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Abstract: Agricultural biomass supply chain consisting of multiple harvesting, storage, pre-processing, and transport 

operations.  This network operates in space and time coordinates and produces empirical data used for many purposes, 

including wood-flow planning, harvesting cost calculation and work rate setting.  The aim of this study was to explore and 

propose the use of a multivariate approach, namely, the Partial Least Squares (PLS) multivariate regression approach and 

compare its performance with the commonly used Ordinary Linear Regression (OLS).  In particular, the study aimed at 

comparing the main statistical significance of indicators attributed to models calculated with OLS and PLS regressions from the 

same original datasets, for the purpose of quantifying the eventual improvement, obtained with the new techniques.  The 

dataset is composed by a series of measurements (harvesting distance, load carried, plantation production, numbers of plants 

harvested, and tractor engine power) conducted in a harvesting yard of a poplar plantation, to forecast the demanded working 

times.  The technical analysis was accompanied by economic scenarios, based on three hypothetical harvesting yards.  The 

results indicated that the PLS innovative approach is better performing; model error indicators are 5%-6% lower than those 

estimated with the OLS method.  From an economic point of view the harvesting cost per ton ranges among 8.69-14.59 € t-1, 

12.10-16.56 € t-1 and 13.18-16.31 € t-1 referring to the different load capacity of the trailers, using the PLS model.  Based on 

these results the differences between PLS and OLS varied up to 40 € ha-1.  PLS modeling and more in general the advanced 

multivariate approach, are getting increasingly popular, because they are very robust and are particularly suitable for modeling 

complex systems. 
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1  Introduction 

The use of renewable energy alternatives to fossil 

fuels, which are considered the main causes of climate 

change since the end of the last millennium, is increasing.  

Among these, the woody biomass plays an important role 
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(Vande Walle et al., 2007).  For the emerging non-food 

bioenergy industry to ramp up to a mature, sustainable, 

and commercially viable industry, one of the challenges 

is the determination of supporting logistics, including 

strategic design of a storing/distribution network, a 

feedstock supply, residue handling, and a tactical 

(year-round) operation schedule (Tembo et al., 2003; Zhu 

et al., 2011).  Recent advances in computational tools 

have made it possible to build mathematical models for 

analysis and optimization of complex supply systems.  

These tools are applied successfully to manufacturing, 

transportation, and supply chain management of many 
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goods and services.  The agricultural biomass supply 

logistics consists of multiple harvesting, storage, 

pre-processing, and transport operations.  The entire 

network operates in space and time coordinates.  

Agricultural biomass supply logistics are characterized by 

a wide areal distribution of biomass, time and 

weather-sensitive crop maturity, variable moisture 

content, low bulk density of biomass material and a short 

time window for collection with competition from 

concurrent harvest operations.  In this context, advanced 

technologies and analyses could help in optimizing 

logistics operations.  From a technological point of view, 

an analysis of the processes in the supply chain from 

forests to mills revealed that there is a potential to 

streamline operations and make more efficient the use of 

resources by implementing an RFID-based (Aguzzi et al., 

2012; Costa et al., 2012) log tracking system in the chain 

(Timpe, 2006).  On the other hand, an optimized 

collection, storage and transport network can ensure 

timely supply of biomass with minimum costs 

(Sokhansanj et al., 2006).  These kinds of studies often 

produce empirical models used for many purposes, 

including wood-flow planning, harvesting cost 

calculation, and work rate setting.  At a more 

fundamental level, performance studies also allow 

understanding the behavior of harvesting machines and 

systems under varying stand and terrain conditions 

(Visser and Spinelli, 2011).  Empirical performance 

models are generally developed by collecting field data 

and testing the statistical significance of any relationships 

with regression analysis.  Pure analytical approaches, 

where the machine operations/performances are explicitly 

modeled in terms of their part operations, proposed 

harvesting strategies to minimize costs (Sorensen, 2003; 

