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ABSTRACT

Phylogenetic Revision of Desert Fireflies (Coleoptera:

Lampyridae: Microphotus).  (December 2004)

Jessica LeAnn Usener, B.S., Texas A&M University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Anthony I. Cognato

Morphological, mtCOI DNA, and luciferase DNA data are analyzed individually

and simultaneously for phylogenetic signal.  Analysis of 16 characters traditionally used

in species identification for 317 individual Microphotus specimens yields 5000 trees

with poor resolution.  Although mtCOI and luciferase data conflict in basal clades, both

contribute to the phylogeny of Microphotus.  Based on lack of morphological variation

and geographic and temporal proximity of collection localities, M. decarthrus Fall 1912

and M. fragilis Oliver 1912 are synonomized.

Microphotus octarthrus Fall occurs throughout the southwestern United States in

discontinuous pinyon-juniper and juniper-oak habitats.  Wide geographic distribution,

discontinuous habitat and limited dispersal capabilities of females makes this species

ideal for the study of genetic variation.  Mantel’s approximate t test indicates that

populations are both geographically and genetically isolated.  Twenty-six haplotypes are

found among 28 individuals; haplotypes are unique for the populations studied.  When

subjected to a 2.3% sequence divergence rate, mean branch lengths suggest segregation

of populations began in the Holocene, before Pleistocene glaciation.  Although these
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data suggest greater species diversity, more data, including mating behavior and more

genes are required to further elucidate species limits.
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CHAPTER I

INTRODUCTION

Fireflies are probably the most familiar sights on North American summer

nights. Approximately 85 genera and 200 species of lampyrids occur worldwide except

in Antarctica (Lloyd 2002).   About one half of these species occur in tropical America

and approximately two to three times as many fireflies are yet to be described (Lloyd

2002).  The morphology is mostly canalized and varies allometrically.  Thus, within

North America there are potentially cryptic species awaiting description.  Lampyrids are

soft-bodied elongate or elongate-oval shaped beetles, approximately five to twenty

millimeters long, and many are capable of emitting light (Arnett 1963, Lloyd 2002).

Three major ecological and behavioral types of lampyrids occur in North

America (Lloyd 2002). East of the Rocky Mountains the most commonly recognized

type is the dialog or flashing firefly (Lloyd 2002).  Males in this group are fully winged

and possess flash organs that commonly appear as two pale ventrites on the posterior

abdomen (Lloyd 2002).  Females in this group may be fully winged, brachypterous, or

apterous and may or may not possess flash organs (Lloyd 2002).  Flash patterns are used

in sexual communication and are often species specific (Lloyd 2002).  In the diurnal or

day active type both males and females are fully winged and do not possess any light

organs (Lloyd 2002).  Sexual communication in this group is presumed to occur through

the use of pheromones (Lloyd 2002).  The third type of firefly is the nocturnal

_______________
This thesis follows the style and format of Insect Systematics and Evolution.
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glowworm type (Lloyd 2002).Males in this group are fully winged and may or may not

possess light organs.  They are generally capable of only weak bioluminescence, and do

not use their photic organs in sexual communication.  Males in this group often have

huge eyes that touch or nearly touch under the head (Lloyd 2002).  Females are either

brachypterous, apterous, or “larviform” and produce intermittent glows rather than

flashes to attract males (Lloyd 2002).  The females and larvae of this group are

presumed to live in burrows or be inquilines of ants (Lloyd 2002).  This type of firefly

and the diurnal type are most commonly encountered in the western United States

(Lloyd 2002).  Perhaps due to their poor representation in North America and sometimes

unusual habitats, this type has been largely overlooked by contemporary lampyrid

workers.  As a result, the biology, behavior, and taxonomic relationship of these

fascinating creatures are poorly known.
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CHAPTER II

SPECIES DIAGNOSIS AND PHYLOGENY OF Microphotus USING

MORPHOLOGICAL AND MOLECULAR DATA

Microphotus is a small genus of nocturnal glowworm fireflies occurring

throughout the southwestern United States and adjacent parts of Mexico.  Males are

recognized by the following characteristics (Green 1959, LeConte 1866):  1.)The large,

prominent eyes touch or nearly so under the head;  2.) antennae are shorter than the

pronotum and composed of eight to ten antennomeres with  a small, glassy, bead-like

process on the tip of the terminal segment;  3.) elytra  shorter than the abdomen and

usually pale colored with darker tips; and 4.) mouthparts reduced and barely visible

between the eyes.  All males possess a medial triangular or lobate process on the

penultimate abdominal ventrite.  Females are apterous and larva-like in appearance.

Although originally described otherwise, both males and females possess paired photic

organs on the terminal abdominal ventrites.  Females emit intermittent glows to attract

males.  Males, while capable of emitting weak glows or flickers, apparently do not use

bioluminescence in sexual communication.

Few taxonomic treatments of the genus have been conducted.  J. L. LeConte

(1866) first described Microphotus.  Prior to 1959, eight species and one subspecies

were described by LeConte (1866, 1874), Fall (1912), and E. Oliver (1911, 1912). J. W.

