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ABSTRACT

A few studies have carried out the taxonomic and molecular characterization of 

sylvatic mosquito species in Latin America, where some species have been incriminated as 

vectors for arboviruses and parasites transmission. The present study reports the molecular 

characterization of mosquito species in the Sierra Nevada de Santa Marta, a natural 

ecosystem in the Northern coast of Colombia. Manual capture methods were used to collect 

mosquitoes, and the specimens were identified via classical taxonomy. The COI marker was 

used for species confirmation, and phylogenetic analysis was performed using the neighbor-

joining method, with the Kimura-2-Parameters model. Aedes serratus, Psorophora ferox, 

Johnbelkinia ulopus, Sabethes chloropterus, Sabethes cyaneus, Wyeomyia aporonoma, 

Wyeomyia pseudopecten, Wyeomyia ulocoma and Wyeomyia luteoventralis were identified. 

We assessed the genetic variability of mosquitoes in this area and phylogenetic reconstructions 

allowed the identification at the species level. Classical and molecular taxonomy demonstrated 

to be useful and complementary when morphological characteristics are not well preserved, 

or the taxonomic group is not represented in public molecular databases. 
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INTRODUCTION 

The family Culicidae comprises 3,600 species, which are classified in the 
subfamilies Anophelinae and Culicinae. Anophelinae comprises the genera 
Anopheles, Bironella, and Chagasia, while the subfamily Culicinae includes the 
tribes Aedeomyiini, Aedini, Culicini, Culisetini, Ficalbiini, Hoggesiini, Mansoniini, 
Orthopodomyiini, Sabethini, Toxorhynchitini, and Uranotaeniini, comprising 
around 110 genera1. Different viruses have been associated with diseases, such as 
Dengue virus (DENV) that produces over 40,000 deaths every year2 among others. 
The relationship between different taxonomic groups of viruses and mosquitoes is 
ancestral, with a recent description of a huge diversity of insect-specific viruses that 
may constitute the source for the future, leading to emerging viral diseases through 
species jumping from enzootic to epizootic and epidemic cycles3.

Classical taxonomy has allowed us to obtain information about mosquito species 
through the definition of morphological characteristics used in dichotomic keys, 
leading to a clustering that may not always be monophyletic or similar in their 
distribution in ecosystems4. However, as the knowledge of biological species has 
become more detailed, the International Commission on Zoological Nomenclature 
(ICZN) explains what names in species are correct in a family, genus and at the 
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species level and uses a classification of specimens such 
as type series, name-bearing types and other specimens5. 
The presence of cryptic species cannot be separated by 
morphological characteristics6 which also contribute to the 
problem. Molecular systematics is a complementary strategy 
to determine the evolutionary relationship between species 
that have been difficult to determine via morphological 
characteristics , development states, and sexual dimorphism7. 
DNA barcoding was established in 1993 as a strategy to unify 
the use of molecular markers for species identification and 
taxonomic allocation through phylogenetic inference based 
on genetic variability8. The cytochrome oxidase c subunit I 
(COI) gene has been widely used for molecular identification 
and, together with classical taxonomy, is a powerful tool for 
mosquito species demarcation9.

In Colombia, some studies have used DNA barcoding 
through COI, internal transcribed spacer 2 (ITS2), and 
16S subunit genes, which have allowed to characterize the 
phylogenetic relationship of several species belonging to the 
genera Aedes, Anopheles, and Culex10-12. Hematophagous 
mosquitoes involved in arbovirus transmission in the Sierra 
Nevada de Santa Marta (SNSM) have not been extensively 
studied13, and there are no reports that include molecular 
taxonomy. In the present study, we investigated the diversity 
of rainforest mosquito species in a unique ecosystem in 
Colombia using DNA barcoding and classical taxonomy. 
The accurate identification of mosquito species is essential 

to determine the real and potential risk of arboviruses or 
parasites transmission and to implement vector surveillance 
and control programs.

