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pathology
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Abstract Translation-dependent quality control pathways such as no-go decay (NGD), non-stop
decay (NSD), and nonsense-mediated decay (NMD) govern protein synthesis and proteostasis by
resolving non-translating ribosomes and preventing the production of potentially toxic peptides
derived from faulty and aberrant mRNAs. However, how translation is altered and the in vivo
defects that arise in the absence of these pathways are poorly understood. Here, we show that the
NGD/NSD factors Pelo and Hbs1l are critical in mice for cerebellar neurogenesis but expendable
for survival of these neurons after development. Analysis of mutant mouse embryonic fibroblasts
revealed translational pauses, alteration of signaling pathways, and translational reprogramming.
Similar effects on signaling pathways, including mTOR activation, the translatome and mouse
cerebellar development were observed upon deletion of the NMD factor Upf2. Our data reveal
that these quality control pathways that function to mitigate errors at distinct steps in translation
can evoke similar cellular responses.

Introduction
Regulation of gene expression is essential for cell growth and development. Although epigenetic
mechanisms and transcriptional regulation are initial steps in gene expression, translation and its
regulation have emerged as major hubs to control the production of functional proteins. In fact,
translation is intricately coordinated with the degradation of faulty mRNAs and their resulting pep-
tide products to balance gene expression and proteostasis (Collart and Weiss, 2020). Numerous
studies have revealed that mRNA levels show limited correlation with protein levels, particularly
when cells undergo dynamic transitions (Abreua R de et al., 2009; Kristensen et al., 2013,
Liu et al., 2016, Maier et al., 2009). Indeed, post-transcriptional mechanisms, such as translation,
play vital roles in rapidly altering gene expression and the signaling pathways that mediate cell iden-
tity and cell fate changes necessary for mammalian development (Blair et al., 2017, Blanco et al.,
2016; Fujii et al., 2017; Gabut et al., 2020; Kong and Lasko, 2012; Rodrigues et al., 2020;
Signer et al., 2014, Tahmasebi et al., 2019).

The process of translation is highly organized, and ribosomes need to accurately perform the
steps of translation initiation, elongation and termination. However, multiple factors can perturb
translation including secondary structures of mRNAs, amino acid limitations, tRNA deficiencies, rare

Terrey et al. elLife 2021;10:e66904. DOI: https://doi.org/10.7554/eLife.66904 1 of 37


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.66904
https://creativecommons.org/
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access

e Llfe Research article

Chromosomes and Gene Expression

codons, interactions of nascent peptides with the ribosome, chemically damaged mRNAs, and
cleaved or aberrant mRNAs (Brandman and Hegde, 2016; Brule and Grayhack, 2017; Buhr et al.,
2016; Drummond and Wilke, 2008; Hu et al., 2009; Simms et al., 2014, Spencer et al., 2012,
Thommen et al., 2017; Wolf and Grayhack, 2015; Yu et al., 2015). In turn, these defects may trig-
ger translation-dependent quality control pathways including non-stop decay (NSD), no-go decay
(NGD), or nonsense-mediated mRNA decay (NMD) to release ribosomes, eliminate potentially toxic
or faulty peptide products, and co-translationally decay problematic or aberrant mRNAs
(Collart and Weiss, 2020).

NSD rescues stalled ribosomes at the ends of truncated mRNAs that lack a stop codon and those
in the 3'UTR of mRNAs that were not recycled at canonical stop codons (D’Orazio et al., 2019;
Guydosh and Green, 2014; Mills et al., 2017; Young et al., 2015). Resolution of these stalled elon-
gation complexes is mediated by Dom34 (yeast; PELO in mammals), and this activity is promoted in
the presence of its binding partner Hbs1 (HBS1L in mammals) (lkeuchi et al., 2016; Pisareva et al.,
2011; Shoemaker et al., 2010, Shoemaker and Green, 2011; Tsuboi et al., 2012). In contrast,
NGD resolves stalled ribosomes that are due to secondary mRNA structures, amino acid starvation
or tRNA deficiency (lkeuchi et al., 2019; Inada, 2020, Ishimura et al., 2014; Simms et al., 2017b).
Defects in the resolution of stalled elongation complexes may trigger endonucleolytic cleavage of
mRNAs resulting in 5'RNA intermediates that lack a stop codon and in turn, may be NSD substrates
(D'Orazio et al., 2019, Doma and Parker, 2006, Glover et al., 2020; Guydosh and Green, 2017,
Inada, 2020). Unlike NSD or NGD that utilize specialized termination factors (e.g. Dom34:Hbs1,
GTPBP1, or GTPBP2 Ishimura et al., 2014; Terrey et al., 2020), NMD relies on the canonical termi-
nation factors eRF1 and eRF3 (Dever and Green, 2012; Simms et al., 2017a). UPF proteins (UPF1,
UPF2, and UPF3) are critical in eliminating mRNAs that contain premature stop codons or retained
introns, thus preventing generation of their potentially faulty protein products (Karousis and Miihle-
mann, 2019; Lykke-Andersen and Bennett, 2014; Raimondeau et al., 2018).

Defects in translation and translation-dependent quality control pathways impair cellular homeo-
stasis and have been linked to proteotoxicity, changes in synaptic function, and neurodegeneration
(Choe et al., 2016; Chu et al., 2009; Huang et al., 2018; Ishimura et al., 2014; Johnson et al.,
2019; Kapur et al., 2020; Martin et al., 2020; Notaras et al., 2020; Terrey et al., 2020;
Yonashiro et al., 2016). Here, we demonstrate that the ribosome rescue factors Pelo and Hbs1l,
which are implicated in NSD and NGD, are critical for embryonic and brain development, but dis-
pensable for neuronal survival in the adult brain. Our analysis of Pelo- and Hbs1l-deficient fibroblasts
reveals translational reprogramming of multiple pathways. Inhibition of NMD via deletion of Upf2
resulted in strikingly similar effects on the translatome, signaling pathways, and neurogenesis. Our
data reveal that defects in translation-dependent quality control pathways, which mitigate errors in
translation to prevent the production of defective peptide products from aberrant mRNAs, can trig-
ger similar cellular responses and neurodevelopmental abnormalities.

Results

Hbs1l is required for embryogenesis

Multiple neurological abnormalities, including defects in motor control, were recently described in a
patient with biallelic mutations in Hbs1/ (O’Connell et al., 2019). Alternative splicing of Hbs1/ produ-
ces transcripts that encode two distinct proteins (Figure 1A). Levels of full length Hbs1l (Hbs1/-V1
and Hbs1 in human and yeast, respectively) were dramatically decreased in Hbs 1/ patient fibroblasts
(O’Connell et al., 2019). The levels of the shorter isoform Il (Hbs1l-V3 in human), which is encoded
by the first 4 exons of full-length Hbs1l and a unique last exon (‘exon 5a’) located between exon 4
and exon 5 of the Hbs1l locus, were relatively unaffected in the Hbs1l patient fibroblasts
(O’Connell et al., 2019). In contrast to the translation-dependent quality control function of Hbs1],
previous studies suggest that isoform Il of Hbs1l is likely an ortholog of the Saccharomyces cerevi-
siae protein SKI7 (Brunkard and Baker, 2018; Kalisiak et al., 2017; Marshall et al., 2018), which is
involved in global mRNA turnover (Kalisiak et al., 2017). Although an additional splice variant
(Hbs1l-V2 in human) which lacks the third coding exon is annotated in the human transcriptome
(Mills et al., 2016, O’Connell et al., 2019), this splice variant is not annotated in mice, and we were
unable to detect it by RT-PCR.
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Figure 1. Hbs1lis required for embryogenesis. (A) Domain structure of HBS1L and isoform Il and the exons encoding the two splice variants. (B) Design
allele, Hbs1l specific

of Hbs1l loss-of-function alleles that target Hbs1l and isoform II. Hbs1/™'@ allele, Hbs1l specific gene trap (hypomorph); Hbs1

deletion of exon 5 (Hbs1l, knock out); and Hbs1/CT< allele, Hbs1! gene trap to target Hbs1l and isoform Il (knock out). (C) Cresyl violet-stained cross-
sections of testis from P45 control (Hbs1™'®*) and Hbs1[™1#'™18 mice. Immunofluorescence was performed with antibodies to proliferating cell

Figure 1 continued on next page
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nuclear antigen (PCNA, red) and sections were counterstained with DAPI. (D) Cresyl violet-stained sagittal brain section from 4-month-old control
(Hbs1I**) and Hbs1[™'t™18 mice. (E) Splicing analysis of correctly spliced Hbs1l and trapped Hbs1l transcripts in various tissues from 4-month-old
control (Hbs1I*) and Hbs1[™1tM1a mice. B-actin was used as an input control. (F) Quantitative RT-PCR analysis of Hbs1/ and isoform Il using cDNA

from E8.5 embryos. Data were normalized to Gapdh and the fold change in gene expression is relative to that of controls (Hbs1

/%) from each cross.

Data represent mean + SEM. (G) Bright field images of control (Hbs1I** and Pelo™*), Hbs1l”" and Pelo”" embryos at E7.5, E8.5, and E10.5. Scale bars:
500 um and 200 um (higher magnification), 50 um (immunofluorescence image) (C); 500 um (D); 100 um (E7.5), 200 um (E8.5), and 2 mm (E10.5) (G).
PTC, premature termination codon; Frt, flippase-mediated recombination site; loxP, Cre recombinase-mediated recombination site; En2(SA), splice

acceptor of mouse Engrailed-2 exon 2; SC, spermatocytes; SG, spermatogonia; St, spermatids; LC, Leydig cells. t-tests were corrected for multiple
comparisons using Holm-Sidak method (F). ns, not significant; **p<0.01; ***p<0.001.
The online version of this article includes the following source data for figure 1:

Source data 1. Hbs1/ is required for embryogenesis.

To study the neurological function of Hbs1l in mice, we first examined an Hbs1l allele (Hbs1/™"2)
with a gene trap cassette inserted between ‘exon 5a’ and exon 5 (Figure 1B). As previously
reported, homozygous Hbs1[f™1#tm12 mice were viable, but male mice were infertile
(O’Connell et al., 2019). Histological analysis of the Hbs1[f™'®t™12 testis at postnatal day P45
revealed a dramatic loss of mitotically active (PCNA™) spermatogonia, as well as spermatocytes and
spermatids that normally differentiate from these cells (Figure 1C). However, no overt defects were
observed in the Hbs 1™t 12 brain (Figure 1D).

Residual levels of Hbs1l were still present in various tissues from Hbs1[f™1t™12 mice
(O’Connell et al., 2019). In agreement, Hbs1/ transcripts spliced into the gene trap cassette in all
tested tissues; however, correctly spliced Hbs1l transcripts were still detected in several tissues
(Figure 1E). Thus, to completely eliminate expression of Hbs1/, we ubiquitously deleted exon five in
Hbs 1™ mice to generate Hbs 1l mice (Figure 1B). In contrast to embryonic day (E) 8.5 Hbs1/tm12/
tm12 ambryos, which still expressed 9% of the wild-type levels of Hbs1l mRNA, expression of Hbs1l
was not detected in E8.5 Hbs1I”~ embryos (Figure 1F). Expression of Hbsl1 isoform Il was not signifi-
cantly changed in homozygous embryos of either allele, as predicted (Figure 1F). In contrast to
hypomorphic Hbs1[™'?*™'2 mice, Hbs1I” embryos failed to develop after E8.5 and could not be
recovered at E11.5 from heterozygous matings (Figure 1G, Supplementary file 1). These results
demonstrate that Hbs1l is necessary for embryonic development; however, embryos lacking Hbs1l
develop longer than embryos deficient for Pelo, the binding partner of HBS1L, which die by E7.5
(Adham et al., 2003; Figure 1G).

To determine if isoform Il of Hbs1l is also necessary for embryonic viability, we utilized an addi-
tional allele (Hbs1/°T%) with a gene trap cassette located in intron 2 (Figure 1B). Expression of Hbs1/
and isoform Il transcripts in E8.5 heterozygous Hbs1/°T“/* embryos was reduced by 51% and 41%,
respectively (Figure 1F). Homozygous Hbs1/°T“/STC embryos were not recovered at E6.5 from het-
erozygous matings (Supplementary file 1) demonstrating that they died even before Pelo” or
Hbs 1l embryos. The early embryonic lethality of Hbs1/I°T“/STC embryos suggests that the Hbs1/ iso-
forms are likely functionally distinct, and that their loss causes additive or synergistic defects during
embryogenesis.

