
June, 2016               AgricEngInt: CIGR Journal Open access at http://www.cigrjournal.org           Vol. 18, No. 2   73 

 

Effect of plant canopy shape and flowers on plant count accuracy 

using remote sensing imagery 

J. N. Leiva1, J. Robbins1*, D. Saraswat2, Y. She3, R. Ehsani3 

(1. University of Arkansas. Horticulture Department. Plant Sciences Room 316. Fayetteville, Arkansas 72701, USA; 

2. Purdue University, Department of Agricultural & Biology Engineering, 225 S. University St., W. Lafayette, Indiana 47907, USA; 

3. Citrus Research and Education Center/IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida 33850, USA) 

 

Abstract: Separate experiments were conducted to evaluate the effect of plant canopy shape and presence of flowers on 

counting accuracy of container-grown plants.  Images were taken at 12 m above the ground.  Two species of juniper 

(Juniperus chinensis L. ‘Sea Green’ and Juniperus horizontalis Moench ‘Plumosa Compacta’) were selected to evaluate plant 

shape and Coral Drift ® rose (Rosa sp. ‘Meidrifora’) was used to evaluate the presence of flowers on plant count.  Counting 

algorithms were trained using Feature Analyst (FA).  Total counting error, false positives and unidentified plants were 

reported. There was no difference between all variables measured when an algorithm trained with an image displaying regular 

or irregular plant canopy shape was applied to images displaying both plant canopy shapes even though the canopy shape of 

‘Sea Green’ is less compact than ‘Plumosa Compacta’.  There was a significant difference in all variables measured between 

images of flowering and non-flowering plants when non-flowering ‘samples’ were used the train the counting algorithm in 

FA; total counting errors and unidentified plants was greater for flowering plants.  In this specific case, applying an 

algorithm that did not include a training set displaying flowers, resulted in a less accurate count.  Algorithms developed 

using FA appears to be fairly robust under these conditions. 
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1  Introduction 1  

In general, the nursery industry lacks an automated 

inventory control system (Harkess, 2005).  The process 

of collecting inventory data in a nursery is labor intensive 

involving the physical counting of thousands of plants.  

Due to the time involved in manually counting plants, 

forest tree and nursery growers often count only a portion 

of their crop (Hale, 1985; S. Doane, personal 

communication, 8 May, 2008).  In the last few years 

some improvements have been made in the inventory 

process such as the adoption of computers, software 

(Hodges et al., 2008; USDA, 2013), and mobile personal 

digital assistants (Brownsberger et al., 2001).  While 
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these technologies have helped in the processing of 

inventory data, the data are still mostly collected 

manually.  Other technologies such as radio frequency 

identification (RFID) and bar codes are helping with the 

collection of inventory data but they have limitations such 

as the need for line-of-sight, signal transmission errors 

(Janam Technologies, 2011; Saraswat and Robbins, 2011), 

plant damage produced by tags (Luvisi et al., 2010), and 

adaptability into large nurseries (Schuch and Klein, 

1996). 

Aerial images combined with image processing 

software have been used to identify tree species 

composition (Hájek, 2006), crops and vegetation 

monitoring (Hunt et al., 2005; Furfaro et al., 2007; Shank, 

2009; Bumgarner et al., 2012; Lebourgeois et al., 2012), 

and land cover classification (Akasheh et al., 2008; 

Dunford et al., 2009; Miller et al., 2009; Tombre et al., 
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2010).  Both technologies have been used to detect a 

variety of individual objects such as bats (Hamilton et al., 

2009), cattle and horses (Terletzky and Ramsey, 2014), 

marine birds (Groom, et al., 2013), and forest tree crowns 

(Wulder, 1998; Wulder et al., 2000; Pitkänen, 2001; 

Pouliot et al., 2002; Leckie et al., 2003; Tiede et al., 2005; 

Bunting and Lucas, 2006).  Additionally, algorithms 

have been developed to count citrus trees 

(Ayyalamayajula et al., 2009), olive trees (Karantzalos 

and Argialas, 2004) and corn plants (Shrestha and 

Steward, 2003).  This technology could be used for 

counting plants in nurseries. 

