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Abstract—The article is devoted to some critical problems of 

using Bayesian networks for solving practical problems, in which 

graph models contain directed cycles. The strict requirement of 

the acyclicity of the directed graph representing the Bayesian 

network does not allow to efficiently solve most of the problems 

that contain directed cycles. The modern theory of Bayesian 

networks prohibits the use of directed cycles. The requirement of 

acyclicity of the graph can significantly simplify the general 

theory of Bayesian networks, significantly simplify the 

development of algorithms and their implementation in program 

code for calculations in Bayesian networks.. 
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I. INTRODUCTION 

HE theory of Bayesian Networks is nowadays widely 

used in different fields of science. The model built on this 

theory can be successfully used for a wide range of problems 

which contain various types of uncertainties. They find 

application in machine translation [1], medicine [2, 3], industry 

[4] or finance [5] to mention most important examples. The 

results of solving these problems, in most cases, are quite good 

and very realistically reflect reality. 

Bayesian networks, as a tool for studying models with 

uncertainties, is considered by many authors. Pearl J. was the 

first one who considered more completely the Bayesian 

networks tool in his works [6] and [7]. Moreover, the 

requirement of acyclicity of directed graphs representing 

Bayesian networks was emphasized in these papers. The 

presence of cycles in directed graphs has really complicated 

both the theory of Bayesian networks construction and the 

practice of using the constructed models, although the presence 

of graph models with cycles was not denied. Fulfilment of the 

requirement of acyclicity allowed to develop many very 

successful software products to work with Bayesian networks 

(BayesiaLab, AgenaRisk, Hugin Expert etc.). 

Further development of Bayesian networks can be 

considered as the theory of Bayesian algebraic networks, the 
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information can be found in [8 – 10]. In this theory, the 

presence of directed cycles is already allowed, although many 

problems are still unsolved.  

Problems and approaches to solving problems which models 

contain directed cycles are well described in various papers, 

for example, [9]. Even if there is one single directed cycle 

causes a lot of problems. The easiest option if we have several 

cycles that the cycles do not intersect. We have not found 

problems with intersecting cycles in practice or at least we 

have not found articles with similar models. In this paper we 

will consider only the simplest cases - single cycle models. 

II. MAIN DEFINITIONS 

Bayesian networks (BN) are a convenient tool for describing 

complex processes with various kinds of uncertainties. The 

Bayesian network theory is described quite well in [10, 11, 

12]. Bayesian network theory is based on some sections of 

probability theory and graph theory [13,14]. The definitions 

and concepts of graph theory used in BN theory can be found 

in [15, 16]. The necessary concepts in probability theory can 

be found in [17, 18]. Features of Bayesian networks in 

BayesiaLab application can be found in [19]. 

Nevertheless, we still give some definitions from the theory 

of BN that are necessary for more comfortable reading of this 

article. 

Definition 1. A graph (undirected graph) is a pair  

G = (V(G),E(G)) 

where E(G) – is a symmetric relation on the set of vertices 

V(G), called the adjacency relation. If a given relation exists on 

a pair of vertices a and b of the graph, then they say that these 

vertices are adjacent, or that these vertices are connected by an 

edge. Typically, an edge is denoted by {a,b} or ab. In the 

undirected graph {a,b}={b,a}. 

Defn 2. Two edges are called adjacent if they have a mutual 

vertex.  

Defn 3. If the vertex x is the end of the edge e, then we will 

say that x and e are incident.  

Defn 4. The degree of a vertex x of a graph G is the number 

of edges that are incident to the vertex x. The degree of a 

vertex x of a graph G denotes as dG(x). 

Defn 5. Graph with n vertices is called complete and denoted 

as Kn if any 2 vertices of this graph are connected by edge. 

Defn 6. The set of vertices U ⊂ V(G), any two of which are 

adjacent in the graph G, generate a subgraph called a clique. 

Defn 7. A graph is called directed or digraph if each edge of 

the graph has a direction. The edge of the graph in this case is 

called the arc. 

Defn 8. The sequence from vertex a0 to vertex an in a directed 

graph (in a Bayesian network) is an alternating sequence of 

vertices and arcs of the form 

𝑎0, {𝑎0  𝑎1}, 𝑎1, {𝑎1  𝑎2}, 𝑎2, {𝑎2  𝑎3},⋯ , 𝑎𝑛. 
Defn 9. The path is a sequence without repeating arcs. 
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Defn 10. A cycle is a path in which the initial and final 

vertices coincide. 