MATERIALS AND METHODS

Study area

Mosquito specimens were collected following the 
technical and ethical approval (CEMIN-6-2017 from the 
Instituto Nacional de Salud, Bogota D.C., Colombia), in 
the SNSM foothills near Guachaca village, corresponding 
to the sylvatic area of Quebrada Valencia - La Piedra 
(11°14’22.6” N, 73°47’58.3” W) at an altitude of 80 meters 
above sea level (Figure 1). The region is characterized by 
bimodal type rains due to the variation in precipitation, 
which decreases in the Southeastern slope and increases 
in the Northern slope, leading to the formation of a 
hydrographic system. Temperatures during the year 
range from 28 °C to less than 0 °C in the highest altitude 
areas, and there is a distribution of eight biomes along the 
SNSM depending on altitude, climate, geographical and 
physicochemical conditions14,15.

Mosquito collections and identification

Mosquitoes were collected during two field expeditions 

Figure 1 - Rainforest in Sierra Nevada de Santa Marta, Colombia: (A) Location of the SNSM rainforest area, (B) Guachaca locality, 
and (C) Quebrada Valencia-La Piedra forest.
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during two days per month, between August to December 
2018, the season with the highest rainfall incidence. Linear 
transects of 2 km were delimited inside the sampling area. 
The collection methods used were manual capture by 
entomological nets and aspirators, between 07:00-12:00 a.m. 
hours and 02:00-04:00 p.m. hours. Collected mosquitoes 
were transported in containers to the entomology laboratory 
at the Tropic Health Research Center (CIST) and sacrificed 
with ethyl ether. Subsequently, mosquitoes were identified 
using dichotomic keys16-18. The code structure CIST#### was 
used to register and deposit specimens into the entomological 
collection. Finally, the specimens were stored in vials with 1 
mL of 96% ethanol for subsequent molecular characterization 
of female mosquitoes.

Molecular analysis

DNA extraction
Mosquito legs were removed using sterile tweezers. 

Homogenization was performed with nuclease-free 
zirconium beads, and DNA extraction was carried out using 
the DNeasy Blood & Tissue kit (QIAGEN Inc., Hilden, 
Germany). following the manufacturer’s instructions.

COI gene amplification
The standard 658 base pairs (bp) barcode region of 

the mitochondrial COI gene was amplified using the 
primers LCO1490 and HCO219819. The reaction mixture 
included 5 μL of extracted DNA, 0.4 µM of each primer, 
1.25 U GoTaq DNA Polymerase (Promega), 0.2 mM of each 
dNTP, 1 X buffer with 1.5 mM MgCl

2
, and nuclease free water 

for a final volume of 25 μL. The thermal profile consisted of 
an initial denaturation step at 94 °C for 10 min; followed by 
35 cycles at 95 °C for 60 s for denaturation, 50 °C of 60 s 
for annealing, and 72 °C of 60 s for extension; and then a 
final extension at 72 °C of 5 min. A 5-μL aliquot of each 
PCR product was used to visualize the expected amplicon 
through an agarose gel electrophoresis. The quantification 
of amplicons was performed by using a NanoDropTM 
2000 Spectrophotometer (Thermo Fisher Scientific 
Inc., Waltham, MA, USA) with a range between 26 to  
431.5 ng/µL, which were subsequently purified by using 
the ExoSAP-ITTM PCR Product Cleanup Reagent enzyme 
(Thermo Fisher Scientific Inc. Waltham, MA, USA). 

DNA Sequencing 
The purified PCR products were sequenced via Sanger 

sequencing by Macrogen Inc, South Korea. Consensus 
sequences were obtained by assembling contings in 
Geneious Prime (version 2019.1, Biomatters, Inc., San 
Diego, CA, USA). The sequences were compared with those 

deposited in GenBank20 database. A matrix with nucleotide 
sequences representative of the different genera and species 
included in the present study were subsequently created 
and aligned using the ClustalW tool, implemented in the 
MEGA software21.

Phylogenetic analysis
The sequences did not show insertions/deletions 

(indels); therefore, no gap treatment was performed. The 
phylogenetic inference was made using the Neighbor-
Joining method with the Kimura 2 parameter models 
(K2P) implemented in the MEGA software21. To assess 
the support of the phylogenetic tree topology, a resampling 
corresponding to 1,000 bootstrap replicates was performed. 
The consensus tree was visualized and edited in the MEGA 
software21.

