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Abstract: Artificial Neural Networks (ANNs) are biologically inspired computer programs designed to simulate the way in 

which the human brain processes information.  After a comprehensive literature survey on the application of ANNs in 

greenhouses, this work describes the results of using ANNs to predict the roof temperature, inside air humidity, soil 

temperature and inside soil humidity (Tri, RHia, Tis, RHis), in a semi-solar greenhouse according to use some inside and 

outside parameters in the institute of renewable energy in East Azerbaijan province, Iran.  For this purpose, a semi-solar 

greenhouse was designed and constructed for the first time in Iran.  The model database selected beside on the main and 

important factors influence the four above variables inside the greenhouse.  Neural estimation models were constructed with 

(Vo, Tia, Toa, Ir, Tis, RHia, Tri) as the inputs and (Tri, RHis, Tis, RHia) as the outputs.  Optimal parameters for the network 

were selected via a trial and error procedure on the available data.  Results showed that MLP (Multilayer Perceptron) 

algorithm with 4-6-1(4 inputs in first layer, 6 neurons in hidden layer and an output) and 4-9-1(4 inputs in first layer, 9 

neurons in hidden layer and an output) topologies can predict inside soil and air humidity and inside roof and soil temperature 

with a low error (RMSE=0.25°C, 0.30%, 1.06°C and 0.25% for Tri, RHis, Tis and RHia), respectively.  Also the results 

showed that regression model has a low error to predict Tri (RMSE=0.71°C) and high error to estimate Tis (2.71°C), 

respectively.  In overall, the error for regression model to predict all 4 parameters (Tri, RHis, Tis, RHia) was about 2 times 

higher than MLP method. It is concluded that ANN represents a promising tool for predicting inside climate in a greenhouse 

and will be useful in automatic greenhouses.  For practical application, however, the farmers should use metrological and 

experimental data for 12 months of the year to decrease the prediction error. 
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1  Introduction 1  

Artificial neural networks (ANNs) are one of the 

widely used forecasting models that have enjoyed fruitful 

applications in forecasting social, economic, engineering, 

foreign exchange, stock problems, etc. Several 

distinguishing features of artificial neural networks make 

them valuable and attractive for a forecasting task. First, 

as opposed to the traditional model-based methods, 

artificial neural networks are data-driven self-adaptive 

methods in that there are few a priori assumptions about 

the models for problems under study. Second, artificial 
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neural networks can generalize. After learning the data 

presented to them (a sample), ANNs can often correctly 

infer the unseen part of a population even if the sample 

data contain noisy information. Third, ANNs are 

universal functional approximators. It has been shown 

that a network can approximate any continuous function 

to any desired accuracy. Finally, artificial neural 

networks can solve linear and nonlinear functions 

(Khashei and Bijari, 2010). Because neural networks can 

be used to model nonlinear systems, it has been applied to 

greenhouse environment modeling (Ferreira et al., 2002; 

Seginer, 1997; Caponetto et al., 2000; Morimoto and 

Hashimoto, 2000; Wang et al., 2009). 

The ANNs models are powerful prediction tools for 

the relation between the external climatic data and those 

inside the greenhouse parameters (Dreyfus et al., 2004; 



30    June, 2016           AgricEngInt: CIGR Journal Open access at http://www.cigrjournal.org                 Vol. 18, No.3  

Haykin, 1994; Dariouchy et al., 2009). The results will 

support decision making of the farmer to avoid heat 

overload during the summer season (most frequent in this 

area) or heat shortage during the hibernal season. Besides, 

they assist the farmer planners to undertake the necessary 

measures to face the bad predictions (Hornik et al., 1989; 

Acosta and Tosini, 2001). Several studies were made on 

the greenhouses, for example, to control the greenhouse 

climate (Bakker et al., 1994; Linker et al., 1998; 

Pe ŕez-Alonso et al, 2012), physical modeling of 

greenhouse climate (Bot, 1991),estimate and prediction of 

greenhouse climatic parameters (Fernandez and Bailey, 

1992; Jolliet, 1994; Boaventura et al., 1997 and 2000; 

Coelho et al., 2002). 

