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ABSTRACT

A Comparative Study of

Rayleigh Fading Wireless Channel Simulators. (December 2005)

Vishnu Raghavan Sathini Ramaswamy, B.E, Birla Institute of Technology and

Science, Pilani

Chair of Advisory Committee: Dr. Scott Miller

Computer simulation is now increasingly being used for design and performance

evaluation of communication systems. When simulating a mobile wireless channel for

communication systems, it is usually assumed that the fading process is a random

variate with Rayleigh distribution. The random variates of the fading process should

also have other properties, like autocorrelation, spectrum, etc. At present, there

are a number of methods to generate the Rayleigh fading process, some of them

quite recently proposed. Due to the use of different Rayleigh fading generators,

different simulations of the same communication system yield different results. Three

methods, viz., the Jakes method, the IDFT method and the filtering WGN method,

have been studied, simulated and compared based on the Rayleigh fading process’

properties. Various communication systems have been simulated using the Rayleigh

fading generators and the difference in the results, if any, have been analyzed. The

research studies the different Rayleigh fading generators and compares them using

the properties of the Rayleigh fading channel. It is found that the IDFT method and

the filtering WGN method generate processes that have properties very close to the

ideal Rayleigh fading process.
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CHAPTER I

INTRODUCTION

Simulation of wireless channels accurately is very important for the design and perfor-

mance evaluation of wireless communication systems and components. When simu-

lating the wireless channel for mobile and macro cellular communications, it is usually

assumed that the fading process is a Rayleigh fading process. The discrete samples

of the Rayleigh fading process have a Rayleigh distribution and are correlated. For

generating the Rayleigh fading coefficients, three different methods of random variate

generations are used.

The model proposed by Jakes [1] is a commonly accepted model of a multipath

fading environment. The initial simulation method that was used and that is still

widely used is the Sum of sinusoids method proposed by Jakes [1], [12]. The fading

process can also be realized by passing complex Gaussian noise through an ARMA

filter [9], [12] or by an algorithm based on inverse discrete Fourier transform [11], [14].

For the same application, i.e., for a particular channel coding technique, inter-

leaving block size, Doppler shift, etc., it is found that simulations using the different

algorithms yield different results. Despite the need of an accurate and an efficient

method for generating the Rayleigh fading process, there is no sure method available

in the literature to find the best generation method for simulating a given communi-

cation system.

This report attempts to find a well suited Rayleigh fading process generation

technique given a communication system.

Chapter II explains multipath Rayleigh fading and deals with the properties

The journal model is IEEE Transactions on Automatic Control.
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of Rayleigh fading. Chapter III explains the three main Rayleigh fading process

generators and the intuitive ideas behind them.

Chapter IV compares the three generation methods based on the Rayleigh fading

properties explained in Chapter II. Some communication systems are simulated using

different generation methods and the difference in the simulation results are explained

in relation to the fading properties. Chapter V concludes the work.
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CHAPTER II

BACKGROUND ON LAND MOBILE FADING CHANNELS

A. Multipath Rayleigh fading

In a wireless system, a signal transmitted into the channel interacts with the envi-

ronment in a very complex way, bouncing off various surfaces along the way to the

receiver. There are reflections from large objects, diffraction of electromagnetic waves

around objects and signal scattering as shown in Figure 1. The result of these com-

plex interactions is the presence of many signal components, or multipath signals,

at the receiver. In addition to this, if the transmitter, receiver or the objects in the

path of the signal are in motion, Doppler shift is introduced. As a result of these two

phenomenon, the received signal is time varying and may be highly attenuated. This

is a major impairment in a wireless communication system.

At any given time instance, a number of plane waves will be incident on the

mobile antenna. Assume that the career frequency is fc, and the mobile station is

moving at a velocity of v. If the nth wave is incident on the mobile antenna at an

angle of θn(T ) relative to the direction of motion of the mobile, the Doppler shift

introduced in the incident wave is given by

fD,n(t) = fd cos θn(t), (2.1)

where fd = v/λc and λc is the wavelength of the transmitted signal. If the transmitted

signal s(t) is given by Re{u(t)ej2πfct} where u(t) is the complex lowpass signal, v(t),

the received complex lowpass signal is given by

v(t) =
N∑

n=1

αn(t)e−j2π[(fc+fD,n(t))τn(t)−fD,n(t)t]u(t− τn(t)), (2.2)
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Local Scatterers

Mobile Subscriber

Base Station

Fig. 1. Scattering environment in a typical macrocell

where N is the total number of incident waves and αn(t) and τn(t) are the amplitude

and time delay, respectively, associated with the nth path.

Equation 2.2 can be rewritten as

v(t) =
N∑

n=1

αn(t)e−jφn(t)u(t− τn(t)) (2.3)

and

φn(t) = 2π{(fc + fD,n(t))τn(t)− fD,n(t)t} (2.4)

is the phase associated with the nth wave. It can be seen that this multipath fading

affects different frequency components of the transmitted signal differently. In fading,

there is a parameter called coherence bandwidth which is a statistical measure of the

range of frequencies over which the channel can be considered ”flat”. It can also be

described as the range of frequencies over which two frequency components have a

strong amplitude correlation. If τk is defined as the time delay of the kth multipath

component and τ̄ is the mean delay spread, the rms delay spread is defined as

στ =
√

τ̄ 2 − (τ̄)2 (2.5)
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Fig. 2. Rayleigh fading channel model

If a mobile radio channel has a constant gain and linear phase response over a

bandwidth (coherence bandwidth) which is greater than the bandwidth of the trans-

mitted signal, the signal is said to undergo flat fading. It can be said that, a signal

undergoes flat fading if its bandwidth is less than the channel’s coherence bandwidth

and its symbol duration is greater than the rms delay spread. This type of fading

is the most common type of fading that is described in technical literature. This is

the type of fading this report deals with. For flat fading channels, the fading can be

modeled as a time variant multiplying factor r(t).

