invoked to begin with. For a detailed dis-

cussion of these issues refer to Rajagopal and Tao [68].

In this dissertation, the second law of thermodynamics introduced by Green and

Naghdi [25] is used to place restrictions on the constitutive equations. The mathe-

matical form of the second law is derived by positing an entropy equation relating

the rate of entropy supplies, total rate of specific entropy and the rate of entropy

production and by eliminating the radiant heating, as before, between the energy

balance and the entropy equation. A Legendre transformation is introduced to arrive

at the final form of the dissipation equation. For all the problems discussed in this

dissertation, the radiant energy exchange between the system and the surrounding

is neglected and hence this form of the second law of thermodynamics is used. The

constitutive equations obtained are only sufficient conditions to satisfy the second law

of thermodynamics, i.e., arbitrariness of processes are not invoked. A similar form of

the second law of thermodynamics, under isothermal conditions, is used by Rajagopal

and Srinivasa [66] to obtain restrictions on constitutive equations.

2. Material frame indifference

A change of frame is an one-to-one and an onto map between two space-times X×R

and X∗ × R
∗ such that the distance between any two points, time intervals and the
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sense of time is preserved, i.e., the ordered pairs {x, t} and {x∗, t∗}, where the ordered

pairs are members of the unstarred and starred space-time, respectively, are related

by

x∗ = c(t) + Q(t)(x − xo), t∗ = t − a, (2.10)

where a is a constant.

A scalar, vector and a tensor is said to be frame-indifferent if under a change of frame

they are related through:

φ∗ = φ, v∗ = Qv, and T∗ = QTQT . (2.11)

It follows from Eq. (2.10) and the definition of deformation gradient that

F∗
κR

= QFκR
. (2.12)

As there is an underlying evolving natural configuration associated with the

breaking and reforming of the polymer network (for a detailed discussion see Wine-

man and Rajagopal [85], Rajagopal and Wineman [69], Rajagopal and Srinivasa [63]

and [64]), an intermediate configuration or the natural configuration should be in-

troduced as the Cauchy stress is represented with respect to the stress-free natural

configuration. Accordingly the following multiplicative decomposition is introduced,

FκR
= Fκp(t)

G (2.13)

Using the Eqs. (2.12) and (2.13) and if we suppose that F∗
κp(t)

= QFκp(t)
, then

G∗ = G. The various primitives such as the specific Helmholtz potential, rate of

dissipation and the various rate of entropy productions should be frame invariant. In
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particular,

Ψ(F∗
κp(t)

,G∗, θ∗) = Ψ(Fκp(t)
,G, θ) = Ψ(QFκp(t)

,G, θ) = Ψ(QRκp(t)
Uκp(t)

,G, θ)

ξ(F∗
κp(t)

,G∗,L∗
κp(t)

,L∗, θ) = ξ(QFκp(t)
,G,Lκp(t)

,Ω + QLQT , θ)

= ξ(Fκp(t)
,G,Lκp(t)

,L, θ)

⇒ Ψ̂(Cκp(t)
,G, θ) and ξ̂(Cκp(t)

,G,Lκp(t)
, trD, trD2, trD3, θ), (2.14)

where Ω is an arbitrary skew symmetric tensor. The last result of the above equation

is obtained by picking Q = RT
κp(t)

and Ω = −RT
κp(t)

WRκp(t)
, where W = skw(L) and

using the fact that the eigen values of D is the same as that of RT
κp(t)

DRκp(t)
.

For the issue regarding the use of the less restrictive Galilean invariance, refer to

Rajagopal and Tao [68] and Rajagopal [59].

D. Material symmetry

In the reference configuration κR, the material point XκR
is subjected to an orthogonal

transformation and then subjected to a motion such that it occupies the same position

x as in Eq. (2.1) (see Atkin and Fox [3]), i.e.,

x = χκR
(X̄κR

, t), (2.15)

where X̄κR
= HXκR

and H is a constant orthogonal tensor. It is easy to see that

FκR
HT = F̄κR

and if we suppose that Fκp(t)
HT

p (t) = F̄κp(t)
, then Ḡ = Hp(t)GHT .

Based on the microstructure of the material, certain orthogonal transformations

(members of the symmetry group) of the natural configurations would leave the me-

chanical response of the material unchanged when subjected to the same deformation
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for each member of the symmetry group. Accordingly, we require

Ψ̂(C̄κp(t)
, Ḡ, θ̄) = Ψ̂(HpCκp(t)

HT
p ,HpGHT , θ) = Ψ̂(Cκp(t)

,G, θ)

ξ̂(C̄κp(t)
, Ḡ, θ̄, L̄κp(t)

, trD̄, trD̄2, trD̄3, θ̄) = ξ̂(Cκp(t)
,G,Lκp(t)

, trD, trD2, trD3, θ)

= ξ̂(HpCκp(t)
HT

p ,HpGHT ,Ω + HpLκp(t)
HT

p , trD, trD2, trD3, θ). (2.16)

For the isotropic case, dropping argument G, using standard arguments Ψ̂(Cκp(t)
, θ) =

Ψ̄(tr(Cκp(t)
), tr(C2

κp(t)
), tr(C3

κp(t)
), θ) and ξ̄(tr(Cκp(t)

), tr(C2
κp(t)

), tr(C3
κp(t)

), tr(Dκp(t)
))

, tr(D2
κp(t)

), tr(D3
κp(t)

), trD, trD2, trD3).

E. Incompressibility

Polymer in any state is approximated as being incompressible, i.e.,

trL = trLκp(t)
= 0. (2.17)

F. Other restrictions

The balance of angular momentum, in the absence of body couples, leads to a sym-

metric Cauchy stress tensor, i.e., T = TT . The stress that is derived from the specific

Helmholtz potential should be symmetric. Further, one would not expect any dissi-

pation when D = Dκp(t)
= 0.

G. Modeling the melt

In view of the discussion in the introduction, the Helmholtz potential per unit mass

of the melt, Ψa, is assumed to be a function of absolute temperature, θ, and Bκp(t)
.

As the amorphous melt is assumed to be isotropic, we shall choose the following form
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for Ψa:

Ψa = Ca(θ − θa − θ ln
θ

θa
) +

µa(θa)θ

2ρθa
(Iκp(t)

− 3), (2.18)

where θa is the reference temperature, Ca, µa are material constants, and the density

ρ, is assumed to be a constant. Notice that this implies that the elastic response

in an isothermal process, from the evolving natural configurations, is that for a neo-

Hookean solid.

The rate of entropy production (times temperature) due to mechanical working,

per unit volume of the amorphous melt, is assumed to have the following form

ξa(θ,Bκp(t)
,D,Dκp(t)

) = 2νa(θ,Bκp(t)
)Dκp(t)

·Bκp(t)
Dκp(t)

+2νa
1 (θ,Bκp(t)

)D ·D, (2.19)

where νa and νa
1 are material functions, and ξa defined through Eq. (2.19) is non-

negative. Moreover, the above form satisfies the requirement that if Dκp(t)
= D = 0,

then ξa is identically zero, i.e.,

ξa(θ,Bκp(t)
, 0, 0) = 0. (2.20)

We shall express the second law of thermodynamics in the form (see Green and Naghdi

[25])

Ta · D − ρΨ̇a − ρηaθ̇ −
q · grad(θ)

θ
= ρθζa = ξ̂, ξ̂ ≥ 0, (2.21)

where ζa is rate of entropy production per unit mass of the melt.

The term −q · grad(θ)

θ2
in Eq. (2.21) is the rate of entropy production due to con-

duction; it is a non-negative quantity which is positive when a temperature gradient

exists and is zero when there is no temperature gradient. Furthermore, we shall

assume ξ̂ to be additive, i.e., we shall express

ξ̂ = ξc + ξa, ξc, ξa ≥ 0. (2.22)
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Here
ξc

θ
and

ξa

θ
are rate of entropy production per unit volume associated with con-

duction and mechanical working respectively. We shall further require each of the

entropy production mechanisms to be non-negative.

Using Eq. (2.22) in Eq. (2.21), we arrive at the following two equations

ξc = −q · grad(θ)

θ
, and Ta · D − ρΨ̇a − ρηaθ̇ = ξa. (2.23)

Substituting Eqs. (2.18) and (2.19) into Eq. (2.23) and collecting terms involving

Dκp(t)
, and using Eq. (2.8) results in

[

Ta − 2ρBκp(t)

∂Ψa

∂Iκp(t)

− 2νa
1D

]

· D +

[

2ρBκp(t)

∂Ψa

∂Iκp(t)

]

· Dκp(t)

−ρ

[

∂Ψa

∂θ
+ ηa

]

θ̇ = 2νaDκp(t)
· Bκp(t)

Dκp(t)
.

(2.24)

One way to satisfy the above equation is to assume that the following three equations

hold

Ta = −pI + 2ρBκp(t)

∂Ψa

∂Iκp(t)

+ 2νa
1D = −pI +

µa(θa)θ

θa

Bκp(t)
+ 2νa

1D, (2.25)

where p is a Lagrange multiplier that is a consequence of the constraint of incom-

pressibility.

We also suppose that

ηa = −∂Ψa

∂θ
= Ca ln

(

θ

θa

)

− µa(θa)

2ρθa

(Iκp(t)
− 3), (2.26)
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and

[

2ρBκp(t)

∂Ψa

∂Iκp(t)

]

· Dκp(t)
=

µa(θa)θ

θa
Bκp(t)

· Dκp(t)

= [Ta − 2νa
1D] · Dκp(t)

= 2νaDκp(t)
· Bκp(t)

Dκp(t)
.

(2.27)

The Helmholtz potential is defined in the terms of the internal energy, entropy, and

temperature through

Ψa = εa − ηaθ, (2.28)

where εa and ηa are the internal energy and the entropy per unit mass of the polymer

melt, respectively. On using the definition for the Helmholtz potential Eq. (2.28) ,

the internal energy of the melt is given by

εa = Ca(θ − θa). (2.29)

As the polymer melt is incompressible, we need to satisfy the constraints

tr(Dκp(t)
) = 0 and tr(D) = 0. (2.30)

At this juncture, we do not know how the natural configurations evolve. Following

Rajagopal and Srinivasa [66], we further assume that, for a fixed Bκp(t)
, θ, and D,

Dκp(t)
should be such that it maximizes the rate of entropy production due to me-

chanical working and is given by Eq. (2.19). We could also keep Bκp(t)
and θ fixed

and vary D and Dκp(t)
, they lead to the same results.

We maximize ξa, subject to Eqs. (2.27) and (2.30) as constraints (see Rao and

Rajagopal [73])

Φ = ξa + λ̂1

[

2νaDκp(t)
· Bκp(t)

Dκp(t)
− (Ta − 2νa

1D) · Dκp(t)

]

+ λ̂2tr(Dκp(t)
), (2.31)
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where λ̂1 and λ̂2 are Lagrange multipliers due to the constraints (Eqs. (2.27) and

(2.30)).

This leads to the evolution equation

5

Bκp(t)
=

µa(θa)θ

θaνa

[

3

tr(B−1
κp(t)

)
I − Bκp(t)

]

. (2.32)

H. Modeling the mixture

Sufficiently below the glass transition temperature, the material behaves like a solid.

The transitional stage is modeled as a mixture of a neo-Hookean solid and a model

whose stress response is given by Eqs. (2.25) and (2.32). The solid phase is an

amorphous state and hence expected to behave isotropically. Sufficiently below the

glass transition temperature, the mixture exhibits a purely elastic response. The

reference configuration of the solid is picked to be κr because the solid is assumed to

be born in a stress-free state in the configuration κt=ti , where ti is the time at which

activation criterion is satisfied.

Recalling that the solid behaves energetically, the Helmholtz potential of the solid

per unit mass of the material is defined as

Ψs = Cs(θ − θs − θ ln
θ

θs
) +

µs

2ρ
(Iκr

− 3), (2.33)

where µs is assumed to be a constant, θs, Cs, and Iκr
are the reference temperature,

specific heat capacity and trace of the left Cauchy-Green stretch tensor measured

with respect to the reference configuration (see Fig. 2) κr of the solid respectively.

The DSC thermogram usually indicates a small transitional interval (5− 10oC) com-

pared to the processing temperature range (typically a few hundred degrees). The

temperature is assumed to control the transition from a liquid-like to a solid-like state.

In order to incorporate this observation, the Helmholtz potential, per unit mass of
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Fig. 2. This figure represents the configurations associated with the mixture. The

configuration associated with the material at the instant of initiation, the glassy

state, is denoted by κr. Fκr
maps the infinitesimal material fibers in κr to the

corresponding material fibers in κt.
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the material is defined as

Ψ =
H(θ − (θg − δ))

1 + exp(−s(θ − θg))
Ψa(θ, Iκp(t)

) +
1

1 + exp(s(θ − θg))
Ψs(θ, Iκr

), (2.34)

where s is a constant and θg is the glass transition temperature. The larger the value

of the parameter s, the shorter is the interval for transition. The particular value

for the material under consideration can be obtained by fitting the DSC data for

a particular material. H is a Heavyside function and δ is a constant representing

the ’half-width’ of the transitional interval. Thus, for any temperature below θg − δ,

H(θ − (θg − δ)) = 0 and one recovers the Helmholtz potential for the solid. Notice

that for θg + δ ≤ θ < θg − δ the sum of the co-efficients multiplying Ψa and Ψs

is unity. Physically, these co-efficients may be interpreted as representing the mass

fraction of the melt and the solid respectively. For θ < θg − δ the fraction of the

solid asymptotically approaches unity; the constant s is chosen in such a way that at

θ = θg − δ the fraction of the solid is almost unity.

A single natural configuration is used for the solid that is formed continuously during

the transition. Since the transition takes place over a narrow range compared to the

polymer processing range, one could approximate the solid that is formed as having

a single reference configuration during transition. Further, one can determine the

fraction of the solid (or melt) using the second law of thermodynamics by prescribing

a functional form for the entropy production associated with the phase change (for

details, see Rao and Rajagopal [73]). Such a procedure furnishes an additional differ-

ential equation for the growth kinetics of the solid phase. By choosing a specific form

for these fractions a priori, one can do away with the additional differential equation

and hence it leads to a simpler model.

Now, let us examine the properties of Ψ introduced through Eq. (2.34). Above

the glass transition temperature (few degrees above the glass transition temperature),
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the material exists predominantly in a liquid-like state. The second term of Eq. (2.34)

becomes very small and Ψ tends to Ψa. Similarly, below glass transition temperature

at θg − δ, Ψ exactly equals Ψs. Since s is a constant, the ’width’ of the transitional

region is fixed. However, we shall show later in this section that the initiation of the

mixture model is affected by both by deformation and the temperature. Thus, the

transitional region can shift due to the temperature and the deformation. Here, θg is

assumed to be simply the mid-point of the transitional regime.

The rate of entropy production (times temperature) due to mechanical working, ξ̂a,

in the mixture, is assumed to be

ξ̂a =
H(θ − (θg − δ))

1 + exp(−s(θ − θg))
[2νm(θ,Bκp(t)

)Dκp(t)
· Bκp(t)

Dκp(t)
+ 2νm

1 (θ,Bκp(t)
)D · D],

(2.35)

where νm and νm
1 are material functions corresponding to the viscoelastic component

of the mixture. Viscosity functions are defined in such a way that they tend to

appropriate limits, i.e., νm → νa and νm
1 → νa

1 as one approaches the initiation point

and νm → νs and νm
1 → νs

1 as one nears the pure elastic solid regime. Recalling that

below the glass transition temperature at θg − δ, the mixture behaves like an elastic

solid. Here, νs(� νa) and νs
1(� νa

1 ) are viscosity functions sufficiently below glass

transition temperature. The rate of entropy production due to mechanical working

in the mixture should also become zero as one approaches the elastic regime. The

above form of the dissipation complies with this requirement.

Further, on assuming ξ̂ to be additive, and the rate of entropy production due

to each mechanism to be non-negative, we have

ξ̂ = ξc + ξ̂a + ξp; ξp, ξ̂a, ξc ≥ 0. (2.36)

Here, ξc is defined through Eq. (2.23), and
ξp

θ
is the rate of entropy production per
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unit volume associated with phase change.

As a result of Eqs. (2.21) and (2.36), we arrive at the reduced dissipation equation

T ·D − ρΨ̇ − ρηθ̇ = ξ̂a + ξp; Ψ = ε − ηθ. (2.37)

It can be shown that

˙
tr(Bκr

) = 2Bκr
·D. (2.38)

Substituting Eq. (2.34) into reduced dissipation equation [Eq. (2.37)], recognizing

the derivative and the value of the Heavyside function is defined everywhere except

at θ = θg − δ, and using Eqs. (2.8) and (2.38), we obtain

[

T −
H(θ − (θg − δ))2ρBκp(t)

1 + exp(−s(θ − θg))

∂Ψa

∂Iκp(t)

− 2ρBκr

1 + exp(s(θ − θg))

∂Ψs

∂Iκr

]

· D

+

[

H(θ − (θg − δ))2ρBκp(t)

1 + exp(−s(θ − θg))

∂Ψa

∂Iκp(t)

]

·Dκp(t)

−ρ

[

H(θ − (θg − δ))

1 + exp(−s(θ − θg))

∂Ψa

∂θ
+

1

1 + exp(s(θ − θg))

∂Ψs

∂θ
+ η

]

θ̇

−ρ











s
[

exp
(s

2
(θ − θg)

)

+ exp
(

−s

2
(θ − θg)

)]2 [H(θ − (θg − δ))Ψa − Ψs]











θ̇

= ξ̂a + ξp . (2.39)

We recognize the last term on the left hand side of Eq. (2.39) to be the rate of entropy

production (times temperature) per unit volume due to phase change because it is

non-negative for Ψa ≥ Ψs and θ̇ ≤ 0 and is only significant in the transitional regime.

One way to satisfy the above equation is to let the stress tensor, entropy, and rate of

entropy production due to phase change and the dissipative processes to be given by

the equations Eqs. (2.40) through (2.44) that are documented below:

T = −pI +
H(θ − (θg − δ))

1 + exp(−s(θ − θg))
Ta +

1

1 + exp(s(θ − θg))
Ts, (2.40)
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where p is a Lagrange multiplier introduced due to the constraint of incompressibility.

Here, Ta and Ts are defined through

Ta =
µa(θa)θ

θa
Bκp(t)

+ 2νm
1 D and Ts = µsBκr

. (2.41)

The stress tensor is a mixture of a generalized Oldroyd fluid and a neo-Hookean solid

weighted by a term that depends on the temperature. At one end of the transitional

interval (θ = θg +δ), Eq. (2.40) tends to a generalization of the Oldroyd liquid defined

by Eqs. (2.25) and (2.32). The exact condition for switching from the fluid-like to a

solid model needs to be discussed carefully, but before we do so, we recognize that

the models are such that there are no jumps in the components of the stress tensor.

At the other end of the transitional interval the mixture model yields a pure neo-

Hookean response as expected.

The entropy of the mixture is given by

η =
H(θ − (θg − δ))

1 + exp(−s(θ − θg))

(−∂Ψa

∂θ

)

+
1

1 + exp(s(θ − θg))

(−∂Ψs

∂θ

)

, (2.42)

where
−∂Ψa

∂θ
is given by Eq. (2.26). Like the stress tensor, the entropy of the mixture

tends to the appropriate limits. There is no discontinuity in entropy as the models

are switched from one phase to the other.

DSC studies on the transition from the melt to the solid state indicate that

the specific heats of the pure liquid-like and solid-like phases change a little in the

transitional regime (Richarson and Savill [74]). Thus, the rate effects are significant

only in the mixture regime. The change in specific heat of the material gives us

some idea of the microstructural rearrangement in the material in a gross sense. The

experiments were conducted without deforming the material and as a result there is

no entropy production due to mechanical working.



33

The entropy production associated with the transition is given through

−ρ











s
[

exp
(s

2
(θ − θg)

)

+ exp
(

−s

2
(θ − θg)

)]2 [H(θ − (θg − δ))Ψa − Ψs]











θ̇ = ξp, θ̇ < 0,

(2.43)

and

(Ta − 2νm
1 D) ·Dκp(t)

= 2νmDκp(t)
· Bκp(t)

Dκp(t)
. (2.44)

The constants θa and θs may be determined from calorimetry depending upon the

rate of cooling.

On using equation Eq. (2.33), we find that the entropy of the solid component of the

mixture, ηs, is given by,

ηs =
−∂Ψs

∂θ
= Cs ln

(

θ

θs

)

. (2.45)

The entropy of the solid is only a function of temperature. Using the definition

of Helmholtz potential, Eq. (2.37), and Eq. (2.42), and the specific forms of the

Helmholtz potentials, Eqs. (2.18) and (2.33), we obtain the internal energy of the

mixture as

ε =
H(θ − (θg − δ))

1 + exp(−s(θ − θg))
(εa) +

1

1 + exp(s(θ − θg))

[

Cs(θ − θs) +
µs

2ρ
(Iκr

− 3)

]

.

(2.46)

The above equation, in the limit for an elastic solid, along with Eq. (2.45) at any

arbitrary fixed temperature, reflects the energetic behavior of the material. The

structure of equation Eq. (2.43) is such that it vanishes in the region where only a

single phase is present. In other words, it is only non-zero during transition.

The Gibbs potential of all the coexisting phases at equilibrium (see Callen [7])

is the same. At the instant when the solid is formed (few degrees above θg), the
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Helmholtz potential of both the phases are assumed to be the same, i.e.,

Ψa − Ψs

∣

∣

Bκr=I
= φ(θ,Bκp(t)

) = 0. (2.47)

On using Eqs. (2.18) and (2.33) in Eq. (2.47), the initiation surface is defined through

the following equation:

Ca(θ − θa − θ ln
θ

θa
) +

µa(θa)θ

2ρθa

(

Iκp(t)
− 3
)

− Cs(θ − θs − θ ln
θ

θs
) = 0 . (2.48)

Eq. (2.47) provides the initiation criterion for the mixture model. In the absence

of any deformation (Bκp(t)
= I), the classical initiation condition is recovered. The

initiation surface is similar to the yield surface in plasticity. Once the mixture model

is initiated, the potential of the solid is less than that of the melt. After initiation,

one has to make sure that Ψa > Ψs in the transitional regime because Eq. (2.43) has

to be met.

Once again we extremize ξ̂a, subject to the constraints Eqs. (2.44) and (2.30),

Φ = ξ̂a + λ̂1

[

2νmDκp(t)
· Bκp(t)

Dκp(t)
− (Ta − 2νm

1 D) · Dκp(t)

]

+ λ̂2tr(Dκp(t)
), (2.49)

where λ̂1 and λ̂2 are Lagrange multipliers due to the constraints.

The extremization procedure results in the following evolution equation for Bκp(t)
:

5

Bκp(t)
= H(θ − (θg − δ))

µa(θa)θ

θaνm

[

3

tr(B−1
κp(t)

)
I − Bκp(t)

]

. (2.50)

In the limit νm → νa, the Eq. (2.50) tends to the Eq. (2.32).

I. The fiber spinning problem

Fiber spinning consists of the following sub-processes. The polymer melt exits the die

at 300oC. As the melt exits it swells to a certain diameter (see Fig. 3) denoted by ds.
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Fig. 3. The above is a sketch of a fiber spinning process. Gravity acts along the length

of the spinline. The melt exits the die at 300oC and swells to a diameter ds;

melt simulations are performed from this point onwards. The length of the

spinline, l, is 1.5 m. The mass flow rate of the melt, m, at the capillary exit

is 4.167e-5 Kg/sec. The diameter of the capillary is 0.25 mm. As the melt is

cooled by the cross flow air at a velocity of va, the solidification is initiated at

some distance along the axis of the fiber.

Further along the spin line, the melt is continuously drawn. Cross flow air cools the

melt. When the melt reaches a certain temperature (the glass transition), the fiber

diameter almost becomes a constant. The solidified fiber is wound at a certain speed.

In such a high speed spinning process, the effect of air drag on the lateral surface of

the fiber and inertia is usually included. To achieve this, one has to solve for both

the flow of the fluid and the deformation of the fiber in tandem. Instead, we choose

to adopt a combined correlation provided by Denn [12] and Kase and Matsuo [33] for

the air drag and the heat flux lost to the ambient air. For a detailed description of

the fiber spinning process, the reader is referred to Ziabicki [88].