Segineret al, 1994, presented neural network models to 

control greenhouse climate in Israel. The ANNs model 

showed that this is a useful method for following tasks: as a 

model for optimal environmental control, as a screening tool 

in preparation for developing physical models and this 

model does not require explicit evaluation of transfer 

coefficients and need no model formulation. The main 

disadvantage is that they cannot be used for design purposes. 

Seginer (1997) reviewed some artificial neural 

networks applications for greenhouse environmental 

control. He concluded that the ANNs greenhouse 

modeling only refers to existing structures. These models 

cannot be used to design new greenhouses, since they 

lack explicit expressions for the various components and 

transfer coefficients. Changes in equipment will also 

require model modification. However, one could 

contemplate a situation where a manufacturer of 

greenhouses dose not only supply a turn-key facility but 

also its NN model. This model could later be fine-tuned 

to local conditions and requirements, based on data 

collected on location. NN models can also be useful as 

controllers, since they may be taught various control rules. 

Two examples are the mimicking of a model-based 

optimal (feed-forward) controller and a human optimizer 

(expert grower), who uses some feedback information 

from the state of the crop.  

Linker and Seginer, 2004, made a comparison 

between the performance of three types of models trained 

with several seasonal sub-sets of data: (1) black-box 

( BB ) sigmoid neural network ( NN ) trained only with 

in situ data, (2) hybrid physical-RBF (radial basis 

function) model, and (3) sigmoid neural network trained 

with a combination of in situ data and synthetic data 

generated with a physical model (termed ‘prior-K 

sigmoid model’) to predict the greenhouse air 

temperature in Israel. Results showed that The BB 

sigmoid model gives the best predictions within the 

training domain, but performs very badly outside it. On 

the other hand, the hybrid and prior-K sigmoid models 

produce useful predictions over the whole operating 

domain, although they are slightly less accurate within 

the training domain. 

At this moment, we are not aware of any study about 

the use of a solar greenhouse in Iran because of cheap 

fossil fuel and the need of high investments. So we 

decided to start a big project in Tabriz University (East 

Azarbaijan Province of Iran) on solar greenhouse 

modeling, design and application in two Ph. D studies. 

This paper is a part of this project. The main objective of 

this research is to develop a model to predict the roof 

temperature, inside air humidity, soil temperature and 

humidity in a semi-solar greenhouse according to use 

some inside and outside parameters and then, select the 

best and simple one using artificial neural network. For 

this purpose, data were recorded from a semi-solar 

greenhouse located in Tabriz University, Department of 

Renewable Energy.  

2 Materials and methods 

2.1 Semi-solar greenhouse 

In this study, for the first time, a semi-solar 

greenhouse was designed and constructed at the 

North-West of Iran in Azerbaijan Province (geographical 

location of 38°10′ N and 46°18′ E with elevation of 1364 m 

above the sea level). In the solar greenhouse design, the 

heat insulation and the transmission of solar radiation are 
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maximized. A warm and a cold water aquifer layer are 

used to store and retrieve the surplus solar energy. At times 

of heat demand, the greenhouse can be heated with little 

energy input with a heat pump and warm aquifer water. At 

times of heat surplus, the greenhouse can be cooled with a 

heat exchanger and cold aquifer water, while energy is 

harvested for use at times of heat demand (Van Ooteghem, 

2007). The solar greenhouse has some differences 

compared to a conventional greenhouse such as (Van 

Straten, 2011): improved insulation value and improved 

light transmission cover, ventilation with heat recovery, 

aquifer (an aquifer is a formation of water-bearing sand 

material in the soil that can contain and transmit water. 

Wells can be drilled into the aquifers and water can be 

pumped into and out of the water layers), heat extraction, 

heat pump, boiler, carbon dioxide supply and gas motor or 

electric drive. In this research we started a new project in 

Department of Biosystems Engineering, Tabriz University. 

Shape and orientation of this greenhouse, was selected 

between some common greenhouse shapes and according 

to receive maximum solar radiation during the whole year. 