RESULTS

During our study, we collected and taxonomically 
identified 123 mosquitoes. The following genera were 
identified: Aedes (n = 2), Anopheles (n = 4), Johnbelikinia 
(n = 72), Psorophora (n = 25), Sabethes (n = 4), 
Trichoprosopon (n = 1), and Wyeomyia (n = 15). Seven 
species were identified via a combination of classical 
taxonomy and molecular analysis: Aedes (Ochlerotatus) 
serratus (Theobald, 1901), Jonhbelkinia ulopus (Dyar 
& Knab, 1906), Psorophora (Janthinosoma) ferox (Von 
Humboldt, 1819), Sabethes (Sabethes) cyaneus (Fabricius, 
1805), Wyeomyia (Triamyia) aporonoma (Dyar & 
Knab, 1906), Wyeomyia (Decamyia) pseudopecten, and 
Wyeomyia (Decamyia) ulocoma (Theoblad, 1903). Two 
additional species, Sabethes (Sabethoides) chloropterus 
(von Humboldt, 1819) and Wyeomyia (Dendromyia) 
luteoventralis (Theobald, 1901) were identified through 
classical and molecular taxonomy, respectively. It was 
not possible to identify another morphotype belonging to 
the genus Sabethes, because of the poor preservation of 
some morphological structures preventing us from using 
taxonomic keys and the nucleotide sequence of COI that 
were distantly related to any other previously deposited 
sequence in publicly available databases. All the species 
reported in the present study have been previously recorded 
in some areas of Colombia (Supplementary Table S1).

Seventeen sequences of the COI gene (658 bp) were 
obtained and deposited in GenBank database corresponding 
to the mosquitoes in this study (Table 1). Eight species were 
confirmed through the GenBank database, with similarities 
varying from 96.19% to 99.54%. Only Ae. serratus and 
Ps. ferox had more than 15 sequences in open-access 
databases, and Jo. ulopus, Sa. cyaneus, Wy. aporonoma, 
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Wy. pseudopecten, and Wy. ulocoma species had less than 
15 accessible sequences. The Sabethes species was not 
confirmed through the database, and its identification was 
ambiguous; using GenBank, an identity value < 88.43% was 
observed when compared to Sa. (Peytonulus) hadrognatus 
(Harbach, 1995) and Wy. (Dendromyia) ypsipola (Dyar, 
1922).

In a first phylogenetic reconstruction using a partial 
COI sequence (353 bp) for all the major taxa of interest, the 
tribes Aedini and Sabethini were identified as monophyletic 
clusters (data not shown). Taxonomic identification at the 
species level was confirmed for Ae. serratus, Ps. ferox, Jo. 
ulopus, Sa. cyaneus, Wy. aporonoma, Wy. pseudopecten, 
Wy. ulocoma, and Wy. luteoventralis. However, there was 
not clear clusters for the genera Johnbelkinia, Wyeomyia, 
Sabethes, Trichoprosopon and Limatus. Also, the species 
Ae. aegypti was clustered with species of the genus Culex 
such as: Cx. corniger (KP281757), Cx. erythrotorax 
(HM593011), Cx. nigripalpus (KP281764), and others.

Due to these inconsistencies, a more detailed phylogenetic 
reconstruction was performed independently for the Aedini 
(Figure 2) and Sabethini (Figure 3) tribes using more 
informative datasets of 530 and 447 bp, respectively. Within 
the Sabethini tribe, monophyletic clusters representing the 
different genera were not identified. The mosquito sample 
CIST0314 was identified through classical morphology as a 
member of the genus Sabethes. In the phylogenetic tree, the 

corresponding sequence with accession number MT418588 
was more closely related to the genera Johnbelikinia and 
Wyeomyia.

The sequence (KM593040) of Wyeomyia (Dendromyia) 
luteoventralis (Theobald, 1901) previously reported in 
Colombia, fell into the Wy. pseudopecten cluster in the 
current study (Figure 3). Also, the species Ae. euiris 
(MK592988) fell into the genus Haemagogus in the present 
analysis (Figure 2). The intra-species genetic variation was 
0,007 for Wy. aporonoma and higher 0,0211 to 0,0511 for 
the other species in this study (Table 2). Sabethes sp. was 
not related to species previously reported in databases.

DISCUSSION

The present study allowed us to address mosquito 
diversity in the SNSM ecosystem and to describe the 
presence of potential arboviral vectors in this area of the 
country. This study is the first to report the identification of 
Ae. serratus, Jo. ulopus, Wy. aporonoma, Wy. pseudopecten, 
and Wy. ulocoma in the SNSM rainforest at the molecular 
and morphologic levels. The accurate identification of 
vector species is an essential factor in the study of arboviral 
diseases, allowing the local health authorities to target 
resources for vector control strategies22.

