West Chester University

Digital Commons @ West Chester University

Sustainability Research & Practice Seminar Sustainability Research & Creative Activities @ WCU

4-14-2021

Environmental Health - The Impact of Oil Sands Mining on Peatland Ecosystems in Alberta, Canada

Melanie A. Vile

Follow this and additional works at: https://digitalcommons.wcupa.edu/srca_sp

Part of the Sustainability Commons, and the Terrestrial and Aquatic Ecology Commons

Boreal Peatland Ecosystems of Alberta Canada: Impacts of Climate Change & Oil Sands Mining

Melanie. A. Vile Department of Health West Chester University WCU Sustainability Forum, April 14, 2021

Boreal Peatland Ecosystems of Alberta Canada: Impacts of Climate Change & Oil Sands Mining

- What are Peatland Ecosystems?
- Peatland Ecosystem Services
- Climate Change Impacts on Peatlands
- Oil Sands Mining in Alberta
- Past, Current & Future Work

What are Peatlands?

Rich Fen

Where are Boreal Peatlands Found?

Total Area = 4,000,000 km²; Boreal Peatland Area = 3,460,000 km²

Countries Containing > 50,000 km²

Boreal Canada Peatland Cover

Total peatland area = $365,160 \text{ km}^2$

Vitt et al. (2000)

The Global Boreal Forest

- Boreal Forest (BF) occupies ~30% of global forested area
- Most of BF is upland underlain by mineral soil, but 24 % of BF is occupied by peatlands
 - World's largest C storehouse
 ~ 2 x C per area⁻¹ as tropical forests

Global Carbon Stocks

Carbon storage (metric tons / ha)	1 - 100	101 - 200	201 - 300
	301 - 400	> 400	No data

http://earthtrends.wri.org/text/climate-atmosphere/map-227.html

Net Primary Productivity: *Sphagnum* vs. Tropics

NPP tropics*: 170-1700 g C m⁻² yr⁻¹

Vs.

Sphagnum NPP** 100-900 g C m⁻² yr⁻¹

*Houston & Wolverton, 2009, Ecol Mon **Vile et. al 2014

Global Carbon Stocks: Kudos to Peatlands!

Boreas, Greek God of the North Wind Boreal Zone (Mean annual temp 1-3° C

fewer than 120 days mean daily temp >10 °C

Tropical Zone

Mean annual temp 20-30 °C

The entire year!

Peatland Ground Cover is Moss Dominated

Sphagnum growth

Sophisticated Sampling Equipment

Peatland Ground Cover is Moss Dominated

Sphagnum growth

Peatland Ecosystem Services

Source: Millenium Ecosystem Assessment, 2005.

Peatland Provisioning Ecosystem Services

Peatland Provisioning Ecosystem Services: First Nation Peoples

Peatland Supporting & Regulating Ecosystem Services

Source: Millenium Ecosystem Assessment, 2005.

Peatland Ecosystem Services: Carbon Storage

- Peatlands occupy 3 % of earth's land surface
- Yet store ~ 30 % of earth's soil C
- How you ask?

Peatland Cultural Ecosystem Services

Source: Millenium Ecosystem Assessment, 2005.

Peatland Ecosystem Services: Aesthetics

Photo: Kim Scott

Peatland Ecosystem Services: Aesthetics & Function!

Chic décor & Moss powered electricity

Theoretically, any plant could be used, but Felder believes moss is "beautiful and undervalued,"

http://www.utne.com/

Peatland Ecosystem Services

Source: Millenium Ecosystem Assessment, 2005.

Alberta: The Texas of Canada

Oil Sands Deposits in Alberta

Oil Sands Deposits in Alberta

- In 2004 US oil imports from Canada surpassed imports from Saudi Arabia; 2009-Persian Gulf
- As of 2019, 98 % of our oil imports are from Canada
- Oil Sands \rightarrow 1.7 trillion barrels
 - Economically recoverable → 178 Billion or 10%
 - Reserves 3rd largest in World

Oil Sands Mining in Alberta

Roughly 3% of total land area has been mined

Oil Sands Development 1984-2021

1994

Oil Sands Development 1984-2021

1994

EROI of Oil Sands

Nitrogen Pollution: Heavy Haulers

Haul 400 tons, Height 7.6 m, Length 14.5 m, Fuel Capacity 7,000L, Cost: \$5-6 million, Single Tire 4 m high & costs \$35K

- More NOx from Trucks Than Stacks!
 - Oil sands oil contains, on average, 6x more N than conventional oil

Sulfur Pyramids of Alberta

Sulfur Pyramids of Alberta

Total Inorganic Nitrogen 1860, 1990's, & 2050

2950s

Galloway et al. 2004

Research Questions (2000 - present)

- Are peatlands of Alberta currently functioning as net sinks or net sources of atmospheric C?
- How does fire impact peatland C storage?
- How does drought stress impact carbon storage in peatlands?
- Can we use early warning indicator species for monitoring purposes?
- What are the interactive effects of fire and nitrogen pollution on peatland carbon stores?

