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Abstract: Estimation of evapotranspiration (ET) is needed in water resources management, scheduling of farm irrigation, and 
environmental assessment.  Hence, in practical hydrology, it is often crucial to reliably and constantly estimate 
evapotranspiration.  Accordingly, three artificial intelligence (AI) techniques comprising adaptive neuro-fuzzy inference 
system (ANFIS), artificial neural network (ANN) and adaptive neuro-fuzzy inference-wavelet (ANFIS-Wavelet) were applied 
in to estimate wheat crop evapotranspiration (ETc).  A case study in a Dashtenaz region located in Mazandaran, Iran, was 
conducted with weather daily data, including the maximum temperature, minimum temperature, maximum relative humidity, 
minimum relative humidity, wind speed, and solar radiation since 2003 to 2011.  The daily climatic data from Dashtenaz 
stations, (eight stations), were used as inputs AI models for estimating ET0.  The assessments of the AI models were compared 
with the wheat crop evapotranspiration (ETc) values measured by crop coefficient approach and standard FAO-56 
Penman–Monteith equation.  Similarly, determination coefficient (R2), Nash–Sutcliffe (CNS) efficiency coefficient model and 
root mean squared error (RMSE) were applied to compare the performance of models and to decide on the best one.  The 
outcomes attained with the ANFIS-Wavelet model (with trapezoidal member function’s combination with Mayer wavelet) were 
better than ANN and ANFIS models for ETc estimation and confirmed the potential of this technique to provide a useful tool in 
ETc modeling. 
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1  Introduction  

From the physical meteorology standpoint, 
evapotranspiration (ET) is the collective process of 
evaporation from the plant and soil surfaces, and 
transpiration through the plant surface stomata. 
Consistent with Aytek (2009), ET estimation is of 
significance for optimizing crop production, the best 
management practices development to minimize 
groundwater and surface water degradation and the water 
budget determination. Evapotranspiration can either be 

                                                 
Received date: 2017-06-16    Accepted date: 2017-09-24 
*Corresponding author: N. Mohammadigolafshani, Master's 
Degree of Hydraulic Structures, Sciences and Research Branch of 
Islamic Azad University, Email: n.mohammadi138@yahoo.com. 
Tel: +989113268260. 

measured with a lysimeters or water-balance approach (as 
a direct method), or be estimated by applying climatic 
data (the indirect method). Unfortunately, lysimeters are 
inappropriate for observing evapotranspiration as 
compared to the direct climate-based measurement at 
weather stations. This is not only attributable to the 
budget and complexity, but also because the limited area 
of a typical weather station enclosure does not present 
sufficient realization from a representative surface for 
these measurements to be significant (Sentelhas et al., 
2010). According to Pereira et al. (2002), the method 
selection for estimating the evapotranspiration is 
subjective to several factors among which the 
accessibility of meteorological data, as the complex 
methods necessitating a high number of variables, has 
applicability only when all necessary data are available. 
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A drawback to this approach is that the “real” 
reference evapotranspiration (ET0) is unknown and can 
only be obtained using lysimeters or other precision 
measuring devices. However, several studies have been 
piloted using lysimeters data and have shown, on the 
whole, the PM as the best method for estimating ET0. The 
international scientific community has acknowledged the 
FAO56PM equation for its good results when compared 
with other equations in different regions around the world 
(Chiew et al., 1995; Garcia et al., 2004; Gavilán et al., 
2006). When there is availability of data, Allen et al. 
(1998) recommended the use of the Penman-Monteith 
(PM) as the only standard method for defining and 
computing ET0. From the several existing ET0 equations, 
presently, the FAO-56 use of the PM equations is broadly 
used and can be referred to as a sort of standard (Walter 
et al., 2000). The PM equation enjoys having two benefits 
over many other equations. First, it can be utilized 
comprehensively without any local calibrations as a result 
of its physical basis. Second, the equation is a 
well-documented equation that has been tested by 
applying a myriad of lysimeters (Gocic and Trajkovic, 
2010). Benli et al. (2010) evaluated the six frequently 
utilized ET0 estimation methods performance with 
multiple data requirements namely PMFAO-56, 
Priestley–Taylor, Radiation-FAO24, Hargreaves, 
Blaney–Criddle and Class A pan contrasted with 
lysimeters data in a semi-arid highland environment in 
Turkey. They concluded that the PMF-56 and Hargreaves 
equations were the best options to estimate ET0 in that 
study area. 

