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Genome-Based Targeted Sequencing as a Reproducible
Microbial Community Profiling Assay

Jacquelynn Benjamino,a Benjamin Leopold,a Daniel Phillips,a* Mark D. Adamsa

aThe Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA

ABSTRACT Current sequencing-based methods for profiling microbial communities
rely on marker gene (e.g., 16S rRNA) or metagenome shotgun sequencing (mWGS)
analysis. We present an approach based on a single-primer extension reaction using
a highly multiplexed oligonucleotide probe pool. This approach, termed MA-GenTA
(microbial abundances from genome tagged analysis), enables quantitative, straight-
forward, cost-effective microbiome profiling that combines desirable features of both
16S rRNA and mWGS strategies. The use of multiple probes per target genome and
rigorous probe design criteria enabled robust determination of relative abundance.
To test the utility of the MA-GenTA assay, probes were designed for 830 genome
sequences representing bacteria present in mouse stool specimens. Comparison of
the MA-GenTA data with mWGS data demonstrated excellent correlation down to
0.01% relative abundance and a similar number of organisms detected per sample.
Despite the incompleteness of the reference database, nonmetric multidimensional
scaling (NMDS) clustering based on the Bray-Curtis dissimilarity metric of sample
groups was consistent between MA-GenTA, mWGS, and 16S rRNA data sets. MA-
GenTA represents a potentially useful new method for microbiome community
profiling based on reference genomes.

IMPORTANCE New methods for profiling the microbial communities can create new
approaches to understanding the composition and function of those communities.
In this study, we combined bacterial genome-specific probe design with a highly
multiplexed single primer extension reaction as a new method to profile microbial
communities, using stool from various mouse strains as a test case. This method,
termed MA-GenTA, was benchmarked against 16S rRNA gene sequencing and meta-
genome sequencing methods and delivered similar relative abundance and cluster-
ing data. Since the probes were generated from reference genomes, MA-GenTA was
also able to provide functional pathway data for the stool microbiome in the
assayed samples. The method is more informative than 16S rRNA analysis while
being less costly than metagenome shotgun sequencing.

KEYWORDS 16S, MA-GenTA, mWGS, microbial communities, microbiome, targeted
sequencing

The primary molecular methods for determining microbial composition are based
on marker gene sequencing or whole-metagenome shotgun sequencing (mWGS).

The 16S rRNA marker gene has been widely used for bacterial profiling for decades
across diverse ecosystems (1, 2). Using this method, taxonomic classification of the bac-
terial community can be obtained at modest cost and a resolution that ranges from
subspecies to family level, depending on the 16S rRNA segment that is sequenced
(4–6). Continued reduction in the cost of DNA sequencing has meant that mWGS
approaches have become increasingly common due to the greater information on
gene content, taxonomic resolution, and strain-level variation (7), despite higher cost
and complexity of data analysis.
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The Human Microbiome Project (8) and similar large-scale investments (9) estab-
lished methods and reference data sets for characterization of microbial profiles across
diverse human body sites. As a result, the tools and reference genome data sets for
characterizing human microbiomes are much better developed than those involving
other organisms. The mouse is widely used in microbiome studies that seek to demon-
strate a causal role of microbes affecting a given trait and to understand the mecha-
nisms by which microbes contribute to phenotypes (10). The vast majority of mWGS
sequences from mouse gut samples have no matches to named organisms in public
databases (11), substantially limiting the informativeness of this approach.

One approach to overcome the limited availability of reference genome sequences
is construction of in silico genomes based on computational sequence assembly of
large mWGS data sets to create metagenome-assembled genomes (MAGs) (12–14).
The integrated Mouse Gut Metagenomic Catalog (iMGMC) (15) is one such effort.
Combining 1.3 Tbp of data from 298 mouse metagenomic libraries, Lesker et al. (15)
assembled 1.2 million contigs; a subset of these could be grouped into 830 high-qual-
ity MAGs (hqMAGs) that are predicted to be .90% complete and ,5% contaminated
based on the representation of single-copy genes (16).

Here, we describe a new approach to metagenome profiling termed MA-GenTA
(Microbial Abundances from Genome Tagged Analysis) that combines the specificity of
mWGS analysis with a simplified laboratory and analytical workflow (Fig. 1). The avail-
ability of custom-designed highly multiplexed pools of oligonucleotides has opened
possibilities for a range of new assay methods to specifically target microbes at the
species, strain, and even gene level. We adapted the Allegro Targeted Genotyping
assay’s single primer extension reaction that is widely used for genotyping (17, 18) and
implemented it as a quantitative, straightforward, and cost-effective method for profil-
ing mouse microbial communities based on the iMGMC hqMAGs.