Defn 11. The vertices a and b of a graph G are called 

connected if there is a path between them in the graph. 

Defn 12. A graph is called connected if any two of its vertices 

are connected. 

Defn 13. A graph is called triangular if it has no cycles 

without chords of length 4 or more. 

Defn 14. A directed graph is called acyclic if it does not have 

directed cycles. 

Defn 15. A Bayesian network is an acyclic directed graph 

with Markov condition. The vertices of the graph are often 

called nodes. Nodes represent some variables that reflect the 

main entities in the developed model. Arcs in a Bayesian 

network define some probabilistic connection between 

corresponding nodes. Sometimes such a relationship is causal. 

The reason is the node where the directed arc comes from, the 

consequence is the node where the oriented arc comes.  

However, sometimes real models may contain directed 

cycles. Calculations in such networks are fundamentally 

different from calculations in ordinary Bayesian networks. 

Defn 16. A skeleton of a Bayesian network is a graph 

obtained from a Bayesian network by replacing arcs with 

edges.  

Defn 17. If an arc goes from the vertex A to the vertex B, then 

A is called the parent of B, and B is called the child vertex of 

the vertex A. 

Defn 18. Let Y be some subset of vertices of a Bayesian 

network. P(Y) is often denoted as the set of all parents belongs to 

Y. C(Y) is often denoted as the set of all children belongs to Y. 

Defn 19. If there is an oriented path from the vertex A to the 

vertex B, then A is called the ancestor of B, and B is called the 

descendant of A. 

Defn 20. Two nodes are called connected if there is a 

sequence between them. 

Defn 21. If a vertex has no ancestors, then its local 

probability distribution is called unconditional, otherwise 

conditional. 

Defn 22. If the nodes are not connected by an arc, then these 

nodes are considering as conditionally independent.  

Defn 23. Topological node numbering of a Bayesian network 

is a node numbering such that the number of any node is 

greater than the number of its parent. 

Defn 24. Evidence – statements of the type “event in the node 

has occurred”. 

Defn 25. Hard evidence – statements like “an event in a node 

must happen”.  

Defn 26. Soft evidence – statements of the form “an event in 

a node must occur with a given probability”. 

Defn 27. Bayes formula: 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 

Defn 28. Law of total probability. Let there is a complete set 

of pairwise incompatible events Aj. Then, for any event B we 

have the following formula for calculating its  probability: 

𝑃(𝐵) =∑𝑃(𝐵|𝐴𝑗)𝑃(𝐴𝑗)

𝑛

𝑗=1

 

 

Defn 29. Bayes formula (extended): 

𝑃(𝐴𝑘𝐵) =
𝑃(𝐵|𝐴𝑘)𝑃(𝐴𝑘)

∑ 𝑃(𝐵|𝐴𝑗)𝑃(𝐴𝑗)
𝑛
𝑗=1

 

III. CYCLES IN BAYESIAN NETWORKS 

Let assume for all further reasoning, the Bayesian Networks 

variables (nodes) have only two states (Y,N). The number of 

states will not change our reasoning, it will only make them 

more complicated. To simplify further considerations, we 

assume that the Bayesian network contains only one directed 

cycle. Networks with several cycles and with intersecting 

cycles are a rather complicated topic and we will not consider 

it in this paper. 

Definition. We say that the directed cycle does not contain 

parents if there are no vertices with parents in this cycle. I.e. 

there are no arcs {a,b}, where a does not belong to the cycle, 

but b belongs to the cycle. 

Definition. We say that the directed cycle does not contain 

child vertices if there are no vertices with children in this 

cycle. I.e. there are no arcs {a,b}, where a belongs to the cycle, 

but b does not belong to the cycle. 

If evidence is not indicated in a Bayesian network with 

directed cycles (hereinafter, simply in a Bayesian network), the 

algorithm for calculating network nodes for cycles with child 

nodes will not differ significantly from the case without child 

nodes. The presence of parents in a directed cycle significantly 

complicates the algorithm for calculating the vertices of a 

Bayesian network. 