While the artificial intelligence (AI) techniques 
application (e.g., artificial neural networks, neuro-fuzzy) 
for ET0 modeling has received much attention in recent 
years, over the previous decades, several academics 
conducted studies on the reliability of artificial neural 
network (ANN) for assessing ET0 as a climatic variables 
function (Trajkovic et al., 2003; Chauhan and Shrivastava, 
2009; Traore et al., 2010). Abyaneh et al. (2010) 
evaluated the performance of ANN and adaptive 
neuro-fuzzy inference system (ANFIS) Models for Garlic 
Crop Evapotranspiration Estimating in Hamadan. Two AI 
techniques, comprising ANN and ANFIS were employed 
to compute garlic crop water requirements in their study. 

They came to the conclusion that the ANN and ANFIS 
techniques are appropriate for Etc (Evapotranspiration) 
simulation. Kişi (2006) examined the ET0 modeling using 
ANN method and ANN results were compared with the 
Penman and Hargreaves models. It was stated that the 
ANN model outperformed the empirical models. Kişi 
(2007) estimated ET0 using multi-layer perceptron (MLP) 
method and compared test results with the Penman, 
Hargreaves and Turc models. It showed the superiority of 
the MLP to the empirical models. Trajkovic (2005) 
developed temperature-based RBNN models for 
assessing FAO-56PM ET0. In his study, the results 
matched with the Hargreaves, Thornthwaite and 
FAO-56PM methods and RBNN (Radial Base Neural 
Network) was found to be better than the empirical 
models. In a study of the arid and semi-arid areas of Iran, 
the spatially distributed maps of ET0 were prepared using 
the Hargreaves equation (Sabziparvar et al., 2010). The 
results indicated that the expected total monthly ET0 
revealed a significant variation during the growing season 
(April–September) so that the region under study 
experienced the highest and lowest monthly ET0 values of 
250 and 80 mm in July and April, respectively. Aytek 
(2009) examined the co-active neuro-fuzzy inference 
system (CANFIS) for daily ET0 modeling by applying 
daily atmospheric parameters. They concluded that 
CANFIS can be proposed as an alternate ET0 model to 
the current conventional methods. Tabari et al. (2012) 
investigated the models based on SVM (Support Vector 
Machine), ANFIS (Adaptive Neuro – Fuzzy Inference 
System), regression and climate for ET0modeling by 
applying limited climatic data in a semi-arid highland 
environment. The results obtained with the SVM and 
ANFIS models for ET0 estimation were far better than 
those attained by applying the models based on regression 
and climate and confirmed the fitness of these techniques 
to provide useful tools in ET0 modeling in semi-arid 
environments. Zanetti et al. (2007) estimated 
evapotranspiration by applying ANN and minimum 
climatological data. The study was conducted on the 
Campos dos Goytacazes County, State of Rio de Janeiro. 
Consistent with the results gained in this ANN testing 
phase, it is determined that when considering just the 
maximum and minimum air temperatures, it is 
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conceivable to estimate ET0 in Campos dos Goytacazes. 
This study aimed to compare the AI methods for 

simulating processes of wheat plant evapotranspiration 
with results derived from FAO56 PM equation under a 
case study in Dashtenaz in Mazandaran Province. 

2  Materials and methodology 

2.1  Case study 
The weather data for this study were obtained from 

eight stations of Dashtenaz (36.37N, 53.11E; 16 m a.s.l.) 
located in Mazandaran Province in northern Iran, 
enjoying a moderate, semitropical climate with an 
average temperature of 25°C in summer and about 8°C in 
winter. Moreover, the province has a quasi-mediterranean 
climate, with the annual rainfall averages of 650 mm in 
the eastern part of Mazandaran province and more than 
1300 mm in the western part. The average monthly 
temperature in region under study is 3°C. The mean 
annual rainfall is 638.2 mm (Figure 1). 

 
Figure 1  Architecture of neural network 

 

The weather data were collected from the Islamic 
Republic of Iran Meteorological Organization (IRIMO) 
(www.weather.ir). The data included the mean, maximum 
and minimum air temperatures, relative humidity, wind 
speed, solar radiation and sunshine hours for the period 
2003-2011. Table 1 shows some statistical data properties 
used in this study. 