The fiber spinning process was first simulated by Kase and Matsuo [33]. They

treated the polymer melt as a Newtonian fluid and neglected air drag and inertia.
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Fisher and Denn [18] modeled the melt as a Maxwell liquid and included heat trans-

fer effects. Later, Gagon and Denn [19] used the Phan-Thien Tanner constitutive

equation to model the melt including the effects of air drag, gravity, inertia, and heat

transfer. These simulations compare favorably with the experiments. George [21],

modeled the melt as a Newtonian fluid. By choosing an exponential form for the

elongational viscosity of the melt and by letting it attain a large value he was able

to capture the plateau in the fiber spinning curves. However, such an effort leads

only to a highly viscous Newtonian fluid; transition to a largely energetic solid phase

is not achieved. The non-isothermal spinning process compares reasonably well with

the experiments. Recently, Ottone and Deiber [47] modeled the melt spinning of

PET as having both the characteristic of PTT and a Newtonian fluid. The calcu-

lations compares well with the data, but once again, the transition to a solid is not

considered. Further, the model lacks a general thermodynamic basis. We find that

none of the models discussed above have a general thermodynamic basis that natu-

rally provides the initiation condition and the growth kinetics for the solid (see Rao

and Rajagopal [73]), nor do such models consider the transition to a truly solid phase.

1. Melt calculations

We shall be interested in applying our theory to the problem of fiber spinning. In fiber

spinning process, transverse temperature gradient exists, no matter how slender the

fiber (see Matsuo and Kase [38], Vassilatos et al. [82], Chung and Iyer [9], Henson et al.

[28]). However, for simplicity, we shall proceed with the thin-filament approximation

of the fiber spinning problem.

The approximations leading to the mass, momentum and energy balance equations

for the fiber spinning problem are well known and we shall not duplicate them here
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(see chapter 15 in [51]).

Incorporating the drag into the balance of linear momentum along the z direction,

neglecting surface tension effects, and under steady state conditions, we obtain

1

A

d(ATzz)

dz
+ ρg = ρvz

dvz

dz
+ α , (2.51)

where A is the cross sectional area of the fiber, vz is the average velocity in the z

direction, and α is the drag/unit surface area/unit length of the fiber and is given by

(see Gagon and Denn [19])

α =
2

d(z)
ρav

2(z)Cf . (2.52)

Here, ρa is the density of air, d is the current diameter of the fiber, and Cf , the

air-drag coefficient is given by (see Denn [12]).

Cf = 2β

(

νa

ρav(z)d(z)

)0.61

, (2.53)

where β is a constant and νa is the viscosity of air.

The balance of mass, averaged across the cross section of the fiber, results in

d(z) =

√

(

4m

ρπv(z)

)

, (2.54)

where m is the mass flow rate of the melt.

The components of the velocity gradient tensor in cylindrical-polar co-ordinates are

[L] = diag

(−1

2

dvz

dz
,
−1

2

dvz

dz
,
dvz

dz

)

. (2.55)

The above equation satisfies the constraint of incompressibility (trD = 0).

For an elongational flow of an incompressible material, let us assume that the com-
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ponents of Bκp(t)
in the spatial form are

[Bκp(t)
] = diag

(

1
√

Bzz(z)
,

1
√

Bzz(z)
, Bzz(z)

)

. (2.56)

As a result of the averaging process outlined in Pearson [51], recalling that the

surface tension effects have been neglected, we have

Trr(z) ' Tθθ(z) ' 0 . (2.57)

On using the constitutive equation (2.25) and the Eqs. (2.55) and (2.56), we find

that the two components of the stress tensor, i.e., Trr and Tθθ, are the same and is

consistent with the above equation. By using Eqs. (2.57) and (2.25), we find that

the Lagrange multiplier p is given by

p =
µa(θa)θ

θa

(

1√
Bzz

)

− νa
1 (θ)

dvz

dz
. (2.58)

Substituting the above equation into Eq. (2.25), we get

Tzz =
µa(θa)θ

θa

(

B
3
2
zz − 1√
Bzz

)

+ 3νa
1 (θ)

dvz

dz
= tzz − trr, (2.59)

where tzz and trr are the extra stress components. The material function νa
1 is assumed

to have the following form:

νa
1 (θ) = νo

1(θr) exp

[

C1

(

1

θ
− 1

θr

)]

, (2.60)

where νo
1 , θr, and C1 are material constants.

Substituting Eq. (2.59) into Eq. (2.51), the balance of momentum in the z direction
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reduces to

µa(θa)

θa

[

θ
dBzz

dz

(

1 +
1

2Bzz
3/2

)

+
B

3
2
zz − 1√
Bzz

(

dθ

dz

)

]

+3

[

dνa
1 (θ)

dz

dvz

dz
+ νa

1 (θ)
d2vz

dz2

]

+
Tzz

A

dA

dz
+ ρg = ρvz

dvz

dz
+ α .

(2.61)

The evolution equation, Eq. (2.50), in the spatial representation for a steady process,

in cylindrical-polar coordinates, turns out to be

dBzz

dz
=

2Bzz

vz

dvz

dz
+

1

vz

µa(θa)θ

θaνa(θ)

(

3Bzz

2B
3/2
zz + 1

− Bzz

)

. (2.62)

The three surviving components of the evolution equation, Eq. (2.50), result in the

same differential equation as Eq. (2.62). Here, νa(θ) is defined as follows

νa(θ) = νo(θr) exp

[

C

(

1

θ
− 1

θr

)]

, (2.63)

where νo, θr, and C are material constants.

The energy balance equation, neglecting radiation, is

ρε̇a = T · D − div(q) , (2.64)

where ε̇a is the time rate of internal energy per unit mass of the melt. The last term

of the above equation is related to the heat conduction.

The above equation, within the context of the approximation, on using Eqs.

(2.29), (2.57), and (2.55), reduces to

ρCa
dθ

dz
vz = Tzz

dvz

dz
− 4

d
h(θ − θ∞) , (2.65)
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where h, is the convection heat transfer coefficient given by (see Denn [12]):

h =
ka

d
βPr1/3Re0.39

[

1 + 64

(

va

vz

)2
]0.166

, (2.66)

where ka is the thermal conductivity of air, Pr is the Prandtl number of air, Re is

the Reynolds number of air based on the diameter of the fiber as the characteristic

dimension, and va is the cross flow cooling air velocity. In the Eq. (2.65), the effects

of radiation and axial conduction were ignored.

2. Mixture calculations

We know that

Ḃκr
= LBκr

+ Bκr
LT , (2.67)

where κr is the reference configuration for the solid that is formed. Eqs. (2.55) and

(2.56) are also valid in the mixture region. Using Eq. (2.55), we can express any

one of the three components in the spatial form. In the case of the equation along

z-direction, we obtain

dBzz

dz
vz = 2

dvz

dz
Bzz . (2.68)

As a result of the Eqs. (2.40), (2.57) and (2.68) and the incompressibility constraint,

it immediately follows that the components of Bκr
in the spatial form are

[Bκr
] = diag

(

vz(zo)

vz(z)
,
vz(zo)

vz(z)
,

v2
z(z)

v2
z(zo)

)

. (2.69)

where vz(zo) is the velocity of the fiber at the instant of initiation.

The arguments advanced in the previous sub-section for simplifying the balance

equations can be applied here (after initiation) as well.

By following a procedure similar to that described in the previous sub-section,
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the Lagrange multiplier is determined to be

p =
H(θ − (θg − δ))

1 + exp(−s(θ − θg))

[

µa(θa)θ

θa

(

1√
Bzz

)

− νm
1 (θ)

dvz

dz

]

+
µs

1 + exp(s(θ − θg))

[

vz(zo)

vz(z)

]

.

(2.70)

The functional form for νm
1 is taken to be

νm
1 (θ) =

νa
1 (θ)

1 + exp(−s(θ − θg))
+

νs
1

1 + exp(s(θ − θg))
, (2.71)

where νa
1 (θ) is given by Eqs. (2.60) and νs

1 is a constant. The Eq. (2.71) tends to

appropriate limits; there is no jump in the viscosity function defined over the entire

range.

The component of the stress tensor in Eq. (2.40), in the z-direction, on using the

above equation, is

Tzz =
H(θ − (θg − δ))

1 + exp(−s(θ − θg))

[

µa(θa)θ

θa

(

B
3
2
zz − 1√
Bzz

)

+ 3νm
1 (θ)

dvz

dz

]

+
µs

1 + exp(s(θ − θg))

[

v2
z(z)

v2
z(zo)

− vz(zo)

vz(z)

]

.

(2.72)
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The balance of linear momentum, Eq. (2.51), in the z direction becomes

H(θ − (θg − δ))

1 + exp(−s(θ − θg))

{

µa(θa)

θa

[

θ
dBzz

dz

(

1 +
1

2Bzz
3/2

)

+
B

3
2
zz − 1√
Bzz

(

dθ

dz

)

]

+3

[

dνm
1 (θ)

dz

dvz

dz
+ νm

1 (θ)
d2vz

dz2

]

}

+
µs

1 + exp(s(θ − θg))

[

2vz(z)

v2
z(zo)

+
vz(zo)

v2
z(z)

]

dvz

dz
+

s
[

2 cosh
(s

2
(θ − θg)

)]2

dθ

dz

{[

µa(θa)θ

θa

(

B
3
2
zz − 1√
Bzz

)

+ 3νm
1 (θ)

dvz

dz

]

H(θ − (θg − δ))

−µs

[

v2
z(z)

v2
z(zo)

− vz(zo)

vz(z)

]

}

+
Tzz

A

dA

dz
+ ρg = ρvz

dvz

dz
+ α .

(2.73)

The evolution equation is the same as Eq. (2.62) with νa(θ) replaced by νm(θ), with

νm being defined as follows:

νm(θ) =
νa(θ)

1 + exp(−s(θ − θg))
+

νs

1 + exp(s(θ − θg))
, (2.74)

where νa(θ) is given by the Eq. (2.63) with νs being a constant. This form guarantees

a large increase in viscosity during the transition. The balance of energy in the spatial

form is

ρ

{

H(θ − (θg − δ))

1 + exp(−s(θ − θg))

(

Ca
dθ

dz
vz

)

+

1

1 + exp(s(θ − θg))

[

Cs
dθ

dz
vz +

µs

ρ

(

v2
z(z)

v2
z(zo)

− vz(zo)

vz(z)

)

dvz

dz

]

+

s
[

2 cosh
(s

2
(θ − θg)

)]2

dθ

dz
vz

[

H(θ − (θg − δ))Ca(θ − θa) − Cs(θ − θs)

−µs

2ρ

(

2vz(zo)

vz(z)
+

v2
z(z)

v2
z(zo)

− 3

)

]}

= Tzz
dvz

dz
− 4

d
h(θ − θ∞) ,

(2.75)



43

where ε is given by Eq. (2.46), and Tzz is given by Eq. (2.72). The three equations,

Eqs. (2.73), (2.62), and (2.75), are those that need to be solved.

3. Parameters used in the simulation

In the absence of deformation, on using Eq. (2.46), the rate of change of internal

energy is

ε̇ =

{

H(θ − (θg − δ))

1 + exp(−s(θ − θg))
Ca +

1

1 + exp(s(θ − θg))
Cs

+
s

[

2 cosh
(s

2
(θ − θg)

)]2

[

H(θ − (θg − δ))Ca(θ − θa) − Cs(θ − θs)
]

}

θ̇ (2.76)

From the first law of thermodynamics, the rate of removal of heat from the sample

is the rate at which the internal energy of the given mass of substance is decreasing.

Therefore,
ε̇

θ̇
is known. The rate effects are significant only in the transitional regime.

The Fig. 4 is plotted for different values of θs using Eq. (2.76). Referring to the Fig.

4, the dotted curve is similar to the one obtained experimentally for ’slow’ cooling

rates while the solid curve is typical of ’fast’ cooling rates. The fiber spinning process

involves high cooling rates. Thus, it is reasonable to assume that the specific heat

response of PET to be the continuous curve. We picked the specific heat for the melt

to be 2000 J/KgK, namely that for the molten PET at 270oC (see Brandrup and

Immergut [5]) and the specific heat for the PET in the solid phase to be 1250 J/KgK

which corresponds to the specific heat at 55oC (see Brandrup and Immergut [5]). The

values of θa and θs are obtained using specific heat response curves and the initiation

condition, namely, Eq. (2.48). The ’width’ of the transition region is assumed to be

10oC. The parameter s is chosen such that the complete transition from a liquid-like

melt to an elastic solid is effected in the transitional region. The glass transition

temperature, θg, is assumed to be θ(zo) + δ (mid-point of the transitional regime),
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Fig. 4. This figure is a plot of specific heat of the material calculated using Eq. (2.76)

for different values of θs.
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where zo is the distance at which the mixture model is initiated. The half-’width’ of

the transitional region, δ, is taken to be 5oC. The parameters listed in Table (I) below,

namely, l, θo, m, θ∞, and Va are the parameters used in the experiments performed

by George [21]. The diameter of the maximum swell section (which occurs close to

the die exit), ds, is calculated using the correlation provided by George [21]. This

correlation does not include the effects of the take-up speed on the diameter of the

maximum swell section; experimental measurements of the diameter of the spun fiber

in the fiber spinning process (see Ziabicki [88]) show that the effects of the take-up

speed on the diameter is minimal provided it is measured very close to the die exit

(few die-diameters). The density of PET is calculated using the correlation used by

Ottone and Deiber [47] at 300o C. Material constants used in the heat transfer and

air-drag correlations (related to the properties of air), i.e., ρa, νa, Ka, and Pr are the

same values used by Ottone and Deiber [47]. The parameters µa, νo, νo
1 , νs, νs

1, C,

C1, and µs are not known a priori and must be determined after fitting the model

to suitable experiments. Since there are not enough experiments that will enable the

determination of all the new material constants uniquely, we are left with no option

but to make judicious choices them. All other material parameters are either known

from earlier experiments or can be determined from existing experiments.

Doufas and McHugh [13] have carried out extensive sensitivity analysis for their

model. Here, we do not carry out a similar detailed analysis. However, for the range

of take-up speeds considered, we found that our model is quite robust, in that the

results are not greatly altered by minor changes in the parameters. The temperature

profiles are sensitive to the values taken by β as noted by Denn [12]. The values of

β ranging from 0.135 to 0.5 have been reported in the literature (see Denn [12]). In

fact, by picking different different values of β for the melt and the solid, to agree with

the value suggested by Denn [12] for the melt (β ≈ 0.3), and the value suggested
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by Matsui [37] for the solid (β = 0.185), we can even get better agreement with the

experimental data for the temperature profile. We choose not to do so. The solutions

are quite robust to perturbations in the other parameters.

Table (Table (I)) lists the constants used in the simulation.

4. Boundary, initiation, and interface conditions

As the melt exits the die, it swells to a diameter ds. Using the correlation provided

by George [21], the maximum swell diameter for the PET melt is calculated to be

0.44mm for a capillary diameter of the die of 0.25 mm. From the mass flow rate, one

can calculate the average velocity, ve, at the maximum swell section. Further, at this

section, the gradient of velocity is zero (
dvz

dz

∣

∣

∣

z=0
= 0). The temperature at the exit,

θo, is 300oC. The take-up velocity, vt, is also known. Summarizing, the boundary

conditions are

vz(0) = ve ,
dvz

dz

∣

∣

∣

z=0
= 0 , θ(0) = θo , and vz(l) = vt , (2.77)

where l is the length of the spin-line.

The mixture model, using Eqs. (2.47), (2.18) and (2.33), will be initiated when the

following condition is satisfied

Ca(θ − θa − θ ln
θ

θa
) +

µa(θa)θ

2ρθa

(

2 + B
3
2
zz√

Bzz

− 3

)

− Cs(θ − θs − θ ln
θ

θs
) = 0 . (2.78)

The interface conditions are

vz(z
−
o ) = vz(z

+
o ) ,

dvz

dz

∣

∣

∣

z=z−o
=

dvz

dz

∣

∣

∣

z=z+
o

, θ(z−o ) = θ(z+
o ) , and Bzz(z

−
o ) = Bzz(z

+
o ) ,

(2.79)
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Table I. The list of constants used in the simulation of fiber spinning problem

Material parameter/others Numerical value

Length of spinline, l 1.5 m

Diameter of maximum swell section, ds 0.44 mm

Exit temperature of melt, θo 300o C

Mass flow rate of the melt, m 4.167x10−5 Kg/sec

Density of the melt and air, ρ and ρa 1206 Kg/m3, 1.2 Kg/m3

Reference temperature of melt, θa 347.1218o K

Reference temperature of solid, θs 344.7950o K

Reference temperature for viscosity of melt, θr 568o K

Modulus of melt, µa 3700 Pa

Viscosity of the melt at θr, νo, 31 Pa Sec

Viscosity of the melt at θr, νo
1 , 200 Pa Sec

Viscosity of the melt below glass transition, νs and νs
1 1x106 Pa Sec, 4x105 Pa Sec

Specific heat capacity of the melt and the solid, Ca and Cs 2000J/KgK, 1250J/KgK

Exponential constant of Eq. (2.63), C 4800 K

Exponential constant of Eq. (2.60), C1 6500 K

Modulus characterizing the solid, µs 8x107 Pa

Material constant, s 5 K−1

Ambient temperature, θ∞ 30o C

Viscosity of air, νa 1.8x10−5 Pa sec

Thermal conductivity of air, Ka 0.03 W/m K

Cross-flow cooling air velocity, Va 0.2 m/sec

Prandtl number of air, Pr 0.684

Drag constant, β 0.31
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where zo is the distance at which Eq. (2.78) is satisfied.

The conditions when the temperature hits θg − δ are

vz(z
−
1 ) = vz(z

+
1 ) and θ(z−1 ) = θ(z+

1 ) , (2.80)

where z1 is the distance along the spin-line at which the temperature is θg − δ.

5. Results and conclusions

The system of equations governing the flow of the melt are solved as an initial value

problem using Matlab until the initiation surface, [refer to Eq. (2.78)] is reached. On

reaching the initiation surface, the system of equations corresponding to the mixture

is activated with the values of vz, Bzz, θ, and
dvz

dz
at the instant of initiation as initial

conditions. The system of equations for the mixture are solved until the temperature

reaches θg − δ. The velocity and the temperature obtained at z = z1 is taken as the

initial conditions for the system of equations corresponding to the pure solid, Eqs.

(2.73) and (2.75), without the terms that are multiplied by the Heavyside function.

The value of Bzz at z = 0 is unknown. Its value is guessed and the both the system

of equations are solved consecutively. The value of the take-up velocity achieved is

compared with the fourth boundary condition of Eq. (2.77) and Bzz at z = 0 is fine

tuned until the required value for the take-up is reached. The system of equations

corresponding to the mixture are stiff and hence it requires a stiff-equation solver.

The figures [Figs. 5, 6, 7, and 8] represent the results obtained. In Fig. 7 the diameter

of the fiber varies along the spin-line. The diameter was calculated using the pre-

dicted velocity and Eq. (2.54). The bold crosses represent the initiation of mixture

model. Notice that as the melt solidifies, the diameter of the fiber becomes constant.

Fig. 8 represents the predicted stress response. After initiation, the stress increases

almost linearly in the solidified part of the fiber where air drag effects are important.



49

Fig. 5. The theoretical predictions are represented by solid lines, while, the data ob-

tained by George (1982), is denoted by points. The solid crosses represent the

point of initiation of the mixture model.Here, do is the same as ds. The aver-

age velocity at the maximum swell section, ve, is used to non-dimensionalize

velocity.

Further, the solutions exhibit increasing slope for increasing take-up speeds. Experi-

ments conducted on a six meter spinline for PET (see pg. 186 Ziabicki [88]) supports

the fact that the stress increases linearly in the solidified portion of the fiber.

We notice that the solutions for the dimensionless velocity compare well with exper-

iments. In fact, when the velocity and temperature plots are made in the same scales

adopted by Ottone and Deiber [47], we find that the plot of the non-dimensionalized

velocity with the non-dimensionalized distance agrees better with the experiment
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Fig. 6. The temperature profiles for three different take-up speeds.
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Fig. 7. The figure shows the variation of diameter of the drawn fiber along the spin-line.
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Fig. 8. The figure shows the stress along the length of the fiber. After initiation, the

predicted stress shows a ‘linear’ response with an increasing slope for increasing

take-up speeds.
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than the results of Ottone and Deiber [47]. However, this has been achieved within

a framework that switches through the glass transition in a continuous manner. On

the other hand, in the studies by Ottone and Deiber [47], Fisher and Denn [18] and

elsewhere, on reaching glass transition, an adhoc determination is made to draw a

horizontal line signifying that the non-dimensionalized velocity is a constant. If this

adhoc determination is not made, the velocity would not plateau but continue to

increase. Here, on the other hand, we have a theory that switches appropriately from

a model for the melt through glass transition to an elastic solid (the previous models

also merely assume a fluid with sufficiently large viscosity). We also note that the

predictions of the current theory for the variation of the temperature of the fiber

with distance agrees well with the experimental results (see Fig. 6). We should also

mention that the results of Doufas and McHugh [13] also fit the results very well, and

in some ranges of length along the spin line and take-up speeds agrees better than

our predictions while for some other ranges our results agree slightly better with the

experimental results. But on the whole the theories of Doufas and McHugh [13] as

well as ours agree well with respect to the temperature profile.
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CHAPTER III

A THERMOMECHANICAL FRAMEWORK FOR THE TRANSITION OF A

VISCOELASTIC LIQUID TO A VISCOELASTIC SOLID∗

We present a thermomechanical framework to describe the transition from a vis-

coelastic fluid to a viscoelastic solid, in which the kinetics associated with the tran-

sition and the change of response characteristics prior to, during, and after the tran-

sition are modeled within a unified setting. The procedures fit within the general

thermodynamic framework that has been developed to describe the response of ma-

terials that can exist stress free in multiple configurations. The current study is a

generalization of the studies by Rao and Rajagopal [73] and Kannan et al. [32] that

addreses the solidification of a polymeric melt into an elastic solid.

A. Introduction

Recently, a general thermodynamic framework was put into place to study the prob-

lem of the crystallization (and solidification to an amorphous solid) of polymer melts.

Within this framework, the crystallization kinetics and the change in the response

characteristics of the material as it crystallizes are a consequence of certain thermo-

dynamic requirements. Here, we shall not get into a detailed discussion of the frame-

work, but refer the reader to Rao and Rajagopal [73] for the same. The main features

of the framework are that bodies can exist in more than one natural configuration,

say a stress-free state, and in general thermodynamic processes these configurations

evolve. If κt(B) denotes the current configuration of the body, then κpm(t)
(B) denotes

∗Reprinted with permission from “A THERMOMECHANICAL FRAMEWORK
FOR THE TRANSITION OF A VISCOELASTIC LIQUID TO A VISCOELASTIC
SOLID” by K. KANNAN and K.R. RAJAGOPAL, 2002. MATH. MECH. SOLIDS,
VOL. 9, PP. 37-59. 2004 by SAGE PUBLICATIONS.
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a stress-free state corresponding to κt(B) (see Fig. 9). It is possible to reach different

stress-free states depending on the class of process under consideration. A detailed

discussion of the notion of natural configurations can be found in Rajagopal [58]. The

evolution of these natural configurations is determined by requiring that amongst all

processes that are possible for a material in a given state, the one that is chosen is that

which maximizes the entropy production. The response of many viscoelastic poly-

mers (those that have instantaneous elasticity) can then be described through a class

of elastic response functions from these evolving natural configurations. The general

framework is not restricted to materials that have instantaneous elastic response.

The classical Navier-Stokes fluid and power-law fluids that do not have instantaneous

elasticity, as well as viscoelastic bodies that do not posses instantaneous elasticity

can and have been described within the framework. Here, we use the framework to

describe the transition from a viscoelastic polymeric melt to a viscoelastic solid. The

earlier studies by Rao and Rajagopal [73] and Kannan et al. [32] was restricted to a

transition of a polymeric melt to an elastic solid. However, since the polymer melt

solidifies into a viscoelastic solid rather than an elastic solid, to model the transition

of a polymeric melt accurately, it is necessary to mathematically model this transition

to a viscoelastic solid.

At sufficiently high temperatures (above its melting point), a polymer exists in a

melt-like state. As the polymer cools, it transitions to a pure solid within a span of a

few degrees. Typically, for many polymers, the transitional region is of the order of

a few degrees, while that of the polymer processing regime is usually a few hundred

degrees.

We shall model the polymer melt as a rate-type viscoelastic liquid and the viscoelas-

tic solid as a non-linear three parameter viscoelastic solid. The transitional regime is

assumed to be characterized by a mixture of a viscoelastic solid and the viscoelastic
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Fig. 9. The figure represents the configurations associated with the melt. The point

X is the position occupied by the particle in the reference configuration. The

point x is the current position of the particle.
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Fig. 10. This figure represents the configurations associated with the mixture. The

configuration associated with the solid at the instant of the initiation of the

mixture model is denoted by κr.