In this study, we achieved the identification of seven 
species that are mainly associated with rural environments. 

Table 1 - Molecular identification of species via database searching and availability of COI sequences*.

Species Obtained Sequences Related Sequence from 
GenBank

Similarity (%) GenBank

Ae. serratus MT418595 MF172270 99.06

Ps. ferox MT418592 MG242536 99.06

MT418593 MN997516 99.54

MT418594 MN997519 99.39

Jo. ulopus MT418581 MF172329 96.30

MT418582 MF172329 96.35

MT418583 MF172329 96.35

MT418584 MF172329 96.35

MT418585 MF172329 96.19

Sa. cyaneus MT418579 GU908121 97.59

Sabethes sp. MT418588 NC_044660 88.96

Wy. aporonoma MT418589 MF172423 98.60

Wy. pseudopecten MT418590 MF172493 99.53

MT418591 MF172493 98.63

Wy. ulocoma MT418586 KF671038 96.28

MT418587 KF671038 96.35

Wy. luteoventralis MT418580 MF172452 97.35

*Data accessed in October 2019.
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Figure 2 - Phylogenetic reconstruction of the Aedini tribe using the COI gene (530 bp). The Neighbor-Joining method was used, and 
the best nucleotide substitution model was K2P, with 1,000 bootstrap replicates. Sequences in the present study are highlighted in 
red circles. Bootstrap supports above 60 are shown. An external cluster included An. (Nyssorhynchus) oswaldoi (Peryassú, 1922) 
and An. (Nyssorhynchus) nuneztovari (Gabaldón, 1940).
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Figure 3 - Phylogenetic reconstruction of the Sabethini tribe using the COI gene (447 bp). The Neighbor-Joining method was used, 
and the best nucleotide substitution model was K2P, with 1,000 bootstrap replicates. Sequences in the present study are highlighted 
in red circles. Bootstrap supports above 60 are shown. An external cluster included An. (Nyssorhynchus) oswaldoi (Peryassú, 1922) 
and An. (Nyssorhynchus) nuneztovari (Gabaldón, 1940).
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Some of these species are under or not represented at all in 
the GenBank database according to an accurate identification 
(e.g., CIST0314 Sabethes sp.). In the case of other species 
such as Wy. aporonoma, Wy. luteoventralis, Wy. pseudopecten, 
Wy. ulocoma, Jo. ulopus, Sa. chloropterus, and Sa. cyaneus 
that are mainly associated with sylvatic ecosystems, the 
identification was also challenging because of the lack of 
information about their biology, ecology and genetics.

Sequences that led to the identification of Ae. serratus 
and Ochlerotatus serratus as the same species are found in 
the GenBank database due to taxonomic reclassification that 
has been proposed for the Aedini tribe; however, a recent 
analysis supported the use of the traditional classification23. 
In addition, there are difficulties in classifying the genus 
Psorophora due to similar male genitalia morphology 
among species24.

In this study, some specimens were initially classified 
as Trichoprosopon sp., using taxonomic keys that did not 
include the new genus Johnbelkinia. After the reclassification 
via the morphological characters of the absence of sows in 
the calypter and the iridescent yellow-green colors on the 
mosquito scutal18, in which Jo. ulopus and Jo. longipes 
adult, morphology are well-described, we identified the 
morphotype as Jo. ulopus and the species designation was 
corroborated by DNA barcoding.

The Sabethini tribe has been classified as a monophyletic 
group using morphological characters, but when trying 
to show the phylogenetic relationships at the genus 
level, there were difficulties to find natural groups for 
several genera, including Sabethes and Wyeomyia25,26. In 

addition, Wy. compta (Senevet & Abonnenc, 1939) and 
Wy. argenteorostris (Bonne-Wepster & Bonne, 1920) 
are the same species that were initially named as two 
different species due to classification errors by the classical 
taxonomy27. It is mandatory to specify the taxonomic key 
used for species identification in order to consider the 
taxonomic classification updates.

Studies with Ae. aegypti showed a close phylogenetic 
relationship with Hg. equinus (Theobald. 1903)28 and 
members of the genus Psorophora29. Ae. serratus from 
our study, collected in the sylvatic area showed a close 
relationship with sequences from the French Guyana and 
a more distant relationship with sequences from Mexico. 
Currently, the circulation of this species is mainly limited to 
sylvatic settings, although larvae and adults have been found 
at intra- and extra-domiciliary levels in low abundances, not 
significant to define mosquito circulation in urban areas17.