For this, meteorological data recorded by Iran 

Meteorological Office for the period of 1992–2013, were 

used and after some analysis, this structure was selected. 

Also internal thermal screen and cement north wall was 

used to store and prevent heat loss during the cold period 

of the year. So we called this structure, ‘semi-solar’ 

greenhouse. It is covered with glass (4 mm thickness). It 

occupies a surface of approximately 15.36 m
2
 and a 

volume of 26.4 m
3
. The orientation of this greenhouse is 

East–West and perpendicular to the direction of the 

prevailing wind (Figure1).

 
(a) 

 
(b) 

Figure 1 (A) Front view and (B) Design picture of semi-solar greenhouse in Tabriz University, Iran. 
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2.2 Record the inside and outside inputs 

To measure the temperature and the relative 

humidity of the air, soil and roof inside and outside the 

greenhouse, the SHT 11 sensors were used. The SHT11 is 

a single chip relative humidity and temperature multi 

sensor module comprising a calibrated digital output. 

Application of industrial CMOS processes with patented 

micro-machining (CMOSens® technology) ensures a 

high reliability and long term stability. The device 

includes a capacitive polymer sensing element for relative 

humidity and a bandgap temperature sensor. Both are 

seamlessly coupled to a 14bit analog to digital converter 

and a serial interface circuit on the same chip. This results 

in superior signal quality, a fast response time and 

insensitivity to external disturbances (EMC) at a very 

competitive price. The accuracy of the measurement of 

temperature is ±0.4% at 20
°
C and the precision 

measurement of the moisture is ±3% for a clear sky 

(company information). Figure 2 shows the diagram of 

this sensor. At 1 m height above the ground outside the 

greenhouse, we used a pyranometre type TES 1333. Its 

sensitivity is proportional to the cosine of the incidence 

angle of the radiation. It is a measure of global radiation 

of the spectral band solar in the 400–1110 nm range. Its 

measurement accuracy is approximately ±5% (company 

information).

2.3 Artificial Neural Network 

Prior to any ANNs training process with the trend 

free data, the data must be normalized over the range of 

[0, 1]. This is necessary for the neurons’ transfer 

functions, because a sigmoid function is calculated and 

consequently these can only be performed over a limited 

range of values. If the data used with an ANNs are not 

scaled to an appropriate range, the network will not 

converge on training or it will not produce meaningful 

results. The most commonly employed method of 

normalization involves mapping the data linearly over a 

specified range, whereby each value of a variable x is 

transformed as follows (Equation 1): 

min
n max min min

max min

x - x
x = ? r - r ) + r

x - x
 

(1) 

where x is the original data, nx the normalized 

input or output values, maxx and minx , are the maximum 

and minimum values of the concerned variable, 

respectively. maxr and minr correspond to the desired 

values of the transformed variable range. A range of 0.1–

0.9 is appropriate for the transformation of the variable 

onto the sensitive range of the sigmoid transfer function 

(Taki et al, 2016b). Among various ANNs models, 

 

Figure 2 SHT 11 sensor diagram 
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Multilayer Perceptron (MLP) has high practical 

importance. MLP is a feed-forward layered network with 

one input layer, one output layer, and some hidden layers.  

Every node computes a weighted sum of its inputs 

and passes the sum through a soft nonlinearity. The soft 

nonlinearity or activity function of neurons should be 

non-decreasing and differentiable. The most popular 

function is unipolar sigmoid (Equation 2) (Taki et al., 

2012): 

1
f ( )

1 e
 


 

 (2) 

The network is in charge of vector mapping, i.e. by 

inserting the input vector, 
qx the network will answer 

through the vector 
qz in its output ( for q=1,2,..., Q ). 

The aim is to adapt the parameters of the network in order 

to bring the actual output 
qz close to corresponding 

desired output qd ( for q=1,2,..., Q ). The most popular 

method of MLP training is the Back-Propagation (BP) 

algorithm, and in literatures there exist many variants of 

this algorithm. This algorithm is based on minimization 

of a suitable error cost function (Taki et al, 2016b). In this 

study, Basic Back-propagation (BB) algorithm was 

employed.  