57

polymer, i.e., melt. The viscoelastic solid is assumed to be born in an amorphous

state κr(B) (see Fig. 10). Since it is amorphous, we shall assume that the solid is

isotropic with respect to the fixed configuration κr(B) at which it is formed, and an

evolving configuration κps(t)
(B) is introduced to capture the evolving natural config-

uration from which the body responds elastically (see §5 for details). Since the solid

is formed continuously in the transitional region, one should use an infinite sequence

of configurations to describe the response of the solid (see Rao and Rajagopal [73]).

However, as the transitional regime is only a few degrees, we can use a single config-

uration, i.e., κr(B) (see [32]) to denote an ’average configuration’ in which the melt

solidifies and an evolving configuration κps(t)
(B) as the viscoelastic solid deforms, to

approximate the response of the solid.

B. Kinematics

Let κR(B) and κt(B) denote the reference and the current configuration of the body

B at time t respectively. By the motion of a body we mean a one to one mapping

that assigns to each point X ∈ κR(B), a point x ∈ κt(B), for each t,

x = χκR
(XκR

, t). (3.1)

Let κr(B) denote the ’average configuration’ during which the melt solidifies. Then,

we have

Xκr
= χκR

(XκR
, ti), Xκr

∈ κr(B) (or κti(B)). (3.2)

One can also represent the motion of the body for time t ≥ ti (ti denotes the time

when solidification is initiated) through

x = χκr
(Xκr

, t). (3.3)
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We shall also assume that this motion is sufficiently smooth and invertible. The

velocity of a particle in the reference state κR(B) is defined as

v =
∂χκR

∂t
. (3.4)

As a result of the Eqs. (4.1), (4.2) and (4.3), for t ≥ ti, the velocity of the same

particle, which occupied the position Xκr
is

v =
∂χκR

∂t
=

∂χκr

∂t
. (3.5)

The deformation gradients, Fl, and the left and right Cauchy-Green stretch tensors

Bl and Cl for l = κR, κr are defined through

Fl =
∂χl

∂Xl
, Bl = FlF

T
l , and Cl = FT

l Fl, l = κR, κr. (3.6)

The principal invariants of Bl are

Il = tr(Bl), IIl =
1

2

{

[

tr(Bl)
]2 − tr(B2

l )
}

, and IIIl = det(Bl), l = κR, κr. (3.7)

We shall, for the sake of convenience, suppress B in the notation κR(B), etc. Let

κpl(t), l = m, s be the stress-free states (natural configurations) associated with the

current configuration κt of the body. The natural configurations κpm(t) and κps(t)

refer to the natural states associated with the melt and the solid respectively. For

homogeneous deformations, Fκpl(t)
, l = m, s denote the deformation gradients between

their respective natural configurations and the current configuration (see Figs. (9)

and (10)).

In a manner similar to that of the Eq. (4.7), one can define the left and the right

Cauchy-Green stretch tensors associated with the instantaneous response of the melt

and the solid, from their natural configurations, respectively. The invariants of the
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left Cauchy-Green stretch tensors are introduced through

Iκpl(t)
= tr(Bκpl(t)

), IIκpl(t)
= tr(B2

κpl(t)
), and IIIκpl(t)

= tr(B3
κpl(t)

), l = m, s. (3.8)

The mappings Gm and Gs are defined through

Gm = FκR→κpm(t)
= F−1

κpm(t)
FκR

and Gs = Fκr→κps(t)
= F−1

κps(t)
Fκr

, (3.9)

where the mapping Gs is defined for t ≥ ti.

The velocity gradients, L and Lκpl(t)
, l = m, s are defined through

L := ḞκR

∣

∣

∣

XκR
=const.

F−1
κR

and

Lκpl(t)
= ĠlG

−1
l , l = m, s. (3.10)

It follows from the equation (4.11)1 that

L = Ḟκr

∣

∣

∣

Xκr=const.
F−1

κr
, (3.11)

where the dot signifies the material time derivative.

The symmetric parts of L and Lκpl(t)
, l = m, s are defined through

D =
1

2
(L + LT ) and Dκpl(t)

=
1

2
(Lκpl(t)

+ LT
κpl(t)

), l = m, s. (3.12)

It is also true that

Ḃκr
− LBκr

− Bκr
LT = 0. (3.13)

The upper convected Oldroyd derivative of Bκpl(t)
, l = m, s, i.e.,

5

Bκpl(t)
, l = m, s, is

defined through (see [58])

5

Bκpl(t)
= Ḃκpl(t)

− LBκpl(t)
− Bκpl(t)

LT = −2Fκpl(t)
Dκpl(t)

FT
κpl(t)

, l = m, s. (3.14)
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As we shall require that the material, both in the molten state and solid state to be

incompressible, we shall require that

det(Bκpl(t)
) = 1

(

or tr(Lκpl(t)
) = 0

)

and tr(L) = 0, l = m, s. (3.15)

C. Modeling the melt

The melt is assumed to be isotropic with respect to the evolving configuration κpm(t)

(see Fig. 9). We shall assume that the Helmholtz potential per unit mass is defined

through:

Ψm(θ, Iκpm(t)
, IIκpm(t)

) = Am + (Bm + cm
2 )(θ − θm) − cm

1

(θ − θm)2

2

−cm
2 θ ln

(

θ

θm

)

+
µm

1 θ

2ρθm
(Iκpm(t)

− 3) +
µm

2 θ

2ρθm
(IIκpm(t)

− 3), (3.16)

where θm, Am, Bm, cm
1 , cm

2 , µm
1 , and µm

2 are the reference temperature and the

material constants, respectively. Here, the material constants µm
1 , µm

2 ≥ 0 with both

constants not being equal to zero simultaneously. The density ρ, is assumed to be a

constant.The specific Helmholtz potential, at constant temperature, is the same as

that for a Mooney-Rivlin material, i.e., the melt’s instantaneous elastic response is

the same as that of a Mooney-Rivlin material.

The rate of entropy production (times temperature) due to mechanical working, per

unit volume of the amorphous melt, is assumed to have the following form

ξm(θ,Bκpm(t)
,D,Dκpm(t)

) =
{

2νm
1 (θ,Bκpm(t)

)Dκpm(t)
· Bκpm(t)

Dκpm(t)

+2νm
2 (θ,Bκpm(t)

)Dκpm(t)
· B2

κpm(t)
Dκpm(t)

}β
+ 2νm

3 (θ,Bκpm(t)
)D · D

=
{

2νm
1 (θ,Bκpm(t)

) ‖ Dκpm(t)
Vκpm(t)

‖2

+2νm
2 (θ,Bκpm(t)

) ‖ Dκpm(t)
Bκpm(t)

‖2
}β

+ 2νm
3 (θ,Bκpm(t)

) ‖ D ‖2, (3.17)



61

where νm
l (θ,Bκpm(t)

), l = 1, 2, 3 are scalar and non-negative. The functions νm
l , l =

1, 2, 3 are material functions. Since each of the scalars multiplying the norms are

non-negative, ξm ≥ 0.

We introduce the second law of thermodynamics in the following form:

Tm ·D − ρΨ̇m − ρηmθ̇ − q · grad(θ)

θ
= ρθζm = ξ̂, ξ̂ ≥ 0, (3.18)

where, ζm is the rate of entropy production per unit mass of the melt. The term

−q · grad(θ)

θ2
in the Eq. (4.18) is the rate of entropy production due to conduction; it

is a non-negative quantity, which is positive when a temperature gradient exists and

is zero when there is no temperature gradient. Furthermore, we shall assume ξ̂ to be

additive, i.e., we shall express

ξ̂ = ξc + ξm, ξc, ξm ≥ 0. (3.19)

Here
ξc

θ
and

ξm

θ
are the rate of entropy production per unit volume associated with

conduction and mechanical working respectively. We shall further require each of the

entropy production mechanisms to be non-negative.

From (4.18) and (4.19), we arrive at the following two equations, namely,

ξc = −q · grad(θ)

θ
, (3.20)

and

Tm · D − ρΨ̇m − ρηmθ̇ = ξm. (3.21)
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Substituting the Eq. (4.16) into the reduced dissipation equation, i.e., the equation

(4.17), and collecting like terms, we arrive at

[

Tm − µm
1 θ

θm
Bκpm(t)

− 2µm
2 θ

θm
B2

κpm(t)
− 2νm

3 D

]

· D

−ρ

[

∂Ψm

∂θ
+ ηm

]

θ̇ +

[

µm
1 θ

θm

Bκpm(t)
+

2µm
2 θ

θm

B2
κpm(t)

]

· Dκpm(t)

= ξm − 2νm
3 D · D. (3.22)

One way to satisfy the above equation, is to assume that the equations (4.23) and

(4.24) hold:

Tm = −pI +
µm

1 θ

θm
Bκpm(t)

+
2µm

2 θ

θm
B2

κpm(t)
+ 2νm

3 D, (3.23)

where p is the Lagrange multiplier, due to the constraint of incompressibility. We

mentioned earlier that Ψm corresponds to the stored energy of a Mooney-Rivlin ma-

terial. However, Eq. (4.23) is not the constitutive equation for a Mooney-Rivlin

material unless νm
3 is zero. The reason for this stems from our assumption that the

viscoelastic body is a mixture of an elastic solid and a viscous fluid, and this is re-

flected in assumption for the Helmholtz potential and the rate of dissipation function.

We have supposed that at each point of the body we have a mixture of a viscoelas-

tic fluid capable of instantaneous elasticity and a dissipative linearly viscous fluid.

Though the material stores energy like a Mooney-Rivlin material, the stress is not

that of a Mooney-Rivlin material. As it is a mixture of an elastic solid and a viscous

fluid, the stress also has a contribution from the viscous fluid component. We note

that on setting µm
2 = νm

3 = 0, the instantaneous elastic response is found to be that

of a neo-Hookean material with the shear modulus being proportional to the absolute

temperature (Gaussian network, see Treloar [81]).
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We also suppose that

ηm = −∂Ψm

∂θ
= −Bm + cm

1 (θ − θm) + cm
2 ln

(

θ

θm

)

− µm
1

2ρθm
(Iκpm(t)

− 3) − µm
2

2ρθm
(IIκpm(t)

− 3). (3.24)

The entropy of the material is assumed to diminish as the material is deformed as

the molecules of the polymer align themselves along the direction of deformation. As

a result of Eqs. (4.23) and (4.24), Eq. (4.22) becomes

[

µm
1 θ

θm
Bκpm(t)

+
2µm

2 θ

θm
B2

κpm(t)

]

·Dκpm(t)
= ξm − 2νm

3 D · D

=
{

2νm
1 Dκpm(t)

·Bκpm(t)
Dκpm(t)

+ 2νm
2 Dκpm(t)

· B2
κpm(t)

Dκpm(t)

}β
.

(3.25)

The Helmholtz potential is defined through

Ψm = εm − ηmθ, (3.26)

where εm and ηm are the internal energy and the entropy per unit mass of the material.

On using Eqs. (4.24) and (4.26), we find that the internal energy of the material is

given by

εm = Am − Bmθm +
cm
1

2
(θ2 − θ2

m) + cm
2 (θ − θm). (3.27)

We notice that the above equation is only a function of the temperature, which

is consistent with the melt being entropic in nature. Further, the internal energy

function is strictly convex if cm
1 > 0.

The specific heat of the melt, Cm, is defined as

Cm =
∂εm

∂θ
= −θ

∂2Ψm

∂θ2
= cm

1 θ + cm
2 > 0, ∀ θ until φ = 0, (3.28)
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where φ is given by the Eq. (3.61); the model for the melt is valid until φ = 0. For a

given mass of the material, one would expect the internal energy of the material to

increase when the energy is supplied in the thermal form. Therefore, we require Cm

to be positive; this restriction on the constants ensures that the convex function εm

is restricted to the region of positive slope only. If cm
1 < 0, whatever the value of cm

2 ,

a sufficiently high temperature (where the material exists in a melt-like state) can

be found, which violates the above inequality. Thus cm
1 has to be non-negative; both

cm
1 and cm

2 are not zero simultaneously. The specific heat of the material is linear

in θ as indicated by the differential scanning calorimetry (DSC) studies of several

polymers (see Brandrup and Immergut [5]).

Since the melt is assumed to be incompressible, we require that

trDκpm(t)
= 0. (3.29)

To obtain the evolution equation, let us proceed with the maximization of ξm sub-

ject to the constraints, i.e., Eqs. (4.25) and (4.29). Using the method of Lagrange

multipliers, the augmented rate of entropy production (due to mechanical working)

function Φm is defined through

Φm = ξm + λm
1

[

ξm − 2νm
3 D · D −

(

Tm − 2νm
3 D

)

·Dκpm(t)

]

+ λm
2 trDκpm(t)

, (3.30)
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where λm
1 and λm

2 are the Lagrange multipliers. It follows that

∂Φm

∂D κpm(t)

= 0 ⇒
(

1 + λm
1

λm
1

)

β

{

2νm
1 Dκpm(t)

·Bκpm(t)
Dκpm(t)

+ 2νm
2 Dκpm(t)

· B2
κpm(t)

Dκpm(t)

}β−1

[

2νm
1

(

Bκpm(t)
Dκpm(t)

+ Dκpm(t)
Bκpm(t)

)

+ 2νm
2

(

B2
κpm(t)

Dκpm(t)
+ Dκpm(t)

B2
κpm(t)

)

]

= −
(

p +
λm

2

λm
1

)

I +
µm

1 θ

θm
Bκpm(t)

+
2µm

2 θ

θm
B2

κpm(t)
. (3.31)

We can show that the eigen vectors of the tensors Bκpm(t)
and Dκpm(t)

are the same and

hence they commute. Taking the inner product of the above equation with Dκpm(t)

and using the fact that the tensors Bκpm(t)
and Dκpm(t)

commute, and the Eqs. (4.25)

and (4.29),
1 + λm

1

λm
1

is determined to be
1

2β
. Substituting

1 + λm
1

λm
1

=
1

2β
in the Eq.

(3.31), rewriting this equation after taking advantage of commutativity of the tensors,

and premultiplying by B−1
κpm(t)

, one arrives at

{

2νm
1 Dκpm(t)

· Bκpm(t)
Dκpm(t)

+ 2νm
2 Dκpm(t)

· B2
κpm(t)

Dκpm(t)

}β−1(
2νm

1 Dκpm(t)
+

2νm
2 Bκpm(t)

Dκpm(t)

)

= −(p +
λm

2

λm
1

)B−1
κpm(t)

+
µm

1 θ

θm
I +

2µm
2 θ

θm
Bκpm(t)

. (3.32)

Using the trace operator on both the sides of the Eq. (3.32) and using the Eqs. (4.14)

and (4.29) results in

(

p +
λm

2

λm
1

)

trB−1
κpm(t)

= νm
2 tr

5

Bκpm(t)

{

2νm
1 Dκpm(t)

· Bκpm(t)
Dκpm(t)

+2νm
2 Dκpm(t)

· B2
κpm(t)

Dκpm(t)

}β−1
+

3µm
1 θ

θm
+

2µm
2 θ

θm
trBκpm(t)

. (3.33)
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Then, on using the Eq. (4.25), we have

2νm
1 Dκpm(t)

· Bκpm(t)
Dκpm(t)

+ 2νm
2 Dκpm(t)

· B2
κpm(t)

Dκpm(t)

=

{

µm
1 θ

θm
Bκpm(t)

· Dκpm(t)
+

2µm
2 θ

θm
B2

κpm(t)
· Dκpm(t)

}1/β

. (3.34)

Using the trace operator on either side of Eq. (4.14) and pre (or post) multiplying by

the tensor Bκpm(t)
on both sides of the same equation as necessary, followed by taking

the inner product with the identity tensor, one arrives at the following two results:

tr
5

Bκpm(t)
= −2tr(Bκpm(t)

Dκpm(t)
) and tr(Bκpm(t)

5

Bκpm(t)
) = −2tr(B2

κpm(t)
Dκpm(t)

).

(3.35)

Premultiplying Eq. (3.31) by V−1
κpm(t)

and postmultiplying it by Vκpm(t)
, using the

Eq. (4.14) with Fκpm(t)
= Vκpm(t)

(suitably rotated κpm(t)), substituting the value for

Lagrange multipliers, i.e.,
1 + λm

1

λm
1

=
1

2β
and p +

λm
2

λm
1

from the Eq. (3.33), using Eqs.

(3.34) and (3.35) in the Eq. (3.31), and the fact that the tensors Bκpm(t)
and Dκpm(t)

commute, Eq. (3.31) reduces to

{

µm
1 θ

2θm
tr
(

−
5

Bκpm(t)

)

+
µm

2 θ

θm
tr
(

− Bκpm(t)

5

Bκpm(t)

)

}(β−1)/β{

νm
2

tr
5

Bκpm(t)

trB−1
κpm(t)

I

−
(

νm
1 I + νm

2 Bκpm(t)

) 5

Bκpm(t)

}

=
µm

1 θ

θm

(

Bκpm(t)
− 3

trB−1
κpm(t)

I

)

+
2µm

2 θ

θm

(

B2
κpm(t)

− trB

trB−1
κpm(t)

I

)

, (3.36)

which is the evolution equation for the natural configuration.

The above equation is an implicit differential equation of the form f(
5

Bκpm(t)
,Bκpm(t)

) =

0 and may be solved by converting it into a differential algebraic system of the

following form:
5

Bκpm(t)
= A and f(A,Bκpm(t)

) = 0. The last equation of the system,

i.e., f(A,Bκpm(t)
) = 0 is a tensor valued non-linear equation, for a fixed Bκpm(t)

, and

may have several roots, which are related to the extrema D0
κpm(t)

of the function
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ξm subject to the constraints (4.25) and (4.29). If one invokes the maximization

of dissipation assumption, the tensor D0
κpm(t)

, among all local maxima (if there are

more than one), the one with the highest rate of dissipation is chosen by inspection.

On setting β = 1, νm
2 = νm

3 = 0, and µm
2 = 0 in the Eq. (3.36), we recover the

evolution equation for the natural configuration for the generalized Maxwell model

(see Rajagopal and Srinivasa [58]). Here, the shear modulus is proportional to the

absolute temperature and is similar to that of Gaussian statistical theory (see Treloar

[81]); if νm
3 6= 0, we recover the generalized Oldroyd model. The assumption νm

2 =

νm
3 = 0, and µm

2 = 0 with α := (2νm
1 )β and n := (β − 1)/(1 − 2β) leads to a power

law model (see Srinivasa [76]). Further, if β = 1 and νm
3 = 0, we obtain a model with

an instantaneous response like that of a Mooney material with the evolution equation

that is explicit. Thus, the power law model represented through the Eqs. (4.23) and

(3.36) can be viewed as a generalization of all the special models mentioned above.

1. An application of the melt model

To test the efficacy of the model developed for the polymeric melt, we shall use

the model for the melt to describe the flow of a polymeric melt in an extensional

rheometer. The flow in such an apparatus can be described in the following manner.

Let us consider a rectangular sample of about 60x7x2 mm3 that is carefully prepared

by compression molding. Suppose that each end of the sample is wedged in between

two pairs of metal belt rollers with the tips of each pair (separated by 50 mm) acting

as grips. Further suppose that the temperature inside the elongational rheometer

housing can be controlled to within ±0.2oC, maximum temperature being about

350oC. Before the sample is inserted into the rheometer housing, a grid pattern

of SiC powder is laid on the top of the sample. The sagging of the sample, at

high temperature, is prevented by a cushion of inert gas blowing from the system
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supporting the sample located below the sample. A constant ’strain’ rate (0.001 −

1s−1) can be obtained by rotating the metal belts at a constant speed in an opposing

manner between the two pairs. The force needed to achieve constant strain rate can

also be measured. A video camera is used to record the grid pattern that is used to

determine the true ’strain’ rate. The homogeneity of the deformation can be checked

by observing the grid patterns as a function of time. We shall consider the situation

when the strain rate is a constant and homogeneous throughout the deformation

process (for more details regarding the rheometer, the reader is referred to Meissner

and Hostetler [40]).

By rotating the metal belts at a constant speed, a constant strain rate data can be

ensured. The force is measured using a suitable transducer. One can also perform a

constant strain rate test followed by a stress relaxation measurement. This experiment

can be performed by stopping the metal belt rollers, which act as grips by firmly

holding the sample, and measuring the force as the sample relaxes (see Meissner

[39]).

In case of a homogeneous uniaxial elongation, the motion in rectangular co-ordinates

is given by

x = λ(t)X, y =
1

√

λ(t)
Y, z =

1
√

λ(t)
Z. (3.37)

The components of velocity gradient tensor are

[L] = [D] = [ḞκR
F−1

κR
] = diag

{ λ̇(t)

λ(t)
,− λ̇(t)

2λ(t)
,− λ̇(t)

2λ(t)

}

. (3.38)

We shall assume that the components of the tensor Bκpm(t)
have the following form:

[Bκpm(t)
] = diag

{

B(t),
1

√

B(t)
,

1
√

B(t)

}

, (3.39)
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which is tantamount to assuming the stress-free state via a deformation of the form

of the equation (3.37). Since the lateral surfaces are traction free, using Eq. (4.23),

the stress component along x-direction is

[Tm]xx = T11 = µ̄m
1

(B3/2(t) − 1
√

B(t)

)

+ 2µ̄m
2

(B3(t) − 1

B(t)

)

+ 3νm
3 ε̇0(t), (3.40)

where ε̇0(t) = λ̇(t)/λ(t).

Substituting Eqs. (3.38) and (3.39) in the Eq. (3.36), using the Eq. (4.14), and

suppressing the argument t, the evolution equation becomes

2ε̇0B − Ḃ = 2B



















{

µ̄m
1

(B3/2 − 1√
B

)

+ 2µ̄m
2

(B3 − 1

B

)

}

2β

{

2(2νm
1 B + 2νm

2 B2) +
2νm

1√
B

+
2νm

2

B

}β



















1/(2β−1)

. (3.41)

For the choice of the components of Bκpm(t)
given by the Eq. (3.39), the components

of the tensor Dκpm(t)
, using Eq. (4.14) with Fκpm(t)

= Vκpm(t)
, are

[D0
κpm(t)

] = diag

{

2ε̇0B − Ḃ

2B
,−(2ε̇0B − Ḃ)

4B
,−(2ε̇0B − Ḃ)

4B

}

, (3.42)

where D0
κpm(t)

is the extremum and 2ε̇0B − Ḃ is given by the Eq. (3.41). Now, we

shall determine the nature of the extremum. Since the tensor Dκpm(t)
can always be

diagonalized, on using the Eqs. (3.38) and (3.39), Eq. (4.17) becomes

ξ̄m =

{

(2νm
1 B + 2νm

2 B2)d2
1 +

(

2νm
1√
B

+
2νm

2

B

)

[d2
2 + (d1 + d2)

2]

}β

+ 3νm
3 (ε̇0)

2, (3.43)

where the components of tensor Dκpm(t)
are diag{d1, d2,−(d1 + d2)} (automatically

satisfies incompressibility constraint). The constraint (4.25) becomes

g =

{

µ̄m
1

(B3/2(t) − 1
√

B(t)

)

+ 2µ̄m
2

(B3(t) − 1

B(t)

)

}

d1 − ξ̄m = 0. (3.44)
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The augmented function is φ̂(d1, d2, λ) = ξ̄m +λg, where λ is the Lagrange multiplier.

By using the method of Lagrange multipliers, as expected, the extremum {d0
1, d

0
2} is

given by the first two components of the Eq. (3.42) and
λ − 1

λ
=

1

2β
. For a strong

local maximum, the following condition needs to be satisfied (see pp. 220-223 of [48])

{

−
(

∂g

∂d2

)2
∂2φ̂

∂d2
1

+ 2

(

∂g

∂d1

)(

∂g

∂d2

)

∂2φ̂

∂d1∂d2
−
(

∂g

∂d1

)2
∂2φ̂

∂d2
2

}

{d0
1,d0

2,λ}

> 0. (3.45)

Since νm
1 and νm

2 are non-negative (both are not zero simultaneously) and B > 0,

for arbitrarily fixed B, the above condition is satisfied as long as β > 0.5 or β < 0.

If β < 0, then from Eq. (3.43) it is clear that the rate of dissipation will decrease

with increasing d1 and d2, which is in contradiction to what one would expect. Thus,

we shall require that β > 0.5. Further, for a sufficiently smooth function ξ̄m, the

function ξ̄m looses its convexity (in R
2) if β < 0.5 (see pp. 45-47 and 173 of Panik

[48]). Further, {d0
1, d

0
2} is the only non-trivial extremum. Thus, the maximum rate of

dissipation criterion is satisfied.