It is shown in [8] that the received signal in a multipath channel is modeled as

gr(t) = r(t)gs(t) + No(t), (2.6)

where gs is the transmitted signal, gr is the received signal, No(t) is the additive

noise and r(t)=x(t)+jy(t) is the Rayleigh fading coefficient. The model is shown in

Figure 2. Rayleigh distributed variates can be obtained as the magnitude of complex

Gaussian distributed variates. An example of Rayleigh fading envelope is shown in

Figure 3.
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B. Properties of Rayleigh fading process

Since the fading effect on all the transmitted frequencies is assumed to be uniform,

the properties of the Rayleigh fading process can be derived assuming the transmitted

signal is an unmodulated carrier. For the unmodulated carrier, the received complex

lowpass signal is

r(t) =
N∑

n=1

αn(t)e−jφn(t) (2.7)

or

r(t) = rI(t) + jrQ(t), (2.8)

where

rI(t) =
N∑

n=1

αn(t) cos φn(t) (2.9)

and

rQ(t) =
N∑

n=1

αn(t) sin φn(t). (2.10)

As N increases, the central limit theorem can be invoked and rI(t) and rQ(t) can be

treated as independent Gaussian random processes with zero mean. This would make

r(t) a complex random process whose real and imaginary components are independent

Gaussian random processes. Thus the magnitude of r(t) is a Rayleigh distributed

process. Hence the term Rayleigh fading envelope is applied to r(t). If there are fixed

scatterers or a line of sight path for the radio waves, rI(t) and rQ(t) can no longer

be modeled as having zero-mean. In such cases, the magnitude of r(t) has a Ricean

distribution and such fading is called Ricean fading.

1. Autocorrelation function and power spectral density

Assuming that all the random processes involved are wide sense stationary, the au-

tocorrelation function (ACF) φrIrI
(τ) can be calculated from equations 2.9, 2.1 and
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2.4 as follows [12]:

φrIrI
(τ) = E[rI(t)rI(t + τ)]

= E[cos 2πfD,nτ ]

= Eθ[cos (2πfdτ cos θ)]. (2.11)

Here it is assumed that

E[r2
I (t)] = E[r2

Q(t)] =
1

2

N∑

n=1

E[α2
n] = 1 (2.12)

i.e., the total average power received from all multipath components is one. Similarly,

the cross correlation φrIrQ(τ) can be calculated as

φrIrQ
(τ) = E[rI(t)rI(t + τ)]

= Eθ[sin (2πfdτ cos θ)]. (2.13)

For macro cellular environments, the MS antenna receives the plane waves from

all directions with equal probability. So, it is reasonable to assume that θ is uni-

formly distributed over [−π, π]. This model is referred to as Clarke’s two-dimensional

isotropic scattering model. With this assumption, 2.11 becomes

φrIrI
(τ) =

1

2π

∫ π

−π
cos (2πfdτ cos θ)dθ

=
1

π

∫ π

0
cos (2πfdτ sin θ)dθ

= J0(2πfdτ), (2.14)

where J0(x) is the zeroth-order Bessel function of the first kind. The autocorrelation

function is displayed in Figure 4. Similarly, 2.13 becomes

φrIrQ
(τ) =

1

2π

∫ π

−π
sin (2πfdτ cos θ)dθ
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= 0. (2.15)

Also note that

φrIrI
(τ) = φrQrQ

(τ) (2.16)

and

φrIrQ
(τ) = φrQrI

(τ). (2.17)

The power spectral density of rI(t) and rQ(t) can be easily calculated by taking
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the Fourier transform of φrIrI
(τ),

SrIrI
(f) =





1
2πfd

1√
1−(f/fd)2

|f | ≤ fd

0 otherwise.

(2.18)

The bathtub shape of the spectrum is shown in Figure 5.

2. Level crossing rate and fade duration

Two important second order statistics associated with Rayleigh fading are level cross-

ing rate and fade duration. The level crossing rate of Rayleigh fading envelope LR,

is defined as the rate at which the envelope crosses the level R in the positive (or
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negative) going direction. It is given by the formula [12]

LR =
√

2πfdρeρ2

, (2.19)

where ρ = R/RRMS.