The wide circulation of Ps. ferox has allowed the 
establishment of populations that begin to have between-
population morphological differences, with intra-species 
variability in the egg and exochorion30. Genetic variability 
has also been observed in South, Central, and North 
American populations of this mosquito species identified 
in our study, suggesting that more in-depth morphological 
studies in these geographical regions should be conducted 
to identify changes in the life cycle stages. 

Wy. aporonoma could have a wide distribution and 
circulation in the mountain ranges and rainforests in South 
American countries, although there are only reports in the 
French Guiana and Colombia at this time31.

The species that have been previously reported 
as Wy.  luteoventralis (KM593040) in the department 
of Antioquia, Colombia11 resulted in similarities of 
95.74% with Wy. pseudopecten when analyzed through 
BLAST-GenBank. In our study, this sequence has also 
shown a closer phylogenetic relationship with the Wy. 
pseudopecten cluster. 

All the species initially characterized in this study 
may constitute potential arboviruses vectors with public 
health implications. Ae. serratus, Sa. chloropterus, and 
Ps. ferox could have acted as bridge vectors that led to the 
establishment of the YFV sylvatic cycle13, responsible for 
the enzootic and epizootic transmission in this region of 
the country and a potential risk for human cases, mainly in 
rural areas. In the future, these mosquitoes may also serve 
as vectors for epidemic arboviruses to spillback in the 
Americas, such as DENV, CHIKV, and ZIKV32.

The biogeographic features of the SNSM rainforest make 
it a rich area of speciation due to the isolation of populations 
as a consequence of the mountain ranges rising. In addition, 
it is close to the Serrania del Perija and other natural parks 

Table 2 - Average intra-species genetic distance for eight 
mosquito species identified in the present study*.

Species
Average intra-

species distance 
(distance-p)**

Average intra-
species distance 

(K2P)***

Ae. serratus 0.0443 0.0489

Ps. ferox 0.0211 0.0219

Jo. ulopus 0.0216 0.0227

Sa. cyaneus 0.0432 0.0458

Wy. aporonoma 0.0070 0.0071

Wy. pseudopecten 0.0374 0.0398

Wy. ulocoma 0.0256 0.0269

Wy. luteoventralis 0.0511 0.0547

*The p distances were calculated for each species included in 
this study by using representative sequences from GenBank 
accessed in October 2019; **Number of nucleotide changes 
between pairs of sequences per 100 nucleotides; ***Number 
of nucleotide changes (1 or more) between pairs of sequences 
per 100 nucleotides adjusted to the K2P evolutionary model, 
taking more frequent transitions than transversions.
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in the same region that have been classified as speciation 
zones33 due to their high diversity of fauna34 and flora35. This 
study allowed us to corroborate the complementarity that 
exists between classical and molecular taxonomy. Further 
molecular taxonomy studies are required due to limitations 
of classical taxonomic keys. The keys used may be outdated 
regarding morphological characteristics of the species 
described; molecular identification tools have improved 
over time allowing the expansive characterization of sylvatic 
mosquitoes through genes36 or complete mitochondrial 
genomes to identify species and reconstruct phylogenies37. 
However, the availability of sequences for sylvatic mosquito 
species is limited and more studies are needed to provide a 
greater support to the species identification.

Species such as Ps. ferox have a long dispersal 
ability from fragment forest to open areas, enabling its 
wide distribution range and the potential dispersion of 
arboviruses to susceptible hosts as human population and 
domestic animals. Additionally, the changes in populations 
or communities of mosquitoes in rural environments, due to 
the habitat fragmentation and anthropogenic disturbances 
inside conserved ecosystems (rainforest) could accelerate 
outbreaks and potentially epidemic situations38,39. In this 
sense, the ecological settings in rural areas of the SNSM 
meet the requirements for the emergence of viruses and 
other pathogens.

CONCLUSION

In conclusion, a possible endemicity in the studied region 
reinforces the importance of developing regional DNA 
barcoding libraries for molecular species identification. The 
high diversity of mosquito species identified in the SNSM 
and the limitations for taxonomic assignment reinforces 
the need for a consensus in the classical taxonomy and 
the availability of curated sequences in the open-access 
databases for the proper use of DNA barcoding.
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taxonómico de Anopheles de Colombia: claves y notas de 

distribución. 2ª ed. Cali: Universidad Del Valle; 2009.