 

Table 1  Some statistical properties of data 

Statistical properties 

Parameters
Max Min Mean Standard 

deviation Covariance Skewness

Tmin (°C) 25.8 -2.8 11.5 6.14 0.03 0.51 

Tmax (°C) 38.2 4.8 21.5 6.87 0.03 0.49 

HUM (%) 98.5 27 62.6 9.92 0.02 -0.52 

Rs (hr) 13.2 0 6.6 4.18 0.11 0.13 

U2 (m s-1) 8.5 0 4.3 0.93 0.28 1.92 
 

2.2  Climate based methods 
The PMF-56 model was utilized to assess the 

temperature and radiation-based equations. The PMF-56 
model assumes the ET0 as that from a hypothetical crop 
with an assumed crop height (0.12 m) and fixed canopy 
resistance (70 s m-1) and albedo (0.23), closely 
approximating the evapotranspiration from an extensive 
surface of green grass cover of uniform height, actively 
growing, and with no water shortage, which is given by 
(Allen et al., 1998) as follows: 

[ ] 2
0

2

0.408 ( ) 890 / ( 273) ( )
(1 0.34 )

n mean s aR G T U e e
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(1) 
where, ET0 is the reference crop evapotranspiration  
(mm day-1); Rn is the net radiation (MJ m-2 d-1); G is the 
soil heat flux (MJ m-2 d-1); γ is the psychometric constant 
(KPa °C -1); es is the saturation vapor pressure (kPa); ea is 
the actual vapor pressure (kPa), and Δ is the slope of the 
saturation vapor pressure–temperature curve (kPa oC-1); 
Tmean is the daily mean air temperature (°C), and U2 is the 
mean daily wind speed at 2 (m ms-1). The data required 
for calculating ET0 followed the method and procedure 
provided in Chapter 3 of FAO-56 (Allen et al., 1998). 
2.3  Crop coefficient 

Under standard conditions, the crop evapotranspiration 
denoted as ETc, is the evapotranspiration from 
disease-free and well-fertilized crops, which grew in large 
fields, under optimum soil water conditions, and reached 
maximum production under the particular climatic 
conditions. Although the crop evapotranspiration and 
crop water requirement values are identical, crop water 
requirement concerns the amount of water that must be 
supplied, while crop evapotranspiration talks about the 
amount of water that is lost through evapotranspiration. 
The irrigation water requirement essentially signifies the 
difference between the crop water requirement and 
effective precipitation. The irrigation water requirement 
also takes in additional water for salts leaching and 
compensating the water application non-uniformity. The 
calculation of the irrigation water requirement is not 
included in this article. Crop evapotranspiration can be 
measured from climatic data through directly integrating 
the crop resistance, albedo and air resistance factors in the 
PM approach. As there is still a substantial shortage of 
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data for different crops, the PM method is applied to the 
estimation of the standard reference crop to verify its 
evapotranspiration rate, i.e., ET0. The ratios of ETc ET0

-1 
determined in the experiment was called crop coefficients 
(Kc), are applied to relate ETc to ET0 or: 

ETc = Kc. ET0                       (2) 
Attributable to discrepancies in the crop 

characteristics throughout its growing season, Kc is the 
given crop changes from sowing to harvest. The amounts 
of crop coefficients under standard conditions (ETc) are 
given in Table 2.  

Table 2  Crop coefficients 

Month Decade Kc- FAO-56 

1 0.45 
2 0.45 December 
3 0.45 
1 0.45 
2 0.56 January 
3 0.66 
1 0.77 
2 0.87 February 
3 0.99 
1 1.09 
2 1.2 March 
3 1.2 
1 1.2 
2 1.2 April 
3 1.2 
1 1.2 
2 0.99 May 
3 0.78 
1 0.57 

June 
2 0.36 

 

2.4  Gamma-test 
The gamma-test (GT) measures the minimum mean 

square error (MSE) that can be realized when modeling 
the hidden data employing any continuous nonlinear 
models. The GT was first stated by Koncar (1997) and 
Agalbjorn et al. (1997), and later improved and discussed 
in detail by several researchers (Chuzhanova et al., 1998; 
De Oliveira, 1999; Tsui, 1999; Tsui et al., 2002; Durrant, 
2001; Jones et al., 2002). 

