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Comparison between artificial neural networks and mathematical

models for estimating equilibrium moisture content in raisin
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Abstract: Empirical models and Artificial Neural Networks (ANNs) were utilized for the prediction of Equilibrium

Moisture Content (EMC) in raisin. Six empirical models including GAB, Smith, Henderson, Oswin, Halsey and

D’Arsy-watt were applied for this estimation. Two types of Multi Layer Perceptron (MLP) neural networks entitled

Feed Forward Back Propagation (FFBP) and Cascade Forward Back Propagation (CFBP) were used. In order to train

the input patterns, two training algorithms consist of Levenberg-Marquardt (LM) and Bayesian regularization (BR) were

used. Thermal and relative humidity limits were 30-80℃ and 10.51%-83.62%, respectively. The best result for

mathematical models belonged to D’Arsy-Watt with R2 and the mean relative error of 0.9943% and 10.84%, respectively.

The best outcome for the use of ANN also appertained to FFBP network with LM training algorithm, topology of

2-3-3-1 and threshold function order of TANSIG-TANSIG-PURELIN. With this optimized network, R2 and the mean

relative error was 0.9969% and 8.32%, respectively. These results show the supremacy of ANN, in comparison with

empirical models. In order to predict the EMC in raisins, empirical models can therefore be replaced with the ANN.
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1 Introduction

Raisin (Dried Grape) is one of the most important

Iranian horticultural products with high export value for

the country. Standard process of post harvest, such as

drying, packaging and storage of grapes would guarantee

the quality of raisin and increases its export value as well

as producers income.

Water activity and environmental air temperature

affect the Equilibrium Moisture Content (EMC) x=f (aw,

T). EMC is a durability criterion and any change in

quality of food and agricultural products during storage

and packaging is crucially important (Veltchev and

Menkov, 2000). Fundamental relationship between

EMC and relative humidity of food products is known as

sorption isotherms (Palipane and Driscoll, 1992).
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Sorption characteristics of food and agricultural products

are used for designing, modeling and optimizing some

processes such as drying, aeration and storage (Labuza,

1975; Bala, 1997).

Aeration which relates the air relative humidity and

moisture content is essential for optimizing raisin quality.

Zarabi (2000) investigated moisture sorption isotherms of

grape (Thompson Seedless cultivar) at low temperatures.

In his research, sorption isotherms of grape have been

determined in temperatures between 20 to 40℃ and

Halsey model giving the best result for the prediction of

EMC.

Gabas et al (1999) proposed a model for water

absorption of Italian grape cultivars. They determined

moisture sorption isotherm for the temperatures between

35 to 75℃ and found that GAB model was the best for

EMC prediction.

Artificial neural networks have been used for some
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industrial applications such as modeling the moisture

content of thin layer corn during drying process for wet

milling quality at constant air flow rate, absolute

humidity and variable temperatures (Trelea, Countrios

and Trystram, 1997) and sorption isotherm of black tea

(Panchariya et al., 2002).

Many researchers have investigated the EMC of food

and agricultural products which include: moisture

sorption characteristics of starch gels (McMinn,

Al-Muhtaseb and Magee, 2004), moisture adsorption

isotherms of almond at different temperature and water

activity levels for nut and almond powder

(Pahlevanzadeh and Yazdani, 2005) and hysteresis

phenomenon in foods (Caurie, 2007).

Equilibrium moisture characteristics play a very

important role in postharvest stage. Mathematical

models are the most common methods for estimating

equilibrium moisture content. These models which are

fitted to experimental data have many problems, such as

reduction of computation velocity and accuracy of

processing control systems as well as production of

numerous equations. The precise prediction of EMC not

only decreases the storage losses of raisin but also affects

processing systems. Upon mathematical model or

ANNs determination through their programming into a

control system, it could be possible to predict EMC, if

aeration will dry or wet the mass of raisin at a safe level.