Green  (1959) revised the genus, adding a new name (M. chiricauhuae), synonomizing

three names (M. robustus, M. rinconsis, and M.abbreviatus), and elevating the only
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subspecies (M. octarthrus pecosensis) to species status.  Currently, seven species names

are recognized.

Few diagnostic morphological characters separate the species. In his revision,

Green (1959) relied primarily on male genitalia and secondarily on elytral length, color

and number of anntenomeres to define species limits.  Relatively few specimens

representing few disjunct populations were dissected or examined. Cursory observation

of additional specimens suggests the taxonomic characters may not diagnosis the

species.

Wheeler and Platnick (2000) define a species based on a unique combination of

characters shared among all individuals. In this definition, phylogenetic characters are

attributes  found in all individuals of a terminal lineage, whereas traits are attributes that

are not universally distributed among comparable individuals in a terminal lineage.

(Nixon & Wheeler 1990).  One cannot know prior to phylogenetic analysis whether

supposed characters are in fact either phylogenetic characters or traits.  In some  cases,

variation among individuals is either ignored or concatenated for an OTU that may or

may not represent a species.  This results in an artificial suite of characters not

necessarily observed in any real organism (Vrana &Wheeler 1992). The use of

individuals as terminals tests the phylogenetic utility of suspected characters especially

those that are polymorphic (Vrana & Wheeler 1992). Poor resolution from a

phylogenetic analysis indicates a  failure to reject the hypothesis, thus suggesting that

suspected characters are likely traits.  Rejection of the hypothesis would indicate that the
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morphological differences are indeed characters and monophyly of individuals provides

evidence of species limits (Wheeler &Platnick 2000).

This study examines the characters used by Green to define species limits at the

level of population in order to assess the phylogenetic utility of these characters.  In

addition, DNA sequences from the mitochondrial cytochrome oxidase I gene  and the

nuclear luciferase gene are examined for their utility in defining species limits within

Microphotus.  These genes were chosen because of their potential to reveal phylogenetic

information at different taxonomic levels (Graybeal 1994). Cytochrome oxidase I has

been used extensively for beetles, especially when examining closely related species and

populations (Caterino et. al. 2000) and represents a neutral marker.  The evolution of the

luciferase genome may be under sexual selection because of its intimate association with

sexual communication. Luciferase is the only enzyme interacting with the substrate

luciferin to create the bioluminescent sexual signal utilized by many firefly species.

Variation in mating behavior in part is likely to arise in response to substitutions in

luciferase (Kim et al. 2004). Therefore, variation in luciferase may reflect variation in

species specific mating behavior. Phylogenetic analysis of these characters should reveal

distinct species boundaries represented as monophyletic groups.

MATERIALS AND METHODS

Adult Microphotus specimens were obtained on loan from the following

institutions and individuals.

CAS: Department of Entomology, California Academy of Sciences, San

Francisco, CA (David Kavanaugh, Roberta Brett)
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CDFA: California State Collection of Arthropods, Plant Pest Diagnostics Branch,

California Department of Food and Agriculture, Sacramento, CA (Chuck

Bellamy)

CU: Cornell University Insect Collections, Dept of Entomology, Cornell

University, Ithaca NY (James Liebhner)

ESSIG:  Essig Museum of Entomology, University of California-Berkeley, CA

(Cheryl Barr)

JMC: J. M. Cicero Collection, Tucson, AZ

KSEM: The University of Kansas Natural History Museum, Snow

Entomological Museum, Lawrence, KS (Robert Brooks)

KSH: Kathrin-Stanger Hall Collection, Austin, TX

 OSU: Department of Entomology, Museum of Biological Diversity, Ohio State

University, Columbus OH (Peter Kovarik)

SBMNH:  Santa Barbara Museum of Natural History, Santa Barbara, CA

(Michael Caterino)

Additional specimens were collected at localities throughout the southwestern United

States during the summer months in 2001-2003.  Adult males were collected with

ultraviolet light traps and pitfall traps “baited” with light emitting diodes set up to mimic

the females’ advertising signal (Branham 2003).  Specimens were killed in 95% ethanol

and stored at -80° C.
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Genitalic Dissection and Examination

When available, at 10 male specimens per locality were examined.  In cases

where fewer than 10 individuals were available, at least half of the available male

specimens were examined. Terminal abdominal segments were removed with forceps

and soaked in warm 10% potassium hydroxide until genitalia could be easily exerted.

Male genitalia were rinsed in 95% ethanol and stored in glycerin for examination under

a stereo dissecting scope at 50X power.

Morphological Characters and Character States

Three hundred and seventeen individual male specimens (66 M. octarthrus, 99

M. angustus, 6 M. chiricahuae, 10 M. decarthrus, 5 M. fragilis, 48 M. pecosensis, and 83

M. dilatatus) were examined.  Sixteen characters  traditionally used in species

delimitation (Green 1959, Table 1, Figs. 1 & 2) were examined and coded in an

individual by character matrix.