If the Bayesian network has received evidence, three cases 

must be distinguished: 

• Vertices which do not belong to the cycle took evidences. 

• Vertices which belong to the cycle took evidences. 

• Both types of vertices, considered above took evidences. 

In our paper we will consider the matter from easy to 

difficult. We will start with the simplest cases of Bayesian 

networks and directed cycles in the networks. Of course, not 

all options will be considered – the maximum volume of the 

article does not allow it. However, the necessary trends in the 

construction of algorithms can be understood. In continuation 

we will consider the simplest networks consisting of a single 

cycle and having neither parents nor child nodes. Let us state 

the general idea of solving these networks. 

A. Variant 1 – Single cycle with 2 nodes 

Let us consider the simplest Bayesian Network, which 

contains 2 variables 𝐴1 and 𝐴2 (Figure 1). These 2 vertices 

form the single cycle. None of these vertices take Bayes 

evidence. 

 

Fig. 1. Single cycle with 2 nodes 

Let 𝑋1𝑌 = 𝑃(𝐴1 = 𝑌) be the probability that the variable 𝐴1 

takes the value 𝑌, and 𝑋1𝑁 = 1 –𝑋1𝑌 = 𝑃(𝐴1 = 𝑁) be the 

probability that the variable 𝐴1 takes the value 𝑁. Conditional 

probabilities for arc {𝐴1, 𝐴2} and arc {A2, A1} are given in 
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Table I and Table II respectively, where (0 ≤ 𝑃1, 𝑃2, 𝑄1, 𝑄2 ≤
1) are some known probabilities. 

 
TABLE I  

CONDITIONAL PROBABILITY TABLE FOR ARC {𝐴1, 𝐴2} 

 A1  = Y A1  = N 

𝐴2  =  𝑌 𝑃1 𝑃2 
𝐴2  =  𝑁 1 − 𝑃1 1 −  𝑃2 

 
TABLE II  

CONDITIONAL PROBABILITY TABLE FOR ARC {𝐴2, 𝐴1} 

 A2  = Y A2  = N 

𝐴1  =  𝑌 𝑄1 𝑄2 

𝐴1  =  𝑁 1 − 𝑄1 1 − 𝑄2 

 

Let us calculate: 𝑋2𝑌 = 𝑃(𝐴2 = 𝑌) the probability that the 

variable 𝐴2 takes the value 𝑌, and 𝑋2𝑁 = 1–𝑋2𝑌 = 𝑃(𝐴2 =
𝑁) – the probability that the variable 𝐴2 takes the value 𝑁. 

𝑋2𝑌 = 𝑋1𝑌 ∙ 𝑃1 + 𝑋1𝑁 ∙ 𝑃2; 

𝑋2𝑁 = 𝑋1𝑌 ∙ (1 − 𝑃1) + 𝑋1𝑁 ∙ (1 − 𝑃2); 
As 𝑋2𝑁 =  1 – 𝑋2𝑌 we can consider only the first equation. 

Using the conditional probability table for the arc {𝐴2, 𝐴1} 
we calculate 𝑋1𝑌 and 𝑋1𝑁. 

𝑋1𝑌 = 𝑋2𝑌 ∙ 𝑄1 + 𝑋2𝑁 ∙ 𝑄2 = (𝑋1𝑌 ∙ 𝑃1 + 𝑋1𝑁 ∙ 𝑃2) ∙ 𝑄1 +

(𝑋1𝑌 ∙ (1 − 𝑃1) + 𝑋1𝑁 ∙ (1 −  𝑃2)) ∙ 𝑄2; 

𝑋1𝑁 = 𝑋2𝑌 ∙ (1–𝑄1) + 𝑋2𝑁 ∙ (1–𝑄2) = (𝑋1𝑌 ∙ 𝑃1 + 𝑋1𝑁 ∙

𝑃2) ∙ (1–𝑄1) + (𝑋1𝑌 ∙ (1–𝑃1) + 𝑋1𝑁 ∙ (1– 𝑃2)) ∙ (1– 𝑄2); 

As 𝑋1𝑁 = 1–𝑋1𝑌 we can consider only the first equation. 