Several factors contribute to the complexity of 

imagery used for plant inventory analysis including plant 

characteristics (plant color, species, plant size and shape, 

canopy cover, plant health), ground/surface 

characteristics (bare soil, gravel, ground cloth), and 

environmental factors (sunlight/shadows).  Because 

these factors could influence the analysis of data obtained 

from remote-sensing images, these conditions must be 

accounted for when using these images.  Since nurseries 

grow a wide range of plants, this may require several 

counting algorithms.  This study was designed to 

evaluate the effect of plant canopy shape and presence of 

flowers on counting accuracy of container-grown plants.  

2  Materials and methods 

2.1  Canopy shape 

2.1.1 Camera 

A Sony Alpha NEX-7 (Sony Corporation of 

America IR, San Diego, CA), 24.3 megapixels color 

digital frame camera, with an 18-55 mm lens was used as 

the sensor.  The shooting mode was set as manual with 

an ISO of 200, shutter speed of 1/250 seconds, and an f 

value of 8.  Autofocusing and aspect ratio of 3:2 were 

fixed.  Flash, object tracking, and face detection were 

turned off. Images from this camera contain three bands: 

red, green and blue (RGB). 

2.1.2. Experimental design 

Container-grown plants were spaced in staggered 

rows with a canopy separation of 5 cm between canopy 

edges.  Two species of juniper (Juniperus chinensis L. 

‘Sea Green’ and Juniperus horizontalis Moench ‘Plumosa 

Compacta’) growing in #2 black polyethylene containers 

(height: 21.6 cm, top diameter: 22.9 cm, and bottom 

diameter: 19.7 cm) (Plastics Inc., Jacksonville, TX) were 

used in the study since they were available in large 

numbers and the foliage, texture, and color was visually 

similar (Figure 1).  Plants were pulled from nursery 

production blocks.  Henceforth, the canopy for ‘Plumosa 

Compacta’ will be referred as ‘regular’ and ‘Sea Green’ 

canopy as ‘irregular’.  For each canopy shape treatment, 

a set of 64 containers (8 × 8) was established outdoors on 

black polypropylene fabric ground cover (Lumite, Inc., 

Alto, GA) on 13 November, 2013 at Greenleaf Nursery, 

Park Hill, OK (35.779098, -94.904323). Treatment sets 

were replicated five times in a randomized complete 

block design (RCBD) for a total of 10 sets.  Two 

additional sets of 49 containers (7 × 7), one with ‘Sea 

Green’ juniper and the other with ‘Plumosa Compacta’, 

were positioned adjacent to the treatment sets and were 

used to train the algorithm using Feature Analyst (FA), 

and henceforth referred to as training sets (Figure 2).  

The number of plants used in training and treatment sets 

was determined based on preliminary experiments.  Four 

plants per set were used for plant measurements.  These 

were the corner plants of each set.  Shoot height was 

measured from the substrate surface to the top of the plant.  

Average shoot height was 40 and 27 cm for ‘Sea Green’ 

and ‘Plumosa Compacta’ junipers, respectively.  

Average shoot diameter was determined by taking two 

measurements at 90
o
 from each other.  Average shoot 

diameter was 49 and 39 cm for ‘Sea Green’ and ‘Plumosa 

Compacta’, respectively.  A rule set within eCognition 

(Trimble®, Westminster, CO) was run to calculate RGB 

mean values from an aerial image at 0.15 cm/pixel spatial 

resolution, resulting in 81±51, 84±50, 53±43 for 

‘Plumosa Compacta’, 60±45, 72±47, 41±36 for ‘Sea 
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Green’, and 15±17, 20±16, 31±14 for the black fabric 

used as ground cover.  The image was taken using the 

same camera used for all images with an f value of 8 and 

a shutter speed of 1/250 seconds.  Other camera settings 

were the same as previously described. 