ML

W

C

Fig 1.  Pronotum of M. fragilis .  C= convex area, ML=Median 
logitudinal line, W=windows (transparent spots)
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Table 1. Morphological characters used for phylogenetic analysis

1.  Number of antennomeres, including scape, pedicel and individual flagellomeres  (0=less than 8, 1=8,

2=9, 3=10)

2. Eyes contiguous behind mouthparts, measured ventrally from behind the mouthparts to the back of the

head (0=greater than half distance, 1=less than half distance)

3.  Elytral length, measured from base to apex (0=greater than 3 times the length of pronotum, 1= less than

3 times the length of pronotum)

4.  Elytral color (0=pale with dark tips, 1=uniform color)

5.  Elytral shape (0=explanate, 1=parallel sided)

6.  Pronotal size/ shape, measured laterally at widest point and from apex to base at widest point (0=wider

than long, 1=as wide as long)

7.  Pronotal base (0=truncate, 1=emarginate)

8.  Medial longitudinal line of pronotum (0=impressed, 1=not impressed) (Fig. 1, ML)

9.  Transparent spots on pronotum over eyes (0=present, 1=absent) (Fig. 1, W)

10.  Circular convex area of pronotum, measured from apex of pronotum to the base of circular convex area

(0= from apex to greater than 1/2 way to base, 1= from apex to less than 1/2 way to base) (Fig. 1, C)

11.  Inner margins of lateral lobes of aedeagus, in dorsal view (0=converging toward apex, 1=diverging

toward apex, 2= straight) (Figs. 2F, 2G, 2D)

12.  Median lobe of aedeagus, in dorsal view (0=shorter than lateral lobe, 1=equal to length of lateral lobe,

2=longer than lateral lobe) (Figs. 2E, 2F, 2G)

13.  Median lobe of aedeagus, in lateral view (0=visible above lateral lobes, 1=visible below lateral lobes,

2=visible between lateral lobes) (Figs. 2E, 2B, 2D)

14.  Distal dorsal curvature of lateral lobe, in lateral view (0=no curvature, 1=concave, 2= convex) (Fig.

2G, 2C, 2B)

15.  Lateral projections on medial lobe of aedeagus, in dorsal view (0=present, 1=absent) (Fig. 2 A, 2B)

16.  Width of medial lobe, in dorsal view (0=uniform, 1=wider apically) (Fig 2D, 2A)
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A

B

C

D

E

F

G

Fig 2.  Genitalia of Microphotus.  Dorsal, ventral and lateral view from left to right.
 A=M. chiricahuae, B=M. pecosensis, C=M. octarthrus, D=M. dilatatus, E=M.
deacrthrus, F=M. fragilis, G=M. angustus
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DNA Extraction, Amplification and Sequencing.

DNA was obtained from freshly collected specimens by pulling at least one

thoracic leg and/ or thoracic muscle tissue.  DNA from dried specimens was obtained

from the entire thorax, which was ground with a conical stainless steel rod in a 1.5 ml

microfuge tube.  In both cases, DNA was extracted using Qiagen’s DNeasy kit following

the manufacturer's protocols.  2µL of extracted DNA from each specimen were prepared

for polymerase chain reaction by addition of 35 µL of pure water, 5 µL of 5X MgCl2-

free Promega buffer, 4 µL of 25 mM Promega MgCl2, 1 µL of 40 mM dNTPs, 0.2 µL of

100 U Promega Taq polymerase, and µL of 5 mM solution of each PCR primer, or

through the addition of .19 µL of pure water and 2 µL of 5mM solution of each PCR

primer to puRe Taq Ready-To-Go PCR Beads (Amersham Biosciences).   Primers C1-J-

2441 (alias Dick, CCAACAGGAATTAAATTTTAGAGATTAGC) and TL2-N-3014

(Pat) were used to amplify approximately 500 base pairs of the cytochrome c oxidase

subunit I region of the mtDNA.  Primers ATTCTGACTACCCAGATGTCTACTC

(Mike) and TL2-N-3014 (Pat) were used to amplify approximately 200 base pairs of the

same region(Simon et al 1994). PCR primers, AAGAGGTATGCACAGGTTCCAGG

(Luc 1) and TAAGTGCTGTTGCTGTTTCGCG (Luc 2), were designed based on

Pyrocoelia rufa cDNA luciferase sequence (GenBank accession number AF328553, Lee

et al., 2001) and used to amplify approximately 750 base pairs of the luciferase gene.

This region includes 2 introns of approximately 95- and 50-bp.  Mitochondrial  COI

DNA sequences were amplified via PCR in a Peltier thermal cycler (PTC-200) using the

following conditions: an initial denaturation at 95°C for 150 s, annealing at 45°C for 30
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s, and extension at 72°C for 60 s for a total of 36 cycles, followed by 72°C extension for

5 min.   Luciferase sequences were amplified via PCR in a Peltier thermal cycler (PTC-

200) under the following conditions: 95°C for 150 s, 55°C for 30 s, and 72°C for 60 s for

a total of 36 cycles, followed by 72°C for 5 min.