𝑋1𝑌 = 𝑋1𝑌 ∙ 𝑃1 ∙ 𝑄1 + 𝑋1𝑁 ∙ 𝑃2 ∙ 𝑄1 + 𝑋1𝑌 ∙ 𝑄2 − 𝑋1𝑌 ∙ 𝑃1 ∙ 𝑄2
+ 𝑋1𝑁 ∙ 𝑄2 − 𝑋1𝑁 ∙ 𝑃2 ∙ 𝑄2 

Taking into consideration that 𝑋1𝑁 =  1–𝑋1𝑌 we obtain: 

𝑋1𝑌 =  𝑋1𝑌 ∙ 𝑃1 ∙ 𝑄1  +  (1 – 𝑋1𝑌) ∙ 𝑃2 ∙ 𝑄1  +  𝑋1𝑌 ∙ 𝑄2  −
 𝑋1𝑌 ∙ 𝑃1 ∙ 𝑄2  +  (1 – 𝑋1𝑌) ∙ 𝑄2  −  (1 – 𝑋1𝑌) ∙ 𝑃2 ∙ 𝑄2 

or 

𝑋1𝑌 = 𝑋1𝑌 ∙ (𝑃1 ∙ 𝑄1–𝑃2 ∙ 𝑄1 + 𝑄2– 𝑃1 ∙ 𝑄2–𝑄2 + 𝑃2 ∙ 𝑄2)  +
(𝑄2 + 𝑃2 ∙ 𝑄1– 𝑃2 ∙ 𝑄2) 

or 

𝑋1𝑌 ∙ (1 − 𝑃1 ∙ 𝑄1 + 𝑃2 ∙ 𝑄1 + 𝑃1 ∙ 𝑄2 − 𝑃2 ∙ 𝑄2) = 𝑄2 + 𝑃2 ∙
𝑄1– 𝑃2 ∙ 𝑄2 

or 

𝑋1𝑌 ∙ (1 − (𝑃1 − 𝑃2) ∙ (𝑄1 − 𝑄2)) = (1–𝑃2) ∙ 𝑄2 + 𝑃2 ∙ 𝑄1 

so 

𝑋1𝑌 =
(1–𝑃2) ∙ 𝑄2 + 𝑃2 ∙ 𝑄1)

(1 − (𝑃1 − 𝑃2) ∙ (𝑄1 − 𝑄2))
= 

=
(𝑄2 + (𝑄1 − 𝑄2) ∙ 𝑃2)

(1 − 𝑃1 ∙ (𝑄1 − 𝑄2 ) + (𝑄1 − 𝑄2) ∙ 𝑃2 
 

It is easy to verify that both the numerator and the 

denominator in this fraction are positive numbers due to the 

nature of the numbers 𝑃1, 𝑃2, 𝑄1, 𝑄2, and in addition, the 

denominator is greater than the numerator. I.e. 𝑋1𝑌 satisfies 

the condition 0 <  𝑋1𝑌 <  1. The probabilities 𝑋1𝑁, 𝑋2𝑌, 𝑋2𝑁 

are easily expressed through 𝑋1𝑌. 

B. Variant 2 – Single cycle with 2 nodes and evidence 

Let us consider the Bayesian Network above, which contains 

two variables 𝐴1 and 𝐴2. Let one of the vertices has obtained 

an evidence. If it was vertex 𝐴1, then vertex 𝐴2 stops to affect 

vertex 𝐴1 and the arc {𝐴2, 𝐴1} loses its meaning, so we can 

stop to consider it. Vertex 𝐴2 is calculated in the usual way, in 

accordance with conditional probability table of the arc 

{𝐴1, 𝐴2}. If the vertex 𝐴2 has obtained evidence we will have 

similar reasoning. 

C. Variant 3 – Single cycle with 3 nodes 

Let us consider the simplest Bayesian Network, which 

contains 3 variables 𝐴1, 𝐴2 and 𝐴3 (Figure 2). These 3 vertices 

form the single cycle. None of these vertices take Bayesian 

evidence. 

 

Fig. 2. Single cycle with 3 nodes. 

Let 𝑋1𝑌 = 𝑃(𝐴1 = 𝑌) be the probability that the variable 𝐴1 

takes the value 𝑌, and 𝑋1𝑁 = 1 –𝑋1𝑌 = 𝑃(𝐴1 = 𝑁) be the 

probability that the variable 𝐴1 takes the value 𝑁. 