MLPs are normally trained with Back Propagation 

(BP) algorithm. It is a general method for iteratively 

solving for weights and biases. The knowledge obtained 

during the training phase is not stored as equations or in a 

knowledge base but is distributed throughout the network 

in the form of connection weights between neurons. BP 

uses a Gradient Descent (GD) technique that is very 

stable when a small learning rate is used but has slow 

convergence properties. Several methods for speeding up 

BPs have been used, including adding a momentum term 

or using a variable learning rate. GD with a momentum 

(GDM) algorithm that is an improvement to the straight 

GD rule in the sense that a momentum term is used to 

avoid local minima, speeding up learning and stabilizing 

convergence, is used (Taki et al., 2012). Multiple layers 

of neurons with non-linear transfer functions allow the 

network to learn nonlinear and linear relationships 

between input and output parameters. Several MLP 

network architectures with one, two, three and four 

hidden layers have been trained and evaluated aiming at 

finding the one that could result in the best overall 

performance. In this work, the learning rules of Gradient 

Descent Momentum (GDM) and Levenberg-Marquardt 

(LM) were considered. No transfer function for the first 

layer was used. For the hidden layers the sigmoid 

functions were used, and for the output layer a linear 

transfer function was applied as desired for estimating 

problems. A computer code was also developed in 

MATLAB software for the feed forward and back 

propagation network. 

We used an N-fold cross validation method that in 

this method data are randomly divided into two sets; 

training set (70% of all data) and cross validation set (the 

remaining 30% of all data) (Taki et al., 2012). The neural 

network model is formed for output (roof temperature, 

inside air humidity, soil temperature and humidity) by 

using four models of MLP according to (Figure 3 shows 

the place of these sensors):
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I. Four inputs for predicting roof temperature (inside 

air temperature (Tia), solar radiation on the roof (Ir), wind 

speed (Vo), outside air temperature (Toa). 

II. Four inputs for predicting soil humidity (inside soil 

temperature (Tis), inside air humidity           (RHia), 

solar radiation on the roof, inside air temperature. 

III. Four inputs for predicting soil temperature (inside 

air temperature, solar radiation on the roof, inside roof 

temperature (Tri) and inside air humidity). 

IV. Four inputs for predicting inside air humidity (inside 

air temperature, inside roof temperature, outside air 

temperature, solar radiation on the roof). 

2.4 Regression model 

For the regression model, we used all the inputs that 

were used in the ANN model (inputs and outputs 

mentioned in the former paragraph). A stepwise multiple 

regression method was applied to choose the pertinent 

independent variables influencing the dependent variable. 

Furthermore, in order to verify the validity of multiple 

regression models, a chi-square test was carried out using 

the predicted and experimental data. Minitab 17 software 

was used for data analysis. 

To evaluate the performance of a model some 

criteria have been used. These criteria include: Root 

Mean Squared Error (RMSE), coefficient of 

determination (R
2
) and Model Efficiency (EF). They are 

defined as following Equation 3, Equation 4 and Equation 

5: 
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Where dj is the ith component of the desired (actual) 

output for the jth pattern; pjis the component of the 

predicted (fitted) output produced by the network for the 

 

Figure 3Locations of SHT11 sensors to collect inside and outside T/RH values 
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jth pattern;d and p are the average of the whole desired 

(actual) and predicted output and n is the number of 

variable outputs. A model with the small RMSE and the 

high EF andR
2
is considered to be the best (Taki et al, 

2016a; Willmott et al., 1985). 