All PCR products were electrophoresed in a 1X Tris borate-EDTA buffer at 100

V for 30 min in 1.5% agarose gel stained with ethidium bromide (10 mg/ ml solution)

and visualized with UV light. Unincorporated dNTPs and primers were removed with

either a Qiagen PCR cleanup kit or an of EXO-SAP solution (USB product #70996).

Five microliters of PCR product were added to 1 µL of EXO and 1 µL of SAP.  The

EXO-SAP cocktail was heated in a Peltier thermal cycler (PTC-200) at 37°C for 15 min

followed by 80°C for 15 min.  Cycle sequencing was performed with flourescently dyed

terminator nucleotides (Big Dye kit, Applied Biosystems, Foster City CA) in a cocktail

of 8 µL of PCR grade water, 2 µL of Big Dye, 3 µL of primers, and 2 µL of cleaned

PCR product.  Both strands of PCR product were sequenced.  Cycle sequencing products

were cleaned with 10% Sephadex solution and then visualized on an ABI 377 automated

sequencer (Applied Biosystems).

DNA Sequence Analysis

The chromatographs of complementary DNA were edited into consensus

sequences with Sequence Navigator.  Alignment of individual sequences was

straightforward as amino acids were conserved thus no nucleotide deletions or insertions

were needed to maintain positional homology of nucleotides.
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Phylogenetic Reconstruction

A data matrix for the morphological characters listed above was created using

MacClade 4.0. The data matrix was analyzed in PAUP (Swofford 1998) under a

maximum parsimony framework.  A heuristic search of potential trees was performed

with 35 replicates of random stepwise addition and branch swapping via subtree-

pruning-regrafting.  All other settings were default (all characters are of type 'unord', all

characters have equal weight, multistate taxa interpreted as uncertainty, starting tree(s)

obtained via stepwise addition, steepest descent option not in effect, branches collapsed

(creating polytomies) if maximum branch length is zero, MulTrees' option in effect,

topological constraints not enforced, trees are unrooted).  Bootstrap values were obtained

with 1000 replicates and default PAUP settings.  The data matrix was also analyzed

using the parsimony ratchet in NONA.  1 tree was held and 1 character sampled for 200

iterations.  All other settings were default.

An additional optimal tree search for the combined COI and luciferase data sets

was carried out in PAUP (Swofford 1998) under a maximum parsimony framework. A

heuristic search of potential trees was performed with 1000 replicates of random

stepwise addition, branch swapping via tree-bisection-reconnection, and default settings

As described above.  Molecular data were missing for M. decarthrus..  Only 192 bp of

COI were included for M. dilatatus.   Luciferase sequences were missing for M.

dilatatus, M. octarthrus 7 DR, and M. octarthus NC.  Bootstrap values were obtained

with 10000 random stepwise addition replicates via TBR branch swapping and default
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5 changes

Microphotus octarthrus

M. angustus

M. dilatatus

M. angustus

M. chiricahuae
M. deacarthrus/ 
fragilis

M. pecosensis

M. dilatatus

Fig.3  Phylogeny of Microphotus individuals based on morphological data.  The tree shown is a 
strict consensus of 5000 trees (CI=0.445, RI=0.6626).  Branches represent individuals.

settings as described above.  Partitioned Bremer support was determined with TreeRot

v.2 (Sorenson, 1999).
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RESULTS

Species determination remains problematic because morphological characters are

polymorphic. Within M. dilatatus, M. angustus, and M. octarthrus, the number of

antennomeres varies between individuals.  M. dilatatus, M. angustus, and M. octarthrus

have eight to nine, nine to ten, and seven to eight antennomeres, respectively.  In

addition, some specimens within these species have asymmetrical antennae, in which

one antenna is one flagellomere longer than the other.   Elytral characters vary among

individuals.  Both dark elytral tips and uniform elytral color occur among populations of

nearly all Microphotus species.  In addition, parallel-sided and explanate elytral shapes

occur within all Microphotus species.  Continuity of the eyes behind the mouthparts,

pronotal shape and size, the shape of the pronotal base, and impression of the medial

longitudinal line of the pronotum all vary among individuals of nearly all species.

Furthermore, a large range of variation of the genitalic characters was found.

Cladistic analysis of 16 morphological characters for 317 individuals yielded

5000 trees of length 279.  A strict consensus of these trees yielded little resolution

among the named species except for M. octarthrus..  The characters exhibited much

homoplasy; consistency index was 0.0445.  Monophyly of M. octarthrus is supported by

a unique set of homoplastic characters.  Absence of monophyly for the remaining

species fails to reject the hypothesis that the characters reflect taxonomic limits (Fig. 3).