Conditional probability table for arcs {𝐴1, 𝐴2}, {𝐴2, 𝐴3} and 

{𝐴3, 𝐴1} are given in Table III, Table IV, and Table V 

respectively. (0 ≤  P1, P2, Q1, Q2, R1, R2  ≤  1) are some 

known probabilities. 
TABLE III  

CONDITIONAL PROBABILITY TABLE FOR ARC {𝐴1, 𝐴2} 

 A1  = Y A1  = N 

𝐴2  =  𝑌 𝑃1 𝑃2 
𝐴2  =  𝑁 1 − 𝑃1 1 −  𝑃2 

 
TABLE IV  

CONDITIONAL PROBABILITY TABLE FOR ARC {𝐴2, 𝐴3} 

 A2  = Y A2  = N 

𝐴1  =  𝑌 𝑄1 𝑄2 

𝐴1  =  𝑁 1 − 𝑄1 1 − 𝑄2 

 
TABLE V 

CONDITIONAL PROBABILITY TABLE FOR ARC {𝐴3, 𝐴1} 

 A3  = Y A3  = N 

𝐴1  =  𝑌 𝑅1 𝑅2 

𝐴1  =  𝑁 1 − 𝑅1 1 − 𝑅2 

 

Let us calculate the probability that the variable 𝐴2 takes the 

value 𝑌 as 𝑋2𝑌 = 𝑃(𝐴2 = 𝑌)  and 𝑋2𝑁 = 1–𝑋2𝑌 = 𝑃(𝐴2 =
𝑁) – the probability that the variable A2 takes the value N. 

𝑋2𝑌 = 𝑋1𝑌 ∙  𝑃1  + 𝑋1𝑁 ∙  𝑃2; 

𝑋2𝑁 =  𝑋1𝑌 ∙  (1 −  𝑃1)  + 𝑋1𝑁 ∙  (1 −  𝑃2); 
As 𝑋2𝑁 = 1–𝑋2𝑌 we can consider only the first equation. 

Using the conditional probability table for the arc {𝐴2, 𝐴3} 
we calculate 𝑋3𝑌 and 𝑋3𝑁. 
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X3Y = X2Y ∙ Q1 + X2N ∙ Q2 = (X1Y ∙ P1 + X1N ∙ P2) ∙ Q1 +
(X1Y ∙ (1 − P1) + X1N ∙ (1 − P2)) ∙ Q2; 

X3N =  X2Y ∙  (1 − Q1)  + X2N ∙ (1 − Q2)  =  (X1Y ∙  P1 +
X1N ∙  P2) ∙  (1 − Q1)  + (X1Y ∗  (1 −  P1)  +  X1N ∙  (1 −
P2))  ∙  (1 – Q2); 

As 𝑋1𝑁 = 1–𝑋1𝑌 we can consider only the first equation. 

X3Y = X1Y ∙ (P1 ∙ Q1– P1 ∙ Q2 + Q2) + X1N ∙ (P2 ∙ Q1– P2 ∙
Q2 + Q2) 

X3N = 1 − X1Y ∙ (P1 ∙ Q1– P1 ∙ Q2 + Q2) − X1N ∙ (P2 ∙ Q1– P2 ∙
Q2 + Q2) 

Using the conditional probability table for the arc {𝐴3, 𝐴1} 
we calculate 𝑋1𝑌 and 𝑋1𝑁. 

X1Y = X3Y ∙ R1  +  X3N ∙ R2 

X1N = X3Y ∙ (1 −  R1)  + X3N ∙  (1 − R2) 

Substituting the previously found values for 𝑋3𝑌 and for 

𝑋3𝑁 into the first equation, we obtain: 

X1Y = X1Y ∙ (P1 ∙ Q1– P1 ∗ Q2 + Q2) + X1N ∙ (P2 ∙ Q1– P2 ∙
Q2 + Q2)) ∙ R1 + (1 − X1Y ∙ (P1 ∙ Q1– P1 ∙ Q2 + Q2) − X1N ∙
(P2 ∙ Q1– P2 ∙ Q2 + Q2)) ∙ R2 

( ) ( )( )

( ) ( )( )