Hbs1l is required for cerebellar development

Consistent with transcriptome data from a brain RNA sequencing database (Zhang et al., 2014), we
observed expression of Hbs1l in multiple cell types of the brain (Figure 2A). Expression of HBS1L
and its binding partner PELO was observed throughout and after cerebellar development
(Figure 2A,B and C). However, levels of HBS1L and PELO decreased in the postnatal (P)14 cerebel-
lum after the completion of development, a similar decrease was observed in the whole brain
(Figure 2B and C, Figure 2—figure supplement 1A). To begin to investigate the role of Hbs1/ in
the brain, we deleted this gene in the developing cerebellum and midbrain by crossing the floxed
allele to En1¢™ mice (Kimmel et al., 2000). Differences in cerebellar size between mutant and con-
trol embryos were already apparent by E13.5 (Figure 2D). Although the trilaminar structure of the
cerebellum appeared normal in En1<"; Hbs1l cKO mice at postnatal day P21, cerebellar foliation
was delayed in PO mutant mice, and secondary fissures failed to form compared to control mice
(Figure 2D). Consistent with previous studies no cerebellar abnormalities were observed in En1¢"®

Terrey et al. elLife 2021;10:e66904. DOI: https://doi.org/10.7554/eLife.66904 4 of 37


https://doi.org/10.7554/eLife.66904

eLife

Chromosomes and Gene Expression

cerebellum WBEJ - cerebellum B.B6J cerebellum

ML

—— B DAPI

(@)

w0 0
© <+ © <
Lo Wwa
HBS1L PELO
100 kDA E * -
7SKDA Jamm e - - HBS1L P — —
50 kDA E 15
37 kDA § ' 2
- 210 ( VIR
50 kDA o)
- - -~ PELO 2 05
37kDA = Y I I
©
150 kDA | P—— . li [0)
100 koA 1 e «= - vinculin 14 B = P
75 kDA - © = © Y
— —
cerebellum (B6J) hY} hT}

H
Hbs1/ ™ :

- T

" 1004 —

[e) (@]

s , ¢ s ¥ 4 X
’ 2 Wi =2 =2
o /5% 33
vz (BrdU24h)E14.5 TT TT

En1¢; Hbs1l cKO

BrdU*; Ki67-/ BrdU* cells [%]

En19°; Hb81] KO 50 A
25 1
b s
vz P ErdUony E145 E13.5 E14.5
F | fi+ J
qosl 10009 wes  wen
- ’E‘ NTZ<
400 u 1
. ok K] 750+ .
= [ — - © @]
S 300 7] e — . g .| %
o o — ~2 = =
= o ., ¥ . w 500~ 9 @
S 200 o == . ¢ Enict,” £ g |8
5 g8 <32 Hbs1I6KO) 5 .
& N g8 250 8| £ .
w e EE ¢
9| | @ 9l | 9 s ®
I 2 =
E125 E135 E145 E165

Figure 2. Hbs1/ is required for cerebellar development. (A) In situ hybridization of Hbs1/ mRNA (red) on cerebellar sections from E13.5 and P28 control
(B6J) mice. Sections were counterstained with DAPI. (B) Western blot analysis using cerebellar lysates from B6J mice. Vinculin was used as a loading
control. (C) The relative protein levels of HBS1L and PELO were normalized to levels of vinculin and protein levels are relative to those of E16.5 B4J
cerebella. (D) Parasagittal (E13.5) and sagittal (PO and P21) cerebellar sections from control (Hbs1/V*) and En1°™; Hbs1l cKO mice stained with cresyl
Figure 2 continued on next page
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Figure 2 continued

violet. Higher magnification images of lobules IV/V at P21 are shown below each genotype. Cerebellar lobules are indicated by Roman numerals. (E)
Immunofluorescence using antibodies to Kié7 (red) on cerebellar section from E14.5 control (Hbs1I**) and En1": Hbs1l cKO embryos. Sections were
counterstained with DAPI and higher magnification images of boxed area are shown. (F) Number of cerebellar VZ-progenitors (Ki67" cells) from control
(Hbs1I*"* or Hbs1"*) and En1°™: Hbs1l cKO embryos. Data represent mean + SD. (G) Immunofluorescence using antibodies to BrdU (green) and Ki67
(red) on cerebellar sections from E14.5 control (Hbs1/"*) and En1°": Hbs1l cKO embryos to determine the fraction of cells that exited the cell cycle.
Embryos were injected with BrdU 24 hr prior to harvest. (H) Percentage of cerebellar VZ-progenitors that exited the cell cycle (BrdU", Ki67™ cells). Data
represent mean + SD. (I) Immunofluorescence using antibodies to Lhx1/5 on cerebellar sections from E13.5 control (Hbs1I*"*) and En1¢": Hbs1l cKO
embryos. Sections were counterstained with DAPI and higher magnification images of boxed areas are shown. (J) Number of cerebellar Purkinje cell
precursors (Lhx1/5" cells). Data represent mean + SD. Scale bars: 100 um and 20 um (higher magnifications) (A); 200 um (E13.5 and P0), 500 um and 50
um (higher magnification) (P21) (D); 100 um and 20 um (higher magnification) (E); 20 um (G); 100 um and 50 um (higher magnification) (I). VZ, ventricular
zone; NTZ, nuclear transitory zone; RL, rhombic lip; EGL, external granule cell layer; ML, molecular cell layer; PL, Purkinje cell layer; GCL, granule cell
layer; IC, inferior colliculus. t-tests were corrected for multiple comparisons using Holm-Sidak method (C, F, H, J). ns, not significant; *p<0.05; **p<0.01;
***%5<0.001.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Hbs1! is required for cerebellar development.

Figure supplement 1. Hbs1/ is required for the development of multiple cerebellar linages.

Figure supplement 1—source data 1. Hbs1/ is required for the development of multiple cerebellar linages.

Figure supplement 2. Hbs1I""-mediated cerebellar defects are independent of the BéJ-associated mutation in n-Tr20.

Figure supplement 2—source data 1. Hbs1/"-mediated cerebellar defects are independent of the B6J-associated mutation in n-Tr20.

mice (Dong and Kwan, 2020; Guo et al., 2010; Li et al., 2002; Sgaier et al., 2007, Tripathi et al.,
2008).

Lineage-restricted GABAergic precursors are generated beginning at ~E10.5 from progenitors in
the ventricular zone (VZ) of the developing cerebellum (Ju et al., 2016; Leto et al., 2012). The pool
of progenitors declines as progenitors either exit the cell cycle to generate precursors or retract
from the VZ to form a secondary germinal zone in the prospective white matter to transition from
neurogenesis to gliogenesis (Leto et al., 2012; Vong et al., 2015; Wizeman et al., 2019). Immuno-
fluorescence with antibodies to the cell-cycle-associated protein Kié7 demonstrated a loss of pro-
genitors between E12.5 to E16.5 in both the control and En1¢"; Hbs1l cKO cerebella. However, the
number of progenitors remained higher in En1¢"; Hbs1l cKO compared to control cerebella
(Figure 2E and F), suggesting that Hbs1l-deficient progenitors may aberrantly proliferate. In agree-
ment, we observed a higher fraction of VZ-progenitors in S-phase in the E12.5 and E13.5 mutant cer-
ebella by pulse labeling with BrdU for 30 min and performing co-immunofluorescence with BrdU and
Ki67 antibodies (Figure 2—figure supplement 1B and C). Immunofluorescence with antibodies to
the M-Phase marker phospho-histone 3 (pH3) and the general cell cycle marker PCNA demonstrated
an increase of VZ-progenitors in M-phase in the mutant cerebellum (Figure 2—figure supplement
1D).

To test if Hbs1l-deficient progenitors are able to exit the cell cycle, which is necessary to generate
lineage-restricted precursors, we labeled control and mutant embryos at E12.5 or E13.5 with BrdU
and then determined the fraction of BrdU™ cells that had left the cell cycle (do not express Ki67) 24
hr after labeling. Fewer VZ-progenitors exited the cell cycle in En1<"; Hbs1l cKO relative to control
cerebella (Figure 2G and H). Concordantly, the number of VZ-derived Lhx1/5" Purkinje cells and
Pax2* interneuron precursors was reduced to ~32% and~34% in En1€™; Hbs1l cKO between E12.5
to E16.5 compared to control cerebella (Figure 21 and J, Figure 2—figure supplement 1E and F),
suggesting that Hbs1l-deficient VZ-progenitors remain proliferative at the expense of differentiation.

Cerebellar glutamatergic precursors are generated beginning at ~E10.5 from the rhombic lip
(RL), a germinal zone located in the caudal region of the cerebellar primordia. Between E10.5-12.5
the RL gives rise to Tbr1" cells that migrate subpially to take up residence in the nuclear transitory
zone and will develop into deep cerebellar neurons (Fink et al., 2006). Following Tbr1™ cell produc-
tion, proliferating granule cell precursors emerge from the RL and form the external granule cell
layer (EGL) (Chung et al., 2010). As observed for VZ-derived neuronal precursors, deletion of Hbs1/
also decreased progeny generated from the RL. Immunofluorescence with antibodies to Tbr1,
revealed fewer Thr1™ cells in the E14.5 mutant cerebella compared to controls (Figure 2—figure
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supplement 1G). In addition, the EGL of En1<"®; Hbs1l cKO at E13.5 to E16.5 contained only ~45%
of the granule cell precursors compared to controls (Figure 2—figure supplement 1H and ).

Granule cell precursors that derive from the RL continue to proliferate in the EGL to generate
additional precursors that exit the cell cycle postnatally prior to migrating to the internal granule cell
layer (IGL). To determine if the decrease in granule cell precursors was due to a failure of progeni-
tors in the RL to generate sufficient numbers of granule cell precursors, or a failure of granule cell
precursors to proliferate, we labeled E12.5 and E13.5 wild type and mutant embryos with BrdU and
then determined the number of BrdU* cells in the EGL 24 hr after labeling. Fewer BrdU™ cells were
present in the En1°™; Hbs1l/ cKO EGL compared to that of controls indicating that the mutant rhom-
bic lip generates fewer granule cell precursors (Figure 2—figure supplement 1J and K). However,
cell cycle exit of these precursors did not vary between mutant and control cells (Figure 2—figure
supplement 1L). Furthermore, no difference in proliferation (S- and M-phase) was observed when
granule cell precursors were analyzed at E16.5 or P5 (Figure 2—figure supplement 1M and N).
Together, these data suggest that while Hbs1/ is required for the initial production of granule cell
precursors, it is dispensable for the subsequent cell cycle progression of these precursors in the
EGL. In agreement, genetic ablation of Hbs1/ by Tg(Atoh1-Cre) which specifically deletes in cerebel-
lar granule cell precursors in the EGL beginning at ~E16.5 (Lorenz et al., 2011; Pan et al., 2009;
Qiu et al., 2010; Wojcinski et al., 2019), did not impair development of these cells (Figure 2—fig-
ure supplement 2A).

Hbs1l was also required for gliogenesis in the developing cerebellum. Cerebellar gliogenesis
starts at ~E18 and continues during postnatal development during which time progenitors that have
retracted from the VZ switch from a neurogenic to gliogenic fate and produce oligodendrocytes and
astrocytes (Gétz and Huttner, 2005; Vong et al., 2015). Immunofluorescence with antibodies to
Olig2, a marker of oligodendroglial progenitors which give rise to oligodendrocytes and astrocytes
(Chung et al., 2013; Tatsumi et al., 2018), revealed the number of these cells was reduced in P5
En1<"; Hbs1l cKO cerebella (Figure 2—figure supplement 10). Together these data indicate that
Hbs1lis required for the generation of multiple cell types in the developing cerebellum.

We have previously identified a mutation in the common C57BL/6J (B6J) strain that partially dis-
rupts processing of the brain-specific arginine tRNA, n-Tr20 (n-Tr20B%8%. n_Tr20 is also known as n-
TRtct5). This processing defect in turn reduces the pool of available tRNA*9 ¢, leading to ribo-
some pausing at the A-site at AGA codons in cerebellar mRNAs (Ishimura et al., 2014). Hbs1/ cKO
mice were generated with the BéJ-associated mutation in n-Tr20. To test if the n-Tr20 deficiency
influenced the developmental defects observed in the absence of Hbs1l, we either restored n-Tr20
to wild type levels or completely deleted n-Tr20 in Hbs1l cKO mice. Wild-type expression of the
tRNA (n-Tr20%NBN) did not rescue defects in En1€™; Hbs1l cKO cerebella, nor did complete loss
of n-Tr20 (n-Tr20™") cause developmental defects in Tg(Atoh1-Cre); Hbs1/ cKO cerebella (Figure 2—
figure supplement 2A). In addition, neither loss of Hbs1l or Pelo affected cell survival of terminally
differentiated granule cells in 9-month-old mice even in the presence of the n-Tr20 deficiency (Fig-
ure 2—figure supplement 2B,C,D and E), indicating that Hbs1/ and Pelo do not respond to AGA
pausing.

Ribosome pausing correlates with pathology in Hbs1l-deficient mice

To determine if the developmental defects that occur upon loss of Hbs1/ are accompanied by altera-
tions in translation elongation, we performed ribosome profiling on wild type and Hbs1I”~ embryos
at E8.5. Ribosome protected fragments (RPF) mapped primarily to the protein coding sequence of
genes in both wild-type and mutant embryos (Figure 3A). Using the previously described methodol-
ogy (Ishimura et al., 2014), we found a total of ~1300 sites with significant (z-score >10) increases in
local ribosome occupancy (‘ribosome pauses’) in wild-type and mutant embryos (Figure 3B,
Supplementary file 2). About 40% of the ribosome pauses, which mapped to 319 genes, were
shared between genotypes suggesting they occurred independently of the loss of Hbs1l. Ten per-
cent of ribosome pauses (mapped to 107 genes) were found only in wild-type embryos. The ribo-
some density derived from the total number of ribosome-protected fragments (RPF) serves as proxy
for gene expression at the level of the translatome. Differential expression analysis of the transla-
tome (DE RPF, Supplementary file 3) indicated translation of genes with wild type-specific pauses
was decreased in mutant embryos (Figure 3C), which may contribute to the apparent specificity of
these pauses to wild-type embryos. Strikingly, 50% of ribosome pauses (mapped to 459 genes) were
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Figure 3. Ribosome pausing correlates with pathology in Hbs1l-deficient mice. (A) Metagene profiles of RPFs from E8.5 control (Hbs1/"*, gray traces)
and Hbs1I” (red traces) embryos. (B) Analysis of significantly increased local ribosome occupancy (z-score >10, pause site detected in all three
replicates) from E8.5 wild type (Hbs1*"*) and Hbs1I" embryos (left) or P14 control (Tg(Atoh1-Cre); Hbs1I**) and Tg(Atoh1-Cre); Hbs1l cKO cerebella
(right). The number of genes that pause sites map to is shown below for each genotype. (C) All translated genes (DE RPF Hbs1/”") from E8.5 Hbs1l"
embryos were compared to the translation of genes which contained pauses specific to either Hbs1”~ or wild-type embryos. Downward direction of
arrows indicates significant reduction in translation of pausing genes in E8.5 Hbs1I’~ embryos relative to wild-type embryos. (D) Identification of
upstream regulators using Ingenuity Pathway Analysis (IPA) of differentially translated genes of E8.5 Hbs1I”~ embryos (DE RPF Hbs1"%). Transcription
factors that are involved in heart development are shown in red. Downward direction of arrows indicates predicated activity (downregulation) of
transcription factors. RPFs, ribosome-protected fragments; nts, nucleotides. Wilcoxon rank-sum test was used to determine statistical significance (C).
The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Hbs1/ deficiency in embryos alters translation of pathways associated with heart function.

uniquely observed in Hbs1I’~ embryos and like other pauses, occurred primarily in protein coding
sequences (Supplementary file 2). Similar to the metagene analysis (Figure 3A), we didn’t observe
genotype-dependent differences in the ribosome occupancy in different gene regions (i.e. untrans-
lated 5" or 3’ region). Only 9% of genes associated with Hbs1/” -specific ribosome pauses were dif-
ferentially translated in Hbs1I” embryos (DE RPF Hbs1I”") and translation of 26 genes and 15 genes
was decreased and increased, respectively (Figure 3—figure supplement 1A).
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Loss of Hbs1l did not affect survival of granule cells (Figure 2—figure supplement 2B and C),
which constitute the vast majority of the cellular content of the cerebellum. Thus, to determine if
elongation defects correlate with pathogenesis in Hbs1/ mutant tissues, we also performed ribosome
profiling on the cerebellum of P14 control and Tg(Atoh1-Cre); Hbs1l cKO mice (Supplementary file
2). We observed more ribosome pausing sites (~2700) in the cerebellum than in embryos, likely due
to the higher amount of input RNA and sequencing depth. Consistent with the lack of a genetic
interaction between the Hbs1/ and the n-Tr20 mutation, no significant increase in ribosome occu-
pancy on A-site AGA codons was observed in Hbs1I”" cerebella (Supplementary file 4). Unlike the
high percentage of pauses that were unique to Hbs1l’~ embryos, only 2% of ribosome pauses
(mapped to 69 genes) were unique to the mutant cerebellum (Figure 3B). In addition, the z-scores
(‘pause scores’) for Hbs1l-specific pauses were significantly higher in mutant embryos than the
mutant cerebellum (Figure 3—figure supplement 1B).