Phylogenetic reconstruction using molecular data improved resolution among the

species, which was a likely consequence of the increase of parsimony informative

characters to 155. Simultaneous analysis of 470-bp of mtCOI gene, 755-bp of luciferase
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Fig.4  Phylogeny of Microphotus species based on combined morphological and molecular data.  The tree shown is 1 of 
2 most parsimonious trees for combinedmorphological and molecular data.  CI=0.07861 , RI=0.6556.  Bold numbers 
above branches indicate bootstrap values.  Bootsyrap values less than 50 indicate clades unresolved in strict consensus.  
Numbers below branches indicate partitionedBremer support (COI= mt cytochrome oxidae I, LUC = luciferase, M = 
morphology).  Numbers following taxa indicate individuals.  Letters following taxa indicate populations (GCD=New 
Mexico, Catron Co., Gila Nat’l. For.; NC= Arizona, Graham Co., Coronado Nat’l. Forest., Noon Creek; DR=Texas, Val 
Verde Co., Devils River State Natural Area; SQNP= California,Tulare Co., Sequoia Nat’l. Park, Potwisha;  LA= California, 
Los Angeles Co., Los Angeles)

Microphotus dilatatus

M. octarthrus  4 DR

M. octarthrus  21 DR

COI=0.0
LUC=0.0
M=1.0

M. decarthrus

COI=0.1
LUC=-0.2
M=1.1

COI=0.3
LUC=-0.5
M=1.2

M. octarthrus   GCD

M. octarthrus  DV
COI=0.3
LUC=-0.5
M=3.2

M. chiricahuae

M. pecosensis

M. angustus  SQNP

M. angustus  LA

M. fragilis

Pleotomus pallens

COI=1.0
LUC=-1.5
M=4.5

COI=1.0
LUC=-1.5
M=0.5

COI=1.0
LUC=-1.5
M=0.5

COI=0.0
LUC=0.0
M=1.0

COI=0.2
LUC=-0.3
M=1.1

99

92

68

60

93

88

10 changes

gene and 16 morphological characters yielded 2 trees of length 533 (CI= 0.07861,

RI=0.6556) (Fig. 4).  Nucleotides were mostly comprised of AT (mean = 0.682) and the
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overall transition/transversion ratios for COI and luciferase are 2.16 and 1.0,

respectively. Despite the observed nucleotide substitution biases, these data were not

saturated as indicated by the linear relationship between JC and TN values (Fig. 5).

Fig.5  Tamura-Nei vs. Jukes-Cantor pairwise genetic distances.  A=mtCOI, B=luciferase

Tamura-Nei
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In total 155 characters were phylogenetically informative; COI, luciferase and

morphology exhibited 87, 52 and 16 respectively. Although bootstrap values > 60%
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Fig. 6  Phylogeny of Microphotus species based on mtCOI data.  The tree shown is 1 most 
parsimonious tree.  CI=0.6611 , RI=0.6164.  Bold numbers above branches indicatebootstrap values. 
Numbers following taxa indicate individuals.  Letters following taxa indicate populations (GCD=
New Mexico, Catron Co., Gila Nat’l. For.; NC= Arizona, Graham Co., Coronado Nat’l. Forest., 
Noon Creek; DR=Texas, Val Verde Co., Devils River State Natural Area; SQNP= California,Tulare

99

64

92

100

97

M. chiricahuae

M. fragilis

M. angustus  SQNP

M. angustus  LA

Microphotus dilatatus

M. octarthrus  4 DR

M. octarthrus  21 DR

M. octarthrus  7 GCD

M. octarthrus  NC

M. pecosensis

Pleotomus pallens
10 changes

were found for the majority of clades, support differed for each data set. For example,

COI and morphological data exhibited relatively higher amounts of partitioned Bremer

support as compared to luciferase.  It is surprising that luciferase conflicted with the
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other data sets as observed by the negative Bremer support. This might have been a

result of missing data from several of the OTUs however the effect of missing data on

PBS is unexplored (Damgaard & Cognato 2003). Thus we analysized the COI and

luciferase data sets separately and together using the same tree search criteria as above.

Cladistic analysis of mtCOI yielded one most parsimonious tree of length 258

(CI=0.6611, RI=0.6164).  Bootstrap values > 60% were recovered for less than half the

clades; M. chiricahuae, M. fragilis, and M. pecosensis are poorly resolved (Fig 6).

Cladistic analysis of luciferase yielded 1 most parsimonious tree of length 204

(CI=0.9020, RI=0.7436).  Bootstrap values > 50 % were recovered for a majority of

clades, and M. pecosenis and M. chiricahuae are better resolved (Fig 7).  The

simultaneous analysis of genes yielded 2 most parsimonious trees of length 470 (CI=

0.8170, RI=0.6627). Bootstrap values greater than 50% were observed for a majority of

clades. Negative PBS values for basal clades indicate conflict in the data sets.  Conflict

is not observed in the peripheral clades, and luciferase gives the most support to these

clades of the phylogeny (Fig 8).