RESULTS

The MA-GenTA assay is based on approximating the relative abundance of hun-
dreds of microbial species using sets of probes designed to be unique to each genome.
The approach includes design of compatible probes directed at the genomes (or
genes) of interest, library construction that uses the probe pools in a primer extension
reaction, and integration of data across multiple probes to determine species abun-
dance (Fig. 1). Oligonucleotide probe sets were designed representing 830 iMGMC
hqMAGs (15). The iMGMC hqMAGs are currently the most comprehensive genome ref-
erence available for mouse gut microbes, and on average, 50% of metagenome reads
from mouse stool samples analyzed here mapped to the hqMAGs (see Table S1 in the
supplemental material).

Computational analysis suggested that each hqMAG is consistent with representing a
single bacterial species, and about 12% of hqMAGs are concordant with genome
sequences of bacterial isolates that are present in GenBank (15). Most hqMAGs, though,
do not correspond with isolated bacteria or finished-quality genome sequences, so in
considering a probe design strategy, we decided to develop two completely independ-
ent sets of 20 probes for each hqMAG. We reasoned that concordance of relative abun-
dance between these probe sets would provide additional support for the conjecture
that the hqMAGs are reasonable approximations of bona fide genome sequences and
that the organisms they represent are commonly found in the mouse gut.

Two defined-composition genomic DNA positive controls and a no-template nega-
tive control (NTC) were initially used to assess the specificity of each probe set.
Escherichia coli genomic DNA (gDNA) and the ZymoBIOMICS Microbial Community
Standard (Mock), which contains three species present in the iMGMC hqMAG set, one
of which is an E. coli strain, were used as the positive controls.

Alignment of primary sequence reads showed that probes from many MAGs were
detected for the Allegro and JAX designs for E. coli and Mock samples (gray dots in
Fig. 2a), the vast majority represented by a small number of probes with low relative
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abundance (Fig. S1). After applying a probe-abundance threshold of$0.001%, there was
only 1 MAG represented by .10 probes for both the Allegro and JAX designs in the E.
coli sample and 3 and 2 MAGs for the Allegro and JAX designs, respectively, in the Mock
sample as expected (colored dots in Fig. 2a). For the E. coli sample, 99.95% and 99.28%
of reads mapped to the E. coli genome for the Allegro and JAX designs, respectively. For
the Mock community sample, 99.92% and 98.36% of reads mapped to the three
genomes present in the Allegro design and two in the JAX design, respectively.

In negative-control samples, only a few thousand reads were obtained. NTC reads cor-
responded to 179 and 312 different probes and 77 and 138 MAGs in the Allegro and JAX
designs, respectively (Fig. 2a). Of these probes, 94 (Allegro) and 142 (JAX) from E. coli

FIG 1 Overview of the MA-GenTA strategy. MA-GenTA utilizes software (CATCH) to design thousands of probes per genome for multiple genomes (830 in
this study). All probes from the initial design are filtered based on multiple parameters (% GC, BLAST matches to inclusion/exclusion lists, nonunique
matches across genomes, etc.). Unique probes are selected for each genome (20 in this study). Probe pools are synthesized and used to prepare
sequencing libraries using the Allegro Targeted Genotyping kit and then sequenced. Reads are then mapped to the reference genomes to produce count
tables for downstream analysis.
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overlapped the NTC probes and 66 (Allegro) and 96 (JAX) from the Mock overlapped the
probes in the NTC. There are several potential sources of these reads: (i) contamination of
the NTC with mouse stool DNA that was processed on the same batch, (ii) contamination
of the reagents used for library preparation, or (iii) barcode-hopping during the sequencer
run. Although many MAGs were matched by NTC reads, most of those MAGs were repre-
sented by only a few probes. No MAGs in the Allegro design and only one MAG in the
JAX design had more than 10 probes represented in the NTC (Fig. 2a). The MAG with
.10 probes in the JAX data set (single-China_7-4_110307.52) is a Muribaculaceae mem-
ber and present at high abundance in many of the mouse samples.