The average fade duration τ̄ is defined as the average period of time for which the

received signal remains below a specified level R. Consider a very long time interval

T in which ti denotes the duration of the ith fade below the level R. The probability

of the fading envelope level being less that R is

Pr[r < R] =
1

T

∑

i

ti. (2.20)

From the above equation, fade duration can be derived as

τ̄ =
1

TLR

∑

i

ti =
Pr[z ≤ R]

LR

. (2.21)

For Rayleigh distribution,

Pr[r ≤ R] =
∫ R

0
p(r)dr = 1− e−ρ2

(2.22)

and that results in the formula,

τ̄ =
eρ2 − 1√
2πρfd

. (2.23)

It has not been very clearly demonstrated how each of these properties affect the

results of the simulations of wireless communication systems. Different simulation

techniques for the Rayleigh fading channel produce processes that have properties

that agree with the above properties with varying degrees of accuracy.
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CHAPTER III

RAYLEIGH FADING PROCESS GENERATION METHODS

A. Sum of sinusoids or Jakes method

This popular method for generating a Rayleigh fading process is based on the un-

derlying physical mechanism which causes fading. This method assumes a macrocell

kind of a scenario where the basestation is taller than the scatterers and most of the

scatterers are located near the mobile receiver. The scatterers are evenly placed on a

circular ring about the mobile as shown in Figure 6. This method assumes stationar-

ity and equal strength multipath components (αn = 1). The multipath components

arriving at the MS antenna have random phases θn, which have uniform distribution

in the interval [0, 2π] and the angle of arrival is uniformly spaced between −π and π.

If the total number of sinusoids is N, the Rayleigh fading process is given by,

r(t) =

√
2

N

N∑

n=1

e−j(2π cos (2π n
N

)t+θn). (3.1)

By the central limit theorem, as the number of sinusoids becomes large the sum

approaches a complex Gaussian random process with the required properties of the

Rayleigh fading process. This method, though having the capability of generating

variates whose characteristics closely follow those of Rayleigh fading process, requires

a large number of sinusoids and hence is cumbersome to use in simulations.

A modified sum of sinusoid method of generation of Rayleigh distributed variates

is explained in [12]. The total number of oscillators N, is always of the form 4M+2.

In this case, the received complex low-pass envelope is given by

r(t) =
N∑

n=1

e−j(φ̂n+2πfdt cos θn), (3.2)
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Base Station
Mobile
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Scatterers

Fig. 6. Jakes’ model

where φ̂n = 2π(fc + fd)τn. The angles of arrival of the multipath components θn are

given by

θn =
2πn

N
. (3.3)

Since N/2 is odd, 3.2 can be modified as follows:

r(t) =
N/2−1∑

n=1

[e−j(φ̂−n+2πfdt cos θn) + e−j(φ̂n+2πfdt cos θn)]

+e−j(φ̂−N+2πfdt) + e−j(φ̂N+2πfdt)

=
√

2
M∑

n=1

[e−j(φ̂−n+2πfdt cos θn) + e−j(φ̂n+2πfdt cos θn)]

+e−j(φ̂−N+2πfdt) + e−j(φ̂N+2πfdt). (3.4)

The simplification in equation 3.4 is possible because in the first summation,

the frequencies from −2πfd cos (2π/N) to 2πfd cos (2π/N) are used twice and in the

second summation they are used only once to reduce complexity. The equation can

be further simplified using trigonometric identities to get

r(t) =
√

2{[2
M∑

n=1

cos βn cos 2πfnt +
√

2 cos α cos 2πfdt]
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+j[2
M∑

n=1

sin βn cos 2πfnt +
√

2 sin α cos 2πfdt]}

=
√

2[2
M∑

n=1

ejβn cos 2πfnt +
√

2ejα cos 2πfdt], (3.5)

where fn = fd cos (2πn/N), α is an arbitrary phase and β is a gain. The parameters

α and βn can be chosen such that < r2
I (t) >=< r2

Q(t) > and < rI(t)rQ(t) >= 0,

where < . > is a time average operator. These conditions are satisfied by choosing

α = 0 and βn = πn/M .

This method will hence forth be referred to as Jakes2 in this report. If the first

Jakes method utilizes N oscillators to simulate a particular number of incoming waves,

the Jakes2 method uses 1
2
(N

2
−1) oscillators. It can be seen that there are no random

variables involved in the Jakes2 method. So, when using this method to generate

Rayleigh fading processes, each and every process will be the same. To generate two

different processes, r(t) can be used from two different time intervals from t1 to t2

and from t3 to t4 such that the two intervals do not overlap.

B. IDFT method

This method generates Rayleigh distributed variates with the required ACF proper-

ties. In this method, complex zero-mean Gaussian noise (A(k)+jB(k)) is first gener-

ated, with the real and complex parts independent and identically distributed (i.i.d).

This complex vector is multiplied with a real valued vector which is equivalent to a

vector with filter coefficients (F(k)).

R(k) = F (k)(A(k) + jB(k)). (3.6)
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Then, the IDFT of the resultant vector gives the required process r(n), n=0,1,...,N-1.

r(n) =
1

N

N−1∑

k=0

F (k)(A(k) + jB(k))ej(2πkn/N). (3.7)

The method was first proposed in [11] and later developed in [14] and [13]. The values

of the filter coefficients F(k) will decide the properties of the generated process. If

the required ACF can be defined as follows:

φrIrI
[d] = φrQrQ

[d] = φR[d] (3.8)

φrIrQ
[d] = φrQrI

[d] = φI [d] (3.9)

φ = φR + jφI , (3.10)

then it is shown in [14] that the filter coefficients can be calculated as

φ[d]
DFT↔ (F [k])2, (3.11)

where (F [k])2 is a positive real sequence. But for Rayleigh fading φ is a real vector

making (F [k])2 a complex number. So, F[k] can be approximated as

FS[k] =

√√√√SrIrI

(
kfs

N

)
. (3.12)

This approximation causes φI to be non zero. This problem can be averted.