DISCUSSION

The low CI associated with the morphological trees indicates a high amount of

homoplasy among morphological characters.  This indicates that the characters used by

Green to define species limits with in Microphotus are traits rather than characters, and

combinations of homplasies rather than synapomorphies that diagnose species.  Based

morphological characters and collection locality labels, there is little evidence that M.

decarthrus and M fragilis are separate species.  In addition, previous taxonomic
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Fig. 7 Phylogeny of Microphotus species based on luciferase data.  The single most parsimonius 
tree obtained is shown above.  CI=0.9020 , RI=0.7436.  Bold numbers above branches 
indicatebootstrap values. Numbers following taxa indicate individuals.  Letters following 
taxa indicate populations ( NC= Arizona, GrahamCo.Coronado Nat’l. Forest., Noon Creek; 
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M. octarthrus GCD
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Fig. 8  Phylogeny of Microphotus species based on combined molecular data.  The treee shown is 1 of 2 most 
parsimonious trees for combined mtCOI and luciferase data.  CI= 0.8170, RI=0.6627.  Bold numbers above branches 
indicate bootstrap values.  Bootstrap values less than 50 indicate clades unresolved in strict consensus.  Italicized 
numbers below branches indicate partitionedBremer support (COI= mt cytochrome oxidae I, LUC = luciferase).  
Numbers following taxa indicate individuals.  Letters following taxa indicate populations (GCD=New Mexico, Catron 
Co., Gila Nat’l. For.; NC= Arizona, Graham Co., Coronado Nat’l. Forest., Noon Creek; DR=Texas, Val Verde Co., 
Devils River State Natural Area; SQNP= California,Tulare Co., Sequoia Nat’l. Park, Potwisha;  LA= California, Los 
Angeles Co., Los Angeles)
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observations suggest the synonymy of these species (Green 1959). Molecular data may

diagnose these species however the lack of fresh specimens precluded further analysis.

Nevertheless, given the taxonomic confusion and problematic diagnosis of these two

species, M. fragilis is here synonomized with M. decarthrus. (syn. nov.)

Until a more thorough study including behavior, more genes, populations, and

individuals, is undertaken, the remaining Microphotus species should be recognized.

Although morphological characters appear to be mostly homoplastic, unique

combinations these characters still allow for the diagnosis of  currently defined species.

Synonomizing or describing addition species would only further confound species limits.

Reproductive barriers are expected to exist among Microphotus species given

that many species occur in sympatry.  It has been suggested that mating behavior

including female advertising posture, male approach, and coupling time are potential

reproductive barriers and may useful in species delimitation (Cicero, 1981). However,

sex ratios among Microphotus species appear to be highly disproportionate (Cicero,

personal communication), and females are encountered less frequently than males.  This

has limited the study of mating behavior only to one population in each of three (Cicero,

1981). Other species, such as M. angustus and M. chiricahuae are relatively restricted in

distribution.  Although it is expected that species these species would be less isolated by

distance, the patchwork of suitable habitat within California may effectively isolate

populations of M. angustus.  Morphological differences in genitalia are observed among

M. angustus individuals of different populations.  These differences may indicate cryptic
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species but integration of these characters is observed among M. angustus and M.

dilatatus individuals.

Molecular data has resolved species limits for many insect species resulting in

taxonomic revision (Morgan & Vogler 2000). Our data suggest that both COI and

luciferase provide many characters that will help resolve a phylogeny of Microphotus

species (Fig 5). As advocated for morphological taxonomic characters  (Vrana &

Wheeler 1992) and as demonstrated in this study, species limits and taxonomy of

Microphotus may best be determined through the phylogenetic analysis of individuals.

Molecular data would need to be generated for hundreds of individuals sampled through

species distributions. However, this endeavor is limited by the infrequency of live

specimens.
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CHAPTER III

POPULATION GENETICS PATTERNS FOR M. octarthrus Fall BASED

ON mtCOI DNA SEQUENCE

Allopatric speciation occurs when geographic isolation results in reproductive

isolation (Mayr 1969).  Gene flow is prevented between populations, resulting in genetic

divergence. In this scenerio, increased time in isolation presents more opportunity for

evolution of pre- and/or post mating barriers. Current disjunct populations may have

only a 10,000 year history since the warming and deglaciation of North America and

may have experienced 100,000 years of geography continuity (Webb & Bartlein 1992). .

Thus the absence of allopatric barriers would have maintained gene flow and species

cohesiveness among current disjunct populations. Whether or not 10,000 years is enough

time for speciation to occur is debatable (Mutun & Borst 2004, Vandyke at al 2004,

Tregenzat et al. 2002).

A desert firefly, Microphotus octarthrus Fall, exemplifies this scenario.  This

species is widespread throughout the southwestern United States and occurs in Pinyon-

Juniper and Juniper-Oak habitats between 500- 2000 m in Arizona, New Mexico, west

Texas, and Utah.  Males of this species are fully winged.  The apterous larva-like

females emit glows from photic organs on the underside of the abdomen in sexual

communication.  These beetles appear to have a highly disproportionate sex ratio, and

males are encountered more frequently than females (Cicero, personal communication).

Genetic variation within Microphotus may be isolated, given the limited dispersal of
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larva-like females and discontinuous pinyon-juniper habitat. Segregation of genetic

variation in disjunct populations may suggest cryptic species (Cognato 2000, Vandyke et

al 2004). Cytochrome oxidase I has been used extensively for beetles especially when

examining closely related species and populations (Caterino et al 2000) and represents a

neutral marker. Nucleotide data for mitochondrial cytochrome oxidase I gene is used to

examined genetic variation among disjunct populations of Microphotus octarthrus.