 

Figure 1  Two species of juniper evaluated. Left:  

Juniperus chinensis L. ‘Sea Green’ (irregular shape), 

right: Juniperus horizontalis ‘Plumosa Compacta’ 

(regular shape)

2.1.3. Data collection 

Images were obtained by extending a Bil-Jax 3632T 

boom lift (Haulotte Group, Archbold, OH) to 12 m above 

ground level.  To obtain images centered over blocks 

required moving the boom lift.  Each time the boom was 

re-positioned, sensor height relative to the ground was 

determined using a measuring tape.  The sensor, which 

was handheld, was positioned over the center of every 

block resulting in both sets for that block being included 

in the image (e.g. both treatment sets, within each block, 

were captured in the same image as is shown in Figure 2).  

Image spatial resolution was calculated based on 20 cm 

square white boards positioned around the treatment 

blocks, resulting in 0.15 cm/pixel.  Two images of each 

plant set were taken and then used for algorithm 

evaluation. 

2.1.4. Variables 

Three variables were measured using the final count 

and output image as follows: 

Total counting error: total software count-ground 

count.  Total counting error is also presented as 

percentages based on the ground count from the set. 

False positives: counts that do not represent a target 

plant (e.g. multiple counts, weeds or other objects within 

the ground cover that could be counted as a plant). 

Unidentified: target plants that were not counted. 

Means were separated using an analysis of variance 

followed by a student’s t-test based on the experimental 

 
Block 1      Block 2         Block 3        Block 4      Block 5 

 Regular canopy shape 
  Irregular canopy shape 
 
Figure 2  Illustration of the experimental design. Training sets used in Feature Analyst® are the two smaller sets 

on the left, the remainders are treatment sets 
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design described above using SAS 9.3 (SAS Institute Inc., 

Cary, NC).  

2.1.5. Environmental parameters 

Environmental parameters including light intensity 

(140 LUX), relative humidity (24.4%), temperature 

(15.6°C), and ground wind speed (0-4 km/h) were 

measured using a Mini Environmental Quality Meter 

(Sper Scientific, Scottsdale, AZ) before images were 

collected (10:20h).  A subjective estimate of cloud cover 

was determined to be less than 5%. 

2.1.6. Algorithm training using Feature Analyst®  

In order to decrease image processing time, images 

were cropped and rotated using Adobe Photoshop 

Elements 6 (Adobe System Incorporated, San Jose, CA) 

leaving only the set of interest for that particular image.  

A total of two algorithms were trained, one for each 

canopy shape.  Each algorithm was applied to all images 

regardless of canopy shape type.  The general process 

used to train an algorithm is described as follows.  

Images were added into ArcMap
TM

 Version 10.1 (ESRI, 

Redlands, CA) in JPEG format.  Circular shapes 

(‘samples’) were digitized over individual plants.  

Several shapes can be used to digitize samples; however, 

circles were used since they require less user input than 

customizable polygons, making the process faster and 

more reproducible.  The initial number of circular 

shapes digitized was based on user experience, and their 

position within the image was selected in order to capture 

variability of the target plants.  For all algorithms, the 

initial number of digitized circles was eight and their 

positions were selected in order to capture distortion 

within the image which tends to be more variable at the 

edge of the images.  A first segmentation based on the 

digitized samples was run using a supervised learning 

approach with the following parameters: a nature feature 

selector, no resample factor, Manhattan input 

representation, and vector as the output format.  All 

three color bands were used for algorithm training.  

Based on the results from the first segmentation, pattern 

width of the input representation and/or number, size, and 

position of digitized circles might be modified until a 

uniform segmentation was obtained; a similar procedure 

was used by Hamilton et al. (2009), Miller et al. (2009), 

and Gasch et al. (2011) in wildlife, urban application, and 

rhizotron measurements, respectively.  Following this, a 

number of procedures were applied to the image.  These 

procedures included: conversion from raster to vector and 

vector to raster formats, aggregation, erosion, dilation, 

opening, smoothing, calculation of vector metrics, and 

conversion from polygons to points.  Some of these 

procedures were applied more than once.  Parameters 

for those procedures were fixed according to the images 

used for training.  After a procedure is applied, FA 

creates an automated feature extraction model (AFE) that 

stores training set data and all procedures applied, Figure 

3 shows an example of a final AFE model.  Finally, the 

AFE model was applied to all images regardless of 

canopy shape.  The AFE model was applied to the 

respective treatment set images using the batch 

processing tool.  Parameters used to train the algorithm 

were based on user experience and a subjective analysis 

of the output files after procedures were applied.  