Sogaard and Sorensen, 2004).  The most commonly 

used regression type is Ordinary Least Square (OLS) 

linear regression.  This technique is used to “calculate” 

an equation capable of representing the relationship 

between a dependent variable (typically time 

consumption or productivity) and one or more 

independent variables.  The interest in exploring 

alternatives to OLS, such as multivariate predictive 

modeling based on the recombination of principal 

components (Principal Component Regression – PCR) or 

latent variables (Partial Least Square – PLS), is 

increasing (Costa et al., 2012).  PLS is particularly 

useful when predicting one or more dependent variables 

from a large set of independent variables, often collinear.  

This technique originated within the field of economics 

(Wold, 1966) but became popular first in computational 

chemistry (Geladi and Kowalski, 1986) and then in 

human sensory evaluation (Martens and Naes, 1989).  

Today PLS regression is becoming a tool of choice in the 

social sciences, as a multivariate technique for 

non-experimental and experimental data (Costa et al., 

2011). 

Among the various crops for biomass option, 

especially, short rotation coppice (SRC) is regarded as a 

strategic resource of wood products (Verani et al., 2008) 

and seems to best reflect the expectations of farmers who 

used it to short return times and generally shows little 

enthusiasm for traditional wood plantations harvested at 

10-30 years intervals (Spinelli et al., 2009).  The SRC 

system is an intensive cultivation.  The fast-growing 

hardwoods at high density are employed and the average 

period of rotation is less than 10 years (Rockwood et al., 

2004).  In Italy, during the last 10 years 7,000 ha of SRC 

has been established with poplar (Populus spp. L.), 

especially modern hybrids mainly in the Po river valley, 

where biomass plants for heat generation or for heat and 

power cogeneration have been recently built and were the 

regional program for rural development includes a series 

of financial incentives to support the establishment the 

plantation (Facciotto and Bergante, 2011).  In the 

management of the energy plantation the harvesting 

operation is very important, because its costs can strongly 

influence the economic performance of the overall supply 

chain.  The harvesting of SRC can be performed 

principally with two different systems: the first one, the 

cut and storage system, requires that the trees are cut and 

moved to a storage area and chipped after storage; in the 

second one, the combined cut and chips system which is 

also the more used one, the plantation is harvested or with 

a modified forage harvester machine, whose standard 

header is replaced by a special cutting head (Spinelli et al., 

2009; Schweier and Becker, 2012).  The chips are blown 
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into an accompanying tractor-pulled trailer, which 

transports the chips to a collection point (Sambra et al., 

2008). 

The aim of this study is to explore and propose the 

use of a multivariate approach, such as PLS multivariate 

regression approach, innovative for this kind of logistics 

applications, and compare its performance with the 

commonly used OLS.  In particular, the study aimed at 

comparing the main statistical significance indicators 

attributed to models calculated with OLS and PLS 

regressions from the same original datasets, for the 

purpose of quantifying the eventual improvements 

obtained with the new techniques.  The dataset is 

composed by a series of measurements (harvesting 

distance, the load carried, plantation production, numbers 

of plants harvested, and tractor engine power) conducted 

in a harvesting yard of a poplar plantation in order to 

predict the working times.  The technical analysis is 

followed by economic scenarios based on three different 

hypothetical harvesting yards. 

2  Materials and methods 

2.1  Data collection 

The study was carried out in the site “Le risaie” in the 

Viterbo municipality, Latium region (Central Italy), [42° 

22′47″ N, 12°02′21″ E].  The plantation R2S2 (two 

years root and two years stem), was established with 

poplar clone AF2 covering an area of 15.4 ha.  The 

cutting were planted in single rows with a spacing of  

0.66 m while  the distance between the rows was 2.50 m 

and the density of plantation was 6,060 cuttings/ha.  The 

Claas forager Jaguar 880, with the header GBE-1 was 

used to harvest the plantation.  The chips were blown 

into a trailer pulled by a tractor and transported to storage.  