MATERIALS AND METHODS

DNA was obtained from freshly collected specimens by pulling at least one

thoracic leg and/ or thoracic muscle tissue.  DNA from dried specimens was obtained

from the entire thorax which was ground with a conical stainless steel rod in a 1.5 ml

microfuge tube.  In both cases, DNA was extracted using Qiagen’s DNeasy kit following

the manufacturer's protocols.  2µL of extracted DNA from each specimen were prepared

for polymerase chain reaction by addition of 35 µL of pure water, 5 µL of 5X MgCl2-

free Promega buffer, 4 µL of 25 mM Promega MgCl2, 1 µL of 40 mM dNTPs, 0.2 µL of

100 U Promega Taq polymerase, and µL of 5 mM solution of each PCR primer.  PCR

primers C1-2183  (alias Jerry, CAACATTTATTTGATTTTTTGG) and TL2-N-3014

(alias Pat, TCCATTGCACTAATCTGCCATATTA) were used to amplify

approximately 700 base pairs of the cytochrome c oxidase subunit I region of the

mtDNA.  Primers C1-J-2441 (alias Dick,

CCAACAGGAATTAAATTTTAGAGATTAGC) and TL2-N-3014 (Pat) were used to

amplify approximately 500 base pairs of the same region.  Primers

ATTCTGACTACCCAGATGTCTACTC (Mike) and TL2-N-3014 (Pat) were used to
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amplify approximately 200 base pairs of the COI region of the mtDNA (Simon et al

1994).  PCR was carried out in a Peltier thermal cycler (PTC-200) under the following

conditions: an initial 95°C for 150 s, 45°C for 30 s, and 72°C for 60 s for a total of 36

cycles, followed by 72°C for 5 min.

All PCR products were electrophoresed in a 1X Tris borate-EDTA buffer at 100

V for 30 min in 1.5% agarose gels stained with ethidium bromide (10 mg/ ml solution)

and visualized with UV light.  PCR products were then cleaned of unincorporated

dNTPs and primers through use of a Qiagen PCR cleanup kit following the

manufacturer’s instruction or through the use of EXO-SAP solution (USB product

#70996).  5 µL of PCR product were added to 1 µL of EXO and 1 µL of SAP.  The

EXO-SAP cocktail was heated in a Peltier thermal cycler (PTC-200) at 37°C for 15 min

followed by 80°C for 15 min.  Cycle sequencing followed and was performed with

flourescently dyed terminator nucleotides (Big Dye kit, Applied Biosystems, Foster City

CA) in a cocktail of 8 µL of PCR grade water, 2 µL of Big Dye, 3 µL of primers, and 2

µL of cleaned PCR product.  Both strands of PCR product were sequenced.  Cycle

sequencing products were cleaned with 10% Sephadex solution and then visualized on

an ABI 377 automated sequencer (Applied Biosystems).

DNA Sequence Analysis

The chromatographs of complementary DNA were edited into consensus

sequences with Sequence Navigator.  Alignment of individual sequences was

straightforward as amino acids were conserved thus no nucleotide deletions or insertions

were needed to maintain positional homology of nucleotides.
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Phylogenetic Reconstruction

An optimal tree search for COI was carried out in PAUP (Swofford 1998) under

a maximum parsimony framework for 28 Microphotus octarthrus individuals, four

additional Microphotus species (M. pecosensis, M. angustus, M. chiricahuae, and M.

fragilis.), and outgroup species (Photinus pyralis, Pleotomus pallens.).  A heuristic

search of potential trees was performed with 50 replicates of random stepwise addition

and branch swapping via tree-bisection-reconnection.  All other settings were default (all

characters are of type 'unord', all characters have equal weight, multistate taxa

interpreted as uncertainty, starting tree(s) obtained via stepwise addition, steepest

descent option not in effect, branches collapsed (creating polytomies) if maximum

branch length is zero, MulTrees' option in effect, topological constraints not enforced,

trees are unrooted).  Bootstrap values were determined with 10000 replicates via fast-

heursitc search and default PAUP settings as described above.

Geographical and Genetic Distance Comparison

Pairwise genetic and geographical distances were calculated for M. octarthrus

mtCOI DNA haplotypes.  Genetic distances were calculated under a Jukes-Cantor

nucleotide evolution model in PAUP (Jukes & Cantor 1969).  The geographical

distances (in kilometers) between collection localities were determined with an online

distance calculator (http://www.indo.com/cgi-bin/dist). The R Package computer

program (Casgrain & Lengendre 2001) was used to associate genetic and geographic

distances with Mantel’s approximate t-test.
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RESULTS

Cladistic analysis of 771 bp of the mtCOI gene yielded 15500 trees of length 627

(CI=0.7024, RI=0.7536). The strict consensus tree was mostly resolved and exhibited

relatively high bootstrap values. A total of 26 mtDNA COI haplotypes was found.