Simply, a concise introduction to the GT is 
presented here. The primary notion is quite distinctive 
from earlier challenges with nonlinear analysis. Assume 
that we have a group of data observations of the form: 

{(xi, yi), 1≤i≤M}              (3)  
Where the input vectors xi∈Rm are vectors confined to 
some closed bounded set C∈Rm and, without the loss of 
generality, the equivalent outputs yi∈R are scalars. The 

vectors x contains predicatively useful factors influencing 
the output y. The only assumption made is that the 
underlying relationship of the system has the following 
form: 

y = f(x1, x2… xm) +r             (4) 
where, f is a smooth function and r is a random variable 
that represents noise. Without loss of generality, it can be 
expected that the mean of the distribution of r is zero 
(since any constant bias can be subsumed into the 
unknown function f) and that the variance of the noise 
Var (r) is bounded. The domain of a possible model is 
now limited to the class of smooth functions which have 
bounded first partial derivatives. The Gamma statistic Γ is 
an estimate of the model output variance that cannot be 
accounted by a smooth data model. 

The GT is based on N [i, k], which is the kth (1≤k≤p) 
nearest neighbors xN [i, k] (1≤k≤p) for each vector xi (1≤i 
≤M). Specifically, the GT is derived from the Delta 
function of the input vectors: 
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where, |...| denotes Euclidean distance, and the 
corresponding Gamma function of the output values: 
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where, yN(i, k) is the corresponding y-value for the kth 
nearest neighbor of xi in Equation (5). In order to 
compute Γ a least squares regression line is constructed 
for the p points (δ(M, k), γ(M, k)) 

γ = Aδ+Γ                 (7) 
The graphical output of this regression line (Equation 

(7)) provides very useful information. First, it is 
significant that the vertical intercept Γ of y (or gamma) 
axis suggests an estimate of the best attainable MSE 
applying a modeling technique for unknown smooth 
functions of continuous variables (Evans and Jones, 
2002). Second, the gradient offers an indication of the 
model complexity (a steeper gradient indicates a model of 
greater complexity). 
2.5  Artificial neural network 

Neural networks are made of neurons as basic units.  
Each neuron receives input data, and processes the input 
data and converts them into output forms. The input 
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forms may be pure data or the input results of other 
neurons, and the output forms may be the results of the 
final process or the input data of other neurons (Kim and 
Kim, 2008). Figure 2 is a general architecture of a feed 
forward neural network. This network comprises of one 
input layer, one or several hidden layers, and one output 
layer. Its learning algorithm is back-propagation (BP). In 
the case of the BP algorithm, first the output layer 
weights are updated. For each neuron of the output layer, 
a desired value exists. By this value and the learning rules, 
the weight coefficient is updated (Adineh et al., 2008). 
There are several features in ANN that distinguished it 
from the empirical models (Moghaddamnia et al., 2009). 
First, neural networks have flexible nonlinear function 
mapping capability that can approximate any continuous 
measurable function with arbitrarily desired accuracy, 
whereas most of the commonly used empirical models do 
not have this property. Second, being nonparametric and 
data-driven, neural networks impose few prior 
assumptions on the underlying process, from which data 
are generated. Also, high computation rate, learning 
ability through pattern presentation, prediction of 
unknown patterns, and flexibility affronts for noisy 
patterns are other advantages of using ANNs (Adineh et 
al., 2008). In this study, several architectures and various 
neurons with two transfer functions embedded in the 
neural networks were adapted. 