Mutant embryos also exhibited larger changes in the translatome (DE RPF) than the mutant cere-
bellum (Figure 3—figure supplement 1C), indicating that defects in translation also correlate with
pathology. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Ingenuity Pathway Analysis
(IPA) of differentially translated genes (DE RPF Hbs1I", adj. p<0.05) in Hbs1I”- embryos revealed
that downregulated genes were significantly enriched for heart/cardiac muscle contraction and cal-
cium signaling (Figure 3—figure supplement 1D and E). In agreement, upstream regulator analysis
predicted downregulation of multiple transcription factors required for heart development
(Cui et al., 2018; Molkentin et al., 1997, Munoz-Martin et al., 2019, Steimle and Moskowitz,
2017, Figure 3D). Together these data suggest that HBS1L deficiency may cause defects in the
embryonic heart, one of the first organs to begin developing in the mouse embryo.

Loss of Pelo/Hbs1l alters translation regulation and reprograms the
translatome

Our embryonic data suggested that defects in translation modulate the translatome. Because Pelo™
embryos could not be profiled due to their early embryonic lethality, we conditionally deleted Pelo
or Hbs1l in primary mouse embryonic fibroblasts (MEFs) using a tamoxifen-inducible Cre transgene
(TgCAG-Cre®) to compare changes in translation upon loss of Pelo and Hbs1! (Figure 4A). Consis-
tent with previous studies (Juszkiewicz et al., 2020; O’Connell et al., 2019), deletion of Hbs1l was
accompanied by decreased levels of PELO protein, but not its mRNA (Figure 4B, Figure 4—figure
supplement 1A,B and C). In addition, we found deletion of Pelo also led to the loss of HBS1L with-
out altering Hbs1/ mRNA levels, suggesting degradation of PELO or HBS1L protein occurs in the
absence of either interacting partner (Figure 4B, Figure 4—figure supplement 1A,B and C).

To analyze defects in translation elongation, we performed ribosome profiling of tamoxifen-
treated control (TgCAG-Cre®R), Pelo” (TgCAG-CreR; Pelo cKO), and Hbs 1"~ (TgCAG-CreR; Hbs1l
cKO) cells. Analyzing the ribosome occupancy in Pelo”” and control cells revealed ~10,000 sites with
significant (z-score >10) increases in local ribosome occupancy which mapped to 4693 genes
(Figure 4C, Supplementary file 2). One percent of these ribosome pauses were only observed in
control cells (‘control-pauses’), 57% were shared between control and Pelo” cells, and 42% were
specific to Pelo” cells (’Pelo'/'-pauses'). In contrast, analysis of Hbs1I”- and control cells revealed
fewer ribosome pauses (~4200 - mapping to 1807 genes) and only 5% were specific to Hbs1I"" cells
(’Hbs1l'/’-pauses') (Figure 4C). In addition to the fewer ribosome pause sites, the z-scores (‘pause
scores’) for Hbs1l”-pauses were also significantly lower than those of Pelo”"-pauses (Figure 4D).
Approximately 80% of the Hbs1/”-pausing genes also had pauses in Pelo”" cells; however, only 30%
of the ribosome pauses occurred at the same pause site (Figure 4E, Supplementary file 2).
Together, these data suggest that the loss of Pelo or Hbs1l leads to translation elongation defects,
but particularly severe defects are observed in the absence of Pelo.

The Dom34:Hbs1 complex has been implicated in multiple translation-dependent quality control
pathways including non-stop decay (NSD) (Collart and Weiss, 2020; Simms et al., 2017a). This
pathway rescues ribosomes stalled at the ends of truncated mRNAs, ribosomes in polyA-sequences
on prematurely polyadenylated mRNAs that lack a termination codon, or ribosomes in the 3'UTR of
mRNAs that were not recycled at canonical stop codons (Arribere and Fire, 2018; D’Orazio et al.,
2019; Guydosh and Green, 2014; Mills et al., 2017, Young et al., 2015). Examination of Pelo™-
and Hbs1I"-pauses revealed that ~92% of pauses mapped to the protein-coding region of tran-
scripts (Supplementary file 5). The remaining local increases in ribosome occupancy were similarly
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Figure 4. Loss of Pelo induces greater defects in translation elongation then loss of Hbs1l. (A) Experimental strategy for in vitro studies using tamoxifen
(4-OHT) treatment of primary mouse embryonic fibroblasts (MEFs). (B) Western blot analysis of HBS1L and PELO using MEF lysates from tamoxifen-
treated control (Hbs1I"* or Pelo™"), Hbs1I~ and Pelo™ cells. Vinculin was used as a loading control. (C) Analysis of significantly increased local

Figure 4 continued on next page
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ribosome occupancy (z-score >10, pause site detected in all three replicates) from tamoxifen-treated control (TgCAG—CreER) and Pelo™ (left), or control
and Hbs1I” cells (right). The number of genes that pause sites map to is shown below for each genotype. (D) Comparison of the z-scores (‘pause

score’) for pauses observed in Pelo™”

(blue) and Hbs1I” (red) cells. Downward direction of the arrow indicates significant lower pause scores of Hbs1l"-

compared to Pelo”"-specific pauses. (E) Examples of mapped footprints (27-34 nucleotides) on genes from tamoxifen-treated control (TgCAG-Cre,
gray) and Pelo” (blue), or control and Hbs1I”~ (red) cells. Upward direction of arrows indicates significant increase in local ribosome occupancy and the
dashed line indicates the pause site. 4-OHT, 4-hydroxytamoxifin; nts, nucleotides; rom, reads per million. Wilcoxon rank-sum test was used to

determine statistical significance (D).

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Figure supplement 1. Loss of Hbs1/ and Pelo control protein levels of their respective binding partner.

Figure supplement 1—source data

1. Loss of Hbs1l and Pelo control protein levels of their respective binding partner.

split between the 5’ and 3'UTRs. Although the frequency of pauses in the 3’'UTR was similar for
mutant-specific, control-specific and shared pauses, the frequency of control-specific pauses that
mapped to the 5'UTR was increased and those in the coding region were decreased (Figure 4—fig-
ure supplement 1D). Thus, consistent with our observations in Hbs1I’~ embryos, these data suggest
that neither loss of Hbs 1l nor Pelo in MEFs led to enrichment of ribosomes in the 5" or 3'UTR.

We also searched for RPFs containing untemplated stretches of adenosines (A) at the 3’end indic-
ative of ribosomes extending into the poly(A) tail of premature polyadenylated mRNAs. Ribosomes
did not protect more then 15 consecutive A's (Figure 4—figure supplement 1E) suggesting that
like in yeast, the poly(A) tract does not extend beyond the P-site of the ribosome (Guydosh and
Green, 2014). Interestingly, we observed a significantly higher fraction of these 3’end A reads in
Pelo”" compared to control cells (Figure 4—figure supplement 1F), supporting a role for Pelo in
rescuing ribosomes in polyA tails (D’Orazio et al., 2019, Guydosh and Green, 2017; Guydosh and
Green, 2014). However, the fraction of those reads did not significantly increase in Hbs1I”~ MEFs
(Figure 4—figure supplement 1F), Hbs1”" embryos (Student's t-test, p=0.4621) or Hbs1I’" cere-
bella (Student’s t-test, p=0.3269).

In addition to NSD, Dom34:Hbs1 is implicated in ribosome rescue during No-Go decay (NGD), a
quality control pathway in which ribosome stalling is evoked due to stretches of rare codons, sec-
ondary mRNA structures, amino acid starvation, or tRNA deficiency. NGD may trigger endonucleo-
lytic cleavage of mRNAs due to ribosome collision, leading to 5'RNA intermediates that lack a stop
codon and are then targeted by Dom34:Hbs1 via NSD (D’Orazio et al., 2019; Doma and Parker,
2006; Glover et al., 2020). Studies in Drosophila and C. elegans revealed that RNA intermediates
that converge onto NSD may also be generated through additional mechanisms including RNA inter-
ference (RNAI) and nonsense-mediated decay (NMD) (Arribere and Fire, 2018; Hashimoto et al.,
2017).

To determine if loss of Pelo or Hbs1l alters the frequency of ribosome pauses that are associated
with potential targets such as NMD targets, we mapped pauses to unique coding transcripts, which
is generally difficult due to the short nature of RPFs. Indeed, only a fraction (~30%) of Pelo” and
Hbs1l"-pauses could be assigned to unique coding transcripts (1518 and 95, respectively)
(Supplementary file 5). Of these transcripts, ~8% were classified as NMD transcripts and ~92% were
protein-coding transcripts. A similar percentage of pauses mapping to NMD transcripts (~6.5%) was
observed when we analyzed transcripts that contained ribosome pauses shared between either con-
trol and Pelo”" cells, control and Hbs1I" cells, or control-specific pausing transcripts (Figure 4—fig-
ure supplement 1G). In addition, transcriptome analysis of MEFs revealed that NMD transcripts
represented ~6% of expressed transcripts (Supplementary file 7). These data suggest that loss of
Pelo or Hbs1l did not lead to enrichment of ribosome pauses on transcripts predicted to undergo
NMD.

Our observation that ribosome pausing is more dramatic in Pelo”" than Hbs1I’* cells correlates
with the earlier lethality of Pelo”” embryos. To get a broader perspective of whether the loss of Pelo
impacts other aspects of translation more than the Hbs1/ deficiency, we analyzed at first the transla-
tional efficiency (TE, Supplementary file 6) of genes by normalizing the abundance of ribosomal
footprint reads to that of the RNA sequencing reads. In Pelo”" cells about 35% (4884) of genes dis-
played significant (adj. p<0.05) alterations in TE compared to control cells. The TE of 57% of these
genes was increased and for 43% it was decreased. In contrast, the TE of only 4% of genes (314,
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60% up- and 40% downregulated) was significantly changed in Hbs 1’ cells and genes with differen-
tial translational efficiency showed only a moderate correlation between Hbs1/’”~ and Pelo”" cells
(Pearson’s correlation, r = 0.3739). The TE of Pelo”-specific pausing genes increased, but this effect
was less for Hbs1l”"-specific pausing genes (Figure 5—figure supplement 1A), suggesting that
elongation defects maybe more dramatic in Pelo”" cells as a result of the increase in translation of
these genes.

In addition to its greater impact on the TE of genes, the loss of Pelo also had a stronger impact
on gene translation in general as evidenced by the differential expression of ribosome-protected
fragments (DE RPF, Supplementary file 3; Figure 5—figure supplement 1B). While Hbs1| defi-
ciency altered translation of 26% (3445) of genes, the loss of Pelo affected translation of 34% (4965)
of genes and led to significantly greater fold changes in gene expression in Pelo”" cells (Wilcoxon
test, p<2.2e-16). However, differentially translated genes between Pelo”" (DE RPF Pelo”) and
Hbs 1’ (DE RPF Hbs1I"") cells were strongly correlated (Figure 5—figure supplement 1C), indicat-
ing that, although loss of Hbs1l may lead to smaller alterations in translation, most of the changes
occur in the same direction.

In addition, 20% (1060) and 2% (70) of the differentially translated genes in Pelo”" and Hbs1I”
cells also contained ribosome pauses specifically found in Pelo”” and Hbs1/” cells, respectively, and
translation of these pausing genes was both increased and decreased (Figure 5—figure supplement
1B). However, changes in expression were under 2-fold for the majority of Pelo”"- and Hbs1/”-paus-
ing genes (88% of Pelo”- and 93% of Hbs1I"*-pausing genes) and these changes were significantly
lower compared to those in genes without mutant-specific pauses (Figure 5—figure supplement 1B
and D). Thus, similar to Hbs1I’~ embryos, these data suggest that most of the translational changes
in gene expression are not due to an increase in the ribosome occupancy but are likely a response
to changes in mRNA expression and/or translation regulation.

Interestingly, we observed an opposing relationship between transcriptional expression changes
(DE mRNA) and changes in translational efficiency (TE) of many genes in Pelo” and Hbs1l”" cells
(Figure 5A). KEGG pathway analysis of genes with this opposing behavior revealed enrichment of
several pathways (ribosome, ribosome biogenesis, RNA transport, spliceosome, cell cycle, and lyso-
some) that overlapped with those of differently translated genes (DE RPF) (Figure 5B, Figure 5—fig-
ure supplement 1E), suggesting that expression of genes in these pathways is translationally
regulated, perhaps to restore homeostasis between the transcriptome and translatome.