Three trailers of different volumes, namely 25, 16, and  

13 m3, were employed during the harvesting.  The load 

capacity of the different trailers, established as average 

value of three weighing for each trailer, was of 7.37, 4.74, 

and 3.66 t.  The crew consisted of four people.  The 

trailers were pulled by a Lamborghini 165 DT tractor 

(120 kW), a Fiat 115 DT (84 kW) tractor, and a Fiat 

80/90 DT tractor (58 kW), respectively.  For 

experimental data, the cycle time of machine was divided 

into time elements (working phases) that were considered 

typical of the work (Karcha et al., 2005; Puttock et al., 
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2005; Verani et al., 2010b; Picchio et al., 2012).  Work 

time was recorded for every single phase, using a 

Minerva chronometric table equipped with three 

centesimal chronometers (Harstela, 1991; Acuna et al., 

2012). 

2.2  Modeling approaches 

The OLS linear regression approach was based on the 

following general equation: 

T = A+Bx1+Cx2                (1) 

where, T is the gross work time for harvesting cycle (min); 

A, B and, C are constants to be determined and x1 and x2, 

the harvesting distance (m) and the load carried (t), 

respectively (Ghaffariyan et al., 2009; Gallis and 

Spyroglou, 2012).  The harvesting distance is given by 

the sum of the lengths of the single rows needed to fill a 

trailer, or part of them.  The distance was measured by 

the laser gauge.  The OLS regression was analyzed with 

ANOVA test.  The surface harvested for single load was 

calculated multiplying the rows’ length by the distance 

between the rows (2.50 m). 

An alternative regression approach, the PLS-based 

was implemented.  PLS is used to find the fundamental 

relations between two matrices (X and Y) and represents 

a latent variable approach to modeling the covariance 

structures in these two spaces.  A PLS model was used 

to find the multidimensional direction in the X space that 

explains the maximum multidimensional variance 

direction in the Y space.  A number of variants of PLS 

exist; in this study the SIMPLS (De Jong, 1993) 

algorithm was implemented.  The independent variables 

composing the X-block consist of the following five 

variables: harvesting distance (m), load carried (t), 

plantation production (t ha-1), numbers of plants harvested, 

and tractor engine power (kW).  Both X- and Y-blocks 

(gross time for harvesting cycle) were transformed using 

the ‘autoscale’ procedure.  PLS was computed using 

PLS toolbox 6.2 (Eigenvector research) for Matlab 7.1.  

For details on the PLS method see Costa et al. (2012).  

Residual error indicators, such as the Root Mean Square 

Errors in Calibration (RMSEC) and in Validation 

(RMSECV) were calculated.  The predictive ability of 

the model was partially dependent on the number of the 

latent vectors used and was assessed through the 

following statistical indicators: Root Mean Square Error 

(RMSE), Standard Error of Prevision (SEP) and 

correlation coefficient (r).  Finally, we calculated the 

Ratio of Percentage Deviation (RPD), which is the ratio 

of the standard deviation of the measured data to the 

RMSE (Williams, 1987).  This represents the factor by 

which the prediction accuracy has been increased 

compared with using the mean of the original data.  

Generally, a good predictive model should exhibit high 

values for r and low values for RMSE and SEP.  The 

model chosen was for the number of LV (Latent Vector) 

that yielded the highest r, minimum SEP for predicted 

and known Y-block and maximum RPD. 

2.3  Economic analyses 

For both OLS and PLS approaches, the production of 

plantation was determined extrapolating the value of load 

per hectare.  To check which are the best trailers to be 

used in the harvesting, three harvesting yards employing 

three trailers with equal capacity have been hypothesized.  