The Allegro and JAX probe sets have no sequence overlap; thus, they represent two
completely independent assays for relative abundance of hqMAGs in mouse speci-
mens. High concordance in probe representation and relative abundance would there-
fore support both the reliability of the MA-GenTA assay and the structural validity of
the detected MAGs as representing a species present in the test sample. The Allegro
and JAX probe sets were used to assay DNA extracted from 72 mouse stool pellet sam-
ples, averaging 3.7 million sequencing reads per sample (Table 1; Table S1). All reads
for both data sets were mapped to the iMGMC hqMAG reference. The two probe sets
yielded similar numbers of sequencing reads and mapped reads (Table S1). There was
a larger variation in the proportion of uniquely mapped reads and fewer on-target

FIG 2 Use of control samples to establish thresholds for defining MAG presence. Thresholds for declaring a MAG present in
a sample were determined using Escherichia coli genomic DNA, ZymoBIOMICS Microbial Community Standard, and a no-
template control (NTC). (a) The number of probes present for each MAG (y axis) and the MAG abundance (x axis) for each
control sample before applied thresholds are shown in gray. Blue (Allegro) and green (JAX) points indicate MAGs detected in
each control sample when considering only probes with $0.001% abundance. (b) The percent relative abundance of each
MAG in each sample based on the Allegro design (x axis) and the JAX design (y axis) is shown. MAGs with 10 or more
probes above the 0.001% probe-abundance threshold in both designs are shown in blue. Pearson correlation of the two
designs is R= 0.98. (c) The number of probes per MAG detected using the Allegro design (x axis) and JAX design (y axis). As
in panel b, MAGs with at least 10 probes with $0.001% abundance in both assays are colored blue. Most MAGs have $10
probes per MAG above the threshold (top right) or #5 (bottom left). (d) The number of MAGs detected per sample with
minimum probe abundance and probe representation (probes per MAG [ppM]) thresholds is shown compared to the number
of MAGs detected with no thresholds across mouse samples. (e) Percentage of reads that map to MAGs with and without the
probe representation thresholds.

Benjamino et al.

March/April 2021 Volume 6 Issue 2 e01325-20 msphere.asm.org 4

 on A
pril 28, 2021 by guest

http://m
sphere.asm

.org/
D

ow
nloaded from

 

https://msphere.asm.org
http://msphere.asm.org/


reads in the Allegro data set compared to the JAX data set, suggesting that the JAX
probe design pipeline may be more effective in selecting unique regions of each MAG.

Comparison of the MAG abundances between the two designs gave a Pearson cor-
relation coefficient of 0.98, demonstrating that the MAG abundances as measured by
the Allegro and JAX probe sets were highly consistent (Fig. 2b). The points on the plot
are colored by the number of probes detected in each MAG in both probe sets, show-
ing higher abundance and better concordance between the probe sets for MAGs with
reads from 10 or more probes. The MAGs were also plotted based on the number of
probes detected in each data set across all mouse samples, illustrating that MAGs tend
to have high or low probe representation in both probe sets (Fig. 2c). Using the thresh-
olds described above to consider a MAG present in a sample if it had least 10 probes
with$0.001% abundance reduced the number of MAGs being detected (Fig. 2d); how-
ever, these MAGs captured .90% of reads, suggesting that the MAGs below the
thresholds are low-abundance genomes or noise (Fig. 2e).

TABLE 1Mouse specimen groups used for analysis

Study code Summary No. of samples Data type Reference BioProject accession no.
HLB C57BL/6J and HLB444 mice on

chow and high-fat diet
29 16S Svenson et al. (40) PRJNA505515

mWGS Unpublished PRJNA646227
MA-GenTA This study PRJNA646241

CCF C57BL/6J, CAST, and PWK mice 40 mWGS J. Oh, W. Zhou, M. Adams, and J. Graham,
unpublished

PRJNA646095

MA-GenTA This study PRJNA646241

FIG 3 Comparison of MA-GenTA results with 16S OTU and mWGS analysis of mouse specimens. (a) The relative abundances of
each MAG as inferred from the targeted and mWGS data were compared across the mouse stool samples using histograms
showing the number of MAGs (y axis) with the number of probes observed per MAG (x axis) with no minimum probe-
abundance threshold. The color scale shows the Pearson correlation of the relative abundance between the Allegro (left) and
JAX (right) data and the mWGS data. (b) The total numbers of MAGs present in each assay (JAX, Allegro, and mWGS) are shown
in Venn diagrams, highlighting the MAGs overlapping between the assays. (c) Samples from the HLB data set are shown with
16S rRNA v1-v3 OTUs and hqMAGs detected by Allegro, JAX, and mWGS assays at a range of minimum MAG/OTU-abundance
thresholds. (d) The percentage of mapped reads for each assay at a range of minimum MAG/OTU-abundance thresholds.
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Comparison of the MA-GenTA assay to other microbial community profiling
assays.mWGS data were available for 69 mouse stool samples, enabling correlation of
relative abundance data for each MAG between the two assays. MAGs were separated
into groups based on the number of probes (e.g., from 1 to 20) with at least 0.001%
abundance in the MA-GenTA data for each sample, and a Pearson correlation was per-
formed on each group of MAGs between the MA-GenTA and mWGS abundance data
(Fig. 3a, Fig. S2 to S4, and Table S2). For both the Allegro and JAX data sets, MAGs with
$15 probes detected have relative abundance correlations of R. 0.85 to the mWGS
data. MAGs represented by fewer than 10 probes had poor Pearson correlations
between the relative abundance of MA-GenTA and mWGS data (R# 0.23 for Allegro
and R# 0.52 for JAX). Poor correlation between the data sets for MAGs with fewer
probes could be due to poor probe performance, improperly assembled MAGs, pange-
nome differences between the MAG and the organisms present in our samples, or
inflated abundance values in mWGS caused by spurious matches in conserved regions.