1 1 1 1 1 2 2 1 2 1 2 2 2 1

1 1 1 1 2 2 1 2 1 2 2 2 2

 + + 

1  

X Y X Y P Q P Q Q X N P Q P Q Q R

X Y P Q P Q Q X N P Q P Q Q R

=    + +    +  +

+ −   −  + −   −  + 
 

or 

( ) ( ) ( )( )

( ) ( ) ( )( )

1 1 1 1 1 2 2 1 2 1 2 2 2 1

1 1 1 1 2 2 1 2 1 2 2 2 2

 + 1 + 

1 + 1 + 

X Y X Y P Q P Q Q X Y P Q P Q Q R

X Y P Q P Q Q X Y P Q P Q Q R

=    + + −    +  +

+ −    + + −    + 
 

or 

 X1Y =  (X1Y ∗ (P1  − P2) ∗ (Q1  − Q2) ∗ (R1  − R2)) +

 ((P2 ∗ Q1 – P2 ∗ Q2  +  Q2) ∗ R1  +  (1 – P2 ∗ Q1  + P2 ∗

Q2 – Q2) ∗ R2) 

X1Y ∗ (1 – (P1  − P2) ∗ (Q1  −  Q2) ∗ (R1  − R2)  =  P2 ∗
(Q1  −  Q2) ∗ (R1  −  R2)  + Q2 ∗ (R1 – R2)  + R2 

 X1Y =
P2∗(Q1−Q2)∗(R1−R2) + Q2∗(R1 – R2) +R2 

1 – (P1−P2)∗(Q1−Q2)∗(R1−R2)
 

It is easy to verify that both the numerator and the 

denominator in this fraction are positive numbers due to the 

nature of the numbers 𝑃1, 𝑃2, 𝑄1, 𝑄2, 𝑅1, 𝑅2, and in addition, the 

denominator is greater than the numerator. I.e. X1Y satisfies the 

condition 0 <  X1Y <  1. 

The probabilities X1𝑁, X2𝑌, X2𝑁, X3𝑌, X3𝑁 are easily 

expressed in terms of X1Y. 

D. Variant 4 – Single cycle with 3 nodes and evidence 

Let us consider the Bayesian Network above. Let one of the 

vertices has obtained an evidence. If it was vertex A2 then 

vertex A1 stops to affect vertex A2 and the arc {A1, A2} loses its 

meaning, so we can stop to consider it. Vertex A1 is calculated 

in the usual way, in accordance with conditional probability 

table for the arc {A3, A1}.  

E. Variant 5 – Single cycle with N nodes 

Let us consider the simplest Bayesian Network, which 

contains 𝑁 variables A1, A2, A3, … , AN  (Figure 3). These 𝑁 

vertices form the single cycle. 

 

 

Fig. 3. Single cycle with N nodes. 

None of these vertices take an evidence. In this network, 

each vertex has exactly one parent and exactly one child 

vertex. Consideration of the previous options shows that 

setting conditional probability tables for each arc in non-trivial 

cases uniquely determines the probability value at each vertex. 

We denote the elements of the conditional probability tables 

by: 

p(A2|A1), p(A2|A1), p(A3|A2), p(xA3|A2), … , p(AN|AN−1),  

p(AN|AN−1), p(A1|AN), p(A1|AN)  

Arguing similarly to the previously considered variants, we 

can construct the following system of linear equations: 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

1 1 1

2 2 1 1 2 1 1

3 3 2 2 3 2 2

1 1 1 1

p p p p 1 p

p p p p 1 p

p p p p 1 p

p p p p 1 p

N N N N

N N N N N N N

A A A A A A A

A A A A A A A

A A A A A A A

A A A A A A A− − − −

 =  +  −

 =  +  −



=  +  −


 =  +  −



 

Let us denote 

𝑎𝑘𝑗 = p(Ak|Aj) − p(Ak|Aj) 

We obtain the following system of equations: 

{
 
 
 

 
 
 p
(A1) + 𝑎1𝑁 ∗ p(AN) = p(A1|AN)               

𝑎21 ∗ p(A1) + p(A2) = p(A2|A1)                 

𝑎32 ∗ p(A2) + p(A3) = p(A3|A2)                 

𝑎42 ∗ p(A3) + p(A4) = p(A4|A3)                 
…                                                             

𝑎𝑁,𝑁−1 ∗ p(AN−1) + p(AN) = p(AN|AN−1)