The aim of the economic analysis was to identify the best 

(in terms of lower harvesting cost per ton and per hectare) 

among three hypothesized harvesting yards.  The three 

hypothesized harvesting yards (having the same harvester 

Claas Jaguar 880) are composed by: 

1) Hypothesis 1: three Lamborghini 165 DT tractors 

equipped with a 25 m3 load capacity trailer each; 

2) Hypothesis 2: three Fiat 115 DT tractors equipped 

with a 16 m3 load capacity trailer each; 

3) Hypothesis 3: three Fiat 80/90 DT tractors 

equipped with a 13 m3 load capacity trailer each. 

The hourly cost calculation of the machines and 

equipment for each harvesting yard is based on the 

analytical methods of calculation proposed by different 

authors (Ribaudo, 1977; Miyata, 1980).  The principal 

elements considered in the economic analysis and the 

hourly costs of the single machines and equipment, are 

described in Table 1.  Table 2 reports the hourly costs of 

the three harvesting yards harvesting hypotheses based on 

the costs reported in Table 1. 

 

Table 1  Principal technical and economic elements used to calculate machine cost (upper part) and the relative hourly machine 
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costs obtained (lower part) 

Description 
Claas Jaguar 

880 
Header 
GBE-1 

Tractor Fiat 
80/90 DT 

Tractor Fiat 
F 115 DT 

Tractor Lamborghini 
165 DT 

Trailer 1  
(25 m3) 

Trailer 2 
(16 m3) 

Trailer 3 
(13 m3) 

Purchase price , € 250,000 90,000 40,000 57,000 80,000 14,000 11,000 10,000 

Salvage value, € 41,943 15,099 4,295 6,120 8,590 962 756 687 

Life period, y 8 8 10 10 10 12 12 12 

Productive machine hours, h y-1 800 800 1000 1000 1000 300 300 300 

Engine power, kW 350 - 58 84 120 - - - 

Interest rate, % 6 6 6 6 6 6 6 6 

Fuel consumption, l/h 44.18 - 8.27 11.73 16.43 - - - 

Lubricant consumption, l/h 1.77 0.10 0.33 0.47 0.66 0.05 0.05 0.05 

Driver cost, € h-1 23 23 15 15 15 15 15 15 

Fuel price, € L-1 1.05 - 1.05 1.05 1.05 - - - 

Lubricant price, € L-1 9 - 9 9 9 - - - 

Fixed costs, € h-1 53.51 16.98 6.31 8.90 12.41 5.32 4.22 3.86 

Variable costs, € h-1 117.10 14.21 32.28 38.55 46.89 2.76 2.43 2.31 

Total costs, € h-1 170.61 31.19 38.59 47.45 59.30 8.08 6.65 6.17 

 

Table 2  Harvesting yards hypotheses considered in the cost analysis of the poplar plantation harvesting  

(the three hypotheses used the same harvester Claas Jaguar 880) 

Harvesting yard hypotheses  Fixed cost (Fc, € h-1) Variable cost (Vc, € h-1) Total cost (Tc, € h-1) 

Hypothesis 1 (N.3 Lamborghini 165 DT and N.3 trailers 25 m3) 23.68 280.26 403.94 

Hypothesis 2 (N. 3 Fiat 115 DT and N.3 trailers 16 m3) 109.86 254.23 364.08 

Hypothesis 3 (N.3 Fiat 80/90 DT and N.3 trailers 13 m3)  100.98 235.10 336.08 
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The following economic parameters were calculated 

from the results obtained by the two regression 

approaches (i.e., OLS and PLS): 

a) Biomass production: 

2 4000ha

x
Biomass

dist
=            (2) 

where, Biomassha is the estimated biomass plantation 

production (t ha-1); x2 is the load carried (t), using the 

different hypotheses and dist is the length of the 

harvested rows for the same load carried (m), and 4000 is 

a constant indicating the harvesting linear distance for 

each hectare. 

b) Harvesting productivity: 