 
Figure 2  Architecture of adaptive neuro-fuzzy inference system 

 

2.6  Adaptive neuro-fuzzy inference system  
The ANFIS is a universal estimator and is able to 

approximate any real continuous function on a compact 
set to any degrees of accuracy (Jang et al., 1997). The 
basic structure of the type of fuzzy inference system 
could be as a model that maps input characteristics to 
input membership functions. Then, it relates input 
membership function to rules and the rules to a set of 

output characteristics. Finally, it maps output 
characteristics to output membership functions, and the 
output membership function to a single output or a 
decision associated with the output (Jang et al., 1997). 
Each fuzzy system contains three main parts of fuzzifier, 
fuzzy database and defuzzifier. Fuzzy database includes 
two main parts of fuzzy rule base, and inference engine. 
Figure 3 represents a typical ANFIS architecture. In layer 
one, every node is an adaptive node with a node function 
such as a generalized bell membership function or a 
Gaussian membership function. In layer two, every node 
is a fixed node representing the firing strength of each 
rule, and is calculated by the fuzzy and connective of the 
‘product’ of the incoming signals. In layer three, every 
node is a fixed node representing the normalized firing 
strength of each rule. The i-th node calculates the ratio of 
the i-th rule firing strength to the summation of two rules 
firing strengths. In layer four, every node is an adaptive 
node with a node function indicating the contribution of 
i-th rule toward the overall output. In layer five, the single 
node is a fixed node indicating the overall output as the 
summation of all incoming signals (Jang et al., 1997). 

 
Figure 3  Structure of forecast strategy 

 

In the present study, the Triangular, Trapezoidal, 
Sigmoidal, Bell, Gaussian and PI membership functions 
were employed. In each application, two-six numbers of 
MFs were tried and the best one giving the minimum of 
errors was selected. 
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2.7  Wavelet Transform 
The wavelet transform of a signal is capable of 

providing time and frequency information simultaneously, 
hence providing a time–frequency representation of the 
signal. To accomplish this task, the data series is broken 
down by the transformation into its wavelets, which are a 
scaled and shifted version of the mother wavelet (Nason 
and Von Sachs, 1999). The continuous wavelet 
transforms (CWT) of a signal x(t) is defined as follows: 

*
,

1( , ) ( ) ( )
| |s SCWT s s t t dt
s

= ∫ψ
ττ ψ        (8) 

where, s is the scale parameter; τ is the translation 
parameter and the ‘*’ denotes the complex conjugate. 
Here, the concept of frequency is replaced by that of scale, 
determined by the factor s. ψ(t) is the transforming 
function, and is called the mother wavelet. The term 
wavelet means small wave. The smallness refers to the 
condition that the function is of a finite length. The wave 
refers to the condition that it is oscillatory. The term 
mother implies that the functions used in the 
transformation process are derived from one main 
function, the mother wavelet. The wavelet coefficient 
CWTψx (τ, s) is large when the signal x(t) and the wavelet 
ψ*(t–τ s-1) are similar; thus, the time series after the 
wavelet decomposition allows one to have a look at the 
signal frequency at different scales. The CWT calculation 
requires a significant amount of computation time and 
resources. Conversely, the discrete wavelet transforms 
(DWT) allows one to reduce the computation time, and is 
considerably simpler to implement than the CWT. 

DWT scales and positions are usually based on the 
powers of two– the so-called dyadic scales and positions. 
This is achieved by modifying the wavelet representation 

to: 
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=
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where, j and k are the integers and s0>1 is a fixed dilation 
step. The translation factor so depends on the dilation step. 
The effect of discretizing the wavelet is that the 
time–space scale is now sampled at discrete intervals. A 
value of s0=2 is usually chosen so that the sampling of the 
frequency axis corresponds to dyadic sampling. This is a 
very natural choice, for example, for computers, the 
human ear and music. A translation factor of s0=1 was 
chosen so that there is also dyadic sampling of the time 
axis. High pass and low pass filters of different cutoff 
frequencies are used to separate the signal at different 
scales. The time series is decomposed into one containing 
its trend (the approximation) and one containing the high 
frequencies and the fast events (the detail). The scale is 
changed by above sampling and lower sampling 
operations. The filtering procedure is repeated every time 
when some portions of the signal corresponding to some 
frequencies are removed, obtaining the approximation 
and one or more details, depending on the chosen 
decomposition level (Noori et al., 2009). 

As depicted in Figure 4, wavelet techniques are 
implemented in the first and last stages. The actual 
time-series are first decomposed into a number of wavelet 
coefficient signals and one approximation signal. The 
decomposed signals are then fed into the ANFIS at the 
second stage to predict the future time-series patterns for 
each of the signals. Finally, the predicted signals are 
recombined in the last stage to form the final predicted 
series. 