 

Or matrix equation: 

𝑨 ∗ 𝑷 = 𝑩 

(

 
 
 
 

1 0 0 0 0 … 𝑎1𝑁
𝑎21 1 0 0 0 … 0
0 𝑎32 1 0 0 … 0
0 0 𝑎43 1 0 … 0
0 0 0 𝑎54 1 … 0
… … … … … … …
0 0 0 0 0 𝑎𝑁,𝑁−1 1 )

 
 
 
 

∗

(

 
 
 
 
 

p(A1)

p(A2)

p(A3)

p(A4)

p(A5)
…

p(AN))

 
 
 
 
 

=          

=

(

 
 
 
 
 
 

p(A1|AN)

p(A2|A1)

p(A3|A2)

p(A4|A3)

p(A4|A3)
…

p(AN|AN−1))

 
 
 
 
 
 

 

Determinant is equal to: 

𝑑𝑒𝑡 𝑨 =  1 +  (−1)𝑁  ∗  𝑎1𝑁 ∗  𝑎21  ∗  𝑎32  ∗  … ∗  𝑎𝑁,𝑁−1 
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This determinant in invertible cases is greater than 0. Thus, 

there is a unique solution for this system, i.e. the probabilities 

of all vertices of the cycle are uniquely determined. 

From examples above we can see that the values at the nodes 

of the cycle are uniquely determined by the conditional 

probability tables of arcs of this cycle. Therefore, any 

additional condition may cause some contradictions in the 

Bayesian network. For example, if one of the vertices of the 

cycle took an evidence, this evidence will most likely not 

coincide with the decision obtained in the way above. 

However, in the process of solving a practical problem, it is 

necessary to somehow resolve the contradictions. The solution 

to the contradictions usually consists of some simplification of 

the Bayesian network. If a node took a certificate, for example, 

it is possible to break this cycle by removing one of the arcs of 

the cycle. The question is: which arc of the cycle is better to 

remove. By removing one or another arc of the cycle, we get 

rid of contradictions, but the solution (the value of the 

probabilities in the nodes of the Bayesian network) may 

depend on which arc we removed. It’s more natural and more 

convenient for calculations to remove an arc that comes to a 

vertex that has taken an evidence. 

There are other ways to remove the contradictions. For 

example, to adjust the calculation of the influence of evidence 

on the following vertices. You can, for example, limit the 

number of vertices affected by the node that took an evidence, 

and leave the remaining values of the nodes of the cycle as 

they were without an evidence. 

If several nodes of the cycle took evidences at the same time, 

then the amount of contradictions increases significantly, 

which means that a more substantial adjustment of the initial 

Bayesian network is required. There are many options for 

adjusting the source network, you just need to choose the 

correct paradigm of adjustment. 

Effective and correct adjustment of the original Bayesian 

network can become one of the areas of machine learning in 

the field of Bayesian networks. 

This concludes our consideration of the simplest cases when 

the network consists of a single cycle and we move on to more 

complicated examples. 

F. Variant 6 – Single cycle with N nodes and child vertices 

In this variant we will consider the case when directed cycle 

has child vertices. Let us consider the simplest Bayesian 

Network, which contains 𝑁 variables 𝐴1, 𝐴2, 𝐴3, … , 𝐴N, 

forming the only directed cycle, as well as the vertex 𝐵1. 

Vertex 𝐵1 here is a child vertex of one of the vertices of the 

cycle, for example, of the vertex 𝐴1 (Figure 4).  

The choice of a vertex does not violate the generality of 

reasoning, since the vertices of the cycle can be simply 

renumbered as necessary. 

In the absence of evidence, the presence of a child node does 

not affect the calculations. The calculation scheme is as 

follows: 

• in the usual way described earlier, we calculate the 

vertices of the directed cycle; 

• then we calculate the child vertex. 

 

Fig. 4. Cycle with N nodes and child vertex. 

There are no additional difficulties if the vertex 𝑩𝟏 has 

several parents. Calculation scheme is the same. There are no 

additional difficulties if the directed cycle has several children 

vertices 𝑩𝟏, 𝑩𝟐, 𝑩𝟑, … , 𝑩𝑴. Calculation scheme is the same. 