Parameters such as the number of cycles that a procedure 

is applied were changed several times by the operator 

until the final plant count accuracy no longer improved 

for that specific training image.  This may be a source of 

error since different users might consider different 

procedures, order of procedures, and parameters.
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2.2  Presence of flowers 

2.2.1  Camera 

A Sony Alpha NEX-7 (Sony Corporation of 

America IR, San Diego, CA), 24.3 megapixels color 

digital frame camera, with an 18-55 mm lens was used as 

the sensor.  The shooting mode was set as manual with 

an ISO of 200, shutter speed of 1/250 seconds and an f 

value of 8.  Autofocusing and aspect ratio of 3:2 were 

fixed.  Flash, object tracking, and face detection were 

turned off.  

2.2.2  Experimental design 

Container-grown plants were spaced in staggered 

rows with a canopy separation of 5 cm between canopy 

edges.  Coral Drift® rose (Rosa sp. ‘Meidrifora’) 

growing in true #1 yellow/green polyethylene containers 

(height: 17.8 cm, top diameter: 19.7 cm, and bottom 

diameter: 15.9 cm) (Nurseries Supplies Inc., 

Chambersburg, PA).  Plants were pulled from nursery 

production blocks.  Two treatments were evaluated: 1) 

roses with coral flowers and 2) roses without flowers; for 

the latter, flowers were removed manually (Figure 4).  

For each treatment, a set of 64 containers (8 × 8) was 

established outdoors on black polypropylene fabric 

ground cover on 13 November, 2013 at Greenleaf 

Nursery, Park Hill, OK (35.779098, -94.904323).  

Treatment sets were replicated five times in a randomized 

complete block design (RCBD) for a total of 10 sets.  

Two images of each set were taken and then used for 

algorithm evaluation.  Two additional sets of 49 

containers (7 × 7), one containing plants with flowers and 

the other without flowers were positioned adjacent to the 

treatment sets and were used to train the FA algorithm, 

and henceforth, referred to as training sets (Figure 5).  

Four corner plants per set were used for plant 

measurements.  Shoot height was measured from the 

substrate surface to the top of the plant.  The average 

shoot height was 25 cm.  The average shoot diameter 

was determined by taking two measurements at 90
o
 from 

each other.  The average shoot diameter was 30 cm.  

RGB mean values were calculated from an aerial image 

at 0.15 cm/pixel spatial resolution, under sunny 

conditions using eCognition (Definiens Imaging GmbH, 

Germany) for plant canopy and ground covers resulting in 

139±62, 115±55, 99±55 for roses with flowers, 131±53, 

122±52, 98±51 for roses without flowers, and 125±43, 

128±42, 139±39 for the black fabric.  The image used to 

calculate RGB mean values was taken using the same 

camera used for all images with an f value of 8 and a 

shutter speed of 1/250 seconds.  Other camera settings 

were the same as previously described.

 
Figure 3  Graphic representation of an Automated Feature Extraction (AFE) model using Feature Analyst®. 
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Data collection, variables measured and image 

selection parameters are the same as those described in 

the canopy shape experiment. 

2.2.3  Environmental parameters 

Environmental parameters including light intensity 

(140 LUX), relative humidity (24.4%), temperature 

(15.6°C), and ground wind speed (0-4 km/h) were 

measured using a Mini Environmental Quality Meter at 

the beginning of image collection (13:00 h).  A 

subjective estimate of cloud cover was determined to be 

less than 5%. 

2.2.4  Algorithm training 

Algorithm training procedures using FA were similar 

to those described previously.  A total of two algorithms 

were trained, one for plants with flowers and another for 

plants without them.  Each algorithm was applied to all 

images regardless of presence of flowers.   