 
Figure 4  M-test results for the best data set 
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2.8  Data preprocessing 
Various input combinations of data were explored in 

this study to assess their influence on the 
evapotranspiration modeling (Table 3). The best one can 
be specified by observing the Gamma value, indicating a 
measure of the best root mean square error (MSE) 
possible by applying any modeling methods for unseen 
continuous variables smooth functions. In Table 3, some 
very interesting variations of the best MSE are observed 
with different input combinations. The minimum value of 
Gamma was observed when all available input data sets 
were used, i.e. Tmax, Tmin, HUM, Rs and U2. The results of 
these tests reveal that the rate of evapotranspiration solar 
radiation is the most sensitive parameter, because by the 
removal of these data as an input, the gamma statistic will 
have the highest value. 
 

Table 3  Gamma test results on different inputs 
Input models combinations Gamma RMSE 

Tmin, Tmax, HUM, Rs, U2 0.006528 0.000504 

Tmin, Tmax, Rs, U2 0.009502 0.00078 

Tmin, Tmax, HUM, Rs 0.010069 0.00068 

Tmin, HUM, Rs, U2 0.010279 0.0011 

Tmax, HUM, Rs, U2 0.012237 0.00098 

Tmin, Tmax, HUM, U2 0.021697 0.00099 
 

The quantity of available input data to anticipate the 
desirable output was evaluated using the M-test. The 
M-test results help to determine whether there were 
sufficient data to provide an asymptotic Gamma estimate 
and subsequently a reliable model. The M-test analysis 
results are presented in Figure 5. As it can be witnessed 
from the figure, the data standard error for 1360 numbers 
is the lowest. This number has been selected as the 
training network data number. The remaining data were 
used to test the model and estimate the results. 

 
Figure 5  Scatter and time series plots of observed versus 

estimated wheat evapotranspiration values using ANN 

2.9  Performance criteria 
First, the normalization on the data is done in line 

with the following expression. There are two main 
advantages to normalize features before applying AI 
methods for prediction. One advantage is to avoid using 
attributes in greater numeric ranges that control those in 
smaller numeric ranges, and another advantage is to avoid 
numerical difficulties during the calculation. It is 
recommended to linearly scale each attribute to the range 
(–1,  1) or (zero, 1). In the modeling process, all data 
values are scaled to the range between zero and 1 as 
follows: 

max min

0.5 0.5n
X XX

X X
⎛ ⎞−

= + ⎜ ⎟−⎝ ⎠
        (10) 

where, Xn is normalization and X is actual value, but X  
is data average and Xmax and Xmin are the maximum and 
minimum measurement values. 

The performance of AI models for estimating the 
daily ETc was evaluated using a wide variety of standard 
statistics index. A total of three different standard 
statistics indexes were employed including the coefficient 
of determination (R2), RMSE, and Nash Sutcliffe coefficient 
(CNS) (Nash and Sutcliffe, 1970; Committee, 1993). 
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where, ETi and ETp are the observed and predicted at time  

i, respectively; iET and pET are the observed and  
predicted means at time I respectively; and n is the 
number of data points. 

3  Results and discussion 

3.1  ANN results 
The best ANN architecture was selected and 

evaluated among numerous ANN architectures. The 
selected ANN, or the one presenting the highest 
performance index and the lowest MSE, is constituted by 
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an input layer with 5 variables, a hidden layer (with 1 to 
40 neurons) and an output layer. The activity functions of 
sigmoid and tan sigmoid is proposed in this study. To 
assess the inclusive data and the predicted results, ET =  
f (Tmax, Tmin, HUM, Rs, U2) model were used as an input 
for the system. In this study, the combinations of input 
data are separated into two types (training (80% of data) 
and testing (20% of data)) before entering the network. 
The number of hidden layers was varied, as well as the 
neuron numbers and activation function in each layer. A 
summary with the statistics performance index and MSE 

obtained during the training and testing phases is given in 
Table 4. Table 4 presents training and testing for neural 
network model with both sigmoid and tan sigmoid 
activity function and the best architecture of network with 
each activity function. The performance statistics results 
of sigmoid activity function were 0.874, 0.958, 0.259, 
while the results of tan sigmoid activity function were 
0.918, 0.967 and 0.246 for CNS, R2, and RMSE, 
respectively. This result indicates the superiority of neural 
network with tan sigmoid activity function with 1-12-1 
architecture and 12 neurons in hidden layer. 