To identify signaling pathways that might control these changes in translation regulation upon
loss of Pelo/Hbs1l, we performed IPA analysis on differentially transcribed (DE mRNA) genes and
genes with altered translation efficiency (TE). EIF2 and mTOR/p70S6K signaling, both of which are
known to regulate translation, were highly enriched in Pelo” cells but less enriched in Hbs1I”~ cells
(Figure 5C, Figure 5—figure supplement 1F). Phosphorylation of elF20 decreases translation initia-
tion, while the activity of mTOR, in particular mTORC1 (mechanistic target of rapamycin complex 1),
increases translation initiation and elongation. About 50% of the differentially regulated genes iden-
tified by IPA overlapped between the two pathways and therefore, we assessed the phosphorylation
status of p-elF20°>" and p-p7056™87, a known target of mTORC1, to determine if one or both sig-
naling pathways were affected. Levels of p-elF20>>" in Pelo” cells were unchanged from those of
control cells (Figure 5D and E). However, levels of p-p70$6T389 were significantly increased in Pelo™
cells, indicating activation of mTOR signaling (Figure 5D and E). In agreement, the TE of genes that
are known to be translationally regulated by mTORC1 via their 5terminal oligopyrimidine motifs
(5'TOP) (Yamashita et al., 2008) was significantly increased in Pelo”" and Hbs1I” cells, although this
increase was less pronounced in the latter (Figure 5F). Activation of mTORC1 may underlie some of
the observed gene expression changes (DE RPF) given its role as a positive regulator for ribosome
biogenesis and translation of ribosomal genes and a negative regulator of lysosomal biogenesis and
autophagy (Kim et al., 2011; Mayer and Grummt, 2006; Puertollano, 2014; Rabanal-Ruiz et al.,
2018; Roczniak-Ferguson et al., 2012), which parallels the directionality of the changes in these
pathways (Figure 5—figure supplement 1E).

Convergent modulation of the translatome in cells with defects in
translation-dependent quality control pathways

Our findings suggest that translational reprogramming occurs upon loss of Pelo/Hbs1l. However,
whether these changes are unique to Pelo/Hbs1l or reflect a more general cellular response upon
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Figure 5. Pelo/Hbs 1| deficiency alters translation regulation and reprograms the translatome. (A) Translational efficiency (TE) of genes that are
transcriptionally upregulated or downregulated was compared to the remaining (‘other’) genes from Pelo”” (blue) and Hbs1I”~ (red) MEFs, respectively.
Downward direction of arrows indicates significant decrease in translational efficiency of transcriptionally upregulated genes in Pelo” and Hbs1"
MEFs. Upward direction of arrows indicates significant increase in translational efficiency of transcriptionally downregulated genes in Pelo”” and Hbs1/”-
MEFs. (B) KEGG pathway analysis of genes from Pelo”” MEFs in which the translational efficiency (TE Pelo”, adj. p<0.05) is opposite to their
transcriptional expression (DE mRNA Pelo””, g-value <0.05). Italicized pathways indicate pathways that overlapped with enriched pathways of
differentially translated genes in Pelo”” MEFs (DE RPF Pelo”", adj. p<0.05) (Figure 5—figure supplement 1E). The red dashed line indicates the
significance threshold (p=0.05). (C) Ingenuity pathway analysis (IPA) of genes with differential translational efficiency from Pelo” (TE Pelo”") and Hbs 1"
(TE Hbs1I") MEFs. EIF2 and mTOR/p70S6K signaling are in italics. The red dashed line indicates the significance threshold (p=0.05). (D) Western blot
analysis of p-elF20>>" and p-p70S6K™® using lysates of tamoxifen-treated control (Pelo™") and Pelo”~ MEFs at Day 2 (Passage P1). Vinculin was used as
a loading control. (E) Levels of p-elF20:°°" or p-p70S6K™®? were normalized to total level of elF20. or p70S6K, and phosphorylation levels are relative to
those of control (Pelo™®). Data represent mean + SD. (F) Translational efficiency (TE) of genes with translational regulation by mTOR via their 5TOP
motif was compared to the remaining (‘other’) genes from Pelo” (blue) and Hbs1I”" (red) MEFs. Upward direction of arrows indicates significant
increase in translational efficiency of 5'TOP genes. 4-OHT, 4-hydroxytamoxifin; 5'TOP, 5terminal oligopyrimidine motif. Student’s t-test (E); Wilcoxon
rank-sum test was used to determine statistical significance (A, F). ns, not significant; **p<0.01.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Figure 5 continued on next page
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Figure 5 continued

Source data 1. Pelo/Hbs 1] deficiency alters translation regulation and reprograms the translatome.
Figure supplement 1. Pelo/Hbs 1/ deficiency alters translational gene expression of multiple pathways.

impairment of translation-dependent quality control pathways is unclear. To investigate this possibil-
ity, we conditionally deleted the core NMD component, Upf2, in MEFs (Lelivelt and Culbertson,
1999; Serin et al., 2001). In contrast to NGD and NSD that resolve ribosomes on mRNAs impeding
translation elongation, nonsense-mediated decay (NMD) targets aberrant mRNAs (e.g. mRNAs con-
taining a premature termination codon) for degradation during translation (Karousis and Miihle-
mann, 2019; Schuller and Green, 2018). Consistent with the function of Upf2 in NMD, about 20%
and 13% of upregulated transcripts (DE mRNA Upf2, g-value <0.05) were NMD transcripts or tran-
scripts with retained introns, respectively (Figure 6—figure supplement 1A, Supplementary file 7).
Although the accumulation of these transcripts was specific to Upf2 7~ cells (Figure 6—figure sup-
plement 1A and B), we observed an inverse relationship between transcriptional gene expression
changes (DE mRNA Upf2) and changes in translational efficiency (TE Upf2) in Upf2’/' cells as we did
in Pelo” and Hbs1l”" cells (Figure 6A). Surprisingly, IPA analysis on differentially transcribed (DE
mRNA Upf2”") genes and genes with altered translation efficiency (TE Upf2”") revealed enrichment
for EIF2 and mTOR signaling in Upf2”" as observed in Pelo” and Hbs1l”" cells (Figure 6B and C).
Western blot analysis revealed the level of p-elF20°°" in Upf2”" cells was unchanged from that of
controls, but p-p7056™% levels and translation of 5'TOP genes were significantly increased
(Figure 6C,D and E), indicating that mTORC1 is activated in Upf2” cells. Although translation of
ribosomal genes was increased, transcriptional levels of ribosomal genes were decreased in Upf2”-
similar to Pelo”" cells (Figure 6F), further supporting that mTORC1 activation may be a general
response in an attempt to restore cellular homeostasis in Upf2”~ and Pelo”" cells.

Surprisingly, most of the top upstream regulators predicted by IPA analysis that may govern the
observed gene expression changes were shared between Upf2”" and Pelo”" cells and included
Trp53, Myc, Tgfb1, Errb2, Cdkn1a, Hras, and Nfkbia (Figure 6G). In agreement, genes with differen-
tial translational efficiency were strongly correlated between Upf2’~ and Pelo”" cells (Pearson’s cor-
relation, r = 0.6576). Furthermore, differentially translated genes in Upf2’/' (32% of genes, DE RPF
Upr/') and Pelo”" (34% of genes, DE RPF Pelo™) cells also showed a strong linear correlation
(Figure 6H), indicating that defects in these quality control pathways may not only lead to similar
changes in translation regulation (TE) but also in global gene translation (DE RPF). Consistent with
the similar changes in translation, KEGG pathway analysis of differentially translated genes (DE RPF,
adj. p<0.05) revealed similar enrichment of multiple pathways in Upf2”", Pelo”", and Hbs1”" cells
(Figure 6l).

In contrast with the many ribosome pauses we observed specifically in Pelo”" cells, only 4% of all
ribosome pausing events observed in Upf2”" and control cells were uniquely found in Upf2”" cells
(Figure 6—figure supplement 1D). Although only a small fraction (8%) of Pelo- and Hbs1l-specific
pausing transcripts corresponded to NMD transcripts, we considered the possibility that some of
the protein-coding transcripts with ribosome pauses in Pelo”” and Hbs1/”" cells may also be NMD
sensitive given that 5-10% of mRNAs without premature termination codons are thought to be
degraded by the NMD pathway (He et al., 2003; Jaffrey and Wilkinson, 2018; Lelivelt and Cul-
bertson, 1999; Mendell et al., 2004). However, upregulation of these protein-coding pausing tran-
scripts was not observed in Upf2”~ cells (Figure 6—figure supplement 1E), suggesting that these
pausing transcripts are not NMD sensitive. Together, these findings suggest that while Pelo/Hbs1/
and Upf2 largely function in distinct quality control pathways, disruption of either pathway results in
similar translational gene expression changes.

Deletion of Upf2 or Pelo cause similar cerebellar developmental defects
Intrigued by the similar changes in translation upon impairment of Upf2 and Pelo/Hbs1l in MEFs, we
conditionally deleted Upf2 during cerebellar development to determine if phenotypic similarities
exist upon loss of these different translation-dependent quality control pathways. Surprisingly, dele-
tion of Upf2 (En1¢re; Upf2 cKO) or Pelo (En1¢™; Pelo cKO) using En1°"™ resulted in largely indistin-
guishable defects with a grossly hypoplastic cerebellum and regions of the midbrain (superior and
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Figure 6. Defects in different translation-dependent quality control pathways similarly alter translation regulation and the translatome. (A) Translational
efficiency (TE) of genes that are transcriptionally upregulated or downregulated was compared to the remaining (‘other’) genes from Upf2”" (green)
MEFs. Downward direction of the arrow indicates significant decrease in translational efficiency of transcriptionally upregulated genes in Upf2”~ MEFs.
Upward direction of the arrow indicates significant increase in translational efficiency of transcriptionally downregulated genes in Upf2’~ MEFs. (B)

Figure 6 continued on next page
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Figure 6 continued

Ingenuity pathway analysis (IPA) of differentially transcribed genes from Upf2”~ MEFs (DE mRNA Upf2”). EIF2 and mTOR/p70S6K signaling are in italics.
The red dashed line indicates the significance threshold (p=0.05). (C) Western blot analysis of |ofe|F20L551 and p7p7OS(>KT389 of lysates from tamoxifen-
treated control (Upf2"*) and Upf2’- MEFs at Day 2 (Passage P1). Vinculin was used as a loading control. (D) Levels of p-elF20°>" or p-p7056K™% were
normalized to total level of elF20. or p70S6K, and phosphorylation levels are relative to those of control (Upf2"*) MEFs. Data represent mean + SD. (E)
Translational efficiency (TE) of genes those translation is regulated by mTOR via their 5TOP motif was compared to the remaining (‘other’) genes from
Upf2”" (green) MEFs. Upward direction of the arrow indicates significant increase in translational efficiency of 5 TOP genes. (F) Differential transcription
(DE mRNA) or translational efficiency (TE) of ribosomal protein genes (small and large ribosomal subunit) was compared to the remaining (‘other’)
genes from Pelo”" (blue), Upr/' (green), and Hbs1l" (red) MEFs. Up- and downward direction of arrows indicates significant up- and downregulation of
ribosomal protein genes, respectively. The heatmap indicates the gene expression changes of ribosomal protein genes. (G) Identification of upstream
regulators of genes with differential translational efficiency in Upf2”’" (TE Upf2”") and Pelo” (TE Pelo”") MEFs. Top ten transcription factors are shown.
Those enriched in both Upf2”’” and Pelo”” MEFs and shown in red. Up- or downward direction of arrows indicates predicted up- or downregulation of
transcription factors, respectively. (H) Differentially translated genes in Upf2”" MEFs (DE RPF Upf2”", adj. p<0.05, x-axis, green) were plotted against
genes that are differentially translated in Pelo”~ MEFs (DE RPF Pelo™", adj. p<0.05, y-axis, blue). Genes those translation was significantly different in
both Upf2”" and Pelo”” MEFs are shown in purple. (I) KEGG pathway analysis of differentially translated (up- and downregulated) genes (DE RPF, adi.
p<0.05) in Upr/" (green), Pelo™” (blue) and Hbs1I”~ (red) MEFs. Significantly (p<0.05) enriched pathways are shown and pathways in bold indicate
pathways that are shared between any of the mutant MEFs. Pathways known to be positively or negatively regulated by mTORC1 are in red. 4-OHT, 4-
hydroxytamoxifin; 5" TOP, 5'terminal oligopyrimidine motif. Student's t-test (D); Wilcoxon rank-sum test was used to determine statistical significance (A,
E, F); Pearson coefficient (r) was determined to analyze linearity of gene expression changes (H). ns, not significant; **p<0.01.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Defects in different translation-dependent quality control pathways similarly alter translation regulation and the translatome.
Figure supplement 1. Loss of Upf2 leads to an increase of NMD targets.

inferior colliculus) being nearly absent unlike in En1"®; Hbs1l cKO mice (Figures 7A and 2D). Both
Upf2 and Pelo mutant pups died shortly after birth, perhaps due to En1<® deletion of these genes
in other cell types (Britz et al., 2015; Kimmel et al., 2000; Sapir et al., 2004, Sgaier et al., 2007,
Wurst et al., 1994).

Similar neurogenesis defects were observed in the Upf2 and Pelo mutant cerebellum. The fraction
of ventricular zone (VZ) progenitors that remained in the cell cycle was higher in E13.5 Upf2- or Pelo-
deficient cerebella compared to controls (Figure 7—figure supplement 1A and B), indicating that
like Hbs1l, loss of Upf2 or Pelo impairs cell cycle exit of VZ-progenitors. Inversely, the number of VZ-
derived precursors, for example Purkinje cells (Lhx1/5" cells) and Pax2* interneurons were reduced
by ~83% and~90% in the En1¢"™; Upf2 cKO and En1"; Pelo cKO cerebellum (Figure 7—figure sup-
plement 1C,D,E and F). Glutamatergic deep cerebellar neurons (Tbr1") were nearly absent in the
E13.5 En1¢'e; Upf2 cKO and En1€™; Pelo cKO cerebellum (Figure 7—figure supplement 1G and
H). In addition, the EGL was missing in En1C¢re; Upf2 cKO and En1¢™: Pelo cKO cerebella at both
E13.5 and PO (Figure 7A, Figure 7—figure supplement 1I), indicating that neurogenesis defects
are particularly more severe in the absence of Upf2 or Pelo relative to those observed upon Hbs1l
loss.