 17. Forattini OP. Culicidologia médica: identificaçäo, biologia e 

epidemiologia. São Paulo: EDUSP; 2002.

 18. Zavortink TJ. Mosquito studies (Diptera, Culicidae) XXXV. 

The new Sabethine genus Johnbelkinia and a preliminary 

reclassification of the composite genus Trichoprosopon. 

Contrib Am Entomol Inst. 1979;17:1-61.

 19. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers 

for amplification of mitochondrial cytochrome c oxidase 

subunit I from diverse metazoan invertebrates. Mol Mar Biol 

Biotechnol. 1994;3:294-9.

 20. National Center for Biotechnology Information. BLAST®. 

[cited 2021 Jan 21]. Available from: https://blast.ncbi.

nlm.nih.gov/Blast .cgi?PROGRAM=blastn&PAGE_

TYPE=BlastSearch&LINK_LOC=blasthome

 21. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: 

Molecular Evolutionary Genetics Analysis across Computing 

Platforms. Mol Biol Evol. 2018;35:1547-9.

 22. Ruiz-Lopez F, Wilkerson RC, Conn JE, McKeon SN, Levin D, 

Quiñonez ML, et al. DNA barcoding reveals both known and 

novel taxa in the Albitarsis Group (Anopheles: Nyssorhynchus) 

of Neotropical malaria vectors. Parasit Vectors. 2012;5:44

 23. Wilkerson RC, Linton YM, Fonseca DM, Schultz TR, Price 

DC, Strickman DA. Making mosquito taxonomy useful: a 

stable classification of tribe Aedini that balances utility with 

current knowledge of evolutionary relationships. PLoS One. 

2015;10:e0133602.

 24. Liria J, Navarro JC. Phylogenetic relationships in the genus 

Psorophora Robineau-Desvoidy based on morphological 

characters. Entomol Appl Sci Lett. 2014;1:22-50.

 25. Judd DD. Review of the systematics and phylogenetic 

relationships of the Sabethini (Diptera: Culicidae). Syst 

Entomol. 1996;21:129-50.

 26. Motta MA, Lourenço-de-Oliveira R, Sallum MA. Phylogeny 

of genus Wyeomyia (Diptera: Culicidae) inferred from 

morphological and allozyme data. Can Entomol. 2007;139:591-

627.

 27. Nascimento-Pereira AC, Talaga S, Guimarães AE, Lourenço-de-

Oliveira R, Motta MA. Taxonomic history of species without 

subgeneric placement in the genus Wyeomyia Theobald 

(Diptera: Culicidae) and recognition of Wy. compta Senevet 

amp; Abonnenc as a junior synonym of Wy. argenteorostris 

(Bonne-Wepster amp; Bonne). Zootaxa. 2019;4656:359-6.

 28. Chan-Chable RJ, Martinez-Arce A, Mis-Avila PC, Ortega-

Morales AI. DNA barcodes and evidence of cryptic diversity 

of anthropophagous mosquitoes in Quintana Roo, Mexico. 

Ecol Evol. 2019;9:4692-705.

 29. Soghigian J, Andreadis TG, Livdahl TP. From ground pools to 

treeholes: convergent evolution of habitat and phenotype in 

Aedes mosquitoes. BMC Evol Biol. 2017;17:262.

 30. Mello CF, Santos-Mallet JR, Tatila-Ferreira A, Alencar J. 

Comparing the egg ultrastructure of three Psorophora ferox 

(Diptera: Culicidae) populations. Braz J Biol. 2018;78:505-8.

 31. Talaga S, Leroy C, Guidez A, Dusfour I, Girod R, Dejean A, et 

al. DNA reference libraries of French Guianese mosquitoes for 

barcoding and metabarcoding. PLoS One. 2017;12:e0176993.

 32. Weaver SC, Chen R, Diallo M. Chikungunya virus: role of vectors 

in emergence from enzootic cycles. Annu Rev Entomol. 

2020;65:313-32.

 33. Talaga S, Murienne J, Dejean A, Leroy C. Online database for 

mosquito (Diptera, Culicidae) occurrence records in French 

Guiana. Zookeys. 2015;532:107-15.