3  Results and discussion 

3.1  Canopy shape 

3.1.1  Algorithm trained using images displaying plants 

with regular canopy shape 

An algorithm was trained using a training image 

displaying junipers with a regular canopy shape using FA 

and then applied to images displaying junipers with 

regular and irregular canopy shapes.  There were no 

significant differences between canopy shape treatments 

for total counting error (F=0.30, p=0.6013), false 

positives (F=2.25, p=0.1679), and unidentified plants 

(F=0.54, p=0.4817) when the data were analyzed using 

FA (Table 1).  It is possible that some branches 

overlapped causing minor conflicts for the algorithm to 

resolve, resulting in small counting errors (i.e. two or 

more plants counted as one, generating unidentified 

plants).  

 

 

 

 
 

Figure 4  Coral Drift ® rose plant with flowers (left) and without flowers (right) 

 

 

  Non-flowering plant 

  Flowering plant 
 

Figure 5  Illustration of the experimental design. Training sets used in Feature Analyst® are the two smaller sets on 

the left, the remainder are treatment sets 
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Table 1  Count accuracy for container-grown 

junipers with regular (Juniperus horizontalis ‘Plumosa 

Compacta’) and irregular (Juniperus chinensis L. ‘Sea 

Green’) canopy shapes when training an algorithm 

with images displaying junipers with regular canopy 

shape using Feature Analyst® 

Canopy 
shape 

Total counting error False positives 
Unidentified 
plants 

No.
z
 %

y
 No.

x
 % No. % 

Regular -2 -3% 0 0% 2 3% 

Irregular -1 -2% 0 0% 1 2% 

Note: 
z
Total counting error: total software count – ground count. Total counting 

errors are based on a ground count of 64. 
y
Variables expressed as percentages; variable/ground count × 100.  

x
False positives: counts that do not represent a plant (e.g. multiple counts, weeds 

or other objects within the ground cover that were count as a plant). 

 

3.1.2  Algorithm trained using images displaying plants 

with irregular canopy shape 

An algorithm was trained using a training image 

displaying junipers with an irregular canopy shape and 

then applied to images displaying junipers with regular 

and irregular canopy shapes.  There were no significant 

differences between canopy shape treatments for total 

counting error (F=0.12, p=0.7337), false positives 

(F=3.27, p=0.0872), and unidentified plants (F=0.01, 

p=0.9165) when data were analyzed using FA (Table 2).  

 

Table 2  Count accuracy for container-grown 

junipers with regular (Juniperus horizontalis ‘Plumosa 

Compacta’) and irregular (Juniperus chinensis L. ‘Sea 

Green’) canopy shape when training an algorithm 

with images displaying junipers with irregular canopy 

shape using Feature Analyst® 

Canopy 

shape 

Total counting error False positives Unidentified plants 

No.
z
 %

y
 No.

x
 % No. % 

Regular -1 -2% 0 0% 1 2% 

Irregular -1 -2% 0 0% 1 2% 

Note: 
z
Total counting error: total software count – ground count. Total counting 

errors are based on a ground count of 64. 
y
Variables expressed as percentages; variable/ground count × 100.  

x
False positives: counts that do not represent a plant (e.g. multiple counts, weeds 

or other objects within the ground cover that were count as a plant). 

 

When data were analyzed with FA, there was no 

difference between variables measured when an 

algorithm trained with an image displaying regular or 

irregular plant canopy shape was applied to images 

displaying either of the plant canopy shapes.  Even 

though the canopy shape of ‘Sea Green’ is less compact 

than ‘Plumosa Compacta’, visible individual lateral 

branches are eliminated when applying the erosion 

procedure, thus making FA algorithm performance 

similar.  The erosion procedure reduces object size by 

determining if pixels are enclosed within an object 

(Richards, 2012).  Another explanation for the similarity 

in counting results between the two scenarios is that 

although the RGB values for both cultivars are not 

identical, FA segmented them similarly due to the wide 

range in RGB values. 

When using FA, one set of training samples was 

selected by the user from one training image and then the 

training set was used to analyze different images.  Since 

different users would likely pick different training sets, 

expectations were that this user input was going to 

increase experimental error, however, if there is an effect 

related to this process, it appears to have a minimal effect 

on count accuracy for juniper plants. 