The objective of the present study was to apply

empirical models and artificial neural networks for

predicting EMC of raisin in order to simulate sorption

isotherm at thermal boundary of 30-80℃ and 10.51% -

83.62% of relative humidity. In other words, a two

dimensional mapping was created for EMC prediction

using temperature and relative humidity. To attain this

purpose, moisture sorption isotherm was obtained by

standard static gravimetric method and then predicted by

mathematical model and neural networks. Various

topologies were used to predict EMC, followed by

comparison of optimized cases of the two methods, and

finally the best approach was proposed.

2 Materials and methods

2.1 Mathematical sorption isotherm models

The most common physical models for deriving EMC

of agricultural products include the models of GAB, Smit,

Henderson, Oswin, Halsey and D’Arsy-Watt. These

models have been proposed and tested for the relationship

between the EMC and water activity (Bassal, Vasseur and

Lebert, 1993; Zomorodian, 2001; San M. et al., 2001;

Garcia-Alvarado et al., 1995; Sanny et al., 1997).

Formulas of the models are shown in Table 1.

Table 1 Selected isotherm equations for fitting tested data
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Where aw is water activity in decimal; EMC the

equilibrium moisture content in % d.b., T the

environmental absolute temperature in K, and R the

universal gas constant (8.314 J mol-1 K-1). Xm, k, a, b, c,

d, e, A, B, C, h, h1 and h2 are constants for different

materials calculated by using an experimental method.

Supremacy of each model for prediction of EMC is

expressed by two indices of coefficient of determination

(R2) and mean relative error (Em). The fitting was

performed by non-linear regression based on the

minimization of the square sum by means of the software

Statgraphics plus 4.1.

2.2 Artificial neural networks

An artificial neural network consists of neurons,

which have been related with special arrangement.

Neurons are in layers and every network includes some

neurons in input layer, one or more neurons in output
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layer and neurons in one or more hidden layers.

Algorithms and architectures of artificial neural networks

are different through variation in neuron model and

relationship between neurons, and their weights. The

learning purpose in artificial neural networks is to update

weights, so that with presenting set of inputs, desired

outputs are obtained. The most common types of

artificial neural networks include: feed forward, feed back

and competitive (Menhaj, 1998; Jam and Fanelli, 2000).

Training is a process that finally results in learning.

Each network is trained with presented patterns. During

this process, the connection weights between layers are

changed until the differences between predicted values

and the target (experimental) is reduced to the permissible

limit. Weights interpret the memory and knowledge of

network. With the aforementioned conditions, learning

process take place. Trained ANN can be used for

prediction of outputs of new unknown patterns (Heristev,

1998). The advantages of using ANN are: high

computation rate, learning ability through pattern

presentation, prediction of unknown pattern and

flexibility affront the noisy patterns. In this research,

feed and cascade forward networks as well as several

learning algorithms were utilized.

Feed Forward Back Propagation (FFBP) consists of

one input layer, one or several hidden layers and one

output layer. For learning this network, back

propagation (BP) learning algorithm is usually used. In

the case of BP algorithm, the first output layer weights

were updated. A desired value exists for each neuron of

output layer. The weight coefficient was updated by this

value and learning rules. BP algorithm presents suitable

results for subsequent problems but for the other

problems it gives an improper result. In some cases, the

learning process was upset due to local minimum. This

happens because of lying the answer at the smooth part of

threshold function.

During training this network, calculations were

carried out from input of network toward output and

values of error were then propagated to prior layers.

Output calculations were conducted layer to layer so that

the output of each layer was the input of next one.

Cascade Forward Back Propagation (CFBP) is similar

to FFBP network in using the BP algorithm for weights

updating, but the main symptom of this network is that

each layer neurons are related to all previous layer

neurons.

Two training algorithms including Levenberg-

Marquardt and Bayesian regulation back propagation

algorithms were used for updating network weights.

Gradient-based training algorithms, such as back

propagation, are most commonly used by researchers.

They are not efficient because the gradient vanishes at the

solution. Hessian based algorithms allow the network to

learn features of a complicated mapping more suitable.