Let ΦCS and ΦCAS be two sequences defined as

φR[d]
DFT↔ ΦCS[k] (3.13)

jφI [d]
DFT↔ ΦCAS[k]. (3.14)

This would mean that ΦCS is a Conjugate-symmetric sequence (ΦCS[k] = Φ∗
CS[k])

and ΦCAS is a Conjugate-antisymmetric sequence (ΦCAS[k] = −Φ∗
CAS[k]). Due to the
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linearity property of DFT,

φ[d] = φR[d] + jφI [d] = IDFT (Φ[k])

= IDFT (ΦCS[k]) + IDFT (ΦCAS[k]). (3.15)

Also note that

ΦCS[k] =
1

2
Φ[k] +

1

2
Φ∗[N − k] (3.16)

ΦCAS[k] =
1

2
Φ[k]− 1

2
Φ∗[N − k]. (3.17)

To get φI = 0, it is required to make ΦCAS = 0. This can be done by using

equation 3.16 to define a new set of filter coefficients

FM(k) =





FS[k], k = 0

1√
2
FS[k], k = 1, 2, ..., N

2
− 1

FS[k], k = N
2

1√
2
FS[k], k = N

2
+ 1, ..., N − 1.

(3.18)

But this FM(k) cannot be directly used in a generator. Some minor changes

have to be made to improve the performance. The desired output of the generator

is Rayleigh distributed. This means that the real and imaginary components should

have zero mean. For N finite and F[0] non zero, that is not possible with this method.

The mean of the r[n] generated will be R[0]=F[0]A[0]+jF[0]B[0]. The process thus

generated will have a non zero mean and hence will have a Ricean distribution. To

force the mean to be zero, R[0] should be forced to zero which can be accomplished

by having F[0] as zero. In this case, the mean of the process will be identically zero

for every realization.

The exact realization of the ACF and the bandlimited power spectrum is not

possible with this algorithm. Due to the truncation of the time sequence, Gibbs
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oscillations occur at the points of discontinuities in the frequency domain. Since the

power spectrum is forced to be band limited, there will be aliasing in time domain.

The initial approach of defining the filter coefficients by sampling the continuous-

time power spectrum (equation 3.12) effectively ignores the finite-time effects. This

problem can be removed by changing the filter coefficients at the point at index km

which is at, or just below, the maximum Doppler frequency (km = bNfmc). The filter

coefficient of km is chosen such that the area under an interpolation of the spectrum

coefficients is the same as the area under the continuous-time spectrum curve. The

realized maximum Doppler frequency in the generated process is kmfs/N . The area

under the power spectrum curve with the modified Doppler frequency, from zero to

analog frequency f is given in [14] as

C(f) =
kmfs

N
arcsin

(
fN

fskm

)
, 0 ≤ f ≤ kmfs

N
. (3.19)

The area under the portion of the power spectrum between the frequencies (km −
1)fs/N and kmfs/N is equal to C(kmfs/N) − C([km − 1]fs/N). Equating this area

to the rectagular area of height (F [km])2 and width fs/N ,

F [km] =

√√√√km

[
π

2
− arctan

(
km − 1√
2km − 1

)]
. (3.20)

The final filter coefficients F(k) is determined using equations 3.12, 3.18, and

3.20. For the required Rayleigh distributed process, the filter sequence is given by
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[14]

F (k) =





0, k = 0
√

1

2

√
1−( k

Nfm
)2

, k = 1, 2, ..., km − 1

√
km

2
[π
2
− arctan( km−1√

2km−1
)], k = km

0, k = km + 1, ...N − km − 1
√

km

2
[π
2
− arctan( km−1√

2km−1
)], k = N − km

√
1

2

√
1−( N−k

Nfm
)2

, k = N − km + 1, ..., N − 2, N − 1.

(3.21)

IDFT is a linear process. So, if the input is complex Gaussian noise, the final

process’ real and imaginary parts are also Gaussian distributed. If N is a power of 2,

IFFT can be applied for IDFT making the whole process very efficient. Due to this

reason, even if N is not a power of 2, 2(d log2 Ne) variates are generated and the first N

points are chosen.

C. Filtering white Gaussian noise

The third method of generating the Rayleigh fading process is by filtering complex

white Gaussian noise. Since the filtering operation is linear, the output of the filter

is also Gaussian distributed, but colored [5]. The magnitude of the output will be

Rayleigh distributed. The major limitation of this method is that it can produce only

rational forms of power spectra. Of the three methods discussed till now, this one is

the most flexible in the sense that the type and the order of the filter can be changed

according to the result that is required. The filter can be designed to approximate a

desired power spectral density or the autocorrelation function.

IIR low-pass filters can used to approximate the required spectral characteristics.

A first order filter would provide an autocorrelation function that is totally off the
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Fig. 7. Magnitude response of second and third order filters

mark and a level crossing rate that is approximately five times the required value.