We next compared the number of observed MAGs from the MA-GenTA assay with
the number of 16S rRNA v1-v3 operational taxonomic units (OTUs) and MAGs detected
in the mWGS data across the mouse samples from the HLB study. The sensitivity to
detect a MAG in the MA-GenTA data depends upon sequencing depth (more reads
means it is more likely that reads from a low-abundance genome will be detected) and
probe representation (if a MAG truly represents the genome of a species present in the
sample, then reads from a large fraction of probes should be observed). A MAG was con-
sidered present in the MA-GenTA data if at least 10 probes had .0.001% probe abun-
dance. These thresholds were used in subsequent analyses of mouse stool data sets.

Venn diagrams for MAG abundance thresholds of 0.1% and 0.01% show high over-
lap of MAGs detected between JAX and Allegro MA-GenTA data sets, with an increas-
ing number of low-abundance MAGs detected only in the mWGS assay (Fig. 3b). The
numbers of observed OTUs and MAGs per sample in the 16S, mWGS, and MA-GenTA
data sets were determined based on OTU and MAG relative abundance thresholds of
0.1% and 0.01% (Fig. 3c). The two MA-GenTA assays were consistent at both thresholds
and similar to the number of OTUs at the 0.1% threshold. The number of OTUs and
MAGs in 16S and mWGS data were higher than those from the MA-GenTA assays at
the 0.01% threshold. 16S OTUs are not reference dependent and therefore capture a
larger fraction of the bacterial species than MAGs do, albeit without the same level of
phylogenetic specificity. The lower number of MAGs seen in the MA-GenTA data may
also be attributed to the probe abundance (0.001%) and probes per MAG (10 ppM)
thresholds previously applied to ensure high confidence of MAG presence, whereas no
such thresholds are applied to 16S or mWGS data. While the mWGS samples had more
MAGs present at $0.01% relative abundance (Fig. 3c), there was only a 4% average
increase in mapped reads per sample (Fig. 3d). The percentage of reads in the JAX data
set mapped to MAGs with $0.1% abundance was, on average, similar to the percent-
age of reads mapped in the mWGS data set.

In order to demonstrate the utility of the MA-GenTA assay in characterizing micro-
bial profiles in an experimental context, we used the MA-GenTA data sets for analysis
of the HLB samples. Prior results identified OTU differences between C57BL/6J mice
and HLB444 mice, which carry a mutation in the Klf15 gene, on both a standard chow
diet and after introduction of a high-fat, high-sugar diet (HF). HLB444 mice were resist-
ant to diet-induced obesity when fed the HF diet. To determine the ability of the MA-
GenTA assay to differentiate these groups, the Bray-Curtis dissimilarity metric was
applied to the 16S, mWGS, and MA-GenTA data of the same samples and viewed with
nonmetric multidimensional scaling (NMDS) plots (Fig. 4). All assays showed samples
clustered by diet (Chow versus HF) and mouse strain (C57BL/6J versus HLB444).
Permutational multivariate analysis of variance (PERMANOVA) for each of the sequenc-
ing assays confirmed significant clustering between mouse strain and diet: Allegro
assay (f=2.6961, P=0.0029), JAX assay (f=13.629, P=0.0009), 16S (f=19.581,
P=0.0009), and mWGS (f=2.05, P=0.0099) (Table S3). Overall, there were few
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differences in the distribution of Bray-Curtis dissimilarity values as determined by all
four methods: 16S, JAX and Allegro MA-GenTA and mWGS (Fig. S5).