 

Table 4  Architectures of the tested neural networks with their respective performance index 

RMSE R2 CNS 
Transfer Functions Hidden layers neural epochs Network 

architecture train test train test train test 

tan sigmoid 12 14 1-12-1 0.2618 0.2461 0.985 0.967 0.951 0.918 

Sigmoid 15 25 1-15-1 0.2778 0.2586 0.972 0.958 0.866 0.874 
 

Figure 6 and Figure 7 demonstrates high correlation 
between FAO-56 measurements and ANN results. The 
figure indicates that the slope and intercept of the 
regression equations for ANN model are significantly 
near to one and zero, respectively. Results obtained from 
ANN in estimation wheat evapotranspiration indicate 
high accuracy. 

 
Figure 6  Scatter and time series plots of observed versus 

estimated values of wheat evapotranspiration from ANN for the 
testing data and training data 

 
Figure 7  Scatter and time series plots of observed versus 

estimated values of wheat evapotranspiration from ANFIS for the 
testing data and training data 

3.2  ANFIS results 
In current study, the architecture of ANFIS with six 

MFs (membership functions) such as triangular, 
trapezoidal, bell-shaped Gaussian and Gaussian2 and PI 
as an input model were used. Also, the MF number was 
various between two to four. The ideal iterations number 
was obtained from trial and error procedure. The final 
structural design and performance statistics of the ANFIS 
models for the train and test phase are specified in Table 
4. Two to six MFs were found to be sufficient for the ET0 
estimation using the triangular, trapezoidal, bell-shaped 
Gaussian and Gaussian2 and PI as an input model, 
respectively. Moreover, the trapezoidal function was the 
best MF for almost all the ANFIS models. As presented 
in Table 5, the trapezoidal function with inputs of the 
highest and lowest air temperature, solar radiation, 
relative humidity and wind speed had the greatest 
performance (CNS = 0.934, R2 = 0.976 and RMSE = 0.039) 
among the ANFIS membership functions during test. By 
considering each MF, ANFIS with a trapezoidal input and 
4 MF number was the best model. Also, Figure 8 
represents scatter plot, scatter diagram and time series of 
ANFIS model throughout trapezoidal membership 
function training and testing. 

In Figure 9, although the results gained from ANFIS 
model for estimating ETc are acceptable, this superiority 
can be demonstrated based on the regression equations 
slope and intercept for the ANN model (Kişi, 2007; 
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Keskin et al., 2009). 
 

Table 5  Results obtained from different types of ANFIS 
structures and their performance evaluation 

CNS R2 RMSE 
MF OPM Epoch 

Test Training Test Training Test Training

Trimf 2 6 0.918 0.963 0.929 0.973 0.046 0.015

Trapmf 4 12 0.934 0.971 0.976 0.982 0.039 0.015

Gbellmf 4 26 0.906 0.955 0.898 0.954 0.053 0.013

Gaussmf 2 19 0.926 0.968 0.931 0. 968 0.047 0.013

Gauss2mf 2 15 0.811 0.946 0.809 0.941 0.088 0.028

PImf 3 24 0.856 0.941 0.889 0.923 0.057 0.028

 
Figure 8  Scatter and time series plots of observed versus 

estimated values of wheat evapotranspiration from ANFIS for the 
testing data and training data 

 
Figure 9  Time series of wheat evapotranspiration during test 

 

3.3  Wavelet-ANFIS results 
In this section, at first the time series is separated into 

one comprising its trend (the approximation) and one 
encompassing the high frequencies and the fast events 
(the detail). Meyer, Symlet and Daubechies wavelets 
were used at this stage which is depicted in Figure 10 and 
Figure 11. The scale is changed by above sampling and 
lower sampling operations. The filtering procedure is 
replicated every time when some portions of the signal 
analogous to some frequencies are removed, obtaining the 
approximation and one or more details, counting on the 
selected decomposition level. The selection of 
appropriate wavelet and the decomposition levels number 
is highly imperative in data analysis by means of the WT. 
The number of decomposition levels is selected in terms 

of the signal dominant frequency components. The levels 
are selected so that those parts of the signal that associate 
well with the frequencies which are needed for 
classification of the signal are retained in the wavelet 
coefficients. Then, each of the two parts is conducted 
separately into the ANFIS prediction model. Table 6 
depicts the results of Wavelet-ANFIS. Trapezoidal 
member functions combination with Mayer wavelet had 
the best performance (CNS = 0.953, R2 = 0.983 and  
RMSE = 0.0166) during test. 