Thus, we considered that in addition to cell cycle exit abnormalities, cell death might also contrib-
ute to impaired cerebellar development. Indeed, the number of apoptotic cells (Casp3™ cells) was
significantly increased in the En1"; Upf2 cKO and En1<"; Pelo cKO cerebellum compared to that
of controls or En1"; Hbs 1/ cKO embryos, and apoptotic cells were observed in both the ventricular
zone and the prospective white matter where progenitor-derived progeny reside (Figure 7—figure
supplement 1J and K). Together, these data suggest that defects in cell cycle exit and increased
cell death likely impair cerebellar development in Upf2 and Pelo mutant mice. To determine if loss
of Upf2 or Pelo also increased mTORC1 signaling in the developing cerebellum as it did in MEFs, we
analyzed levels of p-56°2*%2%4 3 known downstream target of mTORC1. In agreement, levels of
p-565240/244 \vere significantly increased in the En1<®; Upf2 cKO and En1°"; Pelo cKO cerebellum,
including the VZ (Figure 7—figure supplement 1L and M).

Because loss of Upf2 or Pelo severely impaired early granule cell neurogenesis, we investigated if
these genes are also required later in the development of these cells. Conditional deletion of either
Upf2 or Pelo using Tg(Atoh1-Cre) resulted in abnormalities of the anterior lobes of the cerebellum in
P21 mice (Figure 7B). These lobes were reduced in length and Purkinje cells failed to form a mono-
layer. In contrast, the posterior lobes appeared unaffected, possibly due to the anterior-to-posterior
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Figure 7. Loss of Upf2 and Pelo cause similar cerebellar developmental defects. (A) Parasagittal (E13.5) and sagittal (PO) cerebellar sections of control
(Pelo™™, En1Cre; Upf2 cKO and En1¢; Pelo cKO mice stained with cresyl violet. (B) Sagittal cerebellar sections of P21 control (Pelo™, Tg(Atoh1-Cre);
Upf2 cKO and Tg(Atoh1-Cre); Pelo cKO mice stained with cresyl violet. Higher magnification images of lobule VI are shown below for each genotype.
Cerebellar lobules are indicated by Roman numerals. (C) Immunofluorescence with antibodies to BrdU (green) and Ki67 (red) on sections of Pé control
(Tg(Atoh1-Cre); Upf2”/+), Tg(Atoh1-Cre); Upf2 cKO and Tg(Atoh1-Cre); Pelo cKO cerebellum. Mice were injected with BrdU 24 hr prior to harvest to
determine the fraction of granule cell precursors in the EGL that exited the cell cycle. Images are shown for anterior (IV/V) and posterior (IX) lobules. (D)
Quantification of the fraction of granule cell precursors in the EGL (lobules IV/V and IX) that exited the cell cycle (BrdU", Ki67™ cells) of control (Tg
(Atoh1-Cre); Upf2”/+), Tg(Atoh1-Cre); Upf2 cKO, Tg(Atoh1-Cre); Pelo cKO and Tg(Atoh1-Cre); Hbs1l cKO mice. Data represent mean + SD. (E)
Quantification of terminally differentiated granule cells (NeuN™ cells) in the IGL in lobules IV/V and IX of control (Tg(Atoh1-Cre); UprﬂH), Tg(Atoh1-
Cre); Upf2 cKO, Tg(Atoh1-Cre); Pelo cKO and Tg(Atoh1-Cre); Hbs1l cKO mice. Data represent mean + SD. Scale bars: 200 um (E13.5) and 500 um (P0)
(A); 500 um and 20 um (higher magnification) (B); 50 um (C). VZ, ventricular zone, EGL, external granule cell layer; NTZ, nuclear transitory zone; SC,
superior colliculus; IC, inferior colliculus; ML, molecular cell layer; PL, Purkinje cell layer; GCL, granule cell layer; oEGL, outer external granule cell layer;

iEGL, inner external granule cell layer; IGL, internal granule cell layer. Two-way ANOVA was corrected for multiple comparisons using Tukey method (D,
E). ns, not significant; ***p<0.001; ****p<0.0001.

Figure 7 continued on next page
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The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Loss of Upf2 and Pelo cause similar cerebellar developmental defects.
Figure supplement 1. Upf2 and Pelo are required for the development of multiple cerebellar linages.
Figure supplement 1—source data 1. Upf2 and Pelo are required for the development of multiple cerebellar linages.

gradient of Cre expression in granule cell precursors in the developing cerebellum (Pan et al., 2009,
Qiu et al., 2010; Wojcinski et al., 2019).

During postnatal cerebellar development, granule cell precursors in the outer region of the EGL
(oEGL) exit the cell cycle and transiently reside in the inner EGL (iEGL) before migrating to the inter-
nal granule cell layer (IGL). To determine if granule cell precursors in postnatal Tg(Atoh1-Cre); Upf2
cKO or Tg(Atoh1-Cre); Pelo cKO cerebellum properly exited the cell cycle, we labeled granule cell
precursors with BrdU to determine the fraction of precursors that exited the cell cycle twenty-four
hours later (BrdU*; Ki67 cells). In Pé control cerebella, BrdU-labeled granule cell precursors that
were negative for Ki67 formed a distinct layer on the ventral surface of the EGL consistent with the
appearance and location of the iEGL (Legué et al., 2016; Figure 7C). However, no clear separation
between the oEGL and iEGL was observed in the anterior lobes in Tg(Atoh1-Cre); Upf2 cKO or Tg
(Atoh1-Cre); Pelo cKO cerebella (Figure 7C), and the fraction of granule cell precursors that exited
the cell cycle (BrdU™; Kié7" cells) in these lobes, but not posterior lobes, was significantly lower com-
pared to control or Tg(Atoh1-Cre); Hbs1l cKO cerebella (Figure 7D). Correspondingly, the number
of terminally differentiated granule cells in the IGL (NeuN™ cells) of the anterior, but not posterior,
lobes was reduced by ~45% in P6 Tg(Atoh1-Cre); Upf2 cKO or Tg(Atoh1-Cre); Pelo cKO cerebella
(Figure 7E), indicating that both of these genes are necessary for differentiation of granule cell
precursors.

Discussion

Translation-dependent quality control pathways govern protein synthesis and proteostasis by
degrading aberrant mRNAs that result in potentially toxic peptide products. However, little is known
about the in vivo defects or how translation is altered in the absence of these pathways. To interro-
gate these questions, we investigated the translational and phenotypic alterations from different
translation-dependent quality control pathways including the NSD/NGD (Pelo/Hbs1l) and the NMD
(Upf2) pathways.

Here, we show that Pelo and Hbs1l are both critical for mouse embryonic and cerebellar develop-
ment but dispensable for granule cells after cerebellar development. In addition, loss of Pelo or
Hbs1l locally increase the ribosome occupancy (‘ribosome pauses’) of genes. Interestingly, the num-
ber and strength of these pauses were higher in E8.5 Hbs1/”~ embryos, just prior to the time when
these embryos cease developing, compared to the postnatal cerebellum, where loss of Hbs1/ had
no effect on cerebellar granule cells. Together these data suggest that this translation-dependent
quality control pathway may be needed in cell- and/or tissue-specific manner.

In agreement with the differential severity between Pelo”"- and Hbs1I"-mediated defects during
embryonic and cerebellar development, pauses were stronger and more frequent in Pelo”~ MEFs
and coincided with greater changes in gene expression than in Hbs1I’”~ MEFs. Loss of Pelo induced
greater translation elongation defects compared to its binding partner Hbs1l, which may be in part
be influenced by differences in gene expression and translational efficiency between Pelo- and
Hbs1l-deficient cells. However, additional factors may also play a role. For example, while deletion
of either Pelo or Hbs1l led to a reduction of their respective binding partners, the kinetics of this
decrease upon deletion of Pelo or Hbs1l is unknown and may not be equal. In addition, Dom34
(Pelo) promotes dissociation of ribosomes by RIi1 (Abce1) and this activity increased in the presence
of Hbs1 (Hbs1l) (Pisareva et al., 2011; Shoemaker and Green, 2011). Hence, we cannot rule out a
scenario in which the remaining levels of PELO in Hbs1I’" cells might be able to mitigate and/or
delay elongation defects even in the absence of Hbs1l.

Most of the ribosome pauses in Pelo- and Hbs1l-deficient tissues or cells were located in the cod-
ing sequence. Although these pauses with a footprint length of 27-34 nucleotides could indicate
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ribosomes that paused during translation, phenotypes in Hbs1l and Pelo mutant mice were not
dependent on the BéJ-associated mutation in n-Tr20 that introduces genome-wide AGA pausing
within mRNAs. Instead, these pauses may reflect pausing of the ‘trailing’ ribosomes upstream of the
‘lead’ ribosome that reached the 3’end of truncated mRNAs (Guydosh et al., 2017, Guydosh and
Green, 2014). Footprints of the ‘lead’ ribosome have been analyzed on an exosome-deficient back-
ground (Arribere and Fire, 2018; D’Orazio et al., 2019; Glover et al., 2020; Guydosh and Green,
2014), and their short length of 15-18 nucleotides makes it difficult to uniquely map these footprints
in mammals with their larger genomes. Regardless, recent biochemical studies have demonstrated
that the Pelo/Hbs1l complex rescues trapped ribosomes near the 3'end of truncated mRNAs but is
not necessary for the resolution of internally stalled ribosomes within the mRNA (Juszkiewicz et al.,
2020), which is consistent with early biochemical and structural studies demonstrating that Dom34:
Hbs1 preferentially rescues ribosomes arrested at sites of truncation (Hilal et al., 2016;
Pisareva et al., 2011, Shoemaker and Green, 2011).

RNA intermediates that converge on Pelo/Hbs1l may derive from endonucleolytic cleavage for
example during NMD, RNAI, or NGD (Arribere and Fire, 2018; D'Orazio et al., 2019, Doma and
Parker, 2006; Eberle et al., 2009; Hashimoto et al., 2017). However, most of the Pelo” - and
Hbs1I""-pausing transcripts were not NMD sensitive, suggesting that if pausing occurred on trun-
cated mRNAs, many of the RNA intermediates likely derived from additional mechanisms. Endonu-
cleolytic cleavage of mRNAs may occur upon persistent ribosome collision during NGD
(D’Orazio et al., 2019; Doma and Parker, 2006; Shoemaker and Green, 2012). Intriguingly, wide-
spread ribosome collision has been observed under normal conditions and may represent 10% of
the pool of translating ribosomes (Arpat et al., 2020, Diament et al., 2018; Han et al., 2020;
Meydan and Guydosh, 2020). Numerous human mRNAs are subject to repeated, co-translational
endonucleolytic cleavage and occur independent of NMD-associated nucleases (Ibrahim et al.,
2018). Because translation changes during development and varies between cell types (Blair et al.,
2017, Buszczak et al., 2014; Castelo-Szekely et al., 2017, Gonzalez et al., 2014; Sudmant et al.,
2018), RNA intermediates that are generated during translation may also vary and thereby, could
introduce a need for quality control pathways in a tissue- and/or cell-type-specific manner.

We also observed that loss of Pelo/Hbs1l was associated with the activation of mTORC1 signal-
ing. mTORC1 activation was previously observed in Hbs1l patient derived fibroblasts
(O’Connell et al., 2019) and upon deletion of Pelo during epidermal development (Liakath-
Ali et al., 2018). Interestingly, inhibition of translation/mTORC1 partially prevented Pelo”"-mediated
epidermal defects (Liakath-Ali et al., 2018). How mTORC1 responds to loss of Pelo/Hbs1l is
unknown. Multiple mTOR-dependent phosphorylation sites on the surface of the ribosome have
been observed, suggesting that mTORC1 and/or mTORC1-associated kinases interact with the ribo-
somes and might provide a mechanism to detect changes in translation elongation (Jiang et al.,
2016). However, changes in levels of ribosomal mRNAs and/or impaired ribosomal biogenesis also
activate mTORC1 signaling (Liu et al., 2014). Indeed, deletion of Pelo/Hbs1l led to decreased tran-
script levels but increased translation of ribosomal genes. Thus, mMTORC1 may be activated to com-
pensate for decreases in expression of these genes rather than directly sensing defects in translation
elongation. To test whether mTORC1 activation was specific to Pelo/Hbs 1l deficiency or was gener-
ally associated with defects in translation-dependent quality control pathways, we examined MEFs
deficient for Upf2, an essential component of the NMD pathway. Loss of Upf2 also led to decreased
expression and increased translation of ribosomal genes and mTORC1 activation, supporting that
changes in mTORC1 signaling are not a direct consequence of the elongation defects, but likely
occurs as a compensatory response.

In general, impairment of either translation-dependent quality control pathway led to strikingly
similar alterations in gene expression with Pelo and Upf2 showing the most changes compared to
Hbs1l. Reminiscent of these changes, loss of Pelo or Upf2 had remarkably similar effects on multiple
cerebellar neuronal populations during early embryonic and late postnatal neurogenesis, causing
comparable morphological defects in the cerebellum (e.g. inhibition of differentiation and
an increase in cell death). Growing evidence highlights the role of mTOR in the decision of stem cells
to self-renew or differentiate (Meng et al., 2018; Xiang et al., 2011). However, increased mTOR
activity generally reduces self-renewal and promotes differentiation of neuronal stem/progenitor
cells (Hartman et al., 2013; LiCausi and Hartman, 2018; Magri et al., 2011; Way et al., 2009),
suggesting that other molecular changes contributed to the observed defects in neurogenesis.

Terrey et al. elLife 2021;10:e66904. DOI: https://doi.org/10.7554/eLife.66904 19 of 37


https://doi.org/10.7554/eLife.66904

e Life Research

article

Key resources table

Reagent type
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Strain, strain
background (mouse)

Strain, strain
background
(mouse)

Strain, strain

Designation

Hbs1/CT¢

Hbs1[m2
(C57BL/

Chromosomes and Gene Expression

The similarities in gene expression and developmental alterations in mice deficient for these
translation-dependent quality control pathways suggest a convergence of molecular and cellular
pathology. In fact, several changes in gene expression and signaling pathways were altered in the
same direction in mutant cells. Thus, phenotypic changes could be due to either a change in a single
molecular pathway or interactions of multiple pathways. For example, Myc activation was predicted
as an upstream regulator of gene expression in both Pelo”" and Upf2’ but less in Hbs1I’~ MEFs.
Myc functions as a switch between proliferation and differentiation during cerebellar development
(Knoepfler et al., 2002; Ma et al., 2015; Wey et al., 2010), in which loss of Myc allows precursors
to exit the cell cycle and undergo differentiation, while maintained Myc expression retains cells in
the proliferation cycle. Intriguingly, previous studies revealed that depletion of NMD factors inhib-
ited differentiation of embryonic stem cells, which coincided with sustained Myc expression and its
downregulation released the differentiation blockage in NMD-deficient cells (Li et al., 2015).