The training process converges quickly, as the solution is

approached, because the Hessian does not vanish at the

solution. To benefit the advantages of Hessian based

training, Levenberg-Marquardt algorithm was used. The

LM algorithm is a Hessian based algorithm for non-linear

least squares optimization (Hagan and Menhaj, 1994).

Bayesian Regularization (BR) algorithm is a training

process of back propagation which is initialized with

random distribution of initial weights and biases. After

presentation of input patterns to the networks, updating

initial weight begins to obtain final distribution using

algorithm. This procedure is robust to a high noise level

and has a good approximation with arbitrary accuracy of

training and it can improve generalization performance.

In this algorithm, instead of the Sum of Squared Error

(SSE) on the training set, a cost function, which is the

SSE plus a penalty term, is automatically adjusted (Girosi

et al., 1995).

Structural learning with forgetting is the main

technique used for regularization (Girosi, Jones and

Poggio, 1995; Kozma et al., 1996). It has a good

approximation with arbitrary accuracy of training and can

also improve generalization performance.

2.3 Experiments

Raisin samples supplied from Qazvin Province, Iran.

Moisture content of raisin was about 15%(d.b.). Salt

saturated solutions including lithium chloride, potassium

acetate, magnesium chloride, potassium carbonate,

magnesium nitrate, sodium nitrate and potassium chloride

(all made by MERK Company) were used to provide

needed relative humidity.
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One of the most common methods used for EMC

determination is gravimetric; as it has high precision and

dose not need a complex implement (Spiess and Wolf,

1983). After separating the raisins’ tails, they were

fragmented into pieces of 1 to 2 mm in size. Fifty grams

of such raisins pieces were placed into two Petri dishes

(90 mm in diameter). Dishes were then transferred into

a decicator and kept for 15 days while they were

weighted every single day. Equilibrium was derived

when the difference of any successive weighing was

lower than 0.001 g (Gabas, Telis-Romero and F. C.

Menegalli, 1999; Ayranchi et al., 1990; Tsami,

Marinos-Koris and Maroulis, 1990).

To establish a fixed relative humidity at water activity

domain of 0.11-0.84, eight salt saturated solutions were

utilized. Creation of such relative humidity by the

saturated solutions has been reported through the

literature (Rahman, 1995). In order to control the

saturation of solutions, they were covered and placed in

an oven of 80℃ for 6 h, the period of time that should not

be longer; otherwise, salt crystals appear in the solutions.

The temperature needed for the experiment was

provided by using an incubator. After 15 days,

weighting was done in three days interval. Three to four

weeks were needed for the samples to reach the

equilibrium.

Lower relative humidity and upper experimental

temperature cause a decrease in the time required for the

equilibrium. In order to determine the final moisture

content, the equilibrated samples were placed in a

vacuum oven [(70 ±1)℃ and 150 mbar] for 6 h (Tsami et

al., 1990). All the experiments were conducted in three

replications. EMC of samples was determined as

follows:

100%w d

d

M M
EMC
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Where: Mw and Md are the weight of wet and dry samples,

respectively.

2.4 Designing the ANNs

Considering and applying the two inputs in all

experiments, the EMC value derived for different

conditions. Networks with two neurons in input layer

(Relative humidity and temperature) and one neuron in

output layer (EMC) were designed. Figure 1 shows the

considered neural network topology and input and output

parameters. Boundaries and levels of input parameters

are shown in Table 2. Neural network toolbox (ver. 4.1)

of MATLAB software was used in this study.