In the Figs. 11-13, the experiments were conducted at a constant strain rate (ε̇0),

at some fixed temperature, and the force required is measured. In the Fig. 13, the

stress is calculated, neglecting inertial effects, by dividing the force by the current

area (A0 exp(−ε̇0t) , where A0 is initial area). Strain rate tests were performed at

three different rates until the Hencky strain (ln(λ), where λ is the stretch) of one

unit is achieved for polystyrene at 1700C. Fig. 14 indicates the relaxation data after

the cessation of the constant rate experiments depicted in Fig. 13. In all the figures

the predictions of the theory and the experiment have been plotted.

The evolution equation (3.41) was solved numerically using a 4th order Runge-Kutta

scheme using Matlab, with the initial condition B = 1. For the simulation of the

relaxation response, the value of B obtained at the instant of cessation is used as the

initial condition. Further, since there is no deformation during the relaxation process,
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the components of the tensor L are zero; the area remains constant and is equal to

the area at the end of the constant strain rate test. The stress is calculated using the

Eq. (3.40) and the force is computed as T11A0 exp(−ε̇0t).
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Fig. 11. The data was obtained at a constant strain rate of 0.1s−1 at 1500C for Lin-

ear Low Density Polyethylene (LLDPE). The initial cross sectional area, A0, is

17.19mm2 (see [40]). The material constants used are β = 0.97, µ̄m
1 = 20000Pa,

{

µ̄m
1

(νm
1 )β

}1/(2β−1)

= 1.3717 s−1, and µ̄m
2 = νm

2 = νm
3 = 0.
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Fig. 12. The plot indicates the measured force at two different strain rates at 2500C

for polyamide. The material constants picked were β = 0.95, µ̄m
1 = 18000Pa,

{

µ̄m
1

(νm
1 )β

}1/(2β−1)

= 7.4458 s−1, and µ̄m
2 = νm

2 = νm
3 = 0.
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Fig. 13. The plot shows the stress at constant strain rate for polystyrene at 1700C.

The material constants are β = 0.8, µ̄m
1 = 400Pa, µ̄m

2 = 1400Pa,
{

µ̄m
1

(νm
1 )β

}1/(2β−1)

= 8.8039x10−4 s−1, and
νm
1

νm
2

= 4.375.
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Fig. 14. The above figure shows the comparison of the predictions and the data dur-

ing constant length relaxation of the sample. The initial conditions are

B(t0) = 2.5465, 4.2075, and 5.7865; the value of B(t0)’s obtained at the end of

the constant strain rate experiment in the Fig. 13. The material constants are the

same as that used to obtain Fig. 13.

The numerical results compare very favorably with the experiments. In the Figs.

11 and 12 good agreement was achieved using the power law type of model discussed

in Srinivasa [76]. It is of course necessary to further compare the predictions of

the model with these values of the material constants, under other experimental

conditions to ascertain the appropriateness of the model as well as the values for the

material moduli that have been used.
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D. Modeling the mixture

The Helmholtz potential per unit mass of the mixture is defined as

Ψ(θ, Iκpm(t)
, IIκpm(t)

, Iκps(t)
, Iκr

, α) = αΨm(θ, Iκpm(t)
, IIκpm(t)

)+(1−α)Ψs(θ, Iκps(t)
, Iκr

),

(3.46)

where α is the mass fraction of the melt.

The Helmholtz potential associated with the solid is defined through

Ψs(θ, Iκps(t)
, Iκr

) = As + (Bs + cs
2)(θ − θs) − cs

1

(θ − θs)
2

2

−cs
2θ ln

(

θ

θs

)

+
µs

1

2ρ
(Iκps(t)

− 3) +
µs

2

2ρ
(Iκr

− 3), (3.47)

where θs denotes the reference temperature and As, Bs, cs
1, cs

2, µs
1, and µs

2 are material

constants, the last two constants representing the shear modulus is assumed to be

non-negative. In the above equation, κr(B) is the configuration at which the melt

starts to solidify (see Fig. 10) and κps(t) denotes the evolving natural configuration

associated with the viscoelastic solid that has been formed. The material is assumed

to be isotropic with respect to these configurations. For any fixed configuration, the

contribution of the last term in the Eq. (3.47) is fixed, while that of the penultimate

term will be given by a rate equation similar to that for the melt and hence may

change with time.

The rate of entropy production due to mechanical (times temperature) working per

unit volume of the mixture is defined through

ξ(θ,Bκpm(t)
,Dκpm(t)

,D,Bκps(t)
,Dκps(t)

, α) = αξm + (1 − α)ξs, (3.48)
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where ξs, the rate of entropy production (times temperature) due to mechanical work-

ing of the solid, which is defined through

ξs(θ,Bκps(t)
,Dκps(t)

) = 2νs(θ,Bκps(t)
)Dκps(t)

· Bκps(t)
Dκps(t)

. (3.49)

In the above equation, the rate of dissipation is weighted by the mass fraction. The

other entropy producing mechanisms in the mixture are due to conduction and phase

change. The total entropy production is assumed to be additive, i.e., ξ̂ = ξc + ξ + ξp,

where
ξp

θ
is the rate of entropy production per unit volume of the mixture. Further,

each of the entropy producing mechanisms are assumed to be non-negative. The

reduced dissipation equation, for the mixture, reads as

T ·D − ρΨ̇ − ρηθ̇ = ξ + ξp, ξ, ξp ≥ 0. (3.50)

Substituting the Eqs. (3.46) and (3.48) in the Eq. (3.50), one arrives at

[

T − α

(

µm
1 θ

θm
Bκpm(t)

+
2µm

2 θ

θm
B2

κpm(t)
+ 2νm

3 D

)

−(1 − α)

(

µs
1Bκps(t)

+ µs
2Bκr

)]

·D − ρ

[

− αηm − (1 − α)ηs + η

]

θ̇

+α

[

µm
1 θ

θm

Bκpm(t)
+

2µm
2 θ

θm

B2
κpm(t)

]

· Dκpm(t)
+ (1 − α)µs

1Bκps(t)
·Dκps(t)

−ρ
(

Ψm − Ψs

)

α̇ = α

[

ξm − 2νm
3 D · D

]

+ (1 − α)ξs + ξp, (3.51)

where the entropy of the solid constituent of the mixture, i.e., ηs is

ηs = −Bs + cs
1(θ − θs) + cs

2 ln

(

θ

θs

)

, (3.52)
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and

ξp(α, α̇) = −
{

A(1 − αm) + B(1 − αn)
}

α̇, 0 < m < 1 (or 0 < n < 1) and

n ≥ 0 (or m ≥ 0), (3.53)

where A and B are positive constants. We shall require that only those processes

with α̇ ≤ 0 are allowed. In other words, the solid is not allowed to re convert into the

melt phase. Since the constants A, B, m, and n are non-negative and α ∈ [0, 1], ξp is

non-negative. The form of the function ξp also satisfies ξp(α, 0) = 0. One would also

expect that ξp → 0 at the beginning and the end of the transitional regime; as α → 1,

ξp → 0. We will show in this section that α̇ → 0 as α → 0 thereby satisfying this

supposition. The functional form of the function ξp is at this stage largely a matter

of guess work and the effectiveness should be evaluated by solving specific problems.

We are looking only for sufficient conditions to satisfy the Eq. (3.51), and one way

to satisfy this equation is to assume the stress tensor of the mixture to be

T = −p̂I + α

(

µm
1 θ

θm
Bκpm(t)

+
2µm

2 θ

θm
B2

κpm(t)
+ 2νm

3 D

)

+(1 − α)

(

µs
1Bκps(t)

+ µs
2Bκr

)

= −p̂I + αTm + (1 − α)Ts, (3.54)

and the entropy of the mixture to be

η = αηm + (1 − α)ηs, (3.55)

guided by Eq. (4.25). Recognizing that the rate of dissipation is additive in the two

components of the mixture weighted by the mass fraction, we suppose that

[

µm
1 θ

θm
Bκpm(t)

+
2µm

2 θ

θm
B2

κpm(t)

]

·Dκpm(t)
=
(

ξm − 2νm
3 D · D

)

, (3.56)
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and the material conversion kinetics to be

ρ
(

Ψm − Ψs

)

α̇ = {A(1 − αm) + B(1 − αn)}α̇ ⇒ ρ
(

Ψm − Ψs

)

= A(1 − αm) + B(1 − αn) or α̇ = 0, (3.57)

If α̇ = 0, Eq. (3.57) would imply that the fraction of the melt is always a constant.

In other words, there is no phase change. Therefore, one needs to pick the other

equation.

Using the Eqs. (3.54), (3.55), (3.56) and (3.57) in Eq. (3.51), one arrives at

µs
1Bκps(t)

· Dκps(t)
= ξs. (3.58)

The internal energy of the mixture per unit mass, ε, using the relation ε = Ψ + ηθ, is

ε = αεm + (1 − α)εs, (3.59)

where εs is the internal energy of the solid and is defined through

εs = Ψs + ηsθ = As − Bsθs +
cs
1

2
(θ2 − θs

2) + cs
2(θ − θs)

+
µs

1

2ρ
(Iκps(t)

− 3) +
µs

2

2ρ
(Iκr

− 3). (3.60)

When the polymer exists in a pure melt-like or in a pure solid-like state, the entropy

production due to phase change is zero because there is no conversion of the material

in progress. We suppose that the rate of entropy production due to phase change is

zero at the beginning and at the end of the transition. Such an assumption would

also ensure that the ξp is continuous throughout the polymer processing range. As

α → 1, the right hand side of the Eq. (3.57)2 tends to zero and the only way to

satisfy the left hand side of the same equation is to let Ψm → Ψs; it serves as an

initiation criterion (see Eq. (3.61)) for the mixture model. By differentiating the
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Eq. (3.57)2 with respect to time (material derivative) and letting α → 1 reveals that

α̇ 6= 0 provided that ˙Ψm − Ψs 6= 0. Since one expects that ξp → 0 at the end of the

transitional regime (α → 0), differentiating Eq. (3.57)2 with respect to time reveals

that α̇ → 0 as α → 0. It is also true that α̇ ≤ 0 if ˙Ψm − Ψs ≥ 0 (for arbitrary α),

i.e., Ψm − Ψs is monotonic with time.

If one assumes that the solid is born in a stress free state, then

Ψm − Ψs

∣

∣

∣

Bκr=Bκps(t)
=I

= φ(θ,Bκpm(t)
). (3.61)

The above equation serves as an initiation criterion for the mixture model. Since

Ψm = Ψs at the initiation point of the mixture model and the monotonicity implies

that Ψm − Ψs is always positive and non-decreasing with time.

We shall exploit the monotonicity of the function Ψm−Ψs to arrive at some restrictions

on some of the material constants appearing in it. In the absence of any deformation

Iκpm(t)
= IIκpm(t)

= Iκps(t)
= Iκr

= 3 and the monotonicity condition reduces to

[

Bm − cm
1 (θ − θm) − cm

2 ln

(

θ

θm

)

− Bs + cs
1(θ − θs) + cs

2ln

(

θ

θs

)]

θ̇ ≥ 0. (3.62)

The above inequality is valid for all θ in the mixture regime. The rate of change of

the absolute temperature cannot be positive because it implies that increasing the

temperature would cause the material to solidify. This is contrary to observations.

Thus, θ̇ ≤ 0. This and the above inequality imply that

Bm − cm
1 (θ − θm) − cm

2 ln

(

θ

θm

)

− Bs + cs
1(θ − θs) + cs

2ln

(

θ

θs

)

≤ 0. (3.63)

We shall require that the above inequality be respected even in the presence of defor-

mation. If cm
1 θ+cm

2 > cs
1θ+cs

2, in the absence of mechanical deformation, the function

Ψm−Ψs is strictly concave (second derivative of Ψm−Ψs with respect to temperature

is negative); the inequality (3.63) restricts Ψm −Ψs to the region of negative slope in
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θ − f(θ) space.

To obtain the evolution equation for the configurations κpm(t) and κps(t), we adopt

the maximization of entropy production assumption similar to that discussed in the

previous section. Here, we maximize the rate of entropy production associated with

mechanical working of the mixture with respect to Dκpm(t)
and Dκps(t)

with the equa-

tions trDκpm(t)
= 0, trDκps(t)

= 0, (3.56) and (3.58) as constraints. The augmented

function, Φ, is

Φ = αξm + (1 − α)ξs + λ1α
{

ξm − 2νm
3 D · D −

(

Tm − 2νm
3 D

)

· Dκpm(t)

}

+λ2(1 − α)
{

ξs −
(

Ts − µs
2Bκr

)

·Dκps(t)

}

+ λ3trDκpm(t)
+ λ4trDκps(t)

, (3.64)

where λ1, λ2, λ3 and λ4 are Lagrange multipliers.

By setting the derivatives of Φ to zero results in the following two equations:

∂Φ

∂Dκpm(t)

= 0 ⇒ α

(

1 + λ1

λ1

)

∂ξm

∂D κpm(t)

− α
(

Tm − 2νm
3 D

)

+
λ3

λ1

I = 0,

and

∂Φ

∂Dκps(t)

= 0 ⇒ (1 − α)

(

1 + λ2

λ2

)

∂ξs

∂Dκps(t)

− (1 − α)
(

Ts − µs
2Bκr

)

+
λ4

λ2
I = 0. (3.65)

Starting from the above two equations, it is possible to show that the tensor pairs

Bκpm(t)
,Dκpm(t)

and Bκps(t)
,Dκps(t)

commute (multiplicatively). Using this property

and taking the inner products of the Eq. (3.65)1 with Dκpm(t)
and the Eq. (3.65)2

with Dκps(t)
, and comparing with the Eqs. (3.56) and (3.58), the Lagrange multipliers

1 + λ1

λ1
and

1 + λ2

λ2
are determined to be

1

2β
and

1

2
respectively. By premultiplying

the Eq. (3.65)1 by B−1
κpm(t)

and operating with the trace operator, we find that,
λ3

λ1
is

α

(

p+
λm

2

λm
1

)

. Similarly,
λ4

λ1

is (1−α)
3µs

1

trB−1
κps(t)

. The evolution equations for the mixture
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consists in prescribing how the configurations, namely, κpm(t) and κps(t) evolve; the

procedure for obtaining such equations is the same as that used in §4. The evolution

equation for κpm(t) is the same as the Eq. (3.36), while that of the configuration κps(t)

is
5

Bκps(t)
=

µs
1

νs

(

3

trB−1
κps(t)

I − Bκps(t)

)

. (3.66)

By following a similar procedure discussed in the previous section, the extremum with

maximum rate of dissipation is chosen by inspection.

E. Modeling the solid

Many amorphous polymers such as polymethylmethaacrylate (PMMA), polycarbon-

ate, polystyrene, and so forth, behave like a viscoelastic solid sufficiently below glass

transition temperature. For example, stress relaxation of polycarbonate (whose glass

transition temperature θg ≈ 1400C) at 500C indicates that the stress asymptotically

decreases to some fixed value (Malkin et al. [35]). Creep data of polyvinyl chloride

(PVC) at 240C (θg ≈ 650C) indicates that, after sufficient time, the strain approaches

some fixed value. Further loading, given sufficient time, the sample reverts to its

original length (see Onaran and Findley [46]). PMMA (θg = 1230C) behaves like a

viscoelastic solid in that the stress asymptotically approaches some fixed value during

an ’anti-stress relaxation’ experiment, which is described below (see Quinson et al.

[56]). These data indicate that, sufficiently below glass transition temperature, such

polymers exhibit solid-like character.

In the glassy state, aging plays an important role. There is experimental evidence

indicating that the mechanical response of the aged sample can differ considerably

when compared to the unaged specimen. The model for the solid presented here

does not address this issue and the model should only be applied to such thermo-
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mechanical processes that are ’fast’ enough where aging effects are not significant.

When a polymer in the solid state is sufficiently deformed, permanent deformation

sets in. The model presented here only deals with deformation below the ’yield’ limit.

Another issue of interest is the anisotropy in the solid; the solid forms in a deformed

state (at κr). In fiber spinning, the solid fiber is often transversely isotropic. Again,

we emphasize that the thermomechanical framework presented here is general and all

the above mentioned phenomena can be included under this umbrella. Particularly,

the issue of anisotropy induced during the crystallization of polymers is discussed at

length by Rao and Rajagopal (see [73]).

Using the definition of the functions Ψs and ξs given through the Eqs. (3.47) and

(3.49), respectively, in the reduced dissipation equation (4.21), and following a pro-

cedure similar to that in §3, we find that the stress tensor is given by

Ts = −psI + µs
1Bκps(t)

+ µs
2Bκr

, (3.67)

where ps is the Lagrange multiplier. The entropy, the internal energy, and the evolu-

tion equation for the natural configuration of the solid are given by the Eqs. (3.52),

(3.60), and (3.66) respectively. The evolution equation for the natural configuration

is obtained by maximizing the rate of dissipation (see Rajagopal and Srinivasa [58]).

For the function εs, just as in §3, we shall require that cs
1 > 0 and cs

1θ + cs
2 > 0. In the

limit α → 0, the model for the mixture regime tends to the same set of equations as

that for the solid. Thus, there is a smooth transition from the equations represent-

ing the mixture to the equations for the solid (a similar smooth transition occurs as

α → 1).

The evolving configuration κps(t) captures the viscoelastic nature of the solid (tempo-

ral response of the body).
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1. Relationship to the Standard Linear Solid (SLS)

The non-linear incompressible SLS may be defined through

T = −pI + S (3.68)

and

S + τ1

5

S= 2τ1µ̄1D + µ̄2Bκr
. (3.69)

By eliminating the tensor S between the above two equations, adding and subtracting

2τ1µ̄2D, and using (4.13), leads to

1

τ1
T̄e +

5

T̄e = 2(µ̄1 + µ̄2)D +
µ̄2

τ1
(Bκr

− I), (3.70)

where T̄e = T + p̄I, p̄ = p − µ̄2.

The above equation is a generalization of the to the one-dimensional mechanical

analog of the SLS.

Then, Eqs. (3.68) and (3.69) can be recast (see Rajagopal and Srinivasa [58]) in the

following form:

T = −p̃I + S̄, p̃ = p + µ̄1 and S̄ = S + µ̄1I (3.71)

and

S̄ + τ1

5

S̄= (µ̄1 + µ̄2)I + µ̄2(Bκr
− I). (3.72)

To see the relationship of the model for the solid obtained in this paper to the Eqs.

(3.71) and (3.72), the Eqs. (3.67) and (3.66) are rewritten as follows:

Ts = −psI + Ŝ, Ŝ = µs
1Bκps(t)

+ µs
2Bκr

, (3.73)

and

Ŝ +
νs

µs
1

5

Ŝ= (µs
1λ̂ + µs

2)I + µs
2(Bκr

− I), λ̂ =
3

µs
1tr(Ŝ − µs

2Bκr
)−1

=
3

trB−1
κps(t)

. (3.74)



83

Except for the form of λ̂, the two sets of equation have a similar form. If ‖ Bκps(t)
−

I ‖= O(ε), ε � 1, it can be shown that trB−1
κps(t)

= 3 + O(ε2) (see Rajagopal and

Srinivasa [58]). In this sense the model for the solid obtained in this paper can be

viewed as a generalization of the SLS described through the Eqs. (3.68) and (3.69).

2. An application of the model for solid

We shall now consider an application to evaluate the efficacy of the solid model that

we have developed. Let us consider the following experiment for which the data is

available.

Let us consider a cylindrical sample of about 8mm in diameter and about 12mm in

length that is uniaxially compressed by applying a constant load rate for a duration of

t1 seconds until a given stress Tf is reached in a suitable testing machine (see Quinson

et al. [56]) at some fixed temperature. At the end of the loading cycle, let us suppose

that the material is unloaded at the same rate for a further duration of t1 seconds.

Further, let us suppose that it is held at constant strain for the remaining time and

that the force is measured as a function of time (referred to as ’anti-stress relaxation’).

The effect of preload is not taken into consideration because the duration of the same

is unknown. Due to the viscoelastic nature of the solid, the force that is measured

changes after the loading and unloading.

We shall assume that the deformation is homogeneous and in uniaxial compression,

given by:

x =
1

λ2(t)
X, y = λ(t)Y, z = λ(t)Z. (3.75)

The components of velocity gradient tensor are

[L] = [D] = [Ḟκr
F−1

κr
] = diag

{−2λ̇(t)

λ(t)
,
λ̇(t)

λ(t)
,
λ̇(t)

λ(t)

}

. (3.76)
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The components of Bκps(t)
are assumed to be

[Bκps(t)
] = diag

{ 1

B2(t)
, B(t), B(t)

}

. (3.77)

Substituting the above two equations into Eq. (3.66) results in

4
λ̇(t)

λ(t)
B(t) − µs

1

νs

( 3B4(t)

2 + B3(t)
− B(t)

)

= 2Ḃ(t). (3.78)

The components of the tensor Bκr
are

[Bκr
] = diag

{ 1

λ4(t)
, λ2(t), λ2(t)

}

. (3.79)

During the loading cycle, using the fact that the lateral surfaces are stress-free, the

constitutive equation (3.67) reduces to

Txx = T11 = −Tf t

t1
= µs

1

(1 − B3(t)

B2(t)

)

+ µs
2

(1 − λ6(t)

λ4(t)

)

, Tf ≥ 0, 0 ≤ t ≤ t1, (3.80)

where Tf is the preset magnitude of the maximum stress applied during the loading

cycle and t1 is the duration of the loading cycle. One needs to solve the Eqs. (3.78)

and (3.80) in tandem. We shall proceed to determine λ(t) in terms of the remaining

parameters.

The above equation is a cubic equation in λ̄(t) (sextic in λ(t)) with λ̄(t) = λ2(t),

i.e., λ̄3(t) + blλ̄
2(t) − 1 = 0, where bl =

µs
1

µs
2

(B3(t) − 1

B2(t)

)

− Tf t

t1µ
s
2

. For any fixed B(t),

there are three roots for λ̄(t). If the value of the discriminant D > 0, where D =
(27 − 2b3

l

54

)2

− b6
l

729
, there is one real root and the other two are complex conjugates.

If D ≤ 0 all the roots are real (see Abromovitz and Stegun [1]). Since the stretch

λ(t) ≥ 1, using Eq. (3.80), it is easy to see that bl has to be negative. But, bl < 0

implies that D > 0. Thus, λ̄(t) has one real root and the other two are complex

conjugates. Since λ(t) (λ̄(t) = λ2(t)) cannot be negative or complex leads to a unique
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expression, which is given by

λ(t) =
√

λ̄(t), λ̄(t) = −bl(t)

3
+
(27 − 2b3

l (t)

54
+
√

D
)1/3

+
(27 − 2b3

l (t)

54
−
√

D
)1/3

.

(3.81)

Substituting the Eq. (3.81) into Eq. (3.78) results in a differential equation for B(t)

that is numerically solved with the initial condition B(0) = 1. Alternatively, the Eq.

(3.80) can be differentiated with respect to t to find λ̇(t) in terms of λ(t), Ḃ(t), B(t)

and the other parameters; λ(t) is given by the above equation with bl being replaced

by bu.

During the unloading (t1 ≤ t ≤ 2t1), the evolution equation is the same as the Eq.

(3.78), the term
−Tf t

t1
in the Eq. (3.80) is replaced by

Tf (t − 2t1)

t1
and bl in the Eq

(3.81) is replaced by bu, where

bu =
µs

1

µs
2

(B3(t) − 1

B2(t)

)

+
Tf(t − 2t1)

t1µs
2

, t1 ≤ t ≤ 2t1. (3.82)

A posteriori check of the Eq. (3.81), by solving the evolution equation (3.78) with

appropriate initial conditions, revealed that λ(t) ≥ 1 during loading and unloading.

Since the sample is held at constant strain after the unloading period, the components

of the velocity gradient tensor are all zero and the evolution equation is the same as

Eq. (3.78) with
λ̇(t)

λ(t)
= 0. During the constant strain period (t ≥ 2t1), the evolution

equation is solved with the initial condition B(2t1) equal to the value of B(t) at the

end of the previous period. The whole problem is solved numerically using fourth

order Runge-Kutta method implemented in Matlab.