2x
Pr

T
=                 (3) 

where, Pr is the harvesting productivity (t h-1); x2 is the 

load carried (t) using the different hypotheses, and T is 

the harvesting gross work time (h) calculated with the 

two regression approaches. 

c) Harvesting cost (mass based) 

c
t

T
HC

Pr
=                (4) 

where, HCt is the harvesting cost per ton (€ t-1); Tc is the 

total hourly cost for each hypothesis (€  h - 1; Table 2) and 

Pr is the harvesting productivity (t h-1) expressed in the 

Equation (3). 

d) Harvesting cost (area based)  

ha t haHC HC Biomass=            (5) 

where, HCha is the harvesting cost per hectare (€ ha-1); 

HCt and Biomassha are expressed in the Equations (4) and 

(2) respectively. 

3  Results and discussion 

3.1  Technical results 

The average harvesting distances of the R2F2 

plantation was 1,254 m (ranged from 480 m to 2,552 m) 

and the average of load per trailer was 5.32 t.  The 

average gross time per trip was 11.67 min, and the 

average gross productivity was 28.16 t h-1. 

The average load carried was 3.66, 4.74, and 7.37 t, 

for the trailers with 13, 16, and 25 m3, respectively.  The 

percentages of the harvesting time are reported in  

Figure 1.  The operating time of harvesting (composed 

by harvesting and reversing times) was high (89.95%) 

followed by the time due to mechanical and personal 

delay (8.61%) and waiting time (1.44%).  The operating 

speed of the machine was equal to 6.43 ± 1.28 km h-1. 

 
Figure 1  Percentages of working times of the plantation 

harvesting 

 

Harvesting dedicated plantations performance for the 

Claas Jaguar with the header GBE-1 showed results as 

demonstrated by the high percentage of harvesting time 

with respect to the total working time (75.22%). 

The OLS method showed that the gross time for 

harvesting cycle was expressed by the equation: 

1 20.48 0.0043 1.077T x x= + +          (6) 

where, T is the gross time for harvesting cycle (min); and 

x1, x2, the harvesting distance (m) and load carried (t), 

respectively.  ANOVA reported a p value lower than 

0.0001. 

Table 3 shows the main indicators for the OLS and 

PLS regression models. 
 

Table 3  Main goodness-of-fit indicators for the regression 

models OLS and PLS 

Dataset R2F2 

Regression analysis OLS PLS 

Observations (n) 49 49 

X Variables (n) 2 5 

Latent Vectors (n) - 3 

% Cumulated Variance X-block - 99.25 

% Cumulated Variance Y-block - 85.97 

RMSEC - 1.50 

RMSECV - 1.69 

r 0.919 0.927 

r2 0.844 0.859 

RMSE 1.60 1.52 

SEP 1.60 1.52 

RPD 2.53 2.67 

 

The model error indicators (SEP and RMSE) were  
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5%-6% lower than the PLS regression model compared 

with the OLS one.  Moreover, the r value was higher for 

PLS model, with an increment of 0.8% over OLS model.  

RPD was higher for the PLS regression model. Based on 

the RPD classification, PLS regression allows the 

possibility of increasing the predictive power of ordinary 

regression models.  Models are both considered as 

“excellent”.  Maybe increasing the number of 

observations and variability of the samples the models 

could reach better RPD scores.  PLS is a better 

performing model than the OLS model as also 

demonstrated by Costa et al. (2012). 

Table 4 shows the relative contribution (loadings) of 

individual X-variables to each of the latent vectors of 

both PLS models. 
 

Table 4  PLS Model: X variable loadings for Latent Vectors 

(LVs) 

 LV1 LV2 LV3 

Distance 0.50 -0.19 -0.39 

Load 0.46 0.41 -0.09 

Production -0.26 0.80 -0.55 

Plant density 0.50 -0.19 -0.39 

Tractor power 0.47 0.34 0.62 

 

All the variables, except Production, contributed 

highly to the first LV.  Production (0.080) has the 

highest effect on LV2.  Tractor power and Production 

gave the highest contribution to the third LV (Table 4).  