Figure 1 Topological structure of artificial neural network

Table 2 Input parameters for ANNs and their boundaries

Parameters Minimum Maximum No. of Levels

Air Temperature/℃ 30 80 5

Relative Humidity/% 10.51 83.62 8

In order to obtain desired answer, two networks of

FFBP and CFBP were utilized. Training process by

these networks is iterative. When the error between

desired and predicted values is minimum, training process

meets the stability. The increasing method was used for

selection layers and neurons for evaluation of various

topologies. By this method, when the network is

trapped into the local minimum, new neurons are

gradually added to the network. This method has more

practical potential to detect the optimum size of the

network. The increasing method has some advantages

as follows: a) the network complexity gradually increases

with increasing neurons; b) the optimum size of the

network always obtains by adjustments and c) monitoring

and evaluation of local minimum carry out during the

training process. Various threshold functions were used

to reach the optimized status (Demuth & Beale, 2003):

1

1 exp( )
j

j

Y
X


 

(LOGSIG) (8)

2

(1 exp( 2 )) 1
j

j

Y
X


  

(TANSIG) (9)

Yj=Xj (PURELIN) (10)

In which Xj is the sum of weighed inputs for each

neuron in jth layer and computed as below:
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Where: m is the number of output layer neurons; Wij the

weight of between ith and jth layers; Yi the ith neuron

output and bj: bias of jth neuron for FFBP and CFBP

networks. About 75% of all data were randomly selected

for training network with suitable topology and training

algorithm (Figure 2).

Figure 2 Distribution of training and testing data set

The following criterion of root mean square error has

defined to minimize the training error (Demuth and Beale,

2003):
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Where: MSE is the mean square error; Sip the network

output in ith neuron and pth pattern; Tip the target output

at ith neuron and pth pattern; N the number of output

neurons and M the number of training patterns. To

optimize the selected network from prior stage, the

secondary criteria was used as follows:
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Where: R2 is the determination coefficient; Emr the

mean relative error; SDmr the standard deviation of mean

absolute error; Sk the network output for kth pattern; Tk

the target output for kth pattern and n the number of

training patterns. To increase the accuracy and

processing velocity of network, input data were

normalized at boundary of [0, 1].

3 Results and discussion

3.1 Sorption curves

The averages of EMC in three replications as well as

water activities of salt solutions are shown in Figure 3.

These curves are the moisture adsorption isotherm of

raisin. Increasing temperature in a water activity

decreased the EMC. Increasing in water activity caused

an increase in raisin EMC of all temperatures. The

changes in water activity more than 0.5 are quite obvious.

(In the temperature above 60℃ with low water activity,

the EMC value has also no significant change.)

Raisin like other high glucose dried fruits absorbs less

moisture in low water activity, but more in high water

activity. Because of moisture absorbing properties of

biopolymers in all food materials, curve slope increases

and this phenomenon is also seen in raisin because of its

high absorbing moisture rate which is in turn related to

glucose. In low water activity, physical properties of

glucose, do not have significant effect on moisture

absorption. No shaped glucose, absorbed more moisture

compared with crystal glucose.

3.2 Mathematical models

Mathematical models of GAB, Smith, Henderson,

Oswin, Halsey and D’Arsy-Watt used for raisins EMC

empirical data fitting. Non linear regression method

with software was used for fitting the data. Three

indices of variation coefficient (R2), mean square error

(MSE) and mean relative error (Emr) were utilized for

appropriate fitness determination.

Results of empirical models fitting at temperatures

between 30 to 80℃ are shown in Table 3. For this

temperature range, D’Arsy-Watt model produced the best

results where R2 = 0.9943 and Emr=10.84%. Therefore

this model produced the best results for six temperature

levels that could be used for the estimation of raisins

EMC at various temperatures and water activities. Any
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of empirical models has an equation with constants. The values have been depicted in Table 3.

Figure 3 EMC of raisin at different water activities and temperatures

Table 3 Coefficients and outputs of mathematical models

Model a b c d or k e or Xm MSE R2 Emr

SMITH -3.24 27.57 - - - 7.28 0.9708 37.38

OSWIN 15.50 0.818 - - - 1.60 0.9929 13.00

GAB - - 1.157 0.719 128.92 1.40 0.9946 12.78

HALSEY 7.97 1.11 - - - 2.02 0.9911 17.90

DARCY-WATT -0.7748 -10.36 -4.39 0.7877 9.04 1.43 0.9943 10.84

HENDERSON -0.121 0.716 - - - 2.30 0.9910 16.83

3.3 ANNs approach

FFBP and CFBP networks were used for mapping

between inputs and outputs of patterns. Two strategies

were utilized to investigate different threshold functions

affecting network optimization that include similar and

various threshold functions for all layers (Table 4).