 34. Fergnani PN, Ruggiero A. Ecological diversity in South American 

mammals: their geographical distribution shows variable 

associations with phylogenetic diversity and does not follow the 

latitudinal richness gradient. PLoS One. 2015;10:e0128264.

 35. Navarro JC, Liria J, Piñango H, Barrera R. Biogeographic area 

relationships in Venezuela: a Parsimony analysis of Culicidae: 

Phytotelmata distribution in National Parks. Zootaxa. 

2007;1547:1-19.

 36. Aragão AO, Nunes Neto JP, Cruz AC, Casseb SM, Cardoso JF, 

Silva SP, et al. Description and phylogeny of the mitochondrial 

genome of Sabethes chloropterus, Sabethes glaucodaemon 

and Sabethes belisarioi (Diptera: Culicidae). Genomics. 

2019;111:607-11.

 37. Lorenz C, Alves JM, Foster PG, Sallum MA, Suesdek L. First 

https://www.parquesnacionales.gov.co/portal/wp-content/uploads/2013/12/parqueSierraNevadadeSantaMarta.pdf
https://www.parquesnacionales.gov.co/portal/wp-content/uploads/2013/12/parqueSierraNevadadeSantaMarta.pdf
https://www.banrep.gov.co/es/sierra-nevada-santa-marta-economia-sus-recursos-naturales
https://www.banrep.gov.co/es/sierra-nevada-santa-marta-economia-sus-recursos-naturales
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome


Muñoz-Gamba et al.

Rev Inst Med Trop São Paulo. 2021;63:e24Page 10 of 11

record of translocation in Culicidae (Diptera) mitogenomes: 

evidence from the tribe Sabethini. BMC Genomics. 

2019;20:721.
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SUPPLEMENTARY MATERIAL

Table S1 - Geographical records of mosquitoes in Colombia and associated arboviruses1

Species Department References2 Associated arbovirus References2

Wy. aporonoma Valle
Heinemann and Belkin14 

Barreto et al.2 -- --

Wy. luteoventralis Antioquia Rozo-López and Mengual28 -- --

Jo. ulopus

Boyacá 
Meta 

Nariño 
Norte de Santander 

Valle del Cauca 
Antioquia 
Caldas

Suaza-Vasco et al.30 -- --

Wy. pseudopecten Valle del Cauca Suaza-Vasco et al.30 -- --

Wy. ulocoma Valle del Cauca Suaza-Vasco et al.30 -- --

Sa. cyaneus

Meta Bates3

Valle del Cauca Suaza-Vasco et al.30

Caquetá Molina et al.20

Córdoba Hoyos-López et al.16

Sa. chloropterus

Meta Bates3

Primary vector: Yellow 
fever virus (YFV)

Galindo10 

Galindo et al.11 

Zsemlye et al.31

Valle del Cauca Suaza-Vasco et al.30

Caquetá Molina et al.20

Córdoba Hoyos-López et al.16

Ae. serratus

Antioquia

López19 

Groot12 

Barreto et al.2 

Parra-Henao and Suarez26

Secondary vector: Yellow 
fever virus (YFV)

Cardoso et al.5 

Sick et al.29 

Pinheiro et al.27

Meta Antunes1

Caquetá Molina et al.20 Mayaro virus (MAYV) Muñoz and Navarro23

Córdoba
Heinemann and Belkin14 

Morales and Vidales22

Venezuelan equine 
encephalitis virus 

(EEV)
Molina et al.20Valle del Cauca Lee and Barreto18

Santander
Ferro et al.8 

Groot et al.13

Ps. ferox

Antioquia
Rozo-López and Mengual28 

Hoyos-López15 

Parra-Henao and Suarez26

West Nile virus (WNV) Christofferson et al.6

Eastern equine 
encephalitis (EEEV)

Navia-Gine et al.24 

Oliver et al.25

Valle del Cauca Figueroa9 St Louis encephalitis 
virus (SLEV)

Beranek et al.4

- - Madariaga virus (MADV) Lednicky et al.17

Caquetá Molina et al.20
Venezuelan equine 
encephalitis virus 

(EEV)
Molina et al.20Guajira Morales et al.21

Magdalena Dickerman et al.7

1data accessed in October 2019; 2all references included in the table are listed below.
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