A second order filter gives an autocorrelation function that closely follows the bessel

function until the first minima but again the level crossing rate values are 15% higher

than the required value. The second order filter is a lowpass filter given by [10]

H(s) =
ω2

0

s2 + 2ξω0s + ω2
0

. (3.22)

As it can be seen from Figure 7 that the magnitude response of the second order

filter is high for higher frequencies. To improve the performance, this filter can be

cascaded with a lowpass filter to filter out high frequency components. It was found

that third order lowpass filters (second order filter cascaded with a first order lowpass

filter) provide a good approximation to the required autocorrelation characteristics

and level crossing rates. As shown in Figure 8, higher order filters do not provide the
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justification for the increase in the complexity and lower order filters provide a poor

and ACF and level crossing rate approximation.

The third order filter is described as follows

H(s) =
ω3

0

(s + ω0)(s2 + 2ξω0s + ω2
0)

. (3.23)

This analog filter, then has to be mapped to a digital filter using bilinear transforma-

tion.

H(z) = H(s)

s = 2fs

(
1−z−1

1+z−1

)
, (3.24)

where ω0 = 2πfd/1.2 and ξ = 0.175. These values for ω0 and ξ were obtained to
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provide the closest visual approximation to the first lobe of the required autocorre-

lation function. The reason why the autocorrelation property was chosen instead of

the spectral characteristic will be explained later.

Rayleigh fading process may also be obtained by passing the complex Gaussian

noise through an Autoregressive(AR) filter. Autoregressive Moving Average (ARMA)

models are commonly used to simulate many discrete time random processes [4]. AR

filters (discrete filters with coefficients only in the denominator) of order n can be

designed to produce any autocorrelation function up to n points.

The relationship between the autocorrelation function (rxx(m)) and the ARMA(p,q)

parameters is given by [7]

rxx(m) =





−∑p
k=1 akrxx(m− k) m > q

−∑p
k=1 akrxx(m− k) + σ2

w

∑r−m
k=0 h(k)bk+m 0 ≤ m ≤ q

r∗xx(−m) m < 0

. (3.25)

where p denotes the order of the denominator, q denotes the order of the numerator

and σ2
w denotes the variance of the white Gaussian noise inout to the filter. For a

pure AR process the same equation reduces to

rxx(m) =





−∑p
k=1 akrxx(m− k) m > 0

−∑p
k=1 akrxx(m− k) + σ2

w m = 0

r∗xx(−m) m < 0

. (3.26)

Equation 3.26 can be solved using Yule-Walker equations to yield the AR filter

coefficients as shown below.

Ra = −r, (3.27)
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where

R =




rxx(0) rxx(−1) . . . rxx(−p + 1)

rxx(−1) rxx(0) . . . rxx(−p + 2)

. . .

. . .. . .

rxx(p− 1) rxx(p− 2) . . . rxx(0)




,

a = [a1a2...ap]
T and r = [rxx(1)rxx(2)...rxx(p)]T .

For higher order AR models, the above equation tends to have the poles outside

the unit circle, making the filter unstable. This problem can be alleviated by using

diagonal loading, where a modified autocorrelation matrix R̃ is used,

R̃a = −r, (3.28)

with R̃ = R + γI. Here, γ is a suitable loading parameter ensuring the stability of

the filter. γ is chosen such that it is the least value that makes the filter stable.

If the autocorrelation has to be matched up to M points, an AR filter of order

p=M has to be chosen. If p is high this would increase the complexity of the filter and

the loading factor γ. The solution to this problem is to use a subsampled AR filter

to filter the Gaussian noise and pass the output through a multistage interpolator.

The AR filter has to be designed using the subsampled autocorrelation

r′xx(n)
∆
= rxx(nL), (3.29)

where L is the subsampling factor. The order of the filter p, is chosen for this ACF.

The interpolation after the initial AR filtering can be achieved by inserting L-1 zeros

between every successive point and then passing it through a suitably designed Butter

worth filter [9]. The Butterworth filter should have a cut off frequency ωc = π/L.

To reduce the complexity, a filter bank can be used instead of the Butterworth filter.
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Since these lowpass filters after the interpolation are not ideal, the auto correlation

of the process will be slightly altered during this filtering process. It was found that

subsampling factors up to 100 did not alter the autocorrelation in any significant

amount. But attempts with subsampling factors around 1000 yielded very poor auto-

correlation characteristics. So, it is advisable to keep the subsampling factor within

100.

If the point M, up to which the ACF of the process has to closely follow the

Bessel function, is too large, the order of the filter to be used is very high even after

using subsampled filters. This creates a very complex filter. To counter this problem,

a lower order filter can be designed using the least squares modified Yule Walker

equation (LSMYWE) method of AR estimation [2], though at the cost of destroying

the exact correlation-matching property of AR modeling. LSMYWE method also

involves solving the equation 3.27. But now,

R =




rxx(0) rxx(−1) . . . rxx(−p + 1)

rxx(−1) rxx(0) . . . rxx(−p + 2)

. . .

. . .. . .

rxx(M − 1) rxx(M − 2) . . . rxx(M − p)




,

a = [a1a2...ap]
T and r = [rxx(1)rxx(2)...rxx(M)]T . Here, M > p. And a can be

calculated as

a = −(RHR)−1RHr. (3.30)

The LSMYWE method produces a pth order filter which can output a process whose

ACF is the closest to first M points of the Bessel function in the mean square sense.
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CHAPTER IV

COMPARISON OF RAYLEIGH FADING PROCESS GENERATORS

Three different techniques for generating Rayleigh fading processes were discussed in

the previous chapter. Two of these methods can produce the ideal Rayleigh fading

process if infinite computing complexity is available. The sum of sinusoids method

with infinite number of oscillators or the filtering of Gaussian noise with infinite order

AR filter will produce the ideal output required. But in reality, due to the availability

of finite computing complexity, the output of the generators are approximating the

ideal Rayleigh characteristics. The accuracy of the IDFT method has not yet been

discussed in relation to all the characteristics of the Rayleigh fading channel.