For PMMA, in uniaxial compression, a strain (based on the current length) of about

8 (λ ≈ 1.04) percent is the limit, after which permanent deformation sets in (see

Quinson et al. [57]). The material constants were picked such that the strain is

within this limit (’small’ stretch regime). The results are presented in Fig. 15. We
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Fig. 15. The above figure shows the stress at constant strain after loading and unload-

ing at 253K with t1 = 12s. The material constants used in the simulation are

µs
1 = 22.77Mpa, µs

2 = 0.392Gpa, and νs = 0.24GPas. The initial conditions for

Tf = 50 and 110Mpa are 0.9836 and 0.9636 respectively. The data for 170 and

230MPa is not shown.

find that the model predicts the asymptotic stresses that are within ≈ 8% and ≈ 6%

of the experimental value for Tf = 50 and 110MPa respectively. Including the effect

of preload could possibly improve the results. A better model can be obtained by

picking a more complicated choice for the stored energy and the rate of dissipation.

However, it is not our purpose here to build a more accurate model. Our main purpose

is to develop a model that can predict the transition from a viscoelastic fluid to that

of a viscoelastic solid, without adhoc assumptions for the transition or an assumption

that the viscosity of the melt tends to infinity. The viscoelastic nature of the solid is

clearly reflected in the Fig. 15. PMMA behaves like a solid, a constant stress (non

zero) is reached after a sufficient length of time.
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CHAPTER IV

FLOW INDUCED CRYSTALLIZATION IN FIBER SPINNING

In this paper, we extend the development of model within the thermomechanical

framework due to Rao and Rajagopal [73] to describe the problem of polymer crys-

tallization in general and the problem of fiber spinning in particular (see Kannan and

Rajagopal [31]). This study is a generalization of previous study concerning fiber

spinning by Kannan et al. [32] and it incorporates the effect due to material sym-

metry changes that take place during crystallization. The model incorporates the

effects due melt viscoelasticity, drag on the fiber, gravity, inertia effects, the cooling

of the fiber, the initiation of crystallization (that depends on both the temperature

and deformation), flow induced crystallization and the anisotropy of the crystalline

phase of the semicrystalline solid. The prediction of the model are compared with

the experimental results that are available.

A. Introduction

There have been several models that have been developed to describe polymer crys-

tallization. Recently, Rao and Rajagopal [73] put into place a general thermodynamic

framework to describe polymer crystallization. The melt was modeled as a viscoelas-

tic liquid and the semi crystalline solid was modeled as a mixture of elastic solids that

are formed continuously and the original viscoelastic liquid. The material symmetry

of the solid that is formed (’average’ orientation of the crystals) at any particular

instant, modeled as an orthotropic elastic solid, depends on deformation that the

melt has suffered. Thus, the response of the final semicrystalline material depends

on the process to which the melt was subjected during the course of crystallization.

The initiation of crystallization would depends on the temperature and deformation,
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the crystallization kinetics, the form of the stress, and so forth are obtained in a

systematic manner from thermodynamic considerations. It should be mentioned that

the evolving material symmetry is obtained as a part of the solution to the problem

of interest.

We shall not get into a detailed review of the fiber spinning problem but refer the

reader to Denn [10], Doufas et al. [14] and Kannan et al. [32] for the same (also see

Ch. 2). Kannan et al. [32] used a simplied version of the theory in which the polymer

melt was assumed to solidify into an isotropic elastic solid to describe low-speed fiber

spinning of predominantly glassy polymers such as PET. Here, we consider the case

of fiber spinning when crystallization takes place thereby leading to a semi-crystalline

solid. There have been successful earlier studies (see Doufas et al. [14]) where fiber

spinning has been considered within the context of crystallization. Patel et al. [49]

used a Newtonian model to fit the data obtained by Bheda and Spruiell [4]. To cap-

ture the plateau in velocity after significant crystallization , the viscosity was allowed

to increase to a large value. While this method is a good early attempt to model

the problem, one does not obtain a solid in the semi-crystalline region and hence

it is difficult to capture the velocity plateau that arises in fiber spinning due to so-

lidification in spite of increasing the viscosity to a very high value (e.g. Zieminski

and Spruiell [89]). Also, this model does not capture the anisotropy observed in the

semicrystalline state, i.e., even if one decides to model the semicrystalline state as

a liquid because given sufficient time a polymer in this state will behave like a liq-

uid, one should model it as an anisotropic liquid (liquid being defined as a material

that cannot resist shear stress). Sun et al. [77] used a viscoelastic liquid to simulate

the problem (a modified PTT model) with the viscosity depending on temperature

and crystallinity (2-D simulations) for the semicrystalline regime. Only a part of the

data of Bheda and Spruiell [4] was used as the focus was on low-speed simulations.
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Doufas et al. [15] modeled the melt as a viscoelastic liquid (Giesekus fluid) and the

semicrystalline phase as a collection of rigid rods that grow, at the expense of the

melt, and orient during deformation. Equilibrium melting temperature was used as

an initiation criterion for crystallization. They obtained very good agreement with

the industrial spinline data including the neck formation. Of all the models that are

available, the microstructural model due to Doufas et al. [14] seems to be the most

sophisticated and the predictions of their model agree very well with extensive sets of

industrial spinline data. Studies on polyamides by Haberkorn et al. [27] indicate that

the crystallization process is initiated towards the end of the necking phenomenon

during high-speed fiber spinning, which occurs at a temperature that is much lesser

than the equilibrium melting temperature. Doufas et al. [14] and [15] assume that

the crystallization is initiated at the equilibrium melting temperature of the poly-

meric material, and they take the view that the crystallinity achieved between the

equilibrium melting temperature and at a temperature near the end of the necking

process is too small to show up in wide angle x-ray scattering (WAXS). Contrariwise,

we take the view that the crystallization is initiated in non-equilibrium conditions

at the end of the necking phenomenon and this is in keeping with the observation

of Haberkorn et al. [27] . Haberkorn et al. [27] also noticed that the temperature

at which solidification occurs is independent (to within experimental errors) of mass

flow rate, capillary diameter, velocity and cross-flow cooling air velocity and depen-

dent on the take-up velocity. In view of this we assume that the initiation condition

for the crystallization process is only a function of temperature and deformation (see

Eq. 4.1). We show that our model is able to describe equally well the same sets of

industrial spinline data described by the model of Doufas et al. [14] . The material

parameters in question are fixed with regard to one amongst a set of experiments

and the other experiments in the set are correlated with the values for the material
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parameters fixed in the first experiment. Here, we provide an alternate approach to

the problem. As the approach is sufficiently different, we feel it is worth documenting

our procedure.

In fiber spinning, we know that the crystals are always oriented along the length of

the fiber (see Ziabicki [88] ) during the course of crystallization. The axis of symmetry

is a priori set as the direction along the length of the fiber. A number of authors

have studied the fiber spinning problem and one may refer to, for example, Doufas

et al. [14] for a detailed the list of relevant literature. In our analysis, unlike most

previous studies the initiation of crystallization is assumed to depend on both the

temperature and deformation and it naturally arises from the thermodynamic con-

siderations. The appropriate averaged mass, momentum and the evolution equation

and 2-D energy equation for the melt (radial resolution approximation) etc., are dis-

cussed elsewhere and it will not be discussed here (eg. see Vassilatos et al. [82] ).

First, the fiber spinning process is approximated by a thin-filament assumption (all

the quantities of interest are assumed to be a function of the distance from the spin-

neret only, i.e., a 1-D approximation) to study the industrial spinline data reported

in Doufas et al. [15] . Since the heat conduction in the radial direction cannot occur

without a radial temperature gradient, one needs to make temperature a function

of the radial distance r in addition to the distance from the spinneret z in the en-

ergy balance. However, the rest of the variables are assumed to be a function of z

only. As a result, since the equations obtained for the mass, momentum and energy

balance and the evolution equation are coupled, one needs to average the balance

equations along the radial direction. Since the free surface of the fiber is obtained as

a part of the solution and the governing equations are non-linear integro-differential

equations and a non-linear integro-partial differential equation, numerical solution

finding effort is considerable and time consuming due to the iterative nature of the
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numerical procedure. Accordingly, the fiber spinning process is approximated using a

radial resolution approximation and the predictions of the model are compared with

the data of Patel et al. [49] . Our predictions of the model yield a slightly better

prediction of temperature profiles compared to thin-filament approximation. Here,

radial resolution approximation is used in the melt regime and thin-filament approxi-

mation, for simplicity, is used in the mixture regime. The governing equations for the

thin-filament approximation used in the melt regime can be obtained by assuming

radial independence of all the variables in §D.1.

B. Kinematics

As the general framework was discussed elsewhere (see Rao and Rajagopal [73] ), we

shall keep the discussion of modeling to that which is necessary to make the work

comprehensible and self-contained. Let κR(B) and κt(B) denote the reference and

the current configuration of the body B at time t respectively. By the motion of a

body we mean a one to one mapping that assigns to each point X ∈ κR(B), a point

x ∈ κt(B), for each t,

x = χκR
(XκR

, t). (4.1)

We shall assume that this motion is sufficiently smooth and invertible. The velocity

of a particle is defined through

v =
∂χκR

∂t
. (4.2)

For brevity, henceforth we shall drop the argument B in κt(B). The deformation

gradient, FκR
, the left and right Cauchy-Green stretch tensors BκR

and CκR
are

defined through

FκR
=

∂χκR

∂XκR

, BκR
= FκR

FT
κR

, and CκR
= FT

κR
FκR

. (4.3)
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The principal invariants of BκR
are

IκR
= tr(BκR

), IIκR
=

1

2

{

[

tr(BκR
)
]2 − tr(B2

κR
)
}

, and IIIκR
= det(BκR

). (4.4)

Let κpm(t) denote the configuration associated with the configuration at κt (see Fig.

(16)). We refer the reader to Kannan et al. [32] and Rao and Rajagopal [73] where the

notion of evolving natural configurations is discussed with regard to issues concerning

polymer crystallization. The left and the right elastic Cauchy Green stretch tensors

are defined through

Bκpm(t)
= Fκpm(t)

FT
κpm(t)

and Cκpm(t)
= FT

κpm(t)
Fκpm(t)

, (4.5)

respectively, where Fκpm(t)
is the mapping between the tangent spaces at the appro-

priate points belonging to the configurations κpm(t) and κt. The principal invariants

of Bκpm(t)
are Iκpm(t)

, IIκpm(t)
and IIIκpm(t)

.

The mapping Gm is defined through (see Fig. (16))

Gm = FκR→κpm(t)
= F−1

κpm(t)
FκR

. (4.6)

The velocity gradient and the mapping Lκpm(t)
are defined through

L := ḞκR

∣

∣

∣

XκR
=const.

F−1
κR

and

Lκpm(t)
= ĠmG−1

m . (4.7)

The symmetric parts of L and Lκpm(t)
are

D =
1

2
(L + LT ) and Dκpm(t)

=
1

2
(Lκpm(t)

+ LT
κpm(t)

). (4.8)
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Fig. 16. The figure represents the configurations associated with the melt. The point

X is the position occupied by the particle in the reference configuration. The

point x is the current position of the particle.

The upper convected Oldroyd derivative of Bκpm(t)
is defined through (see Oldroyd

(1950))

5

Bκpm(t)
= Ḃκpm(t)

− LBκpm(t)
− Bκpm(t)

LT = −2Fκpm(t)
Dκpm(t)

FT
κpm(t)

. (4.9)

The mapping Fκc(τ)
(see Fig. (17)) is defined through

Fκc(τ)
:= FκR

(XκR
, t)F−1

κR
(XκR

, τ), to ≤ τ ≤ t, (4.10)

where to is the time at which crystallization is initiated. One can define relative left

and right stretch tensors and the principal invariants that are related to Fκc(τ)
.

We shall assume that the material is incompressible, i.e.,

det(Bκpm(t)
) = 1

(

or tr(Lκpm(t)
) = 0

)

and tr(L) = 0. (4.11)
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Fig. 17. The figure represents the configurations associated with the mixture.

C. Modeling the melt and the semicrystalline solid

1. Modeling the melt

The starting point for the derivation is the specification of two scalars namely, the

Helmholtz per unit mass and the rate of dissipation per unit volume, which are defined

as follows:

Ψm(θ, Iκpm(t)
) = Am + (Bm + cm

2 )(θ − θm) − cm
1

(θ − θm)2

2

−cm
2 θ ln

(

θ

θm

)

+
µmθ

2ρθmb

{[

1 +
b

n
(Iκpm(t)

− 3)

]n

− 1

}

, (4.12)

where θm, Am, Bm, cm
1 , cm

2 , b, n and µm are the reference temperature and the material

constants, respectively, and

ξm(θ,Bκpm(t)
,Dκpm(t)

) = 2νm(θ,Bκpm(t)
)
{

Dκpm(t)
· Bκpm(t)

Dκpm(t)

}β
, (4.13)

where νm(θ,Bκpm(t)
) is the viscosity of the melt and β is a constant. The above

definition for the dissipation guarantees that it be non-negative.
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The functional form of the Eq. (4.12) has been constructed in such a way that the

specific heat of the melt is linear in θ, and at constant temperature the stored energy of

the polymer melt is assumed to be that of a power law neo-Hookean material. Further,

when b, n = 1, the shear modulus of the material is proportional to temperature,

which is consistent with the Gaussian network theory (see Treolar [81]). The rate of

dissipation function is of the same form as chosen by Srinivasa [76].

By following the procedure outlined in Rao and Rajagopal [73] , it can be shown that

the stress tensor has the form:

Tm = −pI +
µmθ

θm

[

1 +
b

n
(Iκpm(t)

− 3)

]n−1

Bκpm(t)
, (4.14)

and the evolution of the natural configuration is given by

5

Bκpm(t)
= 2

{

µmθ

2νmθm

[

1 +
b

n
(Iκpm(t)

− 3)

]n−1[

trBκpm(t)
− 9

tr(B−1
κpm(t)

)

]1−β} 1
2β−1

×
[

3

tr(B−1
κpm(t)

)
I− Bκpm(t)

]

. (4.15)

The internal energy per unit mass and specific heat capacity of the melt are

εm = Am − Bmθm +
1

2
cm
1 (θ2 − θ2

m) + cm
2 (θ − θm) and

∂εm

∂θ
= cm

1 θ + cm
2 . (4.16)

2. Modeling the semicrystalline solid

The specific Helmholtz potential of the semicrystalline solid is partitioned into two

parts, i.e., one that corresponds to the crystalline part and the other relates to the

amorphous part with each part being weighted by their corresponding mass fractions.
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We define the specific Helmholtz potential of the mixture, Ψ, as follows:

Ψ =

∫ t

to

{

As + (Bs + cs
2)(θ(t) − θs) − cs

1

(θ(t) − θs)
2

2
− cs

2θ(t) ln

(

θ(t)

θs

)

+
µs

1

2ρ
(Iκc(τ)

− 3) +
µs

2

2ρ
(Jκc(τ)

− 1)2

}

dα(τ)

dτ
dτ + (1 − α)Ψm

= Ψs + (1 − α)Ψm, (4.17)

where Jκc(τ)
:= Cκc(τ)

nκc(τ)
· nκc(τ)

and nκc(τ)
is the eigen vector of the tensor Bκpm(t)

corresponding to the largest eigen value. The integral for the crystalline part reflects

the fact that the solid is formed continuously from the melt over a period of time

(see Rao and Rajagopal [73] ). The integrand refers to the Helmholtz potential of

a transversely isotropic elastic solid (due to flow induced anisotropy) that is in the

configuration κ(t), which came into being in the configuration κ(τ). The temperature

in the integrand is only a function of current time t, i.e., the effect of the thermal

history is not included in the Helmholtz potential. We note that as t → to, α → 0

and one can recover the specific Helmholtz potential of the melt. Thus continuity is

ensured as far as the specific Helmholtz potential is concerned.

The rate of dissipation per unit volume of the mixture is defined through

ξ = (1 − α)2νm(θ,Bκpm(t)
)
{

Dκpm(t)
·Bκpm(t)

Dκpm(t)

}β
. (4.18)

The continuity of the rate of dissipation is ensured as well. As the crystallization

process involves phase change, one needs to take into account the rate of entropy

production that accompanies the phase change. Accordingly, we define the rate of

entropy production (times ρθ), i.e., ξp as ρ(Ψm − Ψ̂s)α̇, where Ψ̂s and α̇ are given by

the right hand side of Eqs. (4.22) and (4.24) respectively.

Using the procedure developed by Rao and Rajagopal [73] , it is straightforward to
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show that the stress tensor is given by

T = −pI + (1 − α)
µmθ

θm

[

1 +
b

n
(Iκpm(t)

− 3)

]n−1

Bκpm(t)
+

∫ t

to

{

µs
1Bκc(τ)

+ 2µs
2(Jκc(τ)

− 1)Fκc(τ)
(nκc(τ)

⊗ nκc(τ)
)FT

κc(τ)

}

dα(τ)

dτ
dτ, (4.19)

and the evolution equation is same as that of Eq. (4.15). The specific internal energy,

specific heat capacity of the mixture are given by

ε = α

{

As − Bsθs +
1

2
cs
1(θ

2 − θ2
s) + cs

2(θ − θs)

}

+

∫ t

to

{

µs
1

2ρ
(Iκc(τ)

− 3)

+
µs

2

2ρ
(Jκc(τ)

− 1)2

}

dα(τ)

dτ
dτ + (1 − α)εm,

and thus

∂ε

∂θ
= α(cm

1 θ + cm
2 ) + (1 − α)(cs

1θ + cs
2). (4.20)

The criterion that determinates the initiation of crystallization is given by

Am + (Bm + cm
2 )(θ − θm) − cm

1

(θ − θm)2

2
− cm

2 θ ln

(

θ

θm

)

+
µmθ

2ρθmb

{[

1

+
b

n
(Iκpm(t)

− 3)

]n

− 1

}

−
{

As + (Bs + cs
2)(θ − θs) − cs

1

(θ − θs)
2

2

− cs
2θ ln

(

θ

θs

)}

= 0, (4.21)

while the crystallization kinetics is given through

α̇ = Ko

{

αo − α

αo

}

log

(

αo

αo − α

)2/3

exp

( −C1

θ − θc

)

exp

( −C2

θ(Ψ̂m − Ψ̂s)

)

, (4.22)

where

Ψ̂m = Am + (Bm + cm
2 )(θ − θm) − cm

1

(θ − θm)2

2
− cm

2 θ ln

(

θ

θm

)

+ Cb
µmθ

2ρθmb

{[

1 +
b

n
(Iκpm(t)

− 3)

]n

− 1

}

, (4.23)
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and

Ψ̂s = As + (Bs + cs
2)(θ − θs) − cs

1

(θ − θs)
2

2
− cs

2θ ln

(

θ

θs

)

. (4.24)

In Eq.(4.22), αo is the ultimate crystallinity and C1, C2, Ko and Cb are constants.

It is worth observing that Eq. (4.22) has a form that is similar to the Nakamura

equation (see Nakamura et. al. [44] and Patel et al. [49] ).

D. Fiber spinning

1. Melt equations

The problem is solved numerically as a one-dimensional radial resolution axisymmet-

ric problem in the melt regime. When crystallization is initiated, for simplicity, in

the mixture regime, one-dimensional equations are used with the continuity of veloc-

ity, B(z) and the surface temperature as the interfacial conditions. The results are

compared with the experimental data obtained by Bheda and Spruiell [4]. The com-

ponents of the tensors Bκpm(t)
and L are assumed to be diag

{

1
√

B(z)
,

1
√

B(z)
, B(z)

}

and diag

{

− 1

2

dv(z)

dz
,−1

2

dv(z)

dz
,
dv(z)

dz

}

, respectively.

The balance of mass takes the following form:

W = ρπR2v. (4.25)

where W is the mass flow rate of the polymer and R is the radius of the fiber.

The temperature is assumed to be a function of r and z in the melt regime. The

position of the lateral surface of the fiber is determined as a part of the solution of

the problem. The following transformation is used to map the computational domain

to that of a rectangle (see chapter 15 of Pearson [51]) via the transformation ξ =
r

R(z)
.

Accordingly, on assuming that the Fourier’s law of conduction holds, and neglecting
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radiation and axial conduction, the balance of energy reduces to

(

cm
1 θ̂(ξ, z) + cm

2

) ∂θ̂(ξ, z)

∂z
=

πkm

W

1

ξ

∂

∂ξ

(

ξ
∂θ̂(ξ, z)

∂ξ

)

+
1

ρv

µm θ̂(ξ, z)

θm

{

1 +
b

n

×
(

2
√

B(z)
+ B(z) − 3

)}n−1(

B(z) − 1
√

B(z)

)

dv

dz
. (4.26)

The heat transfer coefficient in W/m2/oK, h, is given by (see Bheda and Spruiell [4];

the correlation is given in cgs units)

h = 1.0371(v(z)/A(z))0.287, (4.27)

where v and area of the cross section of the fiber, A are in SI units.

The averaged value of any quantity φ is represented as φ̄ and is defined through

φ̄(z) = 2

∫ 1

0

ξφ(ξ, z)dξ. (4.28)

It is obvious that if φ is only a function of z, then φ = φ̄. The averaged momentum

balance equation, assuming Trr = Tθθ, is (see Vassilatos et al. [82] )

dv

dz
=

d

dz

{

1

ρv

[

(T̄m)zz − (T̄m)rr

]}

−πρaRv2Cd

W
+

πρR2g

W
, Cd = 0.37

{

v(z)d(z)ρa

ηa

}−0.61

,

(4.29)

where

(T̄m)zz − (T̄m)rr =
µm

¯̂
θ(z)

θm

{

1 +
b

n

(

2
√

B(z)
+ B(z) − 3

)}n−1(

B(z) − 1
√

B(z)

)

.

(4.30)
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The correlation for coefficient of drag, Cd, is taken from Matsui [37] . The averaged

evolution equation, on suppressing the arguments, is

dB

dz
= 2

dv

dv

B

v
+

2

v

{

1

2

µm

θm

[

1 +
b

n

(

2 + B3/2

√
B

− 3

)]n−1

×
[

2 + B3/2

√
B

− 9B

2B3/2 + 1

]1−β } 1
2β−1

{

3B

2B3/2 + 1
− B

}

2

∫ 1

0

ξ

(

θ̂

νm

)
1

2β−1

dξ,

νm = νm
0 exp

(

C

[

1

θ̂
− 1

θr

])

. (4.31)

2. Mixture equations

For simplicity , all the variables in the mixture regime are assumed to be function

of z only. The components of the tensors Bκpm(t)
and L are the same as that in

the previous section. The mass balance equation is the same as that given by Eq.

(4.25). For the solid born at time τ , using the components of the velocity gradient

tensor, it follows that the components of Bκc(τ)
, to ≤ τ ≤ t, where to is the time at

which crystallization process is initiated, are diag

{

v(z̃)

v(z)
,
v(z̃)

v(z)
,
v(z)2

v(z̃)2

}

. The normal

component of the stress tensor in the z-direction is given by

Tzz − Trr =

∫ z

zo

{

µs

1

v(z)2

v(z̃ )2
+ 2 µs

2

v(z)2

v(z̃)2

(

v(z)2

v(z̃)2
− 1

)

− µs
1

v(z̃ )

v(z)

}

d

dz̃
α(z̃)dz̃ + (1 − α(z))

× µm θ(z)

θm

{

1 +
b

n

(

2
√

B(z)
+ B(z) − 3

)}n−1(

B(z) − 1
√

B(z)

)

. (4.32)

The averaged balance of linear momentum equation can be obtained by substituting

the Eq. ( 4.32) in the Eq. (4.29).

The evolution equation, on using Eq. (4.15) and the appropriate components of the
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tensors Bκpm(t)
and L reduce to

dB

dz
= 2

dv

dv

B

v
+

2

v

{

1

2

µmθ

νmθm

[

1 +
b

n

(

2 + B3/2

√
B

− 3

)]n−1

×
[

2 + B3/2

√
B

− 9B

2B3/2 + 1

]1−β } 1
2β−1

{

3B

2B3/2 + 1
− B

}

,

νm = (1 − α)νm
0 exp

(

C

[

1

θ̂
− 1

θr

])

+ ανs
0. (4.33)

The energy equation, on substituting for the components of the tensors Bκpm(t)
and

L, reduces to

ρ {(1 − α)(cm
1 θ + cm

2 ) + α(cs
1θ + cs

2)} v
dθ

dz
= (1 − α)

µm θ

θm

{

1 +
b

n

(

2
√

B(z)

+B(z) − 3

)}n−1
(

B(z) − 1
√

B(z)

)

dv

dz
− h

d
(θ − θ∞) + ρ

{

Am − Bmθm

+
1

2
cm
1 (θ2 − θ2

m) + cm
2 (θ − θm) −

(

As − Bsθm +
1

2
cs
1(θ

2 − θ2
s) + cs

2(θ − θs)

)}

×dα

dz
v. (4.34)

The crystallization kinetics is given through the Eqs. (4.22)-(4.24) with Iκpm(t)
being

replaced by
2 + B3/2

√
B

and the birefringence, ∆n, is calculated through (see Patel et

al. [49] ):

∆n = (1 − α)Cop[(T̄m)zz − (T̄m)rr] + αfc∆c, (4.35)

where (T̄m)zz − (T̄m)rr is given by the Eq. (4.30). One can arrive at an expression

for the birefringence by considering the interaction of the electromagnetic waves with

matter. Instead, for simplicity, we use the above formula. In the semi-crystalline

regime, the contribution to the birefringence is assumed to be the sum of birefringence

of the stressed amorphous phase and the crystalline phase weighted by their respective

mass fractions. In the mixture regime, recalling that the temperature is assumed to

be a function of z, for the calculation of the stress in the amorphous phase, the term
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¯̂
θ in the Eq. (4.30) is replaced by θ(z).