3.2  Presence of flowers 

3.2.1  Algorithm trained using images displaying plants 

with flowers 

An algorithm was trained using an image displaying 

plants with flowers and then applied to images displaying 

plants with and without them.  Total counting error 

(F=0.60, p=0.4617), false positives (F=0.00, p=1.00), and 

unidentified plants (F=0.60, 0.4617) means generated 

with FA indicate no significant differences for flowering 

and non-flowering treatments (Table 3).  

Table 3  Count accuracy for container-grown Coral 

Drift ® rose (Rosa sp. ‘Meidrifora’) with and without 

flowers placed on a black fabric ground cover, when 

training an algorithm with images displaying 

flowering roses using Feature Analyst® 

Treatment sets 
Total counting error False positives Unidentified 

No.
z
 %

y
 No.

 x
 % No. % 

Flowering -1 -2% 1 2% 2 3% 

Non-flowering -2 -3% 1 2% 3 5% 

Note: 
z
Total counting error: total software count – ground count. Total counting 

errors are based on a ground count of 64. 
y
Variables expressed as percentages; variable/ground count × 100. 

x
False positives: counts that do not represent a plant (e.g. multiple counts, weeds 

or other objects within the ground cover that were count as a plant). 
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When training samples were digitized using plants 

with flowers in FA, pixels from leaves/stems and flowers 

were included.  This approach works well to extract 

plants without flowers since the sample included pixels 

representing leaves.  Count accuracy may also be high 

since there were small differences in RGB mean values 

between treatments (139±62, 115±55, 99±55 for roses 

with flowers, 131±53, 122±52, 98±51 for roses without 

flowers). 

3.2.2 Algorithm trained using images displaying plants 

without flowers 

FA was trained using an image displaying plants 

without flowers and then applied to images displaying 

plants with and without flowers.  There was a significant 

difference in total counting error (F=11.54, p=0.0274), 

false positives (F=4.85, p=0.0450) and unidentified plants 

(F=8.94, p=0.0403) between images of flowering and 

non-flowering plants when images were analyzed with 

FA (Table 4).  When expressed as percentages, total 

counting errors and unidentified plants were greater for 

flowering plants.  This may be explained by the lack of a 

representative training set that excludes pixels 

representing coral flowers, resulting in a less consistent 

extraction.  Even though RGB mean values between 

plants with and without flowers were fairly similar, FA 

may require a more representative training sample for this 

scenario.  

Table 4  Total count accuracy for container-grown 

Coral Drift ® rose (Rosa sp. ‘Meidrifora’) with and 

without flowers placed on a black fabric ground cover, 

when training an algorithm with images displaying 

non-flowering roses using Feature Analyst® 

Treatment 

Total counting error False positives Unidentified 

No.
z
 %

y
 No.

 x
 % No. % 

Flowering -6 a
w
 -9% 1 a 2% 7 a 11% 

Non-flowering 0 b -0% 2 b 3% 2 b 3% 

Note: 
z
Total counting error: total software count – ground count. Total counting 

errors are based on a ground count of 64. 
y
Variables expressed as percentages; variable/ground count × 100.  

x
False positives: counts that do not represent a plant (e.g. multiple counts, weeds 

or other objects within the ground cover that were count as a plant). 
w
Means followed by the same letter within the same column are not significantly 

different based on a Student’s t-test (p≤0.05). 

4  Conclusion 

Based on our results, canopy shape did not 

significantly affect counting results when using FA.  In 

developing the algorithm using FA, the settings are 

flexible enough to account for the differences in canopy 

shape and foliage color between these junipers.  Other 

plant species with a difference in canopy shape should be 

evaluated to determine the robustness of FA.   

The experiment comparing images from flowering 

and non-flowering plants highlighted the importance of 

selecting a representative training set.  The algorithm 

developed using FA did not appear to run a successful 

segmentation due to the lack of pixels representing 

flowers in the training set. 

Under the conditions which these experiments were 

conducted this methodology demonstrated that aerial 

images and FA could be used to automate plant count in 

open-field situations, however, further research needs to 

be conducted. 
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