3 Results and discussion 

3.1ANNs model 

The proper physiological functioning of the plant 

requires a controlled climate especially in the summer 

when the increase of temperature can harm the growth or 

the plants (Fatnassi et al., 2002). The prediction of the 

internal temperature of the greenhouse can bring a 

substantial help for controlling the distribution of the 

shelters. Considering the pseudo-periodicity of the 

climatic variations in a semi-arid area, it was sufficient to 

work on 1 set data (24 hours) to learn our artificial 

network model. The compiled database represents 1 day 

sets of parameters values inside the greenhouse. The 

training phase of the ANN model was terminated when 

the error on the testing data bases were minimal. The 

training process goal is to reach an optimal solution based 

on some performance measurements such as root mean 

squared error (RMSE), R square (R
2
) and mean absolute 

percentage error (MAPE). Therefore, the required ANN 

model was developed in two phases: training (calibration) 

phase and testing (generalization or validation) phase. In 

the training phase, a large part of the database (70%) was 

used to train the network and the remaining part of the 

database was used for testing.  

Based on universal approximation theorem, a neural 

network with a single hidden layer and with a sufficient 

large number of neurons can well approximate any 

arbitrary continuous function (Haykin, 1994). Therefore, 

the ANNs designed in this study are equipped with a 

single hidden layer. Determination of the number of 

neurons in the hidden layer is rather an art than science, 

because it may vary depending on the specific problem 

under study. In this study, the optimal number of neurons 

in the hidden layer was selected using a trial-and-error 

method. The process was repeated several times. It is 

observed that the performance of BB-MLP may improve 

as the number of hidden neurons increased. However, too 

many neurons in the hidden layer may cause over-fitting 

problems, which results in good network learning and 

data memorization, but lack of ability to generalize. On 

the other hand, if the number of neurons in the hidden 

layer is too low, the network may not be able to learn.  

During the training step, the network used the 

training data set. Training was continued until a steady 

state was reached. The BB algorithm was utilized for 

model training. Some statistical properties of the sample 

data used for training process and the prediction values 

associated with different training algorithms are shown in 

Table 1. Considering the average values of standard 

deviation and variance, it can be deduced that the values 

and the distribution of real and predicted data are 

analogous. But, the differences of minimum and 

maximum values are remarkable. This is probably due to 

the fact that the extreme values were not well represented 

in the training data set, because these were only one or 

two points. 

Table1 Statistical variables of desired and predicted values in training phase (MLP). 

Kurtosis 
(-) 

Skewness 
(-) 

Standard 
Deviation, 

% and 
°
C 

Variance 
(% )

2
 and (

°
C)

2 
Average, 
% and 

°
C 

 ANN Models with structure 

0.017 -1.148 10.799 116.620 55.462 Desired  
 

 

 
0.018 -1.150 10.812 116.907 55.481 Predicted  

-0.321 1.014 5.416 29.342 10.159 Desired  
 

 
-0.326 1.019 5.448 29.682 10.216 Predicted  

-0.404 -0.980 14.212 201.994 72.056 Desired  
 

 

 -0.337 -1.008 14.289 204.192 72.010 Predicted  

-1.176 0.537 4.516 20.395 17.757 Desired  
 

 
-1.199 0.533 4.485 20.120 17.744 Predicted  
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Testing sets are usually used to select the best 

performing network model. There is no systematic 

method to find a suitable structure of a neural network. 

The test is done in a heuristic way according to the 

following steps. Initially, the networks with only one 

hidden layer were built by successively adding two 

additional neurons on this one. This technique which has 

of course the advantage of decreasing the number of tests 

is founded on the intuitive idea that the addition of two 

neurons instead of only one in general does not generate 

too large differences in performances between two 

architectures consecutive. Secondly, for the networks 

with two hidden layers, the triangular structures were 

considered, for which the number of neurons on a layer is 

higher than the following layer (Dariouchy et al, 2009). 

The results of training and testing were shown in Figure 4. 

In this section, we used the selected structure with 

the previously adjusted weights (training step, Table 1). 

The objective of this step was to test the network 

generalization property and to evaluate the competence of 

the trained network. Therefore, the network was 

evaluated by data, outside the training set. Table 2 shows 

some statistical properties of the data used in the test 

phase and the corresponding prediction values associated 

with different training algorithms. 