Haplotypes were unique for Texas, Utah, northern New Mexico and southeastern

Arizona/ southwestern New Mexico.  Among Texas haplotypes, unique haplotypes

existed for Big Bend National Park, Devils River State Natural Area and Davis

Mountains State Park.  A significant isolation by geographic distance (Mantel t =

5.719670, P = 0.000000) existed among these haplotypes. Pairwise nucleotide Jukes-

Cantor distances among M. octarthrus individuals ranged between 0 and 12%

(mean=6.4%). Percent sequence divergence as measured in terms of branch length

among designated clades of M. ocarthrus  (Fig. 9, clades A &B) ranged between 0.97

and 5.2% (mean=2.6%).  Percent sequence divergence as measured in terms of branch

length among Microphotus species (Fig 9, clade C), excluding M. octarthrus ranged

between 3.2 and 4.5% (mean=4%).

DISCUSSION

 The reconstructed phylogeny suggests greater species diversity among

populations of M. octarthrus, and supports the hypothesis of genetically isolated

populations (Fig 9).   Texas, northern New Mexico, and southeastern Arizona/

southwestern New Mexico/Utah populations are monophyletic. The mean branch lengths

as measured from the individual to the root of the Texas and Northern New Mexico

groups are 4.35% and 5.0%, respectively (Fig 9 A&C). These values are similar to the
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Fig. 9   Phylogeny of M. octarthrus populations based on mtCOI data.  The treee shown is 1 of 15500 most 
parsimonious trees.  CI=0.7024, RI=0.7536.  Bootstrap values are given in bold abovebranches.  Clades with 
bootstrap values lower than 50 are unresolved in strict consensus.  Numbers  following taxa indicate individuals.  
Letters following taxa indicate populations (NY=New York, Suffolk Co, Smithtown; TX=Texas, Fort Bend Co., 
Brazos Bend St. Park; DV=Texas, Jeff Davis Co., Davis Mts. St. Park; DR=Texas, Val Verde Co., Devil’s River State
 Natural Area; BB= Texas, Presidio Co., Big Bend Nat’l. Park; NC=Arizona, GrahamCo., Coranado Nat’l Forest, 
Noon Creek; GCD=New Mexico, Catron Co., Gila Nat’l. For.;UT=Utah,Washington Co., nr. Baker Dam Resevoir ; 
ALB=New Mexico, Bernalillo Co., nr. Albuquerque)
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differences observed in among the other Microphotus species.   Given an average

mitochondrial sequence divergence of 2.3% per million years (Brower 1994), isolation
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of these groups of populations occurred approximately 1.89, 2.17 and 1.7 million years

ago, which coincides with the beginning of the Pleistocene.  Thus, segregation of these

populations began long before the start of the Holocene. The preferred habitat was likely

discontinuous throughout the Pleistocene, although the pinyon- juniper/oak-juniper

habitats likely occupied lower altitudes and latitudes (Wells 1987).

Whether or not these populations represent cryptic species remains

undetermined.  Few morphological differences are observed between some of the

populations examined.  For example, members of the Devil’s River clade (DR) generally

have 7 or 8 antennomeres.  However, as discussed in Chapter II, current morphological

characters used in species delimitation exhibit high homoplasy. Behavioral differences

such as female advertising posture, male approach, and coupling time would further

support the isolation of these population via pre-mating barriers and recognition of new

species.  A more thorough sampling of populations, throughout the range M. octarthrus

and examination of more genes are required to further elucidate the species limits within

M. octarthrus.   However, these data suggest that there is a diversity of “old” lineages of

M. octarthrus and it is likely that a similar amount of diversity exists among the other

five recognized Microphotus  species given the similarity in behavior and ecology.
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CHAPTER IV

CONCLUSION

Morphological characters, mtCOI DNA and luciferase DNA were examined for

phylogenetic utility in defining Microphotus species limits.   Analysis of 16

morphological characters for 317 individuals resulted in 5000 phylogenies with poor

resolution among the named species, indicating unique combinations of homoplastic

characters  define Microphotus species. Due to the lack of variation seen in

morphological characters and the proximity of collection localities to one another, M.

decarthrus and M. fragilis are synonymized.  All other Microphotus species should be

recognized.  Mitochondrial cytochrome oxidase I and luciferase DNA were examined

for phylogenetic signal.  Although some conflict exists between the data sets, both

contribute to the phylogeny.

Mitochondrial COI DNA was also examined at the population level for M.

octarthrus.    Analysis revealed 26 haplotypes among 28 individuals.  Unique clades

exist for Texas, Utah, northern New Mexico, and southeastern/ southwestern New

Mexico populations.   Mantel’s t-test approximation indicates these clades are

geographically and genetically isolated.  Some morphological difference is observed

between populations, however, morphology appears to be too variable for species

delimitation.  Mean branch length for these clades indicate segregation of these

populations began prior to the start of the Holocene.

The phylogeny obtained for M. octarthrus populations based on mtCOI hints at

higher species diversity within this species.  Given the similarities in behavior and
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ecology, it is likely that a similar amount of diversity exists for the other five

Microphotus species.  However, more data, including a more thorough sampling through

the range of genus, more genes, and behavior are needed to further elucidate the species

limits with Microphotus.   
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