3. Boundary, initiation and interface conditions

The appropriate boundary conditions for the thin-filament approximation are as fol-

lows: The velocity at z = 0 can be computed using the capillary diameter and

averaged mass balance. The temperature of the melt exiting the capillary and take

up velocity are also known. These three pieces of information form the boundary

conditions for the problem. The traction boundary condition on the free surface of

the fiber due to air drag does not appear explicitly as a boundary condition, how-

ever it is incorporated into the linear momentum balance as a result of the averaging

process employed during thin-filament approximation (one-dimensional) of the fiber

spinning process (see Pearson [51]). A similar averaging procedure with respect to

the energy balance, assuming Fourier heat conduction for the heat flux, with con-

vective boundary condition on the free surface yields the averaged energy balance If

at some distance along the spinneret Eq. (4.21) is satisfied, then this point marks

the initiation of crystallization. The continuity of the velocity, B(z) and temperature

across the initiation point separating the melt and mixture regime with α = 0 on this

interface are the interfacial conditions.

The boundary conditions that are appropriate with the radial resolution approxima-

tion are as follows. A uniform temperature of 553oK is assumed at the exit of the

spinneret because no other information is available that can be used in with respect

to the temperature distribution at z = 0. Symmetry of the temperature condition is

imposed at ξ = 0, i.e.,
∂θ̂

∂ξ
= 0. The convection boundary condition is imposed on the

lateral surface ,i.e., it is assumed that −km

R

∂θ̂

∂ξ
= h(θ̂ − θ∞) at ξ = 1. The velocity

with which the melt is extruded from the spinneret at z = 0 is calculated using the
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mass balance equation (4.25). The take-up velocity (at z = 2) is also known. The

continuity of v, B and the surface temperature across the interface serve as the inter-

facial conditions. Recall that the temperature is assumed to be a function of ξ and

z in the melt regime and for simplicity it is assumed to be a function of only z in

the mixture regime. Since v and B are treated only as a function of z, the initiation

criterion, Eq. (4.21), needs to be averaged, i.e.,

∫ 1

0

ξ

{

Am + (Bm + cm
2 )(θ̂ − θm) − cm

1

(θ̂ − θm)2

2
− cm

2 θ̂ ln

(

θ̂

θm

)

+
µmθ̂

2ρθmb

{[

1

+
b

n
(
2 + B3/2

√
B

− 3)

]n

− 1

}

−
{

As + (Bs + cs
2)(θ̂ − θs) − cs

1

(θ̂ − θs)
2

2

− cs
2θ̂ ln

(

θ̂

θs

)}

}

dξ = 0. (4.36)

4. Parameters

a. Thin-filament approximation

If one has the raw data from capillary rheometry of polymer melts (wall shear rate,

pressure gradient and other geometric parameters of the capillary tube) at a few

different temperatures, then one could determine νm
o , C, µm, b, n and β. Here νm

o

assumes a larger value as the molecular weight of polymer melt increases (same qual-

itative trend as the correlation of zero shear viscosity of Doufas et al. [15] ). For

other material properties such as specific heat capacity and density we used the val-

ues provided in Doufas et al. [14] and Doufas et al. [15] (see Tables III and IV).

The specific latent energy of crystallization is given by Am −Bmθm +
1

2
cm
1 (θ2 − θ2

m)+

cm
2 (θ−θm)− (As−Bsθm +

1

2
cs
1(θ

2−θ2
s)+cs

2(θ−θs)). The specific latent energy can be

rearranged to be of the form given in Eq. (36) of Doufas et al. [14] and thus we find

that Am−Bmθm− 1

2
cm
1 θ2

m−cm
2 θm−(As−Bsθm− 1

2
cs
1θ

2
s −cs

2θs) is the expression which

has been referred to as the reference heat of fusion, which has a value of 50 cal/g for
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nylon (see Doufas et al. [14] ). We determine Bs from the same expression knowing

the other parameters appearing in it. The exponent m was chosen to be unity and

the ultimate crystallinity αo is 0.3 (see Doufas et al. [15] ). As the value of the pa-

rameter Cb is increased, the predicted temperature of the fiber during crystallization

increases (since it is an exothermic process). Care should be exercised in choosing Cb

and the other relevant parameters such that the rate of entropy production due to

crystallization is non-negative. Since the temperature data during crystallization is

not available, the parameter Cb cannot be determined precisely and hence we pick it

such that the rate of entropy production due to crystallization is non-negative.

The different tests are labelled S1-S20 and the precise conditions under which the

tests were carried out are listed in Table II, which is a reproduction of the processing

conditions listed in Table (1) of Doufas et al. [15] ). It is important to note that, for a

set of experiments, the material parameters are fixed with respect to one experiment

and the results for the other experiments are predicted on the basis of the model fixed

with the first experiment. For example, for the tests S12-S14, the material parameters

are determined using S12 and the tests S13 and S14 are predicted on the basis of the

parameters fixed by S12. Various nylons spun in such experiments are homopolymer

nylons of different molecular weights with and without additives and a copolymer.
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For the details regarding the nylons used and their material properties, we refer

the reader to Doufas et al. [14] and [15] . The value of Cb, for example, for the test

S6 and S10 are 52 and 48, respectively. The crystalline orientation function fc is

taken to be 0.9 and the intrinsic crystalline birefringence, assumed to be a constant,

is determined from the peak birefringence data of the tests S6 and S10 to be 0.105

and 0.093, respectively. Doufas et al. [15] determined both the melt orientation fac-

tor (instead of using Cop) and semicrystalline orientation factor from microstructural

tensors.

For the tests S6-S8 only Am is different while for S9-S11 Am and Cb are different. For

the tests S15-S20, the same set of material parameters are used.
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Table II. Processing conditions for various nylons from Doufas et al. [15]

Test do vt W θo L z1 z2 vc θ∞

(mils) (m/min) (g/min) (oC) (cm) (cm) (cm) (ft/min) (oC)

S1 8.5 5700 2.22 290 160 4 116 60 21

S2 8.5 5700 2.22 290 160 4 116 100 21

S2 8.5 5700 2.22 290 160 4 116 140 21

S4 8.5 5300 2.265 287 160 4.2 116.8 75 21

S5 14 5300 2.265 287 160 4.2 116.8 75 21

S6 13 5100 1.94 279.7 200 3.5 100 68.9 14.5

S7 13 5100 1.94 279.7 200 3.5 100 68.9 16

S8 13 5100 1.94 280.3 200 3.5 100 68.9 14.5

S9 13 5100 1.94 280.6 200 3.5 100 68.9 14.5

S10 13 5100 1.94 279 200 3.5 100 68.9 15.4

S11 13 5100 1.94 280.6 200 3.5 100 68.9 15.5

S12 15 1006 1.42 277 300 0.0 143 66.8 11.1

S13 15 396 2.85 299 300 0.0 300 94.2 11.1

S14 13 396 1.43 298 300 0.0 300 94.2 11.1

S15 10 5300 1.902 287 135 4.5 116 60 24

S16 10 5300 2.038 287 135 4.5 116 60 24

S17 10 5300 2.265 287 135 4.5 116 60 24

S18 10 5300 2.492 287 135 4.5 116 60 24

S19 10 5300 2.627 287 135 4.5 116 60 24

S20 10 5300 2.944 287 135 4.5 116 60 24
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Table III. Parameters that are fixed in all the simulations

Parameter(s) Numerical value Reference

Density of air, ρa 1.2 Kg/m3 [84]

Viscosity of air, ηa 1.8x10−5 Pas [84]

Ultimate crystallinity fraction (by weight), αo 0.3 [15]

Material constant of the melt, µm 1000 Pa

Material constant associated with the melt, b 1

Power law index associated with the melt, n 8

Power law index associated with the melt, β 0.8

Reference temperature of the melt, θm 350o K

Reference temperature in the Eq. (4.12), θr 560o K

Other material constants associated

with the melt, Bm 20.83 J/KgoK

Reference temperature associated with

the solid, θs 390oK

Material moduli associated with 0.2x109 Pa

with the solid, µs
1 and µs

2 and 0.45x109 Pa

Constant appearing in

Eq. (4.12), νs
o 1x108 Pas

Constants associated with the 3x106 s−1, 590oK

crystallization equation, Ko, C1 and C2 and

9.5x1010 JoK/Kg

The constant appearing in Eq. (4.6), θc 284oK

Other material constants associated

with the solid, As 393.2 J/Kg

Stress optical coefficient, Cop 1.2x10−9 m2/N
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Table IV. Parameters that are dependent on simulation

Test νm
o (PaS2β−1) C (oK) Am (J/Kg)

S1-S3 130 5800 19000

S4-S5 165 6100 21000

S6-S7 90 6950 19800

S8 90 6950 21500

S9 110 6950 8000

S10 110 6950 30500

S11 110 6950 23000

S12-S14 175 5500 20000

S15-S20 170 5500 21000
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b. Radial resolution approximation

The following table, i.e., Table V, lists the parameters used during simulation using

radial resolution approximation.

Table V. The parameters used in the simulation.

Parameter(s) Numerical value Reference

Length of the spinline 2 m [4]

Diameter of the spinneret 0.000762 m [4] and [34]

Density of air, ρa 1.2 Kg/m3 [84]

Viscosity of air, ηa 1.8x10−5 Pas [84]

Extrusion temperature of the melt 553o K [4]

Ambient temperature 298o K [4] and [34]

Density of nylon 6 1132 Kg/m3 [34]

Specific heat capacity constants of the Eq. (4.20) cm
1 = cs

1 =

1.3522 J/Kg0K2

cm
2 = cs

2 = [20]

1984.5 J/KgoK

Thermal conductivity of the melt 0.2 W/moK [78]

Ultimate crystallinity fraction (by weight), αo 0.487 [49] and [34]

Material modulus of the melt, µm 1000 Pa

Material constant associated with the melt, b 1.56

Power law index associated with the melt, n 8.3

Power law index associated with the melt, β 0.955

Reference temperature of the melt, θm 354.4o K

Reference temperature in the Eq. (4.31), θr 553o K

Viscosity of the melt at θr, νm
o 80 Pas
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Table V. continued.

Exponential constant in the Eq. (4.31), C 4950oK

Other material constants associated 4500 J/Kg and

with the melt, Am and Bm 85.83 J/KgoK

Reference temperature associated with

the solid, θs 390oK

Material moduli associated with 1x109 Pa and

with the solid, µs
1 and µs

2 2x109 Pa [34]

Constant appearing in

Eq. (4.33), νs
o 1x108 Pas

Constants associated with the 5x106 s−1, 590oK,

crystallization equation, Ko, C1, C2, and Cb 1x1011 JoK/Kg

and 50

The constant appearing in Eq. (4.22), θc 283oK [49]

Other material constants associated

with the solid, As and Bs 393.2 J/Kg and

100.26 J/KgoK

Stress optical coefficient, Cop 1.2x10−9 m2/N [49]

Crystalline orientation factor and

intrinsic crystalline birefringence, fc and ∆c 0.9 and 0.082 [49] and [43]

We use the same constants associated with the specific heat of the melt and the

mixture (see Eqs. (4.16) and (4.20) as that used by Gaur et al. [20] above the glass

transition temperature (313oK); below the glass transition temperature the constants

associated with the specific heats show a significant departure from the corresponding

constants above glass transition temperature. For the problem under consideration,
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the temperature is always above the glass transition temperature. Referring to the Eq.

(4.34), Am−Bmθm+
1

2
cm
1 (θ2−θ2

m)+cm
2 (θ−θm)−(As−Bsθm+

1

2
cs
1(θ

2−θ2
s)+cs

2(θ−θs))

represents latent energy of crystallization/fusion per unit mass. In general, this term

is dependent on the temperature, but for cm
1 = cs

1 and cm
2 = cs

2 the specific latent

energy is a constant, i.e., Am −Bmθm − 1

2
cm
1 θ2

m − cm
2 θm − (As −Bsθm − 1

2
cs
1θ

2
s − cs

2θs).

For the semi-crystalline material under consideration, the latent energy of fusion is

approximately 1x105 J/Kg (see Wunderlich [86]). The constants Am, Bm, As, Bs, θm

and θs are chosen in such a way that the specific latent energy of fusion is 1x105 J/Kg.

The material moduli µs
1 and µs

2 are of the order of a few Gpa (see Koyama et al. [34]).

That crystallization occurs after the development of the neck (see Haberkorn et al.

[27] ), was confirmed by laser light scattering and WAXS for polyamides. In keeping

with this observation, the initiation criterion (4.36) is such that the crystallization

is triggered almost at the end of neck formation. The initiation of crystallization of

nylon 6 (Patel and Spruiell [50] ) as inferred from the crystallization data indicates

that it depends on the cooling rate (the material is not deformed) as opposed to a

equilibrium melting temperature at which the crystallization is initiated irrespective

of the cooling rate. One may refer to Choi and White [8] for the former interpreta-

tion. However, for simplicity, the cooling rate effect is not included in the equation

for the initiation criterion (only the effect of temperature and deformation is included

in the Eq. (4.21)) and hence the data provided by Patel and Spruiell [50] is not used.

Instead, the constants associated with the crystallization and initiation equations are

chosen to fit the spinline data provided by Bheda and Spruiell [4] with the crystalliza-

tion temperature determined by the Eq. (4.36). There is evidence for the presence

of (see Koyama et al. [34]) α and γ phase. The intrinsic birefringence of the α and

the monoclinic γ crystals was calculated by Murase et al. [43] to be 0.097 and 0.066.

Since the fraction of both the crystal forms are not known for the take up speed of
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6660 m/min where the crystallization is profuse, average of the intrinsic birefringence

of both the crystal forms is used in the simulation.

5. Numerical method

For the thin-filament approximation, the two sets of equation for the melt and the

mixture regime (after being converted into a system of odes) are solved using a stiff

equation solver employing shooting technique.

The radial resolution approximation of fiber spinning was solved with the aid of

Matlab using a pde solver with a guess for v(z), B(z) and
dv

dz
using the appropriate

boundary conditions: we guess values for v and B at discrete points along the spinline

and cubic splines (piece-wise polynomials of third degree whose value for the function,

first and the second derivatives are continuous in the entire region of interest) are fitted

through these points. The solver interpolates at many points based on the specified

tolerance. The entire problem is first solved by assuming v, B, θ and α as funtions

of z using the appropriate boundary, interface and initiation conditions using a stiff

equation solver. The solution thus obtained for v, B and
dv

dz
for the melt regime alone

is used as the initial guess for the energy equation (4.26).

The integrals are evaluated using a adaptive quadrature function. The integrand

in the Eqs. (4.29) and (4.31), for each z, is evaluated using the solution obtained

from the energy balance equation (4.26) and the integrals are computed after fitting

the integrand with cubic splines. The derivative of
¯̂
θ that appear in the momentum

balance equation (4.29) is obtained by fitting a cubic spline for
¯̂
θ as a function of

z and then by differentiating the spline. The equations (4.29) and (4.31) are solved

using a stiff solver by assigning the exit velocity of the melt from the spinneret and a

guess for B at z = 0 as boundary conditions. The new v(z), B(z) and
dv

dz
obtained

is updated and the Eq. (4.29) is solved once again. This procedure is repeated until
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Φ becomes small (≤ 10−5), where

Φ = 100
n
∑

j=1

∣

∣

∣

∣

∣

vi+1(zj) − vi(zj)

vi(zj)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

Bi+1(zj) − Bi(zj)

Bi(zj)

∣

∣

∣

∣

∣

, (4.37)

and i is the iteration number; Φ represents the sum of the absolute value of percentage

change of v and B between successive iterations at all zj. The position along the

spinline at which the initiation of crystallization occurs is determined using Eq. (4.36);

the initiation criterion being only a function of z. Thus the position is varied while

iterating between the ode’s and pde until the Eq. (4.36) is met.

The mixture equations are a system of integro-differential equations defined on the

remaining length of the spinline. This system is converted to a system of first order

equations and solved with a stiff differential equation solver using the interfacial

conditions. The velocity at z = 2 (take-up velocity) is checked against the desired

take-up velocity. The boundary condition B(0) is adjusted and the above mentioned

procedure is repeated until the desired take-up velocity is achieved.

Since the rate of entropy production due to phase change is non-negative, Ψm−Ψ̂s ≥ 0.

This constraint is satisfied in all the simulations.

E. Results

1. Thin-filament approximation

a. Effect of mass flow rate

For the experiments designated as S15-S20 (see Doufas et al. [15] ), the data was

obtained from filaments a few rows behind the quench screen in a commercial multi-

filament spinning machine. The position of the neck point, where rapid diameter

attenuation takes place, could differ by more than 10 cm compared to the filaments

in the first row. This fact indicates that as the material and processing conditions
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are fixed, heat transferred by the quench air of fixed speed at the source is different

from the first and the last row. Since the temperature was measured, one could use

this information to guide one concerning the nature of the heat transfer so that the

predicted temperature is close to that which is measured. In our simulations, we

fix the heat transfer coefficient given in (4.14) so that the velocity and temperature

profiles can be matched, i.e., the heat transfer coefficient is modified for the different

experiments. All the other parameters are fixed. On the other hand, Doufas

et al. [15] fixed the heat transfer coefficient but changed the material parameters:

”Although profiles for these filaments differed considerably from those closer to the

screen (differences as large as tens of degrees in the temperature profiles, and more

than 10 cm in the location of the neck point), in the simulations, quench conditions

for the exit of the screen were used. As a result, the model parameters for the same

nylon (homopolymer of 70 RV) had to be changed for the different tests in order

to fit the experimental velocity profiles (see Table (3) of Doufas et al. [15] ).” The

crystallization process is initiated at almost the same temperature independant of

mass flow rates (see Haberkorn et al. [27] ). Fig. (18) shows very good agreement

with the experimental data. In Fig. (18b) necking can be easily spotted and in Fig.

(18d) a rapid increase in the stress corresponding to necking is also apparent.
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Fig. 18. Legends for the Figs. (b) and (d) indicating appropriate predictions of the

model are the same as that of Figs. (a) or (c). These figures show the effect

of mass flow rate.
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Figure 18 continued
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b. Effect of quench air speed

The correlation in Eq. (4.14) was obtained by fitting the velocity profiles in Fig.

(19a) so that the effect of quench air speed can be quantified in the correlation. The

faster the quench air speed the closer to the spinneret is the neck region. The same

correlation was used in all the simulations given in Figs. (20)-(24). The plateau

in the temperature profile of Fig. (19b) corresponds to the crystallizing region. As

the Fig. (19c) is related to rate of entropy production due to crystallization, the

difference in Helmholtz potential of the melt and crystal during crystallization must

be non-negative. This condition is checked a posteriori in all the simulations.
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Fig. 19. The effect of quench air speed.
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Figure 19 continued

c. Low speed spinning

The adjustable parameters are obtained by fitting the velocity profile of test S12 as

shown in Fig. (20a) using the correlation of Eq. (4.14). Using the same parameters,

the tests S13 and S14 were predicted. The Fig. (20c) shows the predicted temperature

profile. The diameter does not show any necking behavior (see Fig. (20b)) as is to

be expected of low speed conditions. The predicted crystallinity, as expected, is the

smallest amongst all the simulations. Again the predictions agree very well with the

experiments.
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Fig. 20. Low speed spinning.
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Figure 20 continued
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d. Effect of capillary diameter

S4 data was used to obtain the adjustable parameters and S5 was predicted with

the same parameters. As the diameter increases, the position of neck point moves

closer to the spinneret because the surface area available for heat transfer increases.

Figs. (6a) and (6b) show that the predictions of the model agree very well with the

experimental results.



123

0 20 40 60 80 100 120 140 160
0

1000

2000

3000

4000

5000

6000

Distance from the spinneret, cm

V
el

oc
ity

, m
/m

in

s4 data, 8.5 mils
s5 data, 14 mils
s4 model
s5 model

(a)

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Distance from the spinneret, m

C
ry

st
al

lin
ity

 fr
ac

tio
n

s4 model
s5 model

(b)

Fig. 21. The effect of changing capillary diameter.
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e. Effect of molecular weight

[H] We find that the higher the molecular weight, for the same repeating unit and

processing conditions, the larger the temperature at which crystallization is initiated

(see Fig. (22a)). The same effect is also manifested in the case of nylon 6 (Koyama

et al. [34]). The parameter Am, enables us to change the temperature at which

crystallization is initiated. This parameter is increased to move the freeze point closer

to the spinneret and thus capture the effect of molecular weight towards initiation

of crystallization. Also, the parameter νm
o is increased to allow for the increase in

the viscosity of the S11 sample compared to the S7 sample. The same material

parameters as that used in the case of S7 is used for S6 for predicting the velocity.

The parameter Cb, which controls the extent to which the deformation increases the

rate of crystallization, is determined so that birefringence data of Fig. (22c) can be

fitted satisfactorily.
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Fig. 22. The effect of molecular weight.
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Figure 22 continued

f. Effect of the type of polymer

In spite of the S9 copolymer having a higher molecular weight with a slightly lower

ambient temperature compared to the S7 homopolymer (see Fig. 23), the freeze point

of the copolymer is further away from the spinneret indicating it does not readily

crystallize compared to the homopolymer. To capture this effect, appropriate values

are assigned to the parameters Am and Cb. Since the copolymer has a higher molecular

weight, the viscosity constant νm
o is increased. The diameter profile (Fig. 23b) of the

homopolymer shows necking, while the copolymer does not. The copolymer develops

lower final crystallinity compared to the homopolymer.
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Fig. 23. Velocity, Filament diameter and crystallinity for different polymers.
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Figure 23 continued

g. Effect of additives

The additives move the freeze point closer to the spinneret. Since the intrinsic crys-

talline birefringence depends on the molecular weight of the melt from which crystals

are formed, due to unavailability of such data, the intrinsic crystalline birefringence

is determined so that the plateau of Fig. (24c) fits.
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Fig. 24. The effect of additives on homopolymer nylon
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Figure 24 continued
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2. Radial resolution approximation

The results obtained for nylon 6 (BHS resin) at two different mass flow rates are

depicted in the Figs. (25), (26) and (27). The Fig. (25) does not show neck formation

even for the highest take-up speed. The crystallinity and the rate of crystallization

achieved is very small for all the take-up speeds and hence there is no significant

release of latent energy. For both the figures, we used the correlation of Matsui [37] .

Patel et al. [49] used a correlation constant that is less than that reported by Matsui

[37] , i.e., 0.27Re−0.61. The experimental data shows an increased drop in the diameter

for a take-up speed of 6660 m/min around 110 cms from the spinneret. The theory

predicts the diameter of the filament quite accurately for all take up speeds except

for that at 6660 m/min. Here, the prediction for the formation of the neck is not as

pronounced as that observed in the experiment. At this take-up speed, for distances

greater than around 1 m, the rate of crystallization reaches a maximum and since the

crystallization is an exothermic process, the temperature of the material increases.

This increase in temperature is predicted very well by the theory. The other four

take-up speeds do not show such an increase in temperature. The theory predicts

an increase in crystallinity to the ultimate value (0.487) only for the highest take-up

speed; at all other take up speeds the increase in crystallinity is very small. The

birefringence results that are presented for the take up speed of 6660 m/min is not

satisfactory. Since there is evidence for the presence of two different types of crystals

(α and γ) in nylon 6 (see Koyama et al. [34]), one may include the contribution of

these crystals to the birefringence ( one must have a theory to predict the amount of

each crystals with each type of crystal being treated as a separate phase). By including

these contributions, one may be able to obtain a better fit for the birefringence data

depicted in Fig. (26); in fact, the crystalline phase is dominated by the γ phase (see
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Fig. 25. The plots associated with the mass flow rate of nylon 6 (BHS) at 5.069 g/min.
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Koyama et al. [34]), which has lower intrinsic birefringence compared to the α phase.