 

  

Tri Tis 

  

RHia RHis 

Figure 4.Comparison between the desired and predicted values by the ANNs model for the roof temperature (Tri), 

soil temperature (Tis), inside air humidity (RHia) and inside soil humidity (RHis) during the test and training phase 
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Table 3 shows the effect of number of neurons in 

the hidden layer on the performance of BB-MLP model. 

Considering Table 1, a BB-MLP model with nine 

neurons in the hidden layer seems to be appropriate for 

(Tri) and (Tis) and with six neurons for (RHis) and (RHia). 

These topologies can be more versatile for future 

applications.

3.2 Statistical analysis 

From statistical point of view, both desired and 

predicted test data have been analyzed to determine 

whether there are statistically significant differences 

between them. The null hypothesis assumes that 

statistical parameters of both series are equal. pvalue was 

used to check each hypothesis. Its threshold value was 

0.05. If p value is greater than the threshold, the null 

hypothesis is then fulfilled. To check the differences 

between the data series, different tests were performed 

and p value was calculated for each case (Taki et al, 

2016a). The results are shown in Table 4. The so called 

t-test was used to compare the means of both series. It 

was also assumed that the variance of both samples could 

be considered equal. The obtained p values were greater 

than the threshold; hence the null hypothesis cannot be 

rejected in all cases (p > 0.99). The variance was 

analyzed using the F-test. Here, a normal distribution of 

samples was assumed. Again, the p values confirm the 

null hypothesis in all cases (p > 0.97). Finally, the 

Kolmogorov–Smirnov test also confirmed the null 

hypothesis. From statistical point of view, again, the p 

values confirm the null hypothesis in all cases (p > 0.97).

  

Table2 Statistical variables of desired and predicted values (test phase) 

Kurtosis 
(-) 

Skewness 
(-) 

Standard 
Deviation 

Variance 
 

Average, 
% or 

°
C 

 ANN Models with structure 

0.019 -1.149 10.794 116.518 55.455 Desired  
 

 0.017 -1.149 10.814 116.952 55.473 Predicted  

-0.320 1.010 5.396 29.120 10.141 Desired  
 

 -0.319 1.023 5.408 29.249 10.216 Predicted  

-0.391 -0.954 14.146 200.120 70.120 Desired   

 -0.355 -0.981 14.027 196.763 72.256 Predicted  

-1.038 0.581 4.596 21.126 17.893 Desired  
 

-1.000 0.600 4.563 20.829 17.852 Predicted  

 

Table3 Performance variation of a one-layer MLP with different number of neurons in the hidden layer 

Number of neurons in the hidden layer  

Criterion 
Parameters 

10 9 8 7 6 5 4 

0.9990 0.9994 0.9993 0.9992 0.9991 0.9993 0.9994 R
2
 (-) 

 
 

0.3143 0.2526 0.2678 0.3339 0.3142 0.2729 0.2579 RMSE (
°
C)  

0.9950 0.9955 0.9967 0.9959 0.9968 0.9962 0.9965 R
2
 (-)  

0.3891 0.3850 0.3252 0.3444 0.3056 0.3220 0.3216 RMSE (
°
C)  

0.9914 0.9945 0.9926 0.9931 0.9929 0.9909 0.9912 R
2
 (-) 

 

 

1.3385 1.0679 1.2400 1.1945 1.2102 1.3549 1.3498 RMSE (
°
C)  

0.9915 0.9962 0.9950 0.9966 0.9971 0.9955 0.9913 R
2
 (-) 

 
 

0.4213 0.2826 0.3123 0.2610 0.2502 0.3028 0.4194 RMSE (
°
C)  
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3.3 Sensitivity analysis 

According to the obtained results in Table 5, the 

share of each input item of developed MLP model on 

desired outputs can be seen clearly. Sensitivity analysis 

provides insight into the usefulness of individual 

variables. With this kind of analysis it is possible to judge 

what variables are the most significant (with sensitivity 

value close to 1) and the least significant (with sensitivity 

value close to 0) during generation of the satisfactory 

MLP. It is evident that solar radiation on the roof (30%), 

inside soil temperature (29%), solar radiation on the soil 

(38%) and inside air temperature (35%) had the high 

sensitivity on (Tri), (RHis), (Tis) and (RHia), respectively. 