While simulating a communication system, it has to be decided as to which gen-

erating technique is best suited, so that the results are reliable. While there are a

number of quality measures available in literature to compare the generating meth-

ods, like weighted mean square error in autocorrelation function, first-order empirical

cumulative distribution functions, there is no convincing argument as to why these

measures are important in simulating any communication system and how it will af-

fect the output of the simulation. Moreover, there are no specific methods to find

out the best generating method for a particular communication system that has to be

simulated. This chapter compares the generating techniques in all the Rayleigh Char-

acteristics and finally arrive at the exact quality measures that affect the simulation

output of a communication system.
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A. Comparison of characteristics of the generated processes

1. Rayleigh distribution

The first characteristic that is expected and is surely required from a Rayleigh fading

process generator is that the output is a Rayleigh distributed random variate. This

characteristic can be tested by simulating a baseband coherent BPSK modulated

communication system over the Rayleigh fading channel simulated by the generators

with additive white Gaussian noise (AWGN). The expression for the bit error rate of

a BPSK is given by

Pe,BPSK(λb) = Q(
√

2λb), (4.1)

where λb = r2 ∗ SNR. The above equation gives the conditional error probability

with r fixed. To find the expression in which r is random, P (λb) should be averaged

over the probability density function of λb.

Pe,BPSK =
∫

Pe,BPSK(λb)p(λb)dλb, (4.2)

where p(λb) is the probability density function of λb when r is random. Since r is

Rayleigh distributed, r2 is chi-square distributed. It can be shown that

p(λb) =
1

λ
e−λb/λ, λb ≥ 0, (4.3)

where λ is the average signal to noise ratio. Substituting equation 4.3 in 4.1 and 4.2,

the expected bit error rate (BER) of this communication system can be calculated as

shown in [6] as

Pe,BPSK =
1

2
(1−

√
λ

1 + λ
). (4.4)

If the generators produce processes that are exactly Rayleigh distributed, the

BER of the simulated systems will have the same BER as given by equation 4.4.
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Fig. 9. Cumulative distribution of fading coefficients generated by different methods

The IDFT method and the WGN filtering method are expected to produce Rayleigh

distributed output. This is because their generation method involves just linear pro-

cessing of complex Gaussian noise, which will produce colored, but still Gaussian

distributed output, the magnitude of which will have a Rayleigh distribution. Hence

simulations having these Rayleigh fading generators will have the expected BER. But

the sum of Sinusoid methods will produce Rayleigh fading processes only if infinite

number of oscillators are used. This is ilustrated in the Figures 9 and 10.

If a finite number of oscillators are used, the simulations will produce BER curves

that are slightly different from the expected curve. The deviation from the expected
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Fig. 11. BER curves for BPSK modulation in Rayleigh fading environment and AWGN

using the IDFT method and filtering WGN method

value decreases with the increase in the number of oscillators. The results of the

simulation are shown in Figures 11, 12 and 13. It can be seen that as SNR increases,

the simulation results from the Jakes methods deviate more from the expected values.

It can be seen that both the Jakes generators produce a BER curve that is lower

than the expected value. Similar results can be seen for other modulation techniques

like 16-PSK and square 16-QAM. The results of these simulations are shown in Figures

14 and 15.

2. Autocorrelation function

The autocorrelation function and the spectrum of the fading process generators are

two important and correlated characteristics of the Rayliegh fading process. At

present there is no evidence to relate how the difference in the spectrum of the gen-
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erated process and expected spectrum will affect the result of a simulation. But a

difference in the autocorrelation function might affect the simulation results. Before

how autocorrelation affects the bit error rate performance is discussed, the concepts

of channel coding and interleaving have to be described.

When information is transmitted over a channel in the presence of noise, errors

will be introduced. In digital communications, channel coding is a pre-transmission

mapping applied to a digital signal, designed to detect or correct these errors. Over a

period of years, different kind of channel coding techniques have been introduced to

develop more powerful codes that correct more errors with lesser redundancy intro-

duced to the transmitted signal [3]. Block codes (n,k,t) take a block of k bits at a time

and code them into n bit blocks. They are capable of correcting up to t bit errors. The

factor k/n is a measure of the efficiency of the code. There is no correlation between
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the coding of one block to the next. The BCH code (Bose-Chaudhuri-Hochquenghem

code) is a linear cyclic code capable of correcting multiple errors. In BCH codes, n

is usually of the form 2m-1. The Golay code (23,12,3) is one other code which can

correct upto 3 errors per block. The simulated transmitter is shown in Figure 16.