Functional analysis using MA-GenTA. Given the relative abundance of MAGs in
each sample, we inferred the functional potential of each sample based on annotation
of proteins encoded in each MAG to KEGG pathways. MA-GenTA and mWGS read
counts for each MAG in the HLB samples were assigned to KEGG pathways on a per-
sample basis, and the relative abundance was determined for each pathway. A
Pearson correlation was used to compare the read counts of each KEGG pathway per
sample between mWGS and MA-GenTA data sets (Fig. 5a). The results between the
two data sets were highly correlated. The mWGS sequences were also analyzed using
HUMAnN2; however, only ;1% of the reads could be assigned to pathways, markedly
limiting the utility of the results (data not shown). Linear discriminant analysis (LDA) in
LDA effect size (LEfSe) was used to determine differentially abundant pathways
between the two mouse strains and the two diets from the HLB study. The number of
differentially abundant pathways (MA-GenTA) varied across comparisons (HLB444 ver-
sus B6 on HF diet [53 and 60], HLB444 versus B6 on Chow [63 and 66], Chow versus HF
in HLB444 [101 and 103], and Chow versus HF in B6 [75 and 81]) for the Allegro and
JAX data sets, respectively (Table S4). All LEfSe results for the Allegro and JAX designs
are shown in Table S4, and the JAX data are highlighted in Fig. 5b. Concordance of dif-
ferentially abundant KEGG pathways between the two data sets was 82% for HLB444
versus B6 on HF, 72% for HLB444 versus B6 on Chow, 96% for Chow versus HF in
HLB444, and 77% for Chow versus HF in B6. Consideration of the response of HLB444
and B6 strains to the HF diet showed differences in carbohydrate metabolism between
the two strains on the HF diet, with HLB444 animals having higher representation of
glycolysis, tricarboxylic acid (TCA) cycle, and oxidative phosphorylation and B6 animals
having higher representation of pathways related to utilization of other sugars
(Fig. 5b). These and other differences distinguished the response to HF diet of these
two mouse strains and suggest that microbial differences contribute to the ability of
HLB mice to adapt to the HF diet.

Specificity of MA-GenTA in a complex microbial environment. As an additional
way to assess the specificity of probe targeting, both probe sets were used to assay
metagenomic DNA extracted from a human stool specimen, which serves as a highly
complex microbial sample with few organisms in common with mouse gut bacteria
(Fig. 6). While there are deep-branching similarities in the gut microbiota of human
and mouse, there are major differences at the genus and species level (11, 19, 20).
There were 16 MAGs detected in the human stool sample using the same thresholds
for detection as used for the mouse samples (minimum of 10 probes per MAG at
$0.001% probe abundance). The taxa associated with the detected MAGs have previ-
ously been found in human stool samples (21–27).

FIG 4 MA-GenTA as an assay for experimental group differentiation and functional analysis. (a) The Bray-Curtis dissimilarity
metric was applied to HLB data from each sequencing assay and shown in nonmetric multidimensional scaling (NMDS) plots.
Points are colored by diet, closed circles represent HLB444 samples, and open circles are C57BL/6J samples. All four sequencing
assays cluster points based on diet and mouse strain.
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DISCUSSION

As the field of microbial community profiling grows, the need for informative, cost-
effective, and streamlined assays of microbial composition becomes more important.
Although it was initially developed for genotyping applications, we have shown that
by combining results from multiple rigorously selected probes per genome, the
Allegro Targeted Genotyping assay can produce accurate microbial relative abundance
data across a dynamic range of at least 3 orders of magnitude at a cost that is only
moderately higher than 16S rRNA profiling. MA-GenTA bridges the gap between two
commonly used approaches—16S rRNA gene sequencing and mWGS—combining
some of the strengths of each (Table 2). Other approaches have been described that
attempt to balance cost with informativeness, including metagenomic multilocus
sequence typing (MLST) (56), full-length 16S rRNA profiling (57, 58), and shallow-cover-
age mWGS targeting as few as 0.5 million reads/sample (59).

Capture-based targeted sequencing methods have been widely used for exome
sequencing and cancer mutation profiling (3, 28, 60) and represent another potential
alternative approach for targeted microbiome profiling. Guitor et al. recently described
a method for highly multiplexed detection of antibiotic resistance genes and bacteria
that relies on biotinylated capture probes (29, 30). These probes and streptavidin bead
capture kits are costly and require each specimen to be processed separately, making
library preparation laborious. In contrast, the Allegro workflow uses unmodified oligo-
nucleotides; pooling after a sample-specific index-tagging step and combination of
pools can yield up to 3,072 uniquely barcoded libraries on a single sequencing run.
Cost comparisons necessarily incorporate many variables, but as performed here, the
MA-GenTA assays cost about twice that of 16S rRNA sequencing. Unlike array-based
platforms (31), it is straightforward to alter the design of the MA-GenTA probe pool
with each reagent order, allowing both the refinement of the selected probes for each
genome and the inclusion of additional content over time. Each approach has advan-
tages and disadvantages. A discriminating feature of MA-GenTA is that the integration
of information across multiple unique probes per genome may provide a more robust
estimate of genome abundances.