3.4 Comparison between multiple regression and 

MLP models 

Any relationship, linear or nonlinear, can be learned 

and approximated by an ANNs such as a three-layer MLP 

with sufficiently large number of neurons in the hidden 

layer. Another advantage of ANNs is its capability of 

modeling the data of multiple inputs and multiple outputs. 

In contrast, the conventional regression techniques can 

only be used to learn the relationship between a single 

output and one or more inputs but cannot be used to 

model the data of multiple inputs and multiple outputs. 

The results of a multiple linear regression analysis 

between (Tri), (RHis), (Tis) and (RHia) and series of 

independent variables (Vo, Tia, Toa, Ir, Tis, RHia, Tri) are 

presented in Table 6. All main factors in these models 

had a significant effect at 5% probability level. Also 

Figure 5 shows the contribution of inputs on final output. 

Also see Table 6 please.

  

Table 4Statistical comparisons of desired and predicted test data and the corresponding p values (The high p 

values show that there are no differences between actual and predicted values by ANNs) 

Parameters 
Analysis type 

Comparisons of means Comparisons of variances Comparisons of distribution 

 0.9941 0.9890 0.9950 

 
0.9920 0.9781 0.9760 

 0.9916 0.9920 0.9770 

 0.9918 0.9701 0.9740 

 

Table 5 Sensitivity analysis of various inputs on outputs of ANNs models 

 
Inputs 

Tia Ir Vo Toa RHia Is Tri Tis 

 0.19 0.33 0.20 0.28 - - - - 

 
0.17    0.27 0.27  0.29 

 0.25    0.21 0.38 0.16  

 0.35 0.25 0.14 0.12   0.14  

Note: Tia: Inside air temperature, Ir: Roof radiation, Vo: Outside wind speed, Toa: Outside air temperature, RHia: Inside air humidity, Is: 

Inside soil radiation, Tir: Inside roof temperature, Tis: Inside soil temperature 
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The plots of predicted (Tri), (RHis), (Tis) and (RHia) 

against measured values are depicted in Figure6. The 

results reveal a very good agreement between the 

predicted and the measured values (
2R >0.9 ). Also, 

these figures reveal that the (Tri), (RHis), (Tis) and (RHia) 

predictions from regression model were not as good as fit 

  

(A) (B) 

  

(C) (D) 

Figure 5 Contribution of each input on final output to (A): roof temperature, (B): inside soil humidity, (C): inside soil 

temperature, (D): inside air humidity in a semi-solar greenhouse (Tia: Inside air temperature, Ir: Rood radiation, Tri: Inside 

roof temperature, Rhia: Inside air humidity, Toa: Outside air temperature, Vo: Outside wind speed, Tis: Inside soil temperature) 

 
Table 6 Results of multiple regression analysis to predict (Tri), (RHis), (Tis) and (RHia) 

Model Regression models
* 

R
2 

  
0.9358 

  
0.9588 

  
0.9827 

  
0.8953 

Note: *Minimum probability threshold  
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to measured data in comparison to MLP model prediction. 

Comparisons of measured versus predicted values for 

MLP model resulted in a least squares linear regression 

lines with slopes almost equal to regression model, while 

the MLP model resulted in lines with y-intercepts much 

lower than the regression model.

Comparing the results generated using MLP network 

with those generated by the regression model (Table 7), it 

can be concluded that MLP model has a higher capability 

of producing accurate predictions in comparison to 

regression model, because the MLP model had lower 

values of RMSE and higher values of EF and R
2
 in 

comparison to regression model. He and Ma (2010), 

proposed a back propagation neural network (BPNN) 

based on principal component analysis (PCA) for 

modeling the internal greenhouse humidity in the winter 

of North China. They collected the environmental factors 

influencing the inside humidity including outside air 

temperature and humidity, wind speed, solar radiation, 

inside air temperature, open angle of top vent and side 

vent and open ration of sunshade curtain. Through PCA 

of these data samples, 4 main factors were extracted, and 

the relationship between the main factors and the original 

data was discussed. Taking the principal component 

  