Patel et al. [49] have a similar overprediction of the birefringence for mass flow rate

of 2.993 g/min. The Fig. (27) shows that, for a mass flow rate of 2.993 g/min, the

velocity reaches a constant value. Such a plateau is not reached by using a Newtonian

model in the melt and the mixture regime. Since the radial resolution approximation

is used in the melt regime, the stress varies across the cross section of the filament

(see Eq. (4.19)). For reasons of continuity of stress, the stress plots in the melt regime

are calculated using the surface temperature. The stress plot for the same mass flow

rate shows both qualitative and quantitative change in the behavior for the take up

speed of 6660 m/min compared to the others. The stress, however does not show a

considerable increase corresponding to the neck area as reported by Haberkorn et al.

[27] .

The following two tables, i.e., Tables VI and VII, list the predicted take-up force and

distance at which the mixture model is initiated.

Table VI. Take up force of BHS resin at a mass flow rate of 5.069 g/min.

Take up velocity Experimental Predicted Initiation distance

(m/min) (dynes) (dynes) (m)

1250 269.5 224.8 1.6598

2200 426.3 407.7 1.6433

3170 563.6 587.5 1.6343

4400 725.2 809.2 1.6274

5790 842.8 1062.4 1.6216
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Table VII. Take up force of BHS resin at a mass flow rate of 2.993 g/min.

Take up velocity Experimental Predicted Initiation distance

(m/min) (dynes) (dynes) (m)

1780 279.3 294.7 1.0942

2430 347.9 403.3 1.0876

3880 475.3 638.6 1.0791

4930 553.7 803.8 1.0755

6660 999.6 1481.9 1.0326

F. Summary and conclusions

The melt was modeled as a viscoelastic liquid and the semicrystalline polymer is mod-

eled as a mixture of elastic solids that are transversely isotropic and a viscoelastic

liquid. An initiation criterion for crystallization, that is similar to that used by Naka-

mura et al. [44], that is dependent on temperature and deformation was obtained from

thermodynamic considerations. By making a suitable choice of rate of the entropy

production due to phase change (see Rao and Rajagopal [73]). By specializing this

model to the fiber spinning problem, and using the balance equations, we obtained

the equations for the melt and the mixture. The predictions of the theory agree well

with the experimental data.

The development of the structure along the spinline is important because the me-

chanical properties of the solidified fiber depends on the final structure formed. While

the model has shown the ability to fit the data quite well, better agreement can be

achieved by a more judicious choice for the Helmholtz potential of the melt so that

the stress tensor that is derived when used in the fiber spinning problem results in

the formation of a sharper neck at a take up speed of 6660 m/min and by considering
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a more detailed morphology of the semicrystalline solid. For instance, Koyama et

al. [34], amongst others, have reported the presence of two crystals of nylon (α and

γ) with the γ fraction dominating the α fraction. By incorporating this morpholog-

ical detail into the correlation for birefringence, one may be able to achieve a better

agreement with the birefringence data. Also, the cooling rate is not accounted for in

the current model and this factor can play a major role in the determination of the

final structure and hence the mechanical properties.

The model is able to predict much of the available industrial spinline data very well.

Thus, one could possibly use this model to design the process, by simulating the

appropriate problem in order to obtain solidified fibers with desired mechanical prop-

erties without having to resort to full scale experiments that are both expensive and

time consuming. All the material properties for a particular type of polymer can be

determined on the basis of a few simple experiments. This model could also be used

in the design of blow molding and injection molding dies.
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CHAPTER V

A THERMODYNAMICAL FRAMEWORK INCORPORATING THE EFFECT

OF THE THERMAL HISTORY ON THE SOLIDIFICATION OF MOLTEN

POLYMERS

So far, the effects of the thermal history were not included in the model. The cooling

history has an effect on the total amount and the kind of the crystalline structure

obtained at the end of the thermomechanical process. It also affects the temperature

at which the crystallization is triggered. In this chapter, such effects are included

and the framework developed by Rao and Rajagopal (2002) is extended. When the

cooling rate is sufficiently slow, the crystallization kinetics described by Nakamura-

type kinetics is insufficient as the slower ”secondary” crystallization related to the

lamellar thickening becomes important. Also, in some polymers, glass transition

also occurs in conjunction with the crystallization and is usually triggered after the

initiation of crystallization. These effects are also included and a model is obtained

using a thermodynamic setting. As before, the melt is modeled as a viscoelastic liquid

and the crystalline solid is modeled as a mixture of orthotropic elastic solid with

the preferred directions of each crystalline solid born being determined by the eigen

vectors Bκpm(t)
of the melt. The amorphous glassy solid is modeled as an isotropic

viscoelastic solid.

A. Introduction

The crystalline structure and hence the mechanical properties of the polymer depend

on the thermal history to which the melt is subjected to prior to crystallization.

However, the previous thermomechanical history of the polymer is not always known.

There can be a number of reasons for the observed ’memory’ effect. A small crystal
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grown in the crack of a foreign substance in the previous polymer treatment may sur-

vive melting (see Tidick et al. [79]) and act as a nucleation center during the current

process. Nuclei of subcritical size (embryos) may become supercritical (growth nu-

clei), self-nucleation of high-molecular weight crystals survive melting for a longer pe-

riod compared to their low-molecular weight counterparts and self-nucleation caused

by residual orientation due to previous thermomechanical history are some explana-

tions for the memory effect. To erase the effects of previous thermomechanical history,

the polymer is held at temperature above its melting point for a sufficient duration.

Brucato et al. [6] and Piccarola et al. [54] conducted quenching, after nullifying

memory effects, experiments on isotactic polypropylene (iPP), nylon-6 and PET un-

der processing conditions (up to v 2000o C). The cooling rates are of the order of a

few degrees per second was obtained using a differential scanning calorimeter (DSC)

and the higher cooling rates were obtained by rapid quenching. About 100− 200 µm

samples were sandwiched between two pieces of Cu-Be alloy with very high ther-

mal conductivity before the quenching under quiescent conditions. A thermocouple

embedded in the sample measures the temperature. As opposed to DSC, where con-

trolled cooling rates could be obtained (limited to a few hundred degrees per minute)

rapid quenching, as expected, does not produce constant cooling rates. However, since

the temperature history is measured, the results can be interpreted in terms of the

thermal history undergone by the polymer. Wide angle X-ray diffraction (WAXD)

was used to extract the amount of each phase present. At low cooling rates, iPP melt

produced large quantities of α phase at room temperature, which is characterized by

monoclinic crystals and at very high cooling rates (representative value of around
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1000o C/sec) produced predominant mesomorphic phase1; the cross over happens

at around 100oC/sec. The maximum change in the density of the sample between the

melt and α phase is around 2 − 3%. A similar behavior is also seen for nylon-6 and

PET. As PET is largely an amorphous polymer, the transition from α triclinic at low

cooling rates to amorphous glassy state takes place between 1− 3oC/sec. Thus, iPP,

nylon-6 and PET in the solid-like state is a mixture of α and mesomorphic phase,

with the proportion of each constituent being determined by the thermal history un-

dergone by the polymer.

In another study, Gogolewski et al. [23] studied the effects of annealing Nylon-6

samples at temperatures between 50oC and 220oC (Equilibrium melting temperature

around 260oC) for duration up to 2000 hours. At such supercooled conditions, the

melt begins to crystallize. It was found that at a fixed temperature below equilibrium

melting temperature, the longer the annealing time the higher is the melting temper-

ature, which was determined by subsequent heating cycle in a DSC. It was also found

that, using X-ray diffraction, at 215oC, the lamellar crystal2 thickness remains un-

changed for a period of v 10hrs. (mirroring melting temperature) and then increases

with annealing time and reaches a plateau. This implies that there is reordering of

the crystals that had formed earlier after sufficient time (10hrs.), which increases the

melting temperature. However, even after the cessation of lamellar thickening, the

melting temperature of the nylon-6 sample continues to increase with annealing time.

To explain this observation, secondary nucleation at the grain boundaries was pro-

posed, which would increase the crystallinity and hence the melting temperature. The

1IUPAC compendium of chemical technology: These are states of matter in which
anisometric molecules (or particles) are regularly arranged in one (nematic state) or
two (smectic state) directions, but randomly arranged in the remaining direction(s).

2IUPAC: A type of crystal with a large extension in two dimensions and a uniform
thickness. The thickness of the crystal is around 5 − 50nm.
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effect of temperature, at a fixed annealing time, on the thickening of lamellar crystals

is the same as that of the annealing time. At sufficiently low temperature, there is

very little molecular mobility and hence the lamellar thickness of nylon-6 does not

change even after annealing for 1000hrs. As the temperature increases, the molecular

mobility and the lamellar thickness increases. At sufficiently high temperature, the

molecules have enough mobility to achieve equilibrium lamellar thickness. Gerardi

et al. [22] also observed lamellar thickening during annealing of quenched iPP from

the melt. Using small angle x-ray scattering (SAXS) , a set of lamellar thickness,

corresponding to the monoclinic and mesomorphic phase was obtained. The melting

temperature enhancement due to annealing, attributed to lamellar thickening, was

also observed in syndiotactic polystyrene (sPS), PP and PET (see Gvozdic and Meier

[26]). The change of the crystal structure during lamellar thickening due to annealing

was ruled out because subsequent WAXD did not any change in the crystal struc-

ture itself. Petermann et al. [52] studied annealing of linear polyethylene at various

temperatures using transmission electron microscopy and concluded that two mecha-

nisms were in effect during crystal growth. One process involves selective melting of

thinner lamellae, which gets incorporated into the unmelted crystal through epitaxial

crystallization (recrystallization 3) when sufficient time is allowed. The other process

involves snaking or gliding movements along the chain axis of the crystal at sufficiently

high temperatures where molecular mobility is high (reorganization 4). During such

a process, 3-dimensional crystalline order in not broken. The latter process increases

the lamellar thickness while the former leads to a stacking of one lamellar crystal on

3Reorganization proceeding through partial melting.
4The molecular process by which (i) amorphous or poorly ordered regions of a

polymer specimen become incorporated into crystals, or (ii) a change to a more stable
crystal structure takes place, or (iii) defects within the crystal decrease.
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the other. For a more detailed discussion of molecular mechanisms involved during

annealing, refer to Dreyfus and Keller [16] and Yeh et al. [87].

Piccarola et al. [53] studied the effect of cooling rate on the crystallization of PET. All

the samples were held at 280oC (above melting temperature) for 10 minutes to remove

the effects of previous thermomechanical history. At low cooling rates (≤ 1oC/sec),

the effect of primary5 and secondary6 crystallization becomes important and at high

cooling rates (≥ 100oC/sec) forms an amorphous phase. At the intermediate cooling

rates, the density (measured at 10oC after subjecting the sample to constant rate

and quenching tests) change of PET is small, which is attributed to the changing

quantities of the mixture of the mesomorphic and amorphous phase, and at the high

cooling rates density change is almost zero and is presumed to be the amorphous

phase density. The effect of cooling rate on the crystallization initiation temperature

is significant. For example, the initiation temperaure at 0.08oC/sec is around 230oC

and at 2.33oC/sec is 170oC. In addition to the effects of cooling history on the qui-

escent polyethylene and polypropylene melt (see continuous cooling transformation

curves in Spruiell and White [75]), which showed similar effects that of PET, the

effect of stress in the melt is transparent, i.e., higher stress caused the crystallization

start temperature to increase. Thus in a thermomechanical process, the competition

between cooling history and deformation will decide the temperature at which crys-

tallization starts.

5IUPAC: The first stage of crystallization, considered to be ended when most of
the spherulite surfaces impinge on each other.

6IUPAC: Crystallization occuring after primary crystallization, usually proceeding
at a lower rate.
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B. Kinematics

The kinematics associated with the melt, glassy solid and the crystal is the same as

that described in the previous two chapters, i.e.,

5

Bκpm(t)
= Ḃκpm(t)

− LBκpm(t)
− Bκpm(t)

LT = −2Fκpm(t)
Dκpm(t)

FT
κpm(t)

, (5.1)

for the melt, where the above equation is valid until f (1) + f (2) + f (3) = 1, where

f (i), i = 1, 2, 3 are the weight fraction of the crystal form 1 and 2,

5

B(3)
κps(t)

= Ḃ(3)
κps(t)

− LB(3)
κps(t)

− B(3)
κps(t)

LT = −2F(3)
κps(t)

Dκps(t)
F(3)T

κps(t)
, t3 ≤ τ ≤ t (5.2)

for the glassy solid,

F(i)
κc(τ)

:= FκR
(XκR

, t)F−1
κR

(XκR
, τ), ti ≤ τ ≤ t, i = 1, 2, (5.3)

for the solid that came into being at time τ , where ti, i = 1, 2 represent the time at

which the crystal form 1 and 2 are born, respectively. As described in the previous

chapters, one can define the left and the right Cauchy-Green stretch tensors (see Fig.

28)and their invariants associated with tensors F
(i)
κc(τ)

, i = 1, 2.

We shall assume that the material is incompressible, i.e.,

det(Bκpm(t)
), det(B(3)

κps(t)
), det(B(3)

κr
) = 1

(

or tr(Lκpm(t)
), tr(Lκps(t)

) = 0
)

and tr(L) = 0.

(5.4)
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Fig. 28. The above figure represents the configurations associated with the solidifying

mixture.

C. Modeling

The specific Helmholtz potential of the mixture is partitioned into four parts, with

each part being weighted by their respective mass fractions, i.e.,

Ψ = (1 − f (1) − f (2) − f (3))

{

Am + (Bm + cm
2 )(θ − θm) − cm

1

(θ − θm)2

2

− cm
2 θ ln

(

θ

θm

)

+
µmθ

2ρθmb

{[

1 +
b

n
(Iκpm(t)

− 3)

]n

− 1

}}

+

2
∑

i=1

∫ t

ti

{

As,i + (Bs,i + cs,i
2 )(θ(t) − θs,i) − cs,i

1

(θ(t) − θs,i)
2

2
− cs,i

2 θ(t) ln

(

θ(t)

θs,i

)

+ Ds,i exp

{

− Es,i

[
∫ t

to

exp(F s,i(θ(τ
′

) − θo))dτ
′

]ni
}

+
µs,i

1

2ρ
(I (i)

κc(τ)
(t) − 3) +

µs,i
2

2ρ
(J (i)

κc(τ)
(t) − 1)2 +

µs,i
3

2ρ
(K(i)

κc(τ)
(t) − 1)2

}

df (i)

dτ
dτ

+ f (3)

{

As,3 + (Bs,3 + cs,3
2 )(θ − θs,3) − cs,3

1

(θ − θs,3)
2

2
− cs,3

2 θ ln

(

θ

θs,3

)

+
µs,3

1

2ρ
(I (3)

κps(t)
− 3) +

µs,3
2

2ρ
(I (3)

κr
− 3)

}

= (1 − f (1) − f (2) − f (3))Ψm

+

2
∑

i=1

Ψs,i + f (3)Ψs,3, (5.5)
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where K
(i)
κc(τ) := C

(i)
κc(τ)mκc(τ)

· mκc(τ)
, J

(i)
κc(τ) := C

(i)
κc(τ)nκc(τ)

· nκc(τ)
, i = 1, 2, nκc(τ)

and mκc(τ)
are the eigen vectors of Bκpm(t)

, θm, Am, Bm, cm
1 , cm

2 , b, n and µm are

the reference temperature and the material constants associated with the melt, {θs,i,

As,i, Bs,i, cs,i
1 , cs,i

2 , {µs,i
j , j = 1, 2, 3}, Ds,i, Es,i, F s,i and ni ,i=1,2} are the reference

temperature and the material constants associated with the crystal forms 1 and 2 and

θs,3, As,3, Bs,3, cs,3
1 , cs,3

2 , {µs,3
j , j = 1, 2} are the material constants associated with

the glass. The specific functional form chosen for the melt and the glass (see previous

chapters) is the same as before except for the crystalline solid. The crystallized

material from the melt born at each instant τ is modeled as an orthotropic elastic

solid. The term on the fourth line of the above equation quantifies the thermal

history dependence. The polymer melt at time to is assumed to devoid of any previous

thermomechanical history, i.e., memory effects are erased. The glassy solid is modeled

as an amorphous viscoelastic solid (see Ch. 3). Note that the indices 1 and 2 refer to

the crystal form 1 and 2 and the index 3 refers to the glassy solid.

Since the melt and the glassy solid can dissipate, the rate of dissipation, appropriately

weighted, is assumed to be of the following form:

ξ = (1 − f (1) − f (2) − f (3))2νm(θ,Bκpm(t)
)
{

Dκpm(t)
· Bκpm(t)

Dκpm(t)

}β

+ f (3)2νs(θ,Bκps(t)
)Dκps(t)

· Bκps(t)
Dκps(t)

(5.6)

The second law, used to place restrictions on the constitutive equations, is introduced

in the following form (see Green and Naghdi [25]):

T ·D − ρΨ̇ − ρηθ̇ − q · grad(θ)

θ
= ρθζ = ξ̂, ξ̂ ≥ 0, (5.7)
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Assuming additivity of the entropy producing mechanisms associated with solidifica-

tion of molten polymers, the right hand side of Eq. (5.7) becomes

ξ̂ = ξc + ξm
d + ξ

(3)
d + ξ(1)

p + ξ(2)
p + ξ(1)

r + ξ(2)
r + ξ(3)

p , (5.8)

with each of the terms on the right hand side of Eq. (5.8) being non-negative; they

represent the rate of entropy production (times ρθ) due to conduction, dissipation in

the melt, dissipation in the glassy solid, crystallization of the melt to crystal forms 1

and 2, rearrangement of the crystals that had formed for the crystal forms 1 and 2,

and solidification the remaining melt to a glassy solid, respectively.

As usual (see Chapter 2),

ξc = −q · grad(θ)

θ
. (5.9)

The rate of entropy production (times ρθ) due to conduction is assumed to be

ξc =
k(Bκps(t)

, f (1), f (2), f (3))grad(θ) · grad(θ)

θ
, (5.10)

where k(Bκps(t)
, f (1), f (2), f (3)) is positive definite and is given by:

k(Bκps(t)
, f (1), f (2), f (3)) = (1 − f (1) − f (2) − f (3))km(Bκpm(t)

)

+f (1)K(1) + f (2)K(2) + f (3)k(3)I (5.11)

The constitutive equation for the heat flux is assumed to be weighted with the mass

fraction of each constituent:

q = −{(1 − f (1) − f (2) − f (3))km(Bκpm(t)
) + f (1)K(1) + f (2)K(2) + f (3)k(3)I}grad(θ),

(5.12)

where km(Bκpm(t)
), K(1) and K(2) are symmetric and positive definite and k(3) > 0.

These requirements guarantee that the rate entropy production due to conduction

to be positive for non-zero grad(θ) as required. When grad(θ) is zero, then there is
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no conduction and the associated rate of entropy production is zero. As the melt

stretches, the molecules tend to get aligned in a certain direction and hence the

components of the heat flux vector will be different as compared to the components

corresponding to the unstretched melt. The stretch in the crystal form 1 and 2, and

the glassy solid is small in typical industrial processes such as fiber spinning, film

blowing, blow molding, etc. Therefore, their respective thermal conductivity tensors

do not depend on their stretch tensors. Eventhough the crystalline solid formed at

every instant is assumed to be orthotropic, the preferred directions associated with the

crystal forms 1 and 2 formed at every instant are dependant on the eigen vectors of the

Cauchy stress T (or Bκpm(t)
) at that instant and as a result tensor valued functional

associated with their corresponding thermal conductivity, in general, should depend

on the history of the eigen vectors of the crystal forms 1 and 2. Since such an

approach is complicated, only a second order tensor is used in its place representing

an average orientation of the crystals. The glassy solid is amorphous and hence a

Fourier conduction is assumed.

In manner similar to that described in Ch 2 and 3, using reduced dissipation equation,

it can be shown that the initiation conditions for the crystal forms 1 and 2 and the

glass, crystallization equations, glass transition kinetics, stress tensor, internal energy,

entropy can be obtained within a unified setting.

The initiation conditions are

Am + (Bm + cm
2 )(θ − θm) − cm

1

(θ − θm)2

2
− cm

2 θ ln

(

θ

θm

)

+
µmθ

2ρθmb

{[

1 +
b

n
(Iκpm(t)

− 3)

]n

− 1

}

−
{

As,i + (Bs,i + cs,i
2 )(θ − θs,i)

− cs,i
1

(θ − θs,i)
2

2
− cs,i

2 θ ln

(

θ

θs,i

)

+ Ds,i exp

{

− Es,i

[
∫ t

to

exp(F s,i(θ(τ)

− θo))dτ

]ni
}}

= Ψm − Ψ̂s,i = 0, i = 1, 2, 3 with Ds,3 ≡ 0. (5.13)
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If the cooling rate is low, then the melt spends a longer time at higher temperatures

and thus the last term of the Eq. (4.14) becomes small causing a high crystallization

initiation temperature and vice versa as observed in experiments.

Eventhough there may be some melting of thinner lamellae during annealing or under

very slow cooling rates, the overall crystallinity of the polymer continues to increase.

The rate of entropy production, attributed to reorganization and recrystallization

(annealing effects), are given through

ξ(i)
r = −ρf (i) d

dt
Ds,i exp

{

− Es,i

[
∫ t

to

exp(F s,i(θ(τ) − θo))dτ

]ni
}

, i = 1, 2. (5.14)

It is easy to check that the above equation is non-negative.

The Cauchy stress tensor is given through

T = −pI + (1 − f (1) − f (2) − f (3))
µmθ

θm

[

1 +
b

n
(Iκpm(t)

− 3)

]n−1

Bκpm(t)

+
2
∑

i=1

∫ t

ti

{

µs,i
1 B(i)

κc(τ)
+ 2µs,i

2 (J (i)
κc(τ)

− 1)F(i)
κc(τ)

(nκc(τ)
⊗ nκc(τ)

)F(i)T
κc(τ)

+ 2µs,i
3 (K(i)

κc(τ)
− 1)F(i)

κc(τ)
(mκc(τ)

⊗ mκc(τ)
)F(i)T

κc(τ)

}

df (i)

dτ
dτ

+ f (3)(µs,3
1 Bκps(t)

+ µs,3
2 Bκr

), (5.15)

the entropy of the mixture is given by

η = (1 − f (1) − f (2) − f (3))

{

− Bm + cm
1 (θ − θm) + cm

2 ln

(

θ

θm

)

− µm

2ρθmb

{[

1 +
b

n
(Iκpm(t)

− 3)

]n

− 1

}}

+
3
∑

i=1

f (i)

{

− Bs,i + cs,i
1 (θ − θs,i)

+ cs,i
2 ln

(

θ

θs,i

)}

(5.16)
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and the internal energy is given through

ε = (1 − f (1) − f (2) − f (3))

{

Am − Bmθm +
1

2
cm
1 (θ2 − θ2

m) + cm
2 (θ − θm)

}

+

2
∑

i=1

{

f (i)

{

As,i − Bs,iθs,i +
1

2
cs,i
1 (θ2 − θ2

s,i) + cs,i
2 (θ − θs,i)

}

+

∫ t

ti

{

µs,i
1

2ρ
(I (i)

κc(τ)
(t) − 3) +

µs,i
2

2ρ
(J (i)

κc(τ)
(t) − 1)2 +

µs,i
3

2ρ
(K(i)

κc(τ)
(t) − 1)2

}

df (i)

dτ
dτ

+ f (i)Ds,i exp

{

− Es,i

[
∫ t

to

exp(F s,i(θ(τ) − θo))dτ

]ni
}}

+ f (3)

{

As,3 − Bs,3θs,3 +
1

2
cs,3
1 (θ2 − θ2

s,3) + cs,3
2 (θ − θs,3)

+
µs,3

1

2ρ
(I (3)

κps(t)
− 3) +

µs,3
2

2ρ
(I (3)

κr
− 3)

}

. (5.17)

The rate of entropy production due to crystallization and glass transition is defined

as

ξ(i)
p =

ρ(Ψm − Ψ̂s,i)(ḟ (i))2

dφ(i)/dt
, i = 1, 2, 3, (5.18)

where

φ(i) = αp,i

{

1 − exp

{

−
[
∫ t

ti

K̂p,i(θ(τ),Bκpm(τ)
(τ))dτ

]np,i
}}

+ αs,i

∫ t

ti

d

dτ

{

1 − exp

{

−
[
∫ τ

ti

K̂p,i(θ(τ
′

),Bκ
pm(τ

′
)
(τ

′

))dτ
′

]np,i
}}

×
{

1 − exp

{

−
[
∫ t

τ

K̂s,i(θ(τ
′

),Bκ
pm(τ

′
)
(τ

′

))dτ ′

]ns,i
}}

dτ, i = 1, 2

φ(3) = (1 − f (1) − f (2))

{

1 − exp

{

−
[
∫ t

t3

K̂p,3(θ(τ),Bκpm(τ)
(τ))dτ

]np,3
}}

⇒ f (i) = φ(i), i = 1, 2, 3 (5.19)
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and the functions K̂s,i(θ,Bκpm(t)
) are given by

K̂q,i(θ,Bκpm(t)
) = Kq,i

o exp

( −Cq,i
1

θ − θq,i
c

)

exp

( −Cq,i
2

θ(Ψ̂m − Ψ̂s,i)

)

,

{ q = p, s; i = 1, 2}, { q = p, i = 3}, (5.20)

where

Ψ̂m = Am + (Bm + cm
2 )(θ − θm) − cm

1

(θ − θm)2

2
− cm

2 θ ln

(

θ

θm

)

+ Cb
µmθ

2ρθmb

{[

1 +
b

n
(Iκpm(t)

− 3)

]n

− 1

}

. (5.21)

To get the last equation of Eq. (5.19), zero initial conditions are used. All the in-

tegrands in Eq. (5.19) are always positive and hence ξ
(i)
p is non-negative provided

that Ψm − Ψ̂s,i ≥ 0. We shall use Ψm − Ψ̂s,i ≥ 0 as a constraint, which places re-

strictions on the constants that appear in it. The transformation kinetics equation

is allowed to proceed until
∑3

i=1 f (i) = 1. The crystallization kinetics equation has a

similar structure as that of Hillier [29], Gordon and Hillier [24]. A modification to the

Avrami equation was proposed (isothermal and quiescent) by Hillier [29] and Price

[55] to explain the anomalous fractional values of the Avrami exponent when ap-

plied to certain polymers, which does not have physical meaning, and slow secondary

crystallization. The primary crystallization is associated with the constant radial

growth rate of spherulites (observed in experiments), which are semicrystalline, and

further crystallization is allowed within a spherulite termed as post-Avrami crystal-

lization. Price [55] showed that if the post-Avrami process is sufficiently slower than

the primary crystallization, then the crystallization curves resemble that of polymers

where secondary crystallization (crystallinity proportional to log(time) and is related

to lamellar thickening) is present. Hillier [29] showed that if the two processes have

comparable half-lives, then the crystallization curves obtained resemble that of certain
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polymers where secondary crystallization is absent, which further lead to anomalous

fractional values when post-Avrami crystallization is ignored. The model was able to

fit the isothermal quiescent crystallization data of polymethylene, polyethylene oxide,

etc. Refer to Verhoyen [83] for the discussion of the other modifications of Avrami

equation.