Probe selection is an important factor in achieving genome specificity. In the JAX
design, half of the probes for each MAG were designed to universal single-copy pro-
karyotic genes with a focus on aminoacyl-tRNA synthetases. We did not observe any
difference in performance between probes that targeted these genes and other probes
(data not shown). Targeting single-copy genes may provide additional advantages for
species-tagging applications, although care must be taken to ensure probe specificity

FIG 5 Functional pathway analyses with LEfSe. (a) A Pearson correlation of pathway abundance for each
sample as inferred by mWGS and MA-GenTA (JAX) demonstrates the similarity of KEGG pathway assignments
between the two assays. (b) LDA of KEGG pathways inferred by MA-GenTA (JAX) MAG abundances shows
differentially abundant pathways between HLB444 and B6 mouse strains on chow and HF diets.
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FIG 5 (Continued)
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when using strongly conserved target genes. As the MA-GenTA assay depends on
probe hybridization to DNA within a sample, an important factor to consider when
designing a probe pool is the reference database from which probes are chosen,
including how representative the database is of organisms present in the sample.
While the iMGMC reference database is the most comprehensive to date for the mouse
gut, only about 50% of the mouse mWGS reads used in this study had high-quality
matches to the iMGMC hqMAGs, reinforcing the need for a more robust reference for
the mouse stool microbial community.

A hallmark and major motivation of mWGS sequencing is the ability to analyze func-
tional capability of the organisms in an environment. Strategies have been described to
predict function based on OTU composition (32–34), but they are strongly dependent on
the reference databases and perform poorly on data sets from non-human-associated
microbes (35). Because probe design for the MA-GenTA assay requires reference genomes,
this approach does not contribute to bacterial discovery. However, gene and pathway
abundance data can be inferred from MA-GenTA data by pairing read counts to pathways
represented in the reference genomes more directly than is possible based on 16S rRNA
sequences and at lower cost than mWGS sequencing.

The ability to synthesize probes based on user-defined parameters allows for broad
or targeted study of microbial communities, specific species or strains, genes of inter-
est, and antibiotic resistance or virulence markers. Probe designs that focus on univer-
sal genes may be a good choice for species tagging, while probes targeting variable
regions could provide additional information on pangenome variation. Further optimi-
zation of the MA-GenTA assay might involve adjusting the number of probes per ge-
nome and how thresholds for probe abundance and probe representation are used to
reduce noise and increase confidence of MAG assignment. Although not examined
here, the specificity of the MA-GenTA assay would also be advantageous in specimens
with high proportions of host genomic DNA such as nasal and oral samples for target-
ing rare organisms in complex microbiomes where mWGS analysis is inefficient. The
MA-GenTA assay could also be adapted to a transcriptome sequencing (RNA-seq) for-
mat for targeted gene expression analysis.

MATERIALS ANDMETHODS
Probe design and filtering. The “high-quality” MAG set from the integrated Mouse Gut Metagenomic

Catalog (iMGMC) was accessed from GitHub (https://github.com/tillrobin/iMGMC). The hqMAG set comprised

FIG 6 MA-GenTA as a precise assay. The Allegro and JAX probe pools were used on a human stool
sample to test the detection reliability of the probes in a complex sample. MAGs shown have at least
10 probes present at$0.001% relative abundance.
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830 dereplicated genome equivalents predicted to be .90% complete and ,5% contaminated based on
analysis by CheckM (16). Two probe design strategies were used. For the JAX design, the probe selection
program CATCH (36) was run on each hqMAG separately to design over 50,000 40-base probes per MAG.
BLAST was used to match probes to Prokka-annotated open reading frames (ORFs) (37). Probes with BLAST
matches shorter than 40bp in length or less than 100% identity were removed, followed by probes corre-
sponding to genome regions on a predefined discard list. Discard regions included annotations listed as
tRNAs, ribosomal proteins, and those with encoded proteins with the term “repeat” or “hypothetical” in the
name. Probes were required to have between 45 and 65% G1C nucleotides. Probes with multiple matches
within the hqMAG or to more than one hqMAG were also excluded. Probes matching the single-copy
MUSiCC gene list (38) were flagged for probe selection. All resulting probes were sent to Tecan Genomics
(Redwood City, CA) where probe compatibility was assessed for probe pool production based on the Allegro
Targeted Genotyping protocol, and probe pools with 20 probes per MAG were synthesized (JAX design),
with 10 representing MUSiCC genes and 10 representing non-MUSiCC genes. The iMGMC hqMAGs were also
used by Tecan Genomics to create a second probe pool (Allegro design) with 20 probes per MAG. There
were 16 MAGs that did not pass probe-synthesis filtering metrics for the JAX design but were present in the
Allegro design. The final probe pools contained 16,600 probes for the Allegro design and 16,280 probes for
the JAX design. Cross-reference between the hqMAG set and the ZymoBIOMICs Microbial Community
Standard was determined using BLAST alignment (39), resulting in 3 MAGs matching genomes from the
ZymoBIOMICS genomes (Escherichia coli, Enterococcus faecalis, and Pseudomonas aeruginosa).