How different translation-dependent quality control pathways can lead to similar changes in trans-
lation and cellular defects is unclear. Recent studies in yeast demonstrated that impairment of these
quality control mechanisms (Hbs1, Dom34, Upf1, Upf2, Ski7 and Ski8) caused protein aggregation
(Jamar et al., 2018). Protein misfolding occurred co-translationally on highly translated genes and
the aggregated proteins overlapped between the different mutant strains. These data suggest that
increased translation and protein aggregation may be common properties among different quality
control mutants (Jamar et al., 2018). Perhaps, regardless of specific targets of various quality con-
trol pathways, defects in protein folding, clearance of defective peptide products, and/or defects in
mRNA decay may trigger similar cellular responses leading to similar phenotypes.

Materials and methods

Additional
information

International Gene Trap
Consortium, IGTC,
cell line ID: XE494

Identifiers

MMRRC #007694-UCD;
RRID:MMRRC007694-UCD

Source or reference

This study
(see Materials
and methods)

Skarnes et al., 2011 MMRRC #048037-UCD,

RRID:MMRRC048037-UCD

6N_Atm1Brdes
1 ’tm 7a(KOMF’)Wt5i)

B6N.129S4-Gt(ROSA)

The Jackson JAX:016226;

background (mouse)  26Sort™ FLPIBYM Laboratory RRID:IMSRJAX:016226
Strain, strain B6N.Cg-Edil3Tg The Jackson JAX:014094; RRID:IMSRJAX:014094
background (mouse) (Sox2-Cre)1Amc/J Laboratory
Strain, strain B6.FVB-Tg(Ella- The Jackson JAX:003724; RRID:IMSRJAX:003724
background (mouse) Cre)C5379Lmgd/J Laboratory
Strain, strain EnqimaCrevrst The Jackson JAX:007916; RRID:IMSRJIAX:007916
background (mouse) Laboratory
Strain, strain B6.Cg-Tg(Atoh1- The Jackson JAX:011104; RRID:IMSRJAX:011104
background (mouse) Cre)1Bfri/J Laboratory
Strain, strain B6.Cg-Tg(CAG- JAX:004682; RRID:IMSRJAX:004682
background (mouse) Cre/Esr1*)5Amc/J
Strain, strain B6.Tg(Gabraé- Fiinfschilling and N/A
background (mouse) Cre)B1Lfr Reichardt, 2002
Strain, strain B6J-Pelo This study N/A
background (mouse) (see Materials
and methods)
Strain, strain Upf2'/A Weischenfeldt N/A
background (mouse) et al., 2008
Strain, strain B6J.B6N"T20 Ishimura et al., 2014 N/A

background (mouse)

Continued on next page
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(species) or Additional
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Strain, strain B6J-n-Tr20" Ishimura et al., 2016 N/A

background (mouse)

Antibody Anti-phospho- Cell Signaling CST #9721, WB (1:1000)
elF2alpha>®' Technology RRID:AB_330951
(Rabbit polyclonal)

Antibody Anti-elF2alpha Cell Signaling CST #9722, WB (1:2000)
(Rabbit polyclonal) Technology RRID:AB_2230924

Antibody Anti-phospho- Cell Signaling CST #9234, WB (1:1000)
p70S6K™%7 Technology RRID:AB 2269803
(Rabbit monoclonal)

Antibody Anti-p70S6K Cell Signaling CST #2708,; WB (1:1000)
(Rabbit monoclonal) Technology RRID:AB 390722

Antibody Anti-phospho- Cell Signaling CST #5364, IF (1:1000)
§5240/244 Technology RRID:AB_10694233
(Rabbit monoclonal)

Antibody Anti-cleaved Cell Signaling CST #9661; IF (1:100)
caspase 3 Technology RRID:AB_2341188
(Rabbit polyclonal)

Antibody Anti-BrdU Dako/Agilent MO0744; IF (1:50)
(Mouse monoclonal) RRID:AB_10013660

Antibody Anti-Hbs1l Proteintech #10359-1-AP; WB (1:1000)
(Rabbit polyclonal) RRID:AB_2114730

Antibody Anti-Pelo Proteintech #10582-1-AP; WB (1:2000)
(Rabbit polyclonal) RRID:AB_2236833

Antibody Anti-Vinculin Sigma-Aldrich V9131; WB (1:20,000)
(Mouse monoclonal) RRID:AB_477629

Antibody Anti-GAPDH Cell Signaling CST #2118; WB (1:10,000)
(Rabbit monoclonal) Technology RRID:AB_561053

Antibody Anti-Ki67 Abcam ab15580; IF (1:100)
(Rabbit Polyclonal) RRID:AB_443209

Antibody Anti-Olig2 Abcam ab109186; IF (1:200)
(Rabbit monoclonal) RRID:AB_10861310

Antibody Anti-Lhx1/5 DSHB #4F2-c; IF (1:100)
(Mouse monoclonal) RRID:AB_ 531784

Antibody Anti-NeuN Millipore MAB377; IF (1:500)
(Mouse monoclonal) RRID:AB_2298772

Antibody Anti-Tbr1 Millipore AB9616; IF (1:1000)
(Rabbit polyclonal) RRID:AB_2200223

Antibody Anti-Pax2 Thermo Fisher #71-6000; IF (1:50)
(Rabbit polyclonal) Scientific RRID:AB_2533990

Antibody Anti-pH3 (Rabbit Upstate, Millipore #06-570; IF (1:1000)
polyclonal) RRID:AB_310177

Antibody Anti-PCNA Invitrogen, Thermo MA5-11358; IF (1:100)
(Mouse monoclonal) Fisher Scientific RRID:AB_10982348

Chemical DNase | Worthington .5002139

compound, drug

Chemical Bromodeoxyuridine Sigma-Aldrich B9285

compound, drug (BrdU)

Chemical 5-Bromo-4-chloro- Sigma-Aldrich B4252

compound, drug

3-indolyl-B-D-
galactopyranoside
(X-Gal)

Continued on next page
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Chemical Z-4-hydroxytamoxifin Sigma-Aldrich H7905
compound, drug (40HT)
Commercial RNAscope Advanced Cell #323100
assay or kit Multiplex Diagnostics
Fluorescent
Reagent
Kit v2
Commercial KAPA Stranded Roche KR0960
assay or kit mRNA-seq. Kit
Commercial iQ SYBR Green Bio-Rad #1708880
assay or kit Supermix
Commercial SuperScript I Invitrogen #18080051
assay or kit First-Strand
Synthesis System
Commercial DNA-free DNA Life Technologies AM1906
assay or kit Removal Kit
Commercial TSA Plus PerkinElmer NEL744001KT
assay or kit Cyanine 3
Other RNA-seq. and This study GSE162556 Deposited Data
ribosome (see Materials
profiling data and methods)
Sequence- Hbs1l GTC This study N/A Common
based reagent (Genotyping) (see Materials Forward:5’AGTCCAGGT
and methods) GTTTCCTCACG3;
Wild type
Reverse:5'CCCTGGCCT
A GGTTT3,;
GTC Reverse:5TGTCCTCC
AGTCTCCTCCACY3
Sequence- Hbs1l KO This study N/A Forward I: 5’CATGGCCT
based reagent (Genotyping) (see Materials CCTATGGGTTGA3Z;
and methods) Forward Il: 5’GCCTACA
GTGAGCACAGAGTS3';
Reverse: 5TAGGTGCTG
GGATTTGAACC3'
Sequence- Pelo cKO (Genotyping)  This study N/A Forward:5TGTAACT
based reagent (see Materials GAACCCTGCAGTATCT3";
and methods) Reverse |I: 5’GTGGAGCATGAAA
TGAAATTCGG3';
Reverse II: 5’ATCCAA
GGCTTTTACTTCGCC3
Sequence- RNAscope probe Advanced #527471-C2
based reagent Hbs1]-C2 Cell Diagnostics
Sequence- Hbs1l Exon 3-6 This study N/A Forward Primer:5GAAATTGACC
based reagent (RT-PCR) (see Materials AAGCTCGCCTGTA3;
and methods) Reverse Primer:5'CTCAGAAGTT
AAGCCAGGCACT3
Sequence- B-actin (RT-PCR) Terrey et al., 2020 N/A Forward Primer:5GGCTGT
based reagent ATTCCCCTCCATCG3;
Reverse Primer:5’CCAGTTGG
TAACAATGCCATGT3'
Sequence- Hbs1l Isoform | This study N/A Forward Primer:5’AGACCAT
based reagent (quantitative (see Materials GGGATTTGAAGTGC3;
RT-PCR) and methods) Reverse Primer:5’CCGGTCT
CAGGAATGTTAGGA3’

Continued on next page
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Sequence- Hbs1l Isoform I This study N/A Forward Primer:5TGAAGTTGAA
based reagent (quantitative (see Materials CAAAGTGCCAAG 3';
RT-PCR) and methods) Reverse Primer:5'CTGCTTC
CTCTGTGTTCCTC3
Sequence- Pelo (quantitative This study N/A Forward Primer:5'CCCCAGG
based reagent RT-PCR) (see Materials AAACGGAAAGGC3';
and methods) Reverse Primer:5’ACGCACTTTA
CAACCTCGAAGY
Sequence- Gapdh (quantitative Ishimura et al., 2016 N/A Forward Primer:
based reagent RT-PCR) S'CATTGTCA
TACCAGGAAATG3;
Reverse Primer:
5'GGAGAAACC
TGCCAAGTATG3
Software, Image J NIH RRID:SCR_003070; https://image;j.
algorithm nih.gov/ij
Software, GraphPad Prism 7 GraphPad RRID:SCR_002798
algorithm Prism
Software, Pause site Ishimura et al., 2014 N/A
algorithm identification
algorithm
Software, biomaRt Durinck et al., 2005 RRID:SCR_019214;
algorithm version 2.42.1 https://bioconductor.
org/packages/release/
bioc/html/biomaRt.html
Software, ShinyGO v0.61 Ge et al., 2020 RRID:SCR_019213;
algorithm (KEGG pathway) http://bioinformatics.
sdstate.edu/go
Software, Ingenuity Pathway QIAGEN Inc RRID:SCR_008653;
algorithm Analysis (IPA) https://www.
giagenbioinformatics.
com/products/
ingenuity-pathway-analysis
Software, DESeq2 v1.26.0 Love et al., 2014 RRID:SCR_015687;
algorithm https://bioconductor.
org/packages/release/
bioc/html/DESeqg2.html
Software, ensembldb v2.6.8 Rainer et al., 2019 RRID:SCR_019103;
algorithm https://www.
bioconductor.
org/packages/release/
bioc/html/
ensembldb.html
Software, riborex v2.3.4 Li et al., 2017 RRID:SCR_019104;
algorithm https://github.com/
smithlabcode/riborex
Software, RiboWaltz v1.0.1 Lauria et al., 2018 RRID:SCR_016948;
algorithm https://github.com/
LabTranslational
Architectomics/RiboWaltz
Software, bowtie2 v 2.2.3 Langmead and RRID:SCR_005476;
algorithm Salzberg, 2012 http://bowtie-bio.
sourceforge.net/
bowtie2/index.shtml
Software, fastx_trimmer Hannon Lab http://hannonlab.
algorithm cshl.edu/fastx_toolkit/
Software, fastx_clipper Hannon Lab http://hannonlab.
algorithm cshl.edu/fastx_toolkit/

Continued on next page

Terrey et al. elLife 2021;10:e66904. DOI: https://doi.org/10.7554/eLife.66904

23 of 37


https://identifiers.org/RRID/RRID:SCR_003070
https://imagej.nih.gov/ij
https://imagej.nih.gov/ij
https://identifiers.org/RRID/RRID:SCR_002798
https://identifiers.org/RRID/RRID:SCR_019214
https://bioconductor.org/packages/release/bioc/html/biomaRt.html
https://bioconductor.org/packages/release/bioc/html/biomaRt.html
https://bioconductor.org/packages/release/bioc/html/biomaRt.html
https://identifiers.org/RRID/RRID:SCR_019213
http://bioinformatics.sdstate.edu/go
http://bioinformatics.sdstate.edu/go
https://identifiers.org/RRID/RRID:SCR_008653
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
https://identifiers.org/RRID/RRID:SCR_015687
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://identifiers.org/RRID/RRID:SCR_019103
https://www.bioconductor.org/packages/release/bioc/html/ensembldb.html
https://www.bioconductor.org/packages/release/bioc/html/ensembldb.html
https://www.bioconductor.org/packages/release/bioc/html/ensembldb.html
https://www.bioconductor.org/packages/release/bioc/html/ensembldb.html
https://www.bioconductor.org/packages/release/bioc/html/ensembldb.html
https://identifiers.org/RRID/RRID:SCR_019104
https://github.com/smithlabcode/riborex
https://github.com/smithlabcode/riborex
https://identifiers.org/RRID/RRID:SCR_016948
https://github.com/LabTranslationalArchitectomics/RiboWaltz
https://github.com/LabTranslationalArchitectomics/RiboWaltz
https://github.com/LabTranslationalArchitectomics/RiboWaltz
https://identifiers.org/RRID/RRID:SCR_005476
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
https://doi.org/10.7554/eLife.66904

eLife

Chromosomes and Gene Expression

Continued
Reagent type
(species) or Additional
resource Designation Source or reference Identifiers information
Software, hisat2 v2.1.0 Kim et al., 2019 RRID:SCR_015530;
algorithm https://daehwankimlab.
github.io/hisat2/
Software, featureCounts Liao et al., 2014 RRID:SCR_012919;
algorithm http://bioinf.wehi.
edu.au/featureCounts
Software, sleuth v0.30.0 Pimentel et al., 2017 RRID:SCR_016883;
algorithm https://pachterlab.
github.io/sleuth/about
Software, kallisto v0.42.4 Bray et al., 2016 RRID:SCR_016582;
algorithm https://pachterlab.