Equations (5.19), i = 1, 2 represent the non-isothermal version of Hillier’s model in-

cluding the effect of deformation. The first part of the equation represent the primary

crystallization and has the same form as that of Nakamura equation (see Nakamura

[44]). The maximum value taken by f (i) are αp,i+αs,i, i = 1, 2 and f (3) = 1−f (1)−f (2).

Since the total weight fraction of the crystalline phase is always less than unity, we

have
∑2

i=1 αp,i + αs,i < 1. The term within the curly braces is between 0 and 1

and represents the mass fraction of the spherulites (growing in the melt) of crystal

form 1 under quiescent isothermal conditions when f (2) = f (3) = 0. The spherulites

stop growing when they impinge upon one another consuming all the available melt

and thus the mass fraction occupied by the spherulite is unity. But, the spherulites

themselves are semicrystalline and thus necessitating a constant αp,i < 1. The second

term represents the extra crystallinity due to post-Avrami or secondary crystalliza-

tion within the spherulite and the extend of secondary crystallization depends on the

age of the point within the spherulite.

The glass transformation kinetics f (3) has a similar mathematical form as that of

the crystallization kinetics , but differ in the interpretation. All the available melt is

assumed to be transformed into glass at the end of glass transition process.

The evolution equation for the natural configurations of the melt and the glass is the

same as Eqs. (4.15) and (3.66), respectively.
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D. Summary and conclusions

A specific model was obtained using a general thermodynamic setting including the

effects of thermomechanical history dependant initiation of crystallization, primary

and slow secondary crystallization and flow-induced crystallization. The amount and

the type of crytalline phase attained depends on the thermomechanical history under-

gone by the polymer. For many polymers such as Nylon 6, Nylon 66, polypropylene

and so forth, two phases have been found in their semicrystalline state, namely, meso-

morphic and monoclinic or triclinic phase. Eventhough the lattice structure may be

triclinic, monoclinic and so forth, they tend to get aligned as dictated by deformation

giving an overall anisotropy that could be approximated as being orthotropic. The

model can predict the amount and the type of crystalline structures formed. Here,

the model takes into account two different crystalline structures, eventhough it can

be easily generalized to account for more number of crystalline phases. If the cool-

ing rate is sufficiently fast, it is possible to bypass the crystallization route and the

polymer melt will solidify into a glass. Such effects could also be predicted by the

model.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

A sufficiently general thermodynamic framework has been put into place taking into

account the effects of viscoelasticity of polymer melts, thermomechanical history de-

pendant crystallization initiation condition, flow-induced crystallization including the

effects of evolution of symmetry of two different crystalline phases, secondary crys-

tallization, viscoelasticity of the amorphous solid and the glass transition kinetics.

The evolution equations for the melt and amorphous solid, initiation conditions for

the crystallization and glass transition, crystallization and glass transition kinetics,

the forms of stress tensor, entropy and internal energy have been obtained using an

unified thermodynamical framework.

The predictions of the model obtained using simplified versions of the framework

discussed in Ch. 5 (as deemed appropriate by the processes and class of polymers

under consideration), after determining the material constants, were compared with

extensive set of industrial spinline data. The predictions of the model agree well with

the experimental data.

The thermodynamical framework put forth takes into account most of the attributes

that are important for typical industrial processes. The effects of compressibility nor

the effects of pressure (important in die casting) have not been taken into account.

However, such effects are not important for fiber spinning, film blowing, blow molding

and so forth. Since the mechanical properties of the final product obtained depends

on the thermomechanical history undergone by a polymer, it is imperative that one

designs the mold or the process or both so that one achieves the desired mechanical

properties. To do this, without resorting to expensive full scale experiments, one

needs a model that is calibrated using a simpler set of experiments to predict the
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orientation and the amount crystals. The models proposed should be able to aid in

the design process.



155

REFERENCES

[1] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions. New

York: Dover, 1965.

[2] C.A. Angell, “The old problems of the glass and the glass transition, and the

many new twists”, Proc. Natl. Acad. Sci. U.S.A., vol. 92, pp. 6675-6682, 1995.

[3] R.J. Atkin and N. Fox, An Introduction to the Theory of Elasticity. New York:

Longman, 1980.

[4] J.H. Bheda and J.E. Spruiell, “Dynamics and structure development during high

speed melt spinning of nylon 6. I. On-line experimental measurements”, J. Appl.

Polym. Sci., vol. 39, pp. 447-463, 1990.

[5] J. Brandrup and E.H. Immergut, Polymer Handbook. New York: Interscience,

1966.

[6] V. Brucato, S. Piccarola, and V. La Carrubba, “An experimental methodology

to study polymer crystallization under processing conditions. The influence of

high cooling rates”, Chem. Eng. Sci., vol. 57, pp. 4129-4143, 2002.

[7] H.B. Callen, Thermodynamics and an Introduction to Thermostatics. New York:

Wiley, 1985.

[8] C.H. Choi and J.L. White, “Correlation and modeling of the occurrence of differ-

ent crystalline forms of isotactic polypropylene as a function of cooling rate and

uniaxial stress in thin and thick parts”, Polym. Eng. Sci., vol. 40, pp. 645-655,

2000.



156

[9] B.T.F. Chung and V. Iyer, “Heat-transfer from moving fibers in melt spinning

process”, J. Appl. Polym. Sci., vol. 20, pp. 367-376, 1976.

[10] M.M. Denn, “Continuous drawing of liquids to form fibers”, Ann. Rev. Fluid

Mech., vol. 12, pp. 365-387, 1980.

[11] M.M. Denn, “Fiber spinning”, in Computational Analysis of Polymer Processing,

J.R.A. Pearson and S.M. Richardson, eds. New York: Applied Science, 1983.

[12] M.M. Denn, “Correlations for transport coefficients in textile fiber spinning”,

Ind. Eng. Chem. Fundam., vol. 35, pp. 2842-2843, 1996.

[13] A.K. Doufas and A.J. McHugh, “Simulation of melt-spinning including flow-

induced crystallization. Part III. Quantitative comparisons with PET spinline

data”, J. Rheol, vol. 45, pp. 403-420, 2001.

[14] A.K. Doufas, A.J. McHugh, and C. Miller, “Simulation of melt spinning including

flow-induced crystallization Part I. Model development and predictions”, J. Non-

Newtonian Fluid Mech., vol. 92, pp. 27-66, 2000.

[15] A.K. Doufas, A.J. McHugh, C. Miller, and A. Immaneni, “Simulation of melt

spinning including flow-induced crystallization Part II. Quantitative comparisons

with industrial spinline data”, J. Non-Newtonian Fluid Mech., vol. 92, pp. 81-

103, 2000.

[16] P. Dreyfus and A. Keller, “A simple chain refolding scheme for the annealing

behavior of polymer crystals”, Polymer Lett., vol. 8, pp. 253-258, 1970.

[17] C. Eckart, “The thermodynamics of irreversible processes IV, the theory of elas-

ticity and anelasticity”, Phys. Rev., vol. 73, pp. 373-382, 1948.



157

[18] R.J. Fisher and M.M. Denn, “Mechanics of non-isothermal polymer melt spin-

ning”, AIChe., vol. 23, pp. 23-28, 1977.

[19] D.K. Gagon and M.M. Denn, “Computer simulation of steady polymer melt

spinning”, Polym. Eng. Sci., vol. 21, pp. 844-853, 1981.

[20] U. Gaur, S. Lau, B.B. Wunderlich, and B. Wunderlich, “Heat capacity and

other thermodynamic properties of linear macromolecules. VIII. Polyesters and

polyamides”, J. Phys. Chem. Ref. Data, vol. 12, pp. 65-89, 1983.

[21] H.H. George, “Model of steady-state melt spinning at intermediate take-up

speeds”, Polym. Eng. Sci., vol. 22, pp. 292-299, 1982.

[22] F. Gerardi, S. Piccarola, A. Martorana, and D. Sapoundjieva, “Study of the long-

period changes in samples of isotactic poly(propylene) obtained by quenching

from the melt and subsequent annealing at different temperatures”, Macromol.

Chem. Phys., vol. 198, pp. 3979-3985, 1997.

[23] S. Gogolewski, M. Gasiorek, K. Czerniawska, and A.J. Pennings, “Annealing of

melt-crystallized nylon-6”, Colloid & Polymer Sci., vol. 260, pp. 859-863, 1982.

[24] M. Gordon and I.H. Hillier, “Mechanism of secondary crystallization of poly-

methylene”, Phil. Mag., vol. 11, pp. 31-41, 1965.

[25] A.E. Green and P.M. Naghdi, “On thermodynamics and nature of second law”,

Proc. R. Soc. Lond. A., vol. 357, pp. 253-270, 1977.

[26] N.V. Gvozdic and D.J. Meier, “On the melting temperature of syndiotactic

polystyrene: 2. Enhancement of the melting temperature of semicrystalline poly-

mers by a novel annealing procedure”, Polymer Communications, vol. 32, pp.

493-494, 1991.



158

[27] H. Haberkorn, K. Hahn, H. Breuer, H.D. Dorrer, and P. Matthies, “On the neck-

like deformation in high-speed spun polyamides”, J. Appl. Polym. Sci., vol. 47,

pp. 1551-1579, 1993.

[28] G.M. Henson, D. Cao, S.E. Bechtel, and M.G. Forest, “A thin-filament melt

spinning model with radial resolution of temperature and stress”, J. Rheol., vol.

42, pp. 329-360, 1998.

[29] I.H. Hillier, “Modified Avrami equation for the bulk crystallization kinetics of

spherulitic polymers”, J. Polymer Sci., vol. 3, pp. 3067-3078, 1965.

[30] J.D. Humphrey and K.R. Rajagopal, “A constrained mixture model for growth

and remodelling of soft tissues”, Math. Methods. Appl. Sci., vol. 12., pp. 407-430,

2003.

[31] K. Kannan and K.R. Rajagopal, “Simulation of fiber spinning including flow

induced crystallization”, J. Rheol., 2004 (Submitted).

[32] K. Kannan, I.J. Rao, and K.R. Rajagopal, “A thermomechanical framework for

the glass transition phenomenon in certain polymers and its application to fiber

spinning”, J. Rheol., vol. 46, pp. 979-999, 2002.

[33] S. Kase and T. Matsuo, “Studies on melt spinning II. Steady-state and tran-

sient solutions of fundamental equations compared with experimental results”,

J. Appl. Polym. Sci., vol. 11, pp. 251-287, 1967.

[34] K. Koyama, J. Suryadeva, and J.E. Spruiell, “Effect of molecular weight on high-

speed melt spinning of nylon 6, J. Appl. Polym. Sci., vol. 31, pp. 2203-2229, 1986.

[35] A.Y. Malkin, A.E. Teishev, and M.A. Kutsenko, “Creep of polycarbonate: ex-

periments and correlation with relaxation”, J. Appl. Polymer Sci., 45, 237-244



159

(1992).

[36] J.E. Mark and B. Erman, Rubberlike Elasticity: A Molecular Primer. New York:

Wiley, 1988.

[37] M. Matsui, “Air drag on a continuous filament in melt spinning”, Trans. Soc.

Rheol., vol. 20, pp. 465-473, 1976.

[38] T. Matsuo and S. Kase, “Studies on melt spinning: temperature profile within

filament”, J. Appl. Polym. Sci., vol. 20, pp. 367-376, 1976.

[39] J. Meissner, “Elongation of polymer melts-experimental methods and recent re-

sults”, in Proc. XIIth Int. Congr. on Rheology, A. Ait-Kadi, J.M. Dealy, D.F.

James, and M.C. Williams, eds. Quebec: Chemical Engineering Department,

Laval University, Aug. 18-23, 1996, pp. 7-10.

[40] J. Meissner and J. Hostettler, “A new elongational rheometer for polymer melts

ans other highly viscoelastic liquids”, Rheol Acta, vol. 33, pp. 1-21, 1994.

[41] W.V. Metanomski, Compendium of Macromolecular Nomenclature. Oxford:

Blackwell Scientific Publications, 1991.

[42] J. Murali Krishnan and K.R. Rajagopal, “A thermodynamic framework for the

constitutive modeling of asphalt concrete: theory and applications”,J. Mater.

Civ. Eng., vol.16, pp.155-166, 2004.

[43] S. Murase, T. Matsuda, and M. Hirami, “Intrinsic birefringence of γ-form crystal

of nylon 6: application of orietation development in high-speed spun fibers of

nylon 6”, Macromol. Mater. Eng., vol. 286, pp. 48-51, 2001.

[44] K. Nakamura, T. Watanabe, and K. Katayama, “Some aspects of nonisothermal

crystallization of polymers. I. Relationship between crystallization temperature,



160

crystallinity and cooling conditions”, J. Appl. Polym. Sci., vol. 16, pp. 1077-1091,

1972.

[45] J.G. Oldroyd, “On the formulation of rhelogical equation of state”, Proc. Roy.

Soc. London, vol. A200, pp. 523-591, 1950.

[46] K. Onaran and W.N. Findley, “Combined stress-creep experiments on a nonlinear

viscoelastic material to determine the kernel functions for a multiple integral

representation of creep”, Trans. Soc. Rheol., vol. 9, pp. 299-327, 1965.

[47] M.L. Ottone and J.A. Deiber, “Modeling the melt spinning of polyethylene

terephthalate”, J. Elastomers Plast., vol. 32, pp. 119-139, 2000.

[48] M.J. Panik, Classical Optimization: Foundations and Extensions. Amsterdam,

The Netherlands: North-Holland Publishing Company, 1976.

[49] R.M. Patel, J.H. Bheda, and J.E. Spruiell, “Dynamics and structure development

during high speed melt spinning of nylon 6. II. Mathematical modeling”, J. Appl.

Polym. Sci., vol. 42, pp. 1671-1682, 1991.

[50] R.M. Patel and J.E. Spruiell, “Crystallization kinetics during polymer processing

- analysis of available approaches for process modeling”, Polym. Eng. Sci., vol.

31, pp. 730-738, 1991.

[51] J.R.A. Pearson, Mechanics of Polymer Processing. London: Elsevier, 1985.

[52] J. Petermann, M. Miles, and H. Gleiter, “Growth of polymer crystals during

annealing”, J. Macromol. Sci., vol. B12, pp. 393-404, 1976.

[53] S. Piccarola, V. Brucato, and Z. Kiflie, “Non-isothermal crystallization kinetics

of PET”, Polym. Eng. Sci., vol. 40, pp. 1263-1272, 2000.



161

[54] S. Piccarola, M. Saiu, V. Brucato, and G. Titomanlio, “Crystallization of poly-

mer melts under fast cooling. II. High-purity iPP”, J. Appl. Polymer Sci., vol.

46, pp. 625-634, 1992.

[55] F.P. Price, “A phenomenological theory of spherulitic crystallization: primary

and secondary crystallization processes”, J. Polymer Sci., vol. 3, pp. 3079-3086,

1965.

[56] R. Quinson, J. Perez, Y. Germain, and J.M. Murraciole, β− and α−relaxations

in poly(methylmethaacrylate) and polycarbonate: non-linear anelasticity studies

by antistress relaxation. Polymer, vol. 36, pp. 743-752, 1995.

[57] R. Quinson, J. Perez, M. Rink, and J. Pavan, “Yield criteria for amorphous

glassy polymers”, J. Mater. Sci., vol. 32, pp. 1371-1379, 1997.

[58] K.R. Rajagopal, “Multiple configurations in continuum mechanics”, in Report

6. Pittsburgh: Institute of Computational and Applied Mechanics, University of

Pittsburgh, 1995.

[59] K.R. Rajagopal “On implicit constitutive theories”, Appl. Math., vol. 48, pp.

279-319, 2003.

[60] K.R. Rajagopal and N. Chandra, “A thermodynamic framework for the super-

plastic response of materials”, Superplast. Adv. mater. ICSAM-2000 Mater. Sci.

Forum, vol. 357, pp. 261-271, 2001.

[61] K.R. Rajagopal and A.R. Srinivasa, “On the inelastic behavior of solids-part I:

twinning”, Int. J. Plast., vol. 11, pp. 653-678, 1995.

[62] K.R. Rajagopal and A.R. Srinivasa, “Inelastic behavior of materials-II: energetics

associated with discontinuous twinning”, Int. J. Plast., vol. 13, pp. 1-35, 1997.



162

[63] K.R. Rajagopal and A.R. Srinivasa, “Mechanics of the inelastic behavior of ma-

terials - Part I, theoretical underpinnings”, Int. J. Plast., vol. 118, pp. 945-967,

1998.

[64] K.R. Rajagopal and A.R. Srinivasa, “Mechanics of the inelastic behavior of ma-

terials - Part II: inelastic response”, Int. J. Plast., vol. 14, pp. 969-995, 1998.

[65] K.R. Rajagopal and A.R. Srinivasa, “On the thermomechanics of shape memory

wires”, Z. Angew. Math. Phys., vol. 50, pp. 459-496, 1999.

[66] K.R. Rajagopal and A.R. Srinivasa, “A thermodynamic framework for rate type

fluid models”, J. Non-Newtonian Fluid Mech., vol. 88, pp. 207-227, 2000.

[67] K.R. Rajagopal and A.R. Srinivasa, “Modeling anisotropic fluids within the

framework of bodies with multiple natural configurations”, J. Non-Newtonian

Fluid Mech., vol. 99, pp. 109-124, 2001.

[68] K.R. Rajagopal and L. Tao, “Modeling of the microwave drying process of aque-

ous dielectrics”, Z. Angew. Math. Phys., vol. 53, pp. 923-948, 2002.

[69] K.R. Rajagopal and A.S. Wineman, “A constitutive equation for non-linear solids

which undergo deformation induced microstructural changes”, Int. J. Plast., vol.

8, pp. 385-395, 1992.

[70] I.J. Rao, J.D. Humphrey, and K.R. Rajagopal, “Biological growth and remod-

elling: a uniaxial example with possible application to tendon and ligaments”,

Comput. Model. Eng. Sci., vol 4, pp. 439-455, 2003.

[71] I.J. Rao, and K.R. Rajagopal, “Phenomenological modeling of polymer crys-

tallization using the notion of multiple natural configurations”, Interfaces Free

Bound., vol. 2, pp. 73-94, 2000.



163

[72] I.J. Rao,and K.R. Rajagopal, “A study of strain-induced crystallization in poly-

mers”, Int. J. Solids. Struct., vol. 38, pp. 1149-1169, 2001.

[73] I.J. Rao and K.R. Rajagopal, “A thermodynamic framework for the study of

crystallization in polymers”, Z. Angew. Math. Phys., vol. 53, pp. 365-406, 2002.

[74] M.J. Richardson and N.G. Savill, “Derivation of accurate glass transition tem-

peratures by differential scanning calorimetry”, Polymer, vol. 16, pp. 753-757,

1975.

[75] J.E. Spruiell and J.L. White, “Structure development during polymer processing:

studies of the melt spinning of polyethylene and polypropylene fibers”, Polym.

Eng. Sci., vol. 15, pp. 660-667, 1975.

[76] A.R. Srinivasa, “Flow characteristics of a “multiconfigurational”, shear thinning

viscoelastic fluid with particular reference to the orthogonal rheometer”, Theor.

Comp. Fluid Dyn., vol. 13, pp. 305-325, 2000.

[77] J. Sun, S. Subbiah, and J.M. Marchal, “Numerical analysis of nonisothermal

viscoelastic melt spinning with ongoing crystallization”, J. Non-Newtonian Fluid

Mech., vol. 93, pp. 133-151, 2000.

[78] R.I. Tanner, Engineering Rheology. New York: Oxford University Press, 1988.

[79] P. Tidick, S. Fakirov, Avramova, and H.G. Zachmann, “Effect of the melt an-

nealing time on the crystallization of nylon-6 with various molecular weights”,

Colloid & Polymer Sci., vol. 262, pp. 445-449, 1984.

[80] A.V. Tobolsky, and H.F. Mark, Polymer Science and Materials. New York: Wi-

ley, 1980.



164

[81] L.R.G. Treloar, The Physics of Rubber Elasticity. Oxford: Clarendon Press, 1975.

[82] G. Vassilatos, E.R. Schmelzer, and M.M. Denn, “Issues concerning the rate of

heat-transfer from a spinline”, Int. Polym. Proc., vol. 7, pp. 144-150, 1992.

[83] O. Verhoyen, F. Dupret, and R. Legras, “Isothermal and non-isothermal crys-

tallization kinetics of polyethylene terephthalate: mathematical modeling and

experimental measurement”, Polymer Eng. Sci., vol. 38, pp. 1594-1610, 1998.

[84] F.M. White, Fluid Mechanics. New York: McGraw-Hill, 2003.

[85] A.S. Wineman and K.R. Rajagopal, “On a constitutive theory for materials

undergoing microstructural changes”, Arch. Mech., vol. 42, pp. 53-75, 1990.

[86] B. Wunderlich, Macromolecular Physics vol. III. New York: Academic Press,

1980.

[87] G.S.Y, Yeh, R. Hosemann, J. Loboda-Cackovic, and H. Cackovic, “Annealing

effects of polymers and their underlying molecular mechanisms”, Polymer, vol.

17, pp. 309-318, 1976.

[88] A. Ziabicki, Fundamentals of Fiber Formation. London: Wiley,1976.

[89] K.F. Zieminski and J.E. Spruiell, “On-line studies and computer simulations

of the melt spinning of nylon-66 filaments”, J. Appl. Polym. Sci., vol. 35, pp.

2223-2245, 1988.



165

VITA

Krishna Kannan was born on 12th September, 1973 in the southern Indian city

of Madurai in the state of Tamilnadu. He grew up in Trichy, a city belonging to the

same state. He received his high school education in the same city. He obtained his

Bachelor of Engineering degree from PSG College of Technology, Coimbatore. He

then travelled to College Station, Texas where he obtained a M.S. degree from Texas

A&M University with a major in mechanical engineering. His permanent address is

C/O S.V. Kannan

Ankur Bob Classics

11-Rathnambal Street

Rangarajapuram main road

Chennai, Tamil Nadu 600024

India

The typist for this thesis was Krishna Kannan.