The observed vs predicted independent Y variable (TL, 

min) for the OLS and PLS models are reported in  

Figure 2. 

 
Figure 2  Observed vs predicted Y (TL, min) for the OLS and  

PLS models 

The gross work time T, and the harvesting 

productivity Pr (Equation (3)) per type of trailer load, 

calculated using OLS and PLS models, are shown in 

Figure 3.  In particular, the gross harvesting time 

(calculated with both PLS and PLS models) is expressed 

as a function of the harvesting distance per single load 

carried (Figure 3A, while, the harvesting productivity was 

obtained using the Equation (3), calculated with both 

OLS and PLS models, and obtained as a function of the 

biomass per hectare (Figure 3B).  Figure 3A shows a 

similar trend for all the three hypotheses.  But only 

hypothesis 1 (higher load capacity) showed that the 

curves mostly overlap; in general the trends of the PLS 

models are less linear as compared to the OLS ones.  

With lower load capacity (hypothesis 3) the OLS model 

overestimates the gross harvesting time; on the contrary, 

at medium load capacity (hypothesis 2) the OLS model 

underestimates the gross harvesting time.  These trends 

are reflected and amplified in the estimated values in 

Figure 3B, where, in particular, the lower load capacity 

(hypothesis 3) tends to diverge at biomass production per 

hectare higher than 20 t ha-1. 

The harvesting operation could be considered as fast 

as demonstrated by the gross productivity obtained by the 

machine ranging from 22 to 39 t h-1.  The difference 

between the two approaches in estimating the gross 

productivity, ranged up to 6% at higher/intermediate load 

capacity and up to 13% at lower load capacity. 

3.2  Economic results 

In Figure 4 both harvesting costs per ton (Equation 4; 

Figure 4A) and per hectare (Equation (5); Figure 4B) 

scenarios for each hypotheses and regression model (i.e., 

OLS and PLS) are presented.  Harvesting costs per ton 

and hectare are decreasing and increasing, respectively, 

both in relation to the increase of the estimated biomass 

per hectare. Considering the estimated costs per ton 

(Figure 4A) OLS model overestimated at lower load 

capacity (13 m3), while at intermediate load capacity  

(16 m3) the trend was opposed with respect to the PLS 

models; for higher load capacity (25 m3) the two 

approaches have different slopes intersecting 

approximately in correspondence with 16 t ha-1 of 

biomass.  Observing the estimated costs per hectare 
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(Figure 4B) it is possible to observe the opposed trend 

with respect to the costs per ton graph (Figure 4A).  In 

addition it is possible to observe a sharper curve shape of 

the PLS model at lower load capacity (13 m3).  In both 

harvesting costs per ton and per hectare at higher load 

capacity (25 m3) the OLS model overestimates and 

underestimates the costs below and above 16 t ha-1 of 

biomass, respectively.  Both provisional models (Figure 

3 and Figure 4) show how the use of trailers with lower 

load capacity (13 m3) minimizing the harvesting costs of 

the R2F2 poplar plantation increases the logistics 

advantages. 

 
Figure 3A  Gross harvesting time predicted by PLS and OLS for three yard sites in relationship with the distance per load.   

Figure 3B  Work productivity calculated with PLS and OLS model as a function of the variation of biomass produced for the  

three hypothetical work sites 

 
Figure 4  Comparison between OLS and PLS approaches on the cost analysis of the harvesting in relation to production of biomass per 

hectare of the plantation for three hypothesis of harvesting yard: A - Cost per ton (€ t-1); B - Cost per hectare (€ ha-1) 

 

Figure 5 represents the percentage differences 

between the two approaches at different load capacities.  