github.io/kallisto/about

Mouse strains

Generation of Hbs1 mice was performed by injection of targeted ES cells (International Gene
Trap Consortium, IGTC, cell line ID: XE494) into C57BL/6J (B6J) blastocysts. B6N-Hbs1/f™'2 (C57BL/
6N-AM1Brdp g 1 [tm1a(KOMPIWEsi \MMRRC:048037) mice were produced at the Wellcome Trust Sanger
Institute Mouse Genetics Project as part of the International Mouse Phenotype Consortium (IMPC).
In order to generate the conditional Hbs1l knock out allele, heterozygous B&N-Hbs1™'?* mice
were crossed to B6N.129S54-Gt(ROSA)26Sor™'FLFVDym/y (The Jackson Laboratory, #016226,
MGI:5425632) to remove the gene trap cassette and generate B6N-Hbs 1"+ mice. Generation of the
constitutive B6N-Hbs 1"/~ knock out allele was accomplished by crossing homozygous B6N-Hbs 1"
mice to B6N.Cg-Edil3Tg(Sox2-Cre)1Amc/J mice (The Jackson Laboratory, #014094, MG1:4943744).
The B6N-Hbs1/*~ or B6N-Hbs 1" mice were backcrossed to congenic B6N.B6J" 20 mice (n = 2
backcross generations) to introduce the BéJ-associated n-Tr20 mutation. The conditional knock out
Pelo allele was generated by placing the 5'loxP site 117 bp upstream of exon 2 and the 3'loxP site
302 bp downstream of exon2. Targeted BéJ ES cells were injected into BéJ blastocysts to generate
heterozygous B6J-Pelo™* mice. Generation of the ubiquitous B6J-Pelo*” knock out allele was
accomplished by crossing homozygous BéJ-Pelo™ mice to B6.FVB-Tg(Ella-Cre)C5379Lmgd/J mice
(The Jackson Laboratory, #003724, MGI:2174520). The conditional Upf2 knock out allele (Upf2™"f
mice) was kindly provided from Drs. Bo Torben Porse and Miles Wilkinson. Genotyping primers are
listed below and for the conditional knock out alleles of Hbs1l and Pelo, genotyping primers were
multiplexed to simultaneously detect the wild type, flox (fl) and delta (-) allele. Genotyping for the
conditional knock out allele of Upf2, was performed as previously described (Weischenfeldt et al.,
2008).

Hbs1l common Forward: 5’AGTCCAGGTGTTTCCTCACG3’
Hbs 1! wild type Reverse: 5'CCCTGGCCTATTTTTGGTTT3'
Hbs1l GTC Reverse: 5TGTCCTCCAGTCTCCTCCAC3’
Hbs1l cKO Forward I: 5’CATGGCCTCCTATGGGTTGA3'
Hbs1l cKO Forward Il: 5’ GCCTACAGTGAGCACAGAGT3’
Hbs1l cKO Reverse: 5 TAGGTGCTGGGATTTGAACC3'

Pelo cKO Forward: 5" TGTAACTGAACCCTGCAGTATCT3’
Pelo cKO Reverse |: 5’GTGGAGCATGAAATGAAATTCGG3'
Pelo cKO Reverse Il: 5’ATCCAAGGCTTTTACTTCGCC3’

IGTC

For conditional knock out experiments, the following Cre-lines were used and the Cre allele was
maternally inherited to generate mutant mice (F, generation): En1tm2CreWrst/j (Fn 1€ The Jackson
Laboratory, #007916, MGI:3815003), B6.Cg-Tg(Atoh1-Cre)1Bfri/J (Tg(Atoh1-Cre), The Jackson Labo-
ratory, #011104, MGI:4415810) and B6.Tg(Gabraé-Cre)B1Lfr (Tg(Gabraé-Cre), MGI:4358481,
Fiinfschilling and Reichardt, 2002). In order to avoid the introduction of the BéJ-associated n-Tr20
mutation in En1€"; Hbs1l cKO mice, En1tm2(CreWrst) | mice were backcrossed to congenic B6J.B6N™
20 mice (Ishimura et al., 2016) to generate En1™mC®Wrst/J mice that no longer carry the mutation.
Subsequently, B6J.B6N™T2°; En1€™ mice were intercrossed with B6N-Hbs 1"~ to produce F1 mice,
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En1¢"®, Pelo cKO
En1<", Upf2 cKO
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then these mice were crossed to B6N-Hbs 1/ mice to generate En1¢"; Hbs1l cKO; n-Tr2086N/BSN
without the BéJ-associated tRNA mutation. To generate Tg(Atoh1-Cre); Hbs1/ cKO mice lacking n-
Tr20, B6.Cg-Tg(Atoh1-Cre)1Bfri/J, B6N-Hbs1/™", and B6N-Hbs1"" mice were crossed to BéJ-n-
Tr20”" mice. Subsequently, these strains were intercrossed to generate Tg(Atoh1-Cre); Hbs1l cKO;
n-Tr20”" mice. For BrdU experiments, pregnant females or pups were injected with BrdU (0.05 mg/
g, Sigma-Aldrich, B9285) and collected 30 min (S-phase analysis) or 24 hr (cell cycle exit analysis)
post injection. For the isolation of MEFs or embryos, the day that a vaginal plug was detected was
defined as embryonic day 0.5 (EQ.5).

For conditional knock out experiments in primary mouse embryonic fibroblasts (MEFs), we
crossed mice to the tamoxifen inducible Cre-line B6.Cg-Tg(CAG-Cre/Esr1*)5Amc/J (CAG-CrefR, The
Jackson Laboratory, #004682, MGI:2680708). The Cre allele was paternally inherited to generate
embryos (F, generation) because Cre-mediated recombination (‘leaky Cre expression’) was occasion-
ally observed even in the absence of tamoxifen (4-OHT) treatment of MEFs when the Cre allele was
maternally inherited (F, generation).

All experiments and quantifications were performed with at least three mice/embryos of each
genotype and time point using mice of either sex (embryos were not sexed). The Jackson Laboratory
Animal Care and Use Committee and The University of California San Diego Animal Care and Use
Committee approved all mouse protocols.

Strain abbreviation
For conditional knock out (cKO) experiments, animals were given a simplified abbreviation through-
out the article. The complete genotype is shown below.

Genotype
En1S/*: Hbs1V~ n-Tr208¢V/86)
En1C/+: Pelo: n-TrooB6Y/B6)

En1Cre/+_ Upfzﬂ/ﬂ_ n_TrZOBéJ/BéJ

Tg(Atoh1-Cre), Hbs1l cKO

Tg(Atoh1-Cre); Hbs1V"; n-Tr20B6/B¢

Tg(Atoh1-Cre); Pelo™; n-Tr20P6/BS

Tg(Atoh1-Cre), Upf2 cKO

Tg(Atoh1-Cre); Upfzf‘/ﬂ; n-Tr20B6Y/B6

(

Tg(Atoh1-Cre), Pelo cKO
(
(

Tg(Gabrab-Cre), Hbs1l cKO
Tg(Gabrab-Cre), Pelo cKO

'I'gCAG—CreER (control MEFs)
TgCAG-Cre®R, Hbs1/ cKO (Hbs 1’ MEFs)
TgCAG-Cre®®, Pelo cKO (Pelo”" MEFs)

Tg(Gabrabé-Cre); Hbs 1" n-Tro0B6V/B¢)

Tg(CAG-Cre/Esr1); n-Tr208//88)
Tg(CAG-Cre/Esr); Hbs1lﬂ/'; n-Tr20B8/B%)

TgCAG-Cre®R, Upf2 cKO (Upf2”~ MEFs)

(
(
(
(
Tg(Gabrab-Cre); Pelo™~; n-TrogB6V/Bé)
(
(
(
(

)

)
Tg(CAG-Cre/Esr); Pelolfl. n-TroQB6Y/B6)
Tg(CAG-Cre/Esr1); Upf2ﬂ/ﬂ; n-Tr20B%Y/B%)

Cell culture

Primary mouse embryonic fibroblasts (MEFs) were isolated on embryonic day E13.0 and prepared by
standard procedures (Nagy et al., 2014). MEFs were maintained in Dulbecco’s modified Eagle’s
medium (Gibco, #41965039) with GlutaMAX (Gibco, #35050061), PSN (Gibco, # 15640055), and
10% embryonic stem cell fetal bovine serum (Gibco, #10439024) at 37°C in 5% CO,. Two days post-
isolation (Passage PO), the cell culture media was replaced with fresh media and supplemented with
1 uM 4-OHT (4-hydroxytamoxifen, Sigma, H7904) for both control and mutant cells. After 48 hr, cells
were washed, trypsinized, and seeded on a 10 cm dish (Passage P1). For RNA sequencing and ribo-
some footprint profiling experiments, cells were collected 48 hr (Passage P1, Day 2) later when cells
reached ~80% confluency. For western blotting experiments, cells of Passage P1 were collected 48
hr (Day 2) and 96 hr (Day 4) post-seeding.

Terrey et al. elLife 2021;10:e66904. DOI: https://doi.org/10.7554/eLife.66904 25 of 37


https://doi.org/10.7554/eLife.66904

eLife

Chromosomes and Gene Expression

Histology and immunofluorescence

Anesthetized mice were transcardially perfused with 4% paraformaldehyde (PFA, for immunofluores-
cence and histology), Bouins fixative (for histology) or 10% neutral buffered formalin (NBF, for in situ
hybridization). Tissues were post-fixed overnight and embedded in paraffin. For histological analysis,
sections were deparaffinized, rehydrated, and were stained with cresyl violet according to standard
procedures. Histological slides were imaged using a digital slide scanner (Hamamatsu).

All quantifications were performed with three mice or embryos of each genotype and time point
using animals of either sex (embryos were not sexed). For cell quantification in embryos at E12.5 to
E16.5 and pups at P5 (Olig2™ cells), cells were counted from the entire section and values were aver-
aged from three parasagittal (embryos) or sagittal (pups) sections (spaced 35 um apart) per mouse.
For the analysis of granule cell precursors or granule cells in P5 or P6 pups, the total number of cells
was determined within lobule IV/V or IX, and values were averaged from three sagittal sections
(spaced 50 um apart) per mouse. For the analysis of granule cells in adult mice (35 weeks of age),
granule cells were counted in a 0.025 mm? area of lobule IX and values were averaged from three
midline sections per mouse spaced 100 um apart.

For immunofluorescence, antigen retrieval on deparaffinized PFA-fixed sections was performed
by microwaving sections in 0.01M sodium citrate buffer (pH 6.0, 0.05% Tween-20) for three times
with 3 min each or three times for 3 min, followed by two times for 9 min. PFA-fixed sections were
incubated with the following primary antibodies overnight at 4°C: rabbit anti-cleaved caspase 3 (Cell
signaling, #9661, 1:100), mouse anti-BrdU (Dako, M0744, 1:50), rabbit anti-Ki67 (Abcam, ab15580,
1:100), mouse anti-Lhx1/5 (DSHB, 4F2-c, 1:100), mouse anti-NeuN (Millipore, MAB377, 1:500),
mouse anti-PCNA (Invitrogen, MA5-11358, 1:100), rabbit anti-p-S62%2** (Cell Signaling, #5364,
1:1000), rabbit anti-Pax2 (ThermoFisher, 71-6000, 1:50), rabbit anti-Olig2 (Abcam, ab109186,
1:200), rabbit anti-Thr1 (Chemicon, AB9616, 1:1000), and rabbit anti-pH3 (Upstate, 06-570, 1:1000).
Immunofluorescence with antibodies to BrdU was performed on sections treated with DNase |
(5mU/ul, Worthington, LS002139) for 45 min at 37°C after antigen retrieval. Detection of primary
antibodies was performed with goat anti-mouse Alexa Fluor-488 or —555, goat anti-rabbit Alexa
Fluor-488 or —555, and donkey anti-rabbit Alexa Fluor-555 secondary antibodies (Invitrogen). Sec-
tions were counterstained with DAPI and Sudan Black to quench autofluorescence.

For immunofluorescence quantification, the fluorescence intensity was measured in an area of 60
x 125 um using ImagelJ, averaged from three sections (spaced 35 pum apart) per embryo and
expressed as the fold change relative to control.

RNAscope (in situ hybridization)

In situ hybridization of Hbs1/-C2 probes (ACD, #527471-C2) was performed with the ACD RNAscope
Multiplex Fluorescent Reagent Kit v2 (ACD, #323100) using the manufacturer’'s protocol. Briefly,
deparaffinized NBF-fixed sections were treated for 15 min with Target Retrieval Reagent at 100°C
and subsequently, treated with Protease Plus for 20 min (E13.5 embryos) or 30 min (P28 mice) at 40°
C. RNAScope probes were hybridized for 2 hr; TSA Plus Cyanine 3 (PerkinElmer, 1:1,500) was used
as a secondary fluorophore for Hbs1/-C2 probes.

Reverse transcription and quantitative PCR (qPCR) analysis

Whole mouse embryos, primary mouse embryonic fibroblasts, or adult mouse tissues were isolated
and immediately frozen in liquid nitrogen. Total RNA was extracted with Trizol reagent (Life Technol-
ogies). cDNA synthesis was performed on DNase-treated (DNA-free DNA Removal Kit, Life Technol-
ogies AM1906) total RNA using oligo(dT) primers and SuperScript Il First-Strand Synthesis System
(Life Technologies). Quantitative RT-PCR reactions were performed using iQ SYBR Green Supermix
(Bio-Rad) and an CFX96 Real-Time PCR Detection System (Bio-Rad). Expression levels of B-actin
were used as input control for semi-quantitative RT-PCR. For quantitative RT-PCR (gPCR) analysis,
expression levels of the genes of interest were normalized to Gapdh using the 22T method
(Livak and Schmittgen, 2001) and expressed as the fold change + standard error of the mean
(SEM) relative to control.