DNA Extraction of mouse stool pellets and controls. Genomic DNA isolated from mouse stool pel-
lets from several studies was used for evaluation of the MA-GenTA assay (Table 1). All procedures used
for animal husbandry and collection of specimens were approved by the Jackson Laboratory Animal
Care and Use Committee, and research was conducted in conformity with the Public Health Service
Policy on Humane Care and Use of Laboratory Animals. The HLB study pellets and positive controls (E.
coli, ZymoBIOMICS Mock) were lysed using Qiagen PowerBead garnet tubes with 1ml Qiagen InhibitEX
buffer. The lysate was then processed with the QIAcube HT instrument using a modified Qiagen
QIAamp 96 DNA QIAcube HT protocol (40). Each sample (a single stool pellet, 10 to 60mg total weight)
was added to a Qiagen PowerBead 0.7-mm garnet tube with 1ml of Qiagen InhibitEX buffer. All samples
were incubated at 65°C for 10 min followed by 95°C for 10 min. The samples were then mechanically
lysed for 2 cycles of 30 s at 3,700 rpm on a Qiagen PowerLyzer 24 homogenizer, with a 1-min rest period
between cycles. Samples were then centrifuged at 10,000� g for 1 min, and then 200 ml of this lysate
was then mixed with AL buffer (285ml) and proteinase K (5 ml). The lysate was incubated for 10 min at
70°C, followed by an ice incubation for 5 min. Four hundred eighty-five microliters of lysate was trans-
ferred to a QIAcube HT instrument, where the lysate was combined with 200 ml of 100% ethanol and
then bound to the QIAamp 96 plate. Each well of the QIAamp 96 plate was then washed with 600 ml of
AW1 buffer and AW2 buffer and then 100% ethanol. DNA was then eluted with 100 ml of AE buffer with-
out using TopElute fluid. The collaborative cross founder (CCF) stool pellets were homogenized with 500
ml tissue and cell lysis buffer (Lucigen) by pipetting up and down. An aliquot of 100 ml was removed
and treated with an enzyme cocktail (5 ml 10-mg/ml lysozyme, 1 ml lysostaphin [5,000 U/ml], 1 ml muta-
nolysin [5,000 U/ml], and 20 ml tissue and cell lysis buffer) for 30 min at 37°C. Buffer ASL (Qiagen) (200 ml
with 0.5 ml antifoaming agent DX) was added to each tube and mixed. Samples were placed on a
Qiagen TissueLyser II bead beater for 2 periods of 3 min each (30Hz) and then spun down in a microcen-
trifuge. Each sample (200 ml) was further processed on the Qiagen QIAamp 96 DNA QIAcube HT

TABLE 2 Comparison of microbial community profiling assays

Feature 16S rRNA gene sequencing Whole metagenome sequencing MA-GenTA
Taxonomic resolution Approx family/genus level for 16S

rRNA subregions; strain level
for full-length gene

Species/strain level Species/strain level

Gene content None High Inferred based on genome matches

Analysis complexity Medium High Medium

Cost ,$50/sample .$100/sample $50–$75/sample

Pros Quick community survey New organism/gene discovery Efficient pooled-sample workflow
Large no. of studies from many
environments/hosts

Direct comparison of data sets with
same reference for mapping

Customized target selection/pool
composition

Direct comparison of data sets with
same reference for mapping

Cons Limited taxonomic specificity Possible misassignment of reads to
closely related organisms

Limited to existing organisms/genomes

No gene content information Cost Limited pangenome characterization
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protocol. The same isolated DNA preparation from each specimen was used for collection of 16S OTU,
mWGS, and MA-GenTA data.