 
(a) Part approximation 

 
(b) Part Details 

Figure 10  Time-series plot of wheat evapotranspiration during 
test stage using wavelet transform 

 
Figure 11  Scatter and time series plots of observed versus 

estimated values of wheat evapotranspiration from Wavelet-ANFIS 
for the testing data and training data 
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Table 6  Results obtained from different types of 
ANFIS-wavelet structures and their performance evaluation 

RMSE R2 CNS Transfer 
function 

Membership 
function Training Test Training Test Training Test

Meyer Trapozal 0.008823 0.01665 0.993 0.983 0.981 0.953

Sym4 Gaussian 0.01188 0.02072 0.977 0.949 0.957 0.921

Db10 Trapozal 0.01022 0.01852 0.983 0.961 0.968 0.947
 

In Figure 12, although the results attained from 
Wavelet-ANFIS model for estimating ETc are more 
acceptable than other methods, this figure also represents 
a fit estimated to the observed scattering and time series 
data and the superior model of prediction. 

 
Figure 12  Scatter and time series plots of observed versus 

estimated values of wheat evapotranspiration from Wavelet-ANFIS 
for the testing data and training data 

 

3.4  Validation performance of models 
Being revealed in the results, R2, RMSE and CNS 

efficiency coefficient model were applied to compare the 
performance of models and select the best one. The 
outcomes of this assessment were presented in Table 7. 

 

Table 7  Values of performance evaluation of three models 

Model CNS R2 RMSE 

ANN 0.935 0.967 0.2539 

ANFIS 0.947 0.949 0.03 

Wavelet-ANFIS 0.976 0.988 0.0124 
 

Table 6 shows the best ANN, ANFIS, and 
Wavelet-ANFIS model anticipation and the data observed 
to estimate ETc. As witnessed, the CNS and R2 increased 
from 0.935 to 0.967 and 0.976 to 0.988, respectively, and 
RMSE has declined from 0.2539 to 0.0124. It was 
determined that Wavelet-ANFIS hybrid model forecasted 
evapotranspiration more accurately compared to ANN 
and ANFIS. In fact, Wavelet-ANFIS models are artificial 
neural networks, fuzzy logic and wavelet transform 
combination, making them more accurate ETc  
modeling. 

 

4  Conclusion 

The applicability of ANN, ANFIS, and 
Wavelet-ANFIS approaches in modeling reference 
evapotranspiration was examined in this article. The daily 
climatic data from Dashtenaz stations (eight stations), 
Iran, were used as inputs to artificial intelligent models 
for assessing ETc obtained using the standard FAO-56 
Penman–Monteith equation and test results were 
contrasted with each other. Also, Gamma-test and M-Test 
were determined correspondingly for best combination of 
input data for measuring and testing computational 
models. ETc = f (Tmax, Tmin, HUM, Rs, U2) models were 
applied as an input model of computational methods. This 
model includes the highest and lowest air temperature, 
solar radiation, relative humidity and wind speed from 
2003 to 2011. Also, R2, RMSE and CNS model efficiency 
coefficient were utilized to compare the performance of 
models and decide on the best one. The results obtained 
with the ANFIS-Wavelet model for ETc estimation were 
better than ANN and ANFIS models and confirmed the 
capacity of this technique to provide useful tool in ETc 
modeling because random weather signals with wavelet 
decomposition result in reduction of noise and smoothing 
these signals. Results indicated that the CNS and R2 
increased from 0.935 to 0.967 and from 0.976 to 0.988, 
respectively, and RMSE has declined from 0.2539 to 
0.0124 after using ANFIS-Wavelet method. This 
indicates the significance of the wavelet transform in 
various engineering fields, especially when time series 
prediction is non-stationary. The study presented 
methodology is general and if it is the accessible data 
with high range periods, the methodology can be 
employed in predicting longer time in the future.  
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