Peatland Carbon Storage Methods

Peatland Carbon Storage: Results

 As of 2009, peatlands functioning as a net sink for atmospheric C

Postfire carbon balance in boreal bogs of Alberta, Canada

R. KELMAN WIEDER*, **KIMBERLI D. SCOTT***, KATHERINE KAMMINGA*, MELANIE A. VILE*, DALE H. VITT†, TIFFANY BONE†, BIN XU†, BRIAN W. BENSCOTER† and JAGTAR S. BHATTI‡

*Department of Biology, Villanova University, Villanova, PA 19085, USA, †Department of Plant Biology, Southern Illinois University, Carbondale, IL 62901, USA, ‡Canadian Forest Service, Northern Forestry Centre, Edmonton, AB, Canada

Abstract

Boreal peatland ecosystems occupy about 3.5 million km² of the earth's land surface and store between 250 and 455 Pg of carbon (C) as peat. While northern hemisphere boreal peatlands have functioned as net sinks for atmospheric C since the most recent deglaciation, natural and anthropogenic disturbances, and most importantly wildfire, may compromise peatland C sinks. To examine the effects of fire on local and regional C sink strength, we focused on a 12 000 km² region near Wabasca, AB, Canada, where ombrotrophic Sphagnum-dominated bogs cover 2280 km² that burn with a fire return interval of 123 ± 26 years. We characterized annual C accumulation along a chronosequence of 10 bog sites, spanning 1-102 years-since-fire (in 2002). Immediately after fire, bogs represent a net C source of 8.9 ± 8.4 mol m⁻² yr⁻¹. At about 13 years after fire, bogs switch from net C sources to net C sinks, mainly because of recovery of the moss and shrub layers. Subsequently, black spruce biomass accumulation contributes to the net C sink, with fine root biomass accumulation peaking at 34 years after fire and aboveground biomass and coarse root accumulation peaking at 74 years after fire. The overall C sink strength peaks at 18.4 mol Cm⁻² yr⁻¹ at 75 years after fire. As the tree biomass accumulation rate declines, the net C sink decreases to about 10 mol C m⁻² yr⁻¹ at 100 years-sincefire. We estimate that across the Wabasca study region, bogs currently represent a C sink of 14.7 ± 5.1 Gmol yr⁻¹. A decrease in the fire return interval to 61 years with no change in air temperature would convert the region's bogs to a net C source. An increase in nonwinter air temperature of 2 °C would decrease the regional C sink to $6.8 \pm$ 2.3 Gmol yr⁻¹. Under scenarios of predicted climate change, the current C sink status of Alberta bogs is likely to diminish to the point where these peatlands become net sources of atmospheric CO2-C.

- BUT→ changes in fire frequency with no change in air temperature would convert peatlands to a net source of C
- AND → an increase in nonwinter air temperature of 2 °C would decrease the regional C sink by 37 %

Early Warning Indicator Species synoptic survey

Early Warning Indicator Species synoptic survey-Evernia m.

Evernia

N conc. (mg/g)

> 4.5-4.9 5.0-5.4

5.5-5.9 6.0-6.4 6.5-6.9 7.0-7.4 7.5-7.9 8.0-8.4 8.5-8.9 9.0-9.4 9.5-9.9 10.0-10.4 <u>>10.5</u>

N Pollution in China During the COVID-19 Pandemic

Interactive Effects of Fire and N Deposition

N Fertilization in the Bog

N Fertilization in the Fen

Nitrogen Pollution Results

↓ N₂-fixation
↑ Sphagnum magellanicum and shrub NPP
↑ Shrub cover; ↓ Sphagnum fuscum cover
↑ Root biomass and production
Uptake of new N inputs shifts from mainly Sphagnum to mainly shrubs

Atmospheric deposition of

NO3-N

NH4+-N

Shading by shrubs could lead to loss of *Sphagnum* mosses

Oil sands stack and truck NO_v emissions

Net CO₂-C sink function may be compromised

Aberta Environment and Parks

MORDOR TAR SANDS Any questions?