Allegro Targeted Genotyping sample preparation and sequencing. The Allegro Targeted
Genotyping V2 protocol (publication number M01501; Tecan Genomics, Inc.) was followed for library prep-
aration of all samples in duplicate with the Allegro and JAX probe pools. Briefly, gDNA samples were enzy-
matically fragmented, followed by ligation of barcoded adaptors. Barcoded samples were then purified
and pooled in groups of 48. Each pool of 48 samples was placed in an overnight annealing and extension
reaction mixture with the probe pool, followed by an AMPure XP bead purification. A qPCR step was used
to determine the number of cycles used in the library amplification (18 cycles). Amplified libraries were
bead purified (AMPure XP) and pooled in equimolar ratios for sequencing. A no-template control (NTC),
Escherichia coli gDNA (ATCC 8739), a human stool metagenome DNA sample (41), and a defined composi-
tion microbial community control (ZymoBIOMICS Microbial Community Standard, catalog no. D6300) were
used as controls. Libraries created from the Allegro Targeted Genotyping assay were pooled and
sequenced on an Illumina NovaSeq SP 2- by 150-bp run, using the custom R1 primer and 1% spike-in of
the phiX174 library as recommended. Libraries were loaded on the NovaSeq SP at 60% of standard loading
per Allegro Targeted Genotyping assay recommendation; only forward read data were used for analysis.

Data analysis. (i) mWGS read mapping and 16S OTU generation. mWGS libraries were prepared
using Illumina NexteraXT kits, and 2- by 150-base reads were obtained on the HiSeq NovaSeq. The raw
mWGS sequences were trimmed of adaptors and low-quality bases using Cutadapt version 1.14 (42).
Host contaminant sequences were identified and filtered out using Kraken2 version 2.0.8-beta (43). The
clean sequences were aligned against the reference (iMGMC MAGs) using BWA version 0.7.12 (44) with
parameter settings: bwa mem -M -P. The nonprimary alignment reads were then filtered out using
SAMtools version 0.1.19 (45) with parameter setting -F 256. Reads were filtered using 97.5% identity and
50% coverage thresholds. Finally, the read count table by bin for each sample was generated from the
alignment file. On average, about 50% of total mWGS reads mapped to the iMGMC 830 hqMAGs. 16S
OTUs were generated for the HLB data with USEARCH, using previously published parameters (40, 46).

(ii) MA-GenTA read mapping and data analysis. Raw sequences were trimmed using TrimGalore/
Cutadapt to remove the 40-bp probe (https://github.com/FelixKrueger/TrimGalore) (42). Read mapping
to hqMAGs was performed using BWA. Sequences of up to 110 bp downstream of the probes were
mapped to the iMGMC reference index. Reads mapped with ,95.5% identity and #50% query length
were removed. Secondary alignments with lower alignment scores were removed, and then reads
mapped to multiple sites with similar alignment scores were removed, which resulted in uniquely
mapped reads. BEDTools intersect command was used to match read alignment locations to the ge-
nome locations of the designed probes to provide “on-target” read counts, removing reads that aligned
to regions outside the expected probe annealing location (47). Count tables were created representing
the on-target read count and relative abundance of each probe in each hqMAG, and the summed read
counts and relative abundance for all probes per hqMAG were used for analyses. All analyses were per-
formed in R (version 4.0.2) (48). Allegro and JAX designs were compared based on the relative abun-
dance per MAG and the number of probes per MAG matched in each sample. A Pearson correlation was
performed on the MAG abundance comparison between the two designs and between each design and
the relative abundance based on mWGS sequencing. The JAX and Allegro data were compared to 16S
and mWGS data for the same samples on the basis of alpha (observed) and beta diversity (Bray-Curtis
dissimilarity) metrics using Phyloseq (49).

(iii) Functional analysis. Protein coding sequences in the hqMAGs were predicted using Prodigal
(50), implemented in Prokka (37). Functional annotation of the predicted coding DNA sequence (CDS)
regions was performed by eggNOG-Mapper (51), using Diamond (52) for searches, and with overlap pa-
rameters requiring at least 25% query and reference coverage. For each sample, the number of reads
mapping to each MAG was assigned to each KEGG pathway (53) for all constituent CDS regions.
Differences in pathway abundance among sample groups were determined using linear discriminant
analysis effect size with LEfSe (54). The mWGS data were analyzed using HUMAnN2 using default set-
tings with Diamond as the protein-search method (55).

Code availability. All code used for probe design and data analysis, along with read count tables,
has been deposited to GitHub at https://github.com/TheJacksonLaboratory/MA-GenTA.

Data availability. Sequence data created in this study have been deposited in GenBank with the
BioProject accession no. PRJNA646241. The probe sequences used for this study have been deposited to
GitHub at https://github.com/TheJacksonLaboratory/MA-GenTA.
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