(A) (B) 

  

(C) (D) 

Figure 6Comparison between predicted values by the ANNs and regression model for the roof temperature (A), soil temperature 

(B), inside air humidity (C) and inside soil humidity (D) parameters on the testing base. 
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values as the input of BPNN, the model showed a good 

performance. A comparison was made between the 

performances of the BPNN based on PCA and the 

stepwise regression method with 20 data samples which 

had not been used to establish the NN model, and the 

prediction of stepwise regression method was less 

accurate than the BPNN based on PCA. 

Linker et al (1998) applied ANN model to control 

the CO2 balance in a small greenhouse in Israel. Neural 

network greenhouse models trained using data collected 

over two summer months in a small greenhouse. The 

models reduced to minimum size, by predicting 

separately the temperature and CO2 concentration, and by 

eliminating any unessential input. The results showed that 

ANN models not only fitted the data well, they also 

seemed qualitatively correct, and produce reasonable 

optimization results. Wang et al (2009) used Online 

Sparse Least-Squares Support Vector Machines 

Regression (OS LSSVMR) to predict some 

environmental variables in a greenhouse. They used a 

simplified greenhouse model, in which only greenhouse 

internal and external air temperatures were considered. 

Results showed a promising performance in the 

greenhouse environment with potential improvements, if 

a more complete data setup is used. 

4 Conclusions 

This article focused on the comparison between the 

Artificial Neural Networks (ANNs) and multiple linear 

regression to predict some internal climate data in a 

semi-solar greenhouse located in Iran. To show the 

applicability and superiority of the proposed approach, 

the measured data of inside soil and roof temperature, 

inside air and soil humidity were used. To improve the 

output, the data were first preprocessed. MLP network 

and multiple linear regression was used and applied with 

(Vo, Tia, Toa, Ir, Tis, RHia, Tri) as the inputs variable. The 

network was trained using BB learning algorithm. 

Statistical comparisons of measured and predicted test 

data were applied to the selected ANN. From statistical 

analysis, both measured and predicted test data are 

similar (with p values greater than 0.9). After testing all 

possible networks, it has been demonstrated that MLP 

network with 4-9-1(4 inputs in first layer, 6 neurons in 

hidden layer and an output) and 4-9-1(4 inputs in first 

layer, 9 neurons in hidden layer and an output) and LM 

algorithm had the best output to predict (Tri), (Tis) and 

(RHis) and (RHia), respectively. It is also found that neural 

network is particularly suitable for learning nonlinear 

functional relationships which are not known or cannot be 

specified. The RMSE for MLP to predict (Tri, Tis, RHis, 

RHia) was between (0.25
°
C-1.06

°
C) and for regression 

model was between (0.71
°
C-2.71

°
C). Because the ANNs 

do not assume any fixed form of dependence between the 

output and input values, unlike the regression methods, it 

seems to be more successful in the application under 

consideration. It could be concluded that a neural network 

provides a practical solution to the problem of estimating 

internal climate data in a greenhouse in a fast, yet 

Table7 Performances of two methods in prediction of climate data in semi-solar greenhouse 

Parameters Model type Performance criterion 

RMSE,
°
C EF,% R

2
 

 
MLP 0.2526 0.9994 0.9994 

Regression 0.7137 0.9955 0.9358 

 
MLP 0.3056 0.9967 0.9968 

Regression 0.7691 0.9796 0.9588 

 MLP 1.0679 0.9970 0.9945 

Regression 2.7184 0.9500 0.9827 

 
MLP 0.2502 0.9943 0.9945 

Regression 1.0232 0.9631 0.8953 
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accurate and objective way. One of the important 

problems is that for any situation we need to have a very 

complete database, i.e. for 12 months of the year, we 

should have all inputs variables to predict the inside 

environmental factor very accurate.  So, future studies 

should focus on the applicable structure of ANN and 

complete this method for artificial greenhouses.  
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