If some of the vertices of the cycle took an evidence, this 

also will not lead to additional difficulties, since in any case 

the vertices of the cycle will be calculated earlier than the child 

vertices. 

G. Variant 7 – Single cycle with child vertices and evidence 

Let us consider the previous example, but when vertex 𝐵1 

took an evidence. The propagation should be as follows: 

• Based on the evidence of vertex 𝐵1 and the conditional 

probability table of vertex 𝐴1, we calculate the vertex 𝐴1. 

• Based on the calculated data of the vertex 𝐴1 and the 

conditional probability tables of the vertices 𝐴2 and 𝐴𝑁, 

we calculate the vertices 𝐴2 and 𝐴𝑁. 

• Based on the calculated data of the vertex A2 and the 

conditional probability tables of the vertices A3 we 

calculate the vertex 𝐴3. Based on the calculated data of 

the vertex 𝐴𝑁 and the conditional probability tables of the 

vertices 𝐴𝑁−1 we calculate the vertex  𝐴𝑁−1. 

• Based on the calculated data of the vertex A3 we 

calculate the vertex A4. Based on the calculated data of 

the vertex AN−1 we calculate the vertex  AN−2. Etc. 

However, the values at the vertices of the directed cycle are 

uniquely determined by the conditional probability tables and 

this solution may not coincide with the solution just found. 

This contradiction can only be eliminated by simplifying the 

construction of the Bayesian network, for example by the 

methods described in variant 5. 

If vertex 𝐵1 has several parents, the amount of contradictions 

increases. A more significant simplification of the Bayesian 

network structure may be required. 

If the directed cycle has several child nodes, the volume of 

contradictions increases even more. We need clear rules to 

adjust the structure of the Bayesian network in such cases. 

The presence of a parent at any vertex of the cycle in the 

absence of evidence does not change the method for 

calculating the probabilities of vertices of a directed cycle. If 

any vertex of the cycle has several parents, the form of the 

matrix equation will remain the same, but the coefficients and 

constant terms will be calculated differently. 

If several vertices of the oriented cycle have parents, the 

general form of the matrix will also not change. 

We can make following conclusions: 

• In the absence of evidence, the presence of parents at the 

vertices of the cycle does not change the method of 

calculating the probabilities of the vertices of the cycle. 
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• In the absence of evidence and the presence of parents at 

the vertices of the cycle, the probabilities of the vertices 

of the cycle are uniquely determined. 

H. Variant 8 – Single cycle and parents with evidence 

Let us consider the simplest Bayesian Network, which 

contains the cycle with 𝑁 vertices 𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑁, that has 𝑀 

parents 𝐵1, 𝐵2, 𝐵3, … , 𝐵𝑀  (Figure 6). Let some parents take 

evidences. 

 

Fig. 6. Cycle with N nodes and M parent vertex 

The arc between the parent vertex and the vertex (vertices) 

of the directed cycle means the dependence of the vertex 

(vertices) of the cycle on the parent vertex. Moreover, for a 

given arc (or arcs) it does not matter how the value was 

obtained at the parent vertex. This can be: 

• Marginal probability of a parent vertex. 

• Parent vertex probability can be calculated in previous 

steps. 

• Parent vertex took a certificate. 

Therefore, the method for calculating the vertices of a 

directed cycle will remain the same as in variant 8. In this case, 

the number of parent vertices of the directed cycle does not 

matter, does the vertex have one or more parents [3], is the 

parent vertex the parent of one or more vertices of the directed 

cycle. The only important that the parent vertices of the cycle 

are calculated before calculating the vertices in the cycle. 

IV. CONCLUSIONS 

In the process of developing models of real processes using 

Bayesian networks, sometimes it becomes necessary to include 

a directed cycle in the network. The classic Bayesian network 

theory forbids the use of directed cycles. However, the 

rejection of directed cycles can sometimes lead to unnecessary 

simplifications of the model. In the theory of Bayesian 

algebraic networks, the authors have already considered the 

possibility of using directed cycles. However, the theory of 

Bayesian algebraic networks is rather fundamental and 

difficult to use as a model for solving practical problems. 

This paper is considering the possibility of using simple 

directed cycles in Bayesian networks. We consider and 

analyzed 8 variants, covering the main ways of entering a 

directed cycle in a Bayesian network and methods for 

calculating the probabilities of the cycle vertices.  
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