Both strategies together with learning algorithms of LM

and BR were used for FFBP and CFBP networks.

Several topologies were tested and the best results which

used from each network, training algorithm and

Threshold function/functions, are represented in Table 4.

The best results for FFBP network with LM algorithm

in the first strategy belonged to TANSIG threshold

function and 2-3-3-1 topology. This composition

produced MSE=0.00015, R2=0.9946 and Emr =10.67 and

converged in 16 epochs. The best result for the second

strategy of FFBP network with LM algorithm is belonged

to 2-3-3-1 topology and TANSIGTANSIGPURELIN

threshold functions, and produced MSE=0.00016,

Emr =8.32 and R2=0.9969.

The best results for FFBP network with BR algorithm

and the first strategy is belonged to TANSIG threshold

function and 2-4-2-1 topology. This composition

produced MSE=0.00059, R2=0.9892 and Emr =26.20 and

converged at 13 epochs. Also for FFBP network, BR

algorithm and the second strategy, the best topology was

2-4-2-1 with LOGSIGTANSIGPURELIN threshold

functions. This composition produced Emr=11.72, R2=

0.9930 at 27 epochs. In addition, for FFBP network, LM

algorithm presented the better result than BR algorithm.
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Table 4 Training algorithm for different neurons and hidden layers for several networks at the uniform

threshold function for layers

Network Training algorithm Threshold function No. of Layers and Neurons MSE R2 Emr SDEMR Epoch

TANSIG 2-3-3-1 0.00015 0.9946 10.67 9.43 16

LOGSIG 2-4-2-1 0.00019 0.9874 15.11 23.39 14

LOGSIGTANSIGLOGSIG 2-3-3-1 0.00017 0.9873 15.98 19.51 29
LM

TANSIGTANSIGPURELIN 2-3-3-1 0.00016 0.9969 8.32 10.21 48

TANSIG 2-4-2-1 0.00059 0.9892 26.20 42.23 13

LOGSIG 2-4-2-1 0.00050 0.9876 26.97 48.55 24

LOGSIGTANSIGLOGSIG 2-4-2-1 0.00056 0.9855 31.12 57.96 20

FFBP

BR

TANSIGTANSIGPURELIN 2-4-2-1 0.00083 0.9930 11.72 15.44 27

TANSIG 2-2-2-1 0.00021 0.9927 12.76 10.84 18

LOGSIG 2-3-3-1 0.00015 0.9926 16.85 24.97 14

LOGSIGTANSIGLOGSIG 2-3-3-1 0.00022 0.9925 15.61 23.77 12
LM

TANSIGTANSIGPURELIN 2-3-3-1 0.00011 0.9957 11.87 12.30 21

TANSIG 2-3-2-1 0.050 0.8074 143.39 313.50 21

LOGSIG 2-4-2-1 0.0046 0.9886 44.40 74.96 24

LOGSIGTANSIGLOGSIG 2-4-2-1 0.0015 0.9886 18.95 20.97 24

CFBP

BR

TANSIGTANSIGPURELIN 2-4-2-1 0.00076 0.9899 13.59 15.42 37

Furthermore, in this stage, application of LM

algorithm has better result than BR algorithm because it

produced less Emr and more R2 values.

The best results for CFBP network in the first strategy

and LM algorithm belonged to 2-2-2-1 topology. This

composition produced Emr =12.76 and R2=0.9927 at 18

training epochs. CFBP network for the second strategy

and LM algorithm for 2-3-3-1 topology and threshold

functions of TANSIGTANSIGPURELIN showed the

MSE=0.00011, Emr =11.84 and R2=0.9957.