Semi-quantitative RT-PCR Primers (F, Forward; R, Reverse):

Hbs1l Exon 3 F: 5’GAAATTGACCAAGCTCGCCTGTAZ'
Hbs1l Exon 6 R: 5’CTCAGAAGTTAAGCCAGGCACT3’
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B-actin F: 5’GGCTGTATTCCCCTCCATCG3'
B-actin R: 5’CCAGTTGGTAACAATGCCATGT3’

Quantitative RT-PCR Primers (F, Forward; R, Reverse):

Hbs1l F: 5’AGACCATGGGATTTGAAGTGC3'
Hbs1IR: 5’"CCGGTCTCAGGAATGTTAGGA3'
Hbs1l Il F: 5 TGAAGTTGAACAAAGTGCCAAG3'
Hbs1l Il R: 5’"CTGCTTCCTCTGTGTTCCTC3’
Pelo F: 5’"CCCCAGGAAACGGAAAGGC3’

Pelo R: 5’ACGCACTTTACAACCTCGAAG3'
Gapdh F: 5’CATTGTCATACCAGGAAATG3Z',
Gapdh R: 5’"GGAGAAACCTGCCAAGTATG3'

Western blotting

MEFs or tissues were immediately frozen in liquid nitrogen. Proteins were extracted by homogeniz-
ing frozen tissue or cell samples in five volumes of RIPA buffer with cOmplete Mini, EDTA-free Prote-
ase inhibitor Cocktail (Roche), sonicating tissues two times for 10 s (Branson, 35% amplitude) or
triturating cells 10 times using a 26G needle. Lysates were incubated for 30 min at 4°C, centrifuged
at 16,000xg for 25 min, and 25 pg of whole protein lysate were resolved on SDS-PAGE gels prior to
transfer to PVDF membranes (GE Healthcare Life Sciences, #10600023) using a tank blotting appara-
tus (BioRad).

For detection of phosphoproteins, frozen tissue samples were homogenized in 5 volumes of
homogenization buffer (50 mM Hepes/KOH, pH 7.5, 140 mM potassium acetate, 4 mM magnesium
acetate, 2.5 mM dithiothreitol, 0.32M sucrose, 1 mM EDTA, 2 mM EGTA) (Carnevalli et al., 2004),
supplemented with phosphatase and protease inhibitors (PhosStop and cOmplete Mini, EDTA-free
Protease inhibitor Cocktail, Roche). Frozen cell samples were homogenized by using a 26G needle
(five times) in homogenization buffer (see above). Lysate samples were immediately centrifuged at
12,000xg for 7 min and whole protein lysate were resolved on SDS-PAGE gels prior to transfer to
PVDF membranes.

After blocking in 5% nonfat dry milk (Cell Signaling, #9999S), blots were probed with primary
antibodies at 4°C overnight: rabbit anti-phospho-elF20>°" (Cell Signaling, #9721, 1:1000), rabbit
anti-elF20. (Cell Signaling, #9722, 1:2000), rabbit anti-Hbs1l (Proteintech, 10359-1-AP, 1;1000), rab-
bit anti-Pelo (Proteintech, 10582-1-AP, 1:2000), rabbit anti-GAPDH (Cell Signaling, #2118, 1:10,000),
rabbit anti-phospho-p7056K™8? (Cell Signaling, #9234, 1:1000), rabbit anti-phospho-p7056K (Cell
Signaling, #2708, 1:1000), mouse anti-vinculin (Sigma, V-9131, 1:20,000). Primary antibodies were
detected by incubation with HRP-conjugated secondary antibodies for 2 hr at room temperature:
goat anti-rabbit IgG (BioRad, #170-6515) or goat anti-mouse IgG (BioRad, #170-6516). Signals were
detected with SuperSignal West Pico Chemiluminescent substrate (ThermoScientific, #34080) or Pro-
Signal Femto ECL Reagent (Genesee Scientific, #20-302).

RNA sequencing library construction

For RNA sequencing of primary mouse embryonic fibroblasts (MEFs), one 10 cm dish of tamoxifen
(4-OHT) treated MEFs at Day 2 (Passage P1) from TgCAG-CreER (control), TgCAG-CreER; Hbs1l cKO
(Hbs1I7), TgCAG—CreER; Pelo cKO (Pelo™) and TgCAG-CreER; Upf2 cKO (Upr/') were collected.
One 10 cm dish from one individual embryo was used as one biological replicate, and either two
(Pelo) or three (control, Hbs1, Upf2) biological replicates were used per genotype. Two micrograms
of DNase-treated (DNA-free DNA Removal Kit, Life Technologies AM1906) total RNA were used for
the RNA library construction, performed as per the manufacturer’s protocol (KAPA Stranded mRNA.-
Seq Kit, KR0960) and the adapter ligation was performed for 3 hr at room temperature. Library qual-
ity and concentration was assessed using D1000 screen tape on the Agilent TapeStation and Qubit
2.0 Fluorometer. All libraries were pooled, and the pool of libraries was sequenced on two lanes
using HiSeq4000 (PE100).

Analysis of RNA sequencing data
Reads were quantified using kallisto version 0.42.4 (Bray et al., 2016) and pseudo-aligned to a Gen-
code M24 transcriptome reference with parameters —bias and -b 100. Differential expression was
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performed using sleuth version 0.30.0 (Pimentel et al., 2017). Pairwise comparisons were performed
to identify differentially expressed transcripts and genes: TgCAG-Cre®® vs. TgCAG-CreR; Pelo cKO,
TgCAG-Cre®® vs. TgCAG-CreR; Hbs1l cKO, and TgCAG-CrefR vs. TgCAG-Cre®R; Upf2 cKO. We
used functions within sleuth to perform differential transcript and gene expression. Briefly, we fit null
models and models corresponding to the genotype of the samples for each transcript and per-
formed Wald tests on the models for each transcript to identify differentially expressed transcripts.
Differential gene expression was performed by aggregating transcript expression on Ensembl gene
identifiers. Multiple hypotheses testing was corrected using Benjamini-Hochberg correction, referred
to as g-value. Transcript biotypes were identified using biomaRt version 2.42.1 (Durinck et al.,
2005). For downstream TE analysis, mapping to mm10 using a Gencode M24 transcript annotation
was performed using hisat2 version 2.1.0 (Kim et al., 2019) using default parameters.

Ribosome profiling library construction

Ribosome profiling libraries were generated as previously described (Ingolia et al., 2012,
Ishimura et al., 2014) with some modifications. Cerebella were dissected and immediately frozen in
liquid nitrogen. One cerebellum from P14 mice was used for each biological replicate, and three bio-
logical replicates were prepared for each control (Tg(Atoh1-Cre); Hbs1I**) and mutant (Tg(Atoh1-
Cre); Hbs1l cKO) genotype. For profiling of mouse embryos, embryos from timed mating were dis-
sected at embryonic day E8.5, frozen in a drop of nuclease free water on dry ice, and then flash fro-
zen in liquid nitrogen. Five embryos were pooled for each biological replicate, and three biological
replicates were prepared for each control (Hbs1*/*) and mutant (Hbs1I”") genotype. For profiling of
primary mouse embryonic fibroblasts (MEFs), tamoxifen (4-OHT) treated MEFs at Day 2 (Passage P1)
from TgCAG-Cre® (control), T9CAG-Cre®R; Hbs1l cKO (Hbs1I”"), TgCAG-Cre®R; Pelo cKO (Pelo™)
and TgCAG-CreER; Upf2 cKO (Upr/') were collected. Two 10 cm dishes from one individual embryo
were pooled as one biological replicate, and three biological replicates (three individual embryos)
were used for each genotype. The tissue and embryo homogenization were performed with a mixer
mill (Retsch MM400) in lysis buffer (20 mM Tris-Cl, pH 8.0, 150 mM NaCl, 5 mM MgCl,, 1 mM DTT,
100 ug/ml CHX, 1% (v/v) TritonX-100, 25units/ml Turbo DNase I). The cell homogenization was per-
formed by triturating the cells in lysis buffer (20 mM Tris-Cl, pH 8.0, 150 mM NaCl, 5 mM MgCl,, 1
mM DTT, 100 pug/ml CHX, 1% (v/v) TritonX-100, 25units/ml Turbo DNase ) ten times through a 26G
needle. RNase I-treated lysates were overlaid on top of a sucrose cushion in 5 ml Beckman Ultraclear
tubes and centrifuged in an SW55Ti rotor for 4 hr at 4°C at 46,700 rpm. Pellets were resuspended
and RNA was extracted using the miRNeasy kit (Qiagen) according to manufacturer’s instructions.
26-34 nts (cerebella samples) or 15-34 nts (embryo and MEF samples) RNA fragments were purified
by electrophoresis on a denaturing 15% gel. Linker addition, cDNA generation (first-strand synthesis
was performed at 50°C for 1 hr), circularization, rRNA depletion, and amplification of cDNAs with
indexing primers were performed. Library quality and concentration was assessed using high sensi-
tivity D1000 screen tape on the Agilent TapeStation and Qubit 2.0 Fluorometer. All libraries were
pooled as set of six samples consisting of three control and mutant samples. Libraries were run on
HiSeq4000 (SR75) and either three lanes (cerebella samples) or two lanes (embryo and MEF samples)
per set of samples were sequenced.

Analysis of ribosome profiling data
Reads were clipped to remove adaptor sequences (CTGTAGGCACCATCAAT) using fastx_clipper
and trimmed so that reads start on the second base using fastx_trimmer (http://hannonlab.cshl.edu/
fastx_toolkit/). Reads containing ribosomal RNAs, snoRNAs, and tRNAs were then filtered out by
mapping to a ribosomal RNA reference using bowtie2 version 2.2.3 using parameters -L 13
(Langmead and Salzberg, 2012). Remaining reads were mapped to an mm10 mouse reference
using a Gencode M24 annotation, or a Gencode M24 protein-coding transcript reference using
hisat2 version 2.1.0 (Kim et al., 2019). Ribosomal A-sites were identified using RiboWaltz version
1.0.1 (Lauria et al., 2018), and reads with lengths of 27-34 nucleotides were retained for further
analysis.

To identify potential codon bias in the A-site, observed/expected reads were calculated for each
transcript with alignments with the expected reads being the read density expected at a given site
with a given codon, assuming that reads are uniformly distributed across the coding part of the
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transcript. Differences in codon usage were then tested with a student’s t-test followed by Benja-
mini-Hochberg multiple hypothesis testing correction.

Pauses were identified using previous methodology (Ishimura et al., 2014). Reads with lengths of
27-34 nucleotides were analyzed using a 0.5 reads/codon threshold in all samples to analyze pausing
on transcripts. Additionally, pauses with P-sites nearby start and stop codons (P-sites at the —3, O, 1,
2, 3, and 4 positions for start codons and P-sites at the —1 and —2 positions for stop codons) in any
isoform of the gene were excluded from the analysis. To identify pauses overlapping start and stop
codons in other isoforms, we used ensembldb v.2.6.8 (Rainer et al., 2019) to map transcript coordi-
nates back to the genome and analyzed whether pauses with identical genome coordinates over-
lapped start/stop codons.

To extend this approach to identify pauses at the gene level, we removed start/stop overlapping
pauses (in any gene-matched transcript) and collapsed pauses based on the genomic location of the
A-site, which was also identified with ensembldb v.2.6.8. Mean pause score across transcripts of
genomically identical pauses for each sample was the reported pause score (excluding transcripts
without a reported pause in a sample). If genomically identical pauses were in multiple transcript
regions (i.e. 3'UTR or CDS depending on the isoform), all were reported.

Pauses were further filtered such that the pause locus appeared in all three replicates of the
genotype and thereby, pauses that were only detected in one or two of three replicates of the geno-
type were removed from the analysis. Pauses were compared between the 4-OHT-treated knock out
(TgCAG-CreR; Hbs1l cKO, TgCAG-CreR; Pelo cKO and TgCAG-CrefR; Upf2 cKO) and the control
(TgCAG-CreR) sample that each mutant sample was pooled with for sequencing.

To identify ribosome footprint reads with 3’end As (untemplated reads), we extracted at first
reads from a genome mapped bam file with six or more As at the 3'end of the read (3'end As were
soft-clipped). Mapped reads were only considered if the 3’end A reads were not matching the refer-
ence sequence, while all unmapped reads with six or more As at the 3’ end were considered. After-
wards, the 3'end As were then removed from these untemplated reads and they were mapped back
to the transcriptome using parameters described above for ribosome footprint profiling mapping to
the transcriptome. Only the untemplated reads that mapped after the removal of the 3’end As were
considered as ribosome footprints that may derive from ribosomes translating premature polyadeny-
lated transcripts.

For differential RPF and differential TE analysis, genome mapped reads were quantified using fea-
tureCounts (Liao et al., 2014) with footprints overlapping CDS features. For TE analysis specifically,
RNA-Seq read pairs overlapping gene exon features were also quantified using featureCounts. Dif-
ferential RPF analysis was performed using DESeq2 (v1.26.0) (Love et al., 2014) comparing 4-OHT-
treated knock out (TgCAG-CreER; Hbs1l cKO, TgCAG-CreER; Pelo cKO and TgCAG-CreER; Upf2
cKO) to control (TQCAG-Cre®®) cells using default parameters. Histone mRNAs were removed from
the analysis by removing gene names with the prefixes ‘Hist’, ‘H1f", ‘H2a’, 'H2b’, 'H3’, and ‘H4'. TE
was quantified and tested for using riborex version 2.3.4 using the DESeq?2 engine (Li et al., 2017).

Pathway analysis
Data were analyzed using Ingenuity Pathway Analysis (IPA, QIAGEN Inc, https://www.giagenbioin-
formatics.com/products/ingenuity-pathway-analysis).

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed using the
ShinyGO v0.61 bioinformatics web server (http://bioinformatics.sdstate.edu/go) (Ge et al., 2020) by
uploading the gene lists from our RNA sequencing or ribosome profiling analysis. Pathway enrich-
ment terms with a P-value cutoff (FDR) < 0.05 were considered enriched.

Statistics

For quantification of protein expression, RNA expression (quantitative RT-PCR), fluorescence inten-
sity or histological quantifications, p-values were computed in GraphPad Prism using either student’s
t-test, multiple t-tests, one-way ANOVA, or two-way ANOVA and statistical tests were corrected for
multiple comparisons as indicated in the figure legends. All quantifications were performed with at
least three mice/embryos of each genotype and time point using mice of either sex (embryos were
not sexed).
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