In wireless fading channels, bit errors occur in bursts. So, the blocks in deep

fades have too many errors which overwhelm the error correction capability of the

channel codes while blocks where the channel conditions are good hardly have any

errors. To spread the errors among the blocks so that the errors can be corrected by

the channel decoder, a technique called interleaving is used. In this process, at the

transmitter end, bits are filled in a matrix one row at a time and then read column

wise. This process makes adjacent bits move far away in time, hence distributing the

burst errors among different codes. At the receiver end, the reverse process is followed

to retrieve the original bitstream. The size of the interleaving matrix determines how

far the adjacent bits are separated in time. The simulated receiver is shown in Figure

17.

If the communication system to be simulated implements a block coding scheme
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with large interleaving blocks, the autocorrelation between the bits in the same coding

block affects the result of the simulation. So, it is necessary to make sure that the

autocorrelation of the generated process has the exact ACF as the expected one from

time difference zero until the maximum time difference between the bits in the same

coding block.

The ACF for the fading processes generated by different generators are shown

in Figures 18 and 19. The ACF’s of the processes generated by the Jakes method

follow the Bessel function to a longer time difference if the number of oscillators are

increased. In fact, it was found that the time difference up to which the ACF’s match

was approximately directly proportional to the number of oscillators. The ACF’s

of the processes generated by the IDFT method, on an average will closely follow

the Bessel function. For the filtering of Gaussian noise method, the time difference

up to which the ACF follows the Bessel function can be increased by increasing the
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order of the AR filter that is being used by increasing the subsampling factor. Even

though both can be increased independently, it should be noted that increasing the

subsampling factor beyond 100 will cause the ACF to deviate from the Bessel function.

An increase in the order of the analog filter beyond three does not give any substantial

improvement in the ACF of the process generated and the small improvement does

not justify the increase in complexity.

For example, if a BCH code (127,50,13) is simulated in a Rayleigh fading en-

vironment with AWGN along with interleaving block size of 127*4, the maximum

time delay between two bits in the same coding block is 508T, where T is the time

period of a bit. When simulating this system, the Rayleigh fading process generated

should have an ACF that closely follows the Bessel function at least up to 508T to

give an accurate result. Baseband simulations were run for this communication sys-
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Fig. 20. Simulated block error rates for BCH(127,50,13) code with 127*4 interleaving

matrix

tem implementing BPSK modulation with T = 10−4s and sampling frequency for the

process fs = 104/s and doppler frequency fd = 200Hz. For the filtering of Gaussian

noise method, a 45th order AR filter with a subsampling factor of 9 was used. To

simplify the simulation, only block error rate was calculated (a block error for this

coding scheme occurs when there are more than 13 errors in a coded block of 127

bits). For this simulation, there are no formulas to give the correct expected results.

The results of the simulation are shown in Figure 20.

It can be seen that inspite of the difference in autocorrelation functions in the

fading processes generated between the method using the 3rd order filter and the

IDFT method, the block error rates simulated are nearly identical. To be sure of this

result more simulations were run by reducing the maximum time delay between two
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Fig. 21. Simulated block error rates for Golay code with 23*10 interleaving matrix

bits in the same coding block from 508T to 230T (Golay coded system (23,12,3) with

23*10 interleaving matrix size) and 23T (Golay coded system with no interleaving).

The results of these simulations are shown in Figures 21 and 22. From these results

it can be said that small differences in autocorrelation beyond the first two lobes do

not affect the simulation results.

To show that large differences in autocorrelation do make a difference, a simula-

tion was run with Rayleigh fading coefficients generated from a 15th order AR filter,

which was designed to produce the autocorrelation shown in Figure 23. The coding

scheme used is BCH (127,8,31) code with no interleaving. The difference in results

for simulation results using the IDFT method and the filtering of WGN with the 15th

order AR filter is shown in Figure 24.
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3. Fade duration and level crossing rate

The fade duration and the level crossing rate characteristics of the Rayleigh fading

process are interrelated. If a particular generation method does produces a process

that has a higher fade duration, that would mean that any simulation of a commu-

nication system using this method will yield a result with more number of errors in

each burst of bit errors, though the total number of bit errors over a long period of

time will be the same if the process is still Rayleigh distributed. Directly opposite

will be the effect if the process has a lower fade duration.

To compare these two properties of the processes generated, one thousand pro-

cesses were independently generated for each technique and the Level crossing rate

and the fade duration values were calculated. Each process was 300,000 points long

with sampling frequency 3 ∗ 104Hz and maximum Doppler frequency of 200Hz. It

was noted that at higher values (around 0.1*rms), the processes from all the methods

had the expected level crossing rates. But at very low levels (around 0.01*rms), this

was not the case. Two set of simulations were run. In the first one, the level crossing

rate and fade duration were calculated for a level of 0.3*rms and in the next one, the

same were calculated for a level of 0.02*rms. The numbers 0.3 and 0.02 were chosen

just to give a perspective of the results. The results are given in Table I. Note that

all the values shown in the table are normalized to the expected values.