The best results for CFBP network in the first strategy

with BR algorithm and 2-4-2-1 topology produced

MSE=0.0046, Emr = 44.40 and R2=0.9880 at 22 epoch.

The best result for CFBP network with BR algorithm and

the second strategy was related to LOGSIGTANSIG

PURELIN threshold function and 3-5-5-1 topology.

This composition produced MSE=0.00076, Emr =13.56

and R2=0.9899.

With regard to the results, the second strategy of

FFBP network, LM algorithm with LOGSIGTANSIG

PURELIN threshold functions and 2-3-3-1 topology

showed the best performance. These findings showed

that, the best result in all cases belonged to second

strategy. This is because topology of the second

strategy, Emr and R2 have the better values.

Experimental and predicted data set and their error are

shown in Figure 4 and MSE for training and testing

patterns in Figure 5. Results showed that Emr is the least

value for this network, so this network selected as an

optimized one. MATLAB software output demonstration

for optimized network is shown in Figure 6.

Figure 4 Predicted values of EMC using ANNs versus

experimental values and real error

Figure 5 Mean square error of training and testing patterns for

the best ANN
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Figure 6 Matlab software output demonstration for optimized network (IW and LW are weight matrix, b is bias matrix)

Values of weight matrix between layers and biases

are:

(Weight matrix between input layer and layer1)

7.18 2.01

{1, 1} 6.52 0.23

0.13 1.99

IW

 
   
  

(Weight matrix between layers 1 and 2)

0.02 0.02 2.05

{2, 1} 2.48 1.11 1.43

0.53 0.14 2.70

LW

  
    
   

(Weight matrix between layers 2 and 3)

 {3, 2} 1.07 0.02 1.76LW  

(Bias to layer 1)

4.24

{1} 2.02

2.70

b

 
   
  

; (Bias to layer 2)

2.07

{2} 0.11

0.04

b

 
   
  

; (Bias to layer 1) {3} [1.75]b 

The average value of indices for mathematical model

and optimized ANNs are shown in Figure 7.

Mathematical model and ANNs have a significant

difference in producing R2 having the average value for

mathematical model of 0.9943 and for optimized ANN of

0.9969 (Figure 7a). The relative error produced by

ANNs (8.32%) is less than that of mathematical model

(10.84 in Figure 7a).

Modeling and afterwards choosing a model that fits

the experimental data using Emr, for practical purposes,

should always be lower than 10% (Mohapatra and Rao,

2005); therefore, none of the mathematical models are

reliable to predict EMC values for entire temperature

range. But ANN method is suitable, as ANN model can

predict the EMC of raisin with an acceptable accuracy,

also the ANN models could predict the EMC of raisin

with SDEMR around the Emr values. These results show

that the overtraining for the presented models does not

happen and Emr with SDEMR are the suitable indices for

comparing of two methods. Emr and SDEMR also have the

controlling role for MSE and R2.

Figure 7 Average values of indices for mathematical models and optimized ANN

4 Conclusions

An artificial neural network is used as a new method

for nonlinear mapping to predict EMC of raisin (black

currant) through two independent parameters including

air temperature and relative humidity. The following

conclusions can be drawn from the experiments:

Raisin like other high glucose dried fruits absorbs less

moisture in low water activity but more in high water

activity. This is because in low water activity, glucose

has not significant effect on moisture absorption.
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The best result for mathematical model belonged to

D’Arsy-Watt model at temperature with R2 and mean

relative error of 0.9943 and 10.84%, respectively.

The best ANN for data training was FFBP with LM

algorithm and TANSIGTANSIGPURELIN threshold

functions for layers, three neurons for the first hidden

layer and three for the second one. With this optimized

network, R2 and mean relative error were 0.9969 and

8.32%, respectively.

The EMC of raisin could be predicted by ANN

method, with less mean relative error and more

determination coefficient compared to the

mathematical models.
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