It is possible to observe that at lower load capacity (13 m3) 

OLS tends always to overestimate ranging from 4% to 

16%.  The intermediate load capacity (16 m3) OLS trend, 

instead, underestimates ranging from -4% to -0.3%.  The 

higher load capacity (25 m3) showed similar estimation 

with respect to PLS model ranging from -2.9% to 4%. 

By using the PLS model, the harvesting cost per ton 

ranged 8.69-14.59 € t-1, 12.10-16.56 €  t - 1 and 13.18- 

16.31 € t-1; while the costs per hectare ranged 164-   

254  € ha-1, 185-287 € ha-1 and 199-286 € ha-1, and these 

values referring to the different trailers load capacities, 13, 

16 and 25 m3 respectively.  At higher load capacity, the 

harvesting productivity increased, but insufficiently to 

balance the higher hourly cost of the harvesting yard.  

The differences between the results produced by the two 

approaches are higher especially at lower load capacities.  

Basing on these results, the differences between PLS and 

OLS varied up to 40 € ha-1.  These results remain valid 

under the same experimental conditions, where the 

different load capacity of the trailer did not influence the 

waiting time, because the distance to unload the chips at 

the landing was not that large and the three tractors were 

always ready to interchange.  Moreover, when the 

distance from the unloading site become longer, the 
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logistics advantage of the harvesting yard with greater 

load capacity will, of course, increase caused by the 

reduced waiting time. 

 
Figure 5  Comparison between OLS and PLS approach on the cost 

analysis of the harvesting in relation to production of biomass per 

hectare of the plantation for three hypotheses of harvesting yards 

 

3.3  General considerations 

PLS regression analysis does offer some benefits over 

ordinary regression analysis (Lipp, 1996).  The 

substantial improvement of all goodness-of-fit indicators 

is probably the most visible benefit.  Moreover, other 

benefits of the PLS regression technique are not merely 

the increase of a coefficient, but the capacity of detecting 

significant variables otherwise discarded with ordinary 

regression techniques (Costa et al., 2009).  This is the 

advantage of Latent Vectors, which are capable of 

integrating the effect of more independent variables.  A 

further advantage of PLS regression over multiple linear 

regression lies in the definition of the new variables, 

whose definition takes into account not only the values 

assumed by the X but also their correlation with the 

dependent variables (Kresta, 1992).  In this respect, it is 

most interesting to compare the X-variables included in 

the ordinary and PLS regression models obtained from 

the same datasets.  Another advantage in using PLS 

regression is that this method could handle many 

collinear variables.  Ordinary regression would pick one 

or the other, but the use of latent vectors in PLS 

regression makes it possible to select more than one 

attribute for the same characteristic, after weighing their 

contribution through pre-processing.  The larger number 

of X-variables included in the PLS regression model also 

guarantees a more accurate description of complex 

processes such as biomass supply logistics, where 

different and often unpredictable factors influence the 

variable to be estimated.  On the other hand, this 

approach requires a larger effort when gathering input 

data (Costa et al., 2012). 

4  Conclusions 

The agricultural biomass supply logistics consists of 

multiple harvesting, storage, pre-processing, transport 

operations, and networking in space and time coordinates, 

producing empirical models used for many purposes, 

including wood-flow planning, harvesting cost 

calculation and work rate setting.  The interest in 

exploring alternatives to ordinary linear regression, such 

as multivariate predictive modeling based on latent 

variables, is increasing.  We demonstrated how PLS 

regression analyses allow producing models that better fit 

the original data, compared to OLS.  Additionally, PLS 

regression analyses allow handling collinear variables, 

facilitating the extraction of sound models from large 

amounts of field data obtained from biomass logistics 

operations.  This could lead to more robust models in 

terms of both variable oscillations and higher 

repeatability.  The models themselves are somewhat less 

applicable than standard regression equations.  

Nevertheless, PLS modeling, and generally the advanced 

multivariate approach, is getting increasingly popular 

because it is very robust and particularly suitable for 

modeling complex systems. 
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