It can be seen from the results that all the generation methods produce results

that closely follow the expected results. The closest results are produced by the

filtering WGN method and the IDFT method. The sum of sinusoids methods produce

results closer to the expected results as the number of oscillators are increased.
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Table I. Level crossing rate and fade duration of the Rayleigh fading processes got

from different generators and normalized to the expected values

Generation method level=0.02*rms level=0.3*rms

Level cross-

ing rate

Fade

duration

Level cross-

ing rate

Fade

duration

Jakes

34 oscillators 0.8107 1.1754 0.999 0.965

66 oscillators 0.8223 1.1935 0.995 0.985

Jakes2

8 oscillators 0.7576 1.1980 0.921 0.991

16 oscillators 0.7806 1.2061 0.958 0.996

32 oscillators 0.7953 1.2265 0.971 1.008

IDFT method 0.8343 1.1842 0.9982 1.0009

Filtering WGN

3rd order analog filter 0.8299 1.1968 1.014 0.985

40th order AR filter 0.8352 1.2069 0.9996 0.9999

4. Computational complexity

Other than the previously discussed factors, one other important consideration while

choosing a generation method is the time taken to generate the process. To gener-

ate N Rayleigh faded variates, the Jakes method with Ns oscillators requires 2NNs

Trigonometric calculations and 2NNs floating point additions. For the same number

of points and oscillators, Jakes2 method requires 2N(Ns + 1) trigonometric calcu-

lations, 2N floating point multiplications and 2 ∗ NNs floating point additions. It
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has to be noted that if the Jakes method uses Ns oscillators, it is equivalent to the

Jakes2 method using 1
2
(Ns

2
− 1) oscillators. To generate N variates using the IDFT

method, N
2

log2 N complex multiplications and N log2 N complex additions. Due to

this O(N log2 N) complexity of this method, the number of calculations per sample

increases as the N increases. But the inherent efficiency of IFFT method offsets this

effect for most practical sequence lengths. For the filtering of WGN method, 2N

normally distributed variates have to be generated. It also requires (2N*order of fil-

ter) floating point multiplications and (2N*order of filter) floating point additions. If

subsampling is used, this number will increase according to the lowpass filter used for

the interpolation.

To compare the computational complexity involved in the different fading process

generators, Rayleigh fading processes of length 200,000 points were generated using

the different methods. The sampling frequency used is 3 ∗ 104Hz and the maximum

Doppler frequency is 200Hz. The processes were generated in Sun machines with 400

MHz SUNW, UltraSPARC-IIi proccessors and 512 MB RAM memory and Solaris 9

operating system using Matlab and the time for generating each process was noted

down. The results are displayed in Table II. It should be noted that these numbers

are only indicative and will vary depending on the efficiency of the programs used.

It can be seen that the Jakes methods are the most time consuming methods

and the IDFT method and filtering WGN method are pretty quick. Increasing the

order of the AR filter beyond 30 makes the filtering WGN method slower than the

IDFT method.
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Table II. Time required to generate 200,000 points of Rayleigh distributed variables

using different generation methods

Generation method Generation time

Jakes

34 oscillators 16.98s

66 oscillators 37.2s

Jakes2

8 oscillators 7.07s

16 oscillators 14.4s

IDFT method 1.43s

Filtering of Gaussian noise

3rd order analog filter 1.25s

40th order AR filter with 3*3*3 subsampling factor 2.24s
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CHAPTER V

CONCLUSION

The three types of generators were compared using the characteristics of Rayleigh

fading process, distribution, autocorrelation function, fade duration and level crossing

rate and computational complexity.

When comparing the different process generators, it was seen that the filtering

of WGN method has good Level crossing rate and Fade duration properties. The

autocorrelation property of the processes generated by this method can be made

to follow the ideal ACF closely until any point we want at the cost of increase in

complexity. It has also been shown that the order of the filter can be increased

to very high values like 400 with no loss of stability. The computation time for

the process generation for the filtering of WGN method is higher only to the IDFT

method, and that too only if the order of the filter is greater than 30. One of the

disadvantages of the filtering of WGN method is that it requires some time at the

start of the simulation to decide the order of the filter and also to design the filter. But

this time is spent only once, and the filter thus designed can be used for generating

all the processes for simulating a particular communication sytem. But if systems

with long blocks of codes require long filters and that increases the complexity of the

simulation.

The two Jakes methods discussed have the same advantages in the properties

like ACF, Level crossing rate and fade duration. But the problem here is that the

process generated by this method will have a perfect Rayleigh distribution only if

infinite number of oscillators are used. The computational time to generate a process

with this method is the highest of the three methods. The generated process tends

to be deterministic and repeat itself after some time.



44

The IDFT method is one of the fastest methods to generate the Rayleigh fading

process and it also has the best autocorrelation property of all the three generators.

But this is not necessary for time differences beyond a particular point, which varies

with each communication system. Also, the Level crossing rate and the fade duration

properties of the processes generated by this method are very close the theoretical

values. But the IDFT method requires all the required samples to be generated in one

single IDFT operation. This increases the required memory to generate the variates.

While interpolation can be used to alleviate this problem in many practical cases,

that would mean an increase in the computation time. The advantage of the Sum

of Sinusoids methods and the filtering of WGN methods is that, the process samples

can be generated as and when required and hence are much less demanding on the

memory requirement on the working stations. These methods can be used easily in

simulation softwares like simulink which simulate one point at a time.

In summary, from the various measures for comparing of the different Rayleigh

fading process generators, it can be said that the choice of Rayleigh fading generators

depends on the type of communication system to be simulated. For simulating simple

systems like BPSK modulated data with no coding, the magnitude of the complex

Gaussian noise is an accurate Rayleigh fading generator. For coded systems, IDFT

method and filtering of WGN method are good Rayleigh fading process generators.

But the IDFT method is time consuming while simulating long Rayleigh fading pro-

cesses.
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