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REGULAR ARTICLE
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Key Points

• Relapse-associated
genetic alterations are
functionally linked to
drug-specific
resistance.

•Genetic inactivation of
DNA damage repair
pathway regulators
enhances sensitivity to
cytotoxic
chemotherapy.

The introduction of new drugs in the past years has substantially improved outcome in

multiple myeloma (MM). However, the majority of patients eventually relapse and

become resistant to one or multiple drugs. While the genetic landscape of relapsed/ resistant

multiple myeloma has been elucidated, the causal relationship between relapse-specific

gene mutations and the sensitivity to a given drug in MM has not systematically been

evaluated. To determine the functional impact of gene mutations, we performed combined

whole-exome sequencing (WES) of longitudinal patient samples with CRISPR-Cas9 drug

resistance screens for lenalidomide, bortezomib, dexamethasone, and melphalan. WES of

longitudinal samples from 16 MM patients identified a large number of mutations in each

patient that were newly acquired or evolved from a small subclone (median 9, range 1-55),

including recurrent mutations in TP53, DNAH5, and WSCD2. Focused CRISPR-Cas9

resistance screens against 170 relapse-specific mutations functionally linked 15 of them to

drug resistance. These included cereblon E3 ligase complex members for lenalidomide,

structural genes PCDHA5 and ANKMY2 for dexamethasone, RB1 and CDK2NC for

bortezomib, and TP53 for melphalan. In contrast, inactivation of genes involved in the DNA

damage repair pathway, including ATM, FANCA, RAD54B, and BRCC3, enhanced

susceptibility to cytotoxic chemotherapy. Resistance patterns were highly drug specific with

low overlap and highly correlated with the treatment-dependent clonal evolution in

patients. The functional association of specific genetic alterations with drug sensitivity

will help to personalize treatment of MM in the future.

Introduction

Multiple myeloma (MM) is a genetically heterogeneous malignant plasma cell disease characterized by
a high number of somatic chromosomal alterations and gene mutations.1-4 Furthermore, MM displays
a high degree of intraclonal genetic heterogeneity that evolves under therapeutic pressure with selection
of therapy resistant subclones.5-8

Current treatment regimens for newly diagnosed MM consist of a combination of an immunomodulatory
drug (IMiD) like lenalidomide, proteasome inhibitors like bortezomib and carfilzomib, glucocorticoids
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such as dexamethasone, and chemotherapy.9 These combinations
result in high response rates and remission for several years in most
patients. However, even with intensive therapy regimens that
comprise high-dose melphalan/autologous stem cell transplan-
tation (auto-PBSCT) and lenalidomide maintenance, long-term
remissions or cures are rare, and most patients relapse within
several years due to acquired drug resistance of MM cells.10

Several studies have found gene mutations and chromosomal
aberrations that are enriched in resistant/relapsed MM.3,8,11-15

Chromosomal aberrations like deletion 17p (del17p) comprising
TP53 and amplification of 1q21 are consistently associated with
a poor outcome and are enriched at relapse,14,15 implying that
these aberrations impair drug sensitivity. Likewise, homozygous loss
of tumor suppressor genes due to chromosomal deletions and/or
mutations, including CDKN2C, RB1, TRAF3, BIRC3, and TP53,
are more frequently observed in relapsed/refractory disease and are
predictors of a poor prognosis.14 Inactivation of TP53 reduces
activity of cytotoxic chemotherapy in MM and other types of cancer,
providing a functional link between a genetic alteration and
response to a drug.16-18 The cereblon (CRBN)-CRL4 E3 ligase,
the target of all IMiDs, that also comprises DDB1 and CUL4 is
genetically or transcriptionally impaired in 10% to 20% of MM
patients refractory to lenalidomide or pomalidomide.11,19 Consis-
tently, genome-wide CRISPR-Cas9–based resistance screens
found inactivation of CRBN and other members of the CRBN-
CRL4 E3 ubiquitin ligase complex to cause resistance to IMiDs in
the MM1S MM cell line.20,21 A genome-wide screen identified
inactivation of proteasome subunit proteasome 26S subunit,
PSMC6 to cause bortezomib resistance.22 However, besides
CRBN, genes that were found to be functionally associated with
lenalidomide and bortezomib drug resistance in these screens are
rarely mutated in MM patients.8,11 Vice versa, for most genetic
alterations found in MM, the functional impact on drug sensitivity is
not clear. Multidrug combinations used in MM treatment make it
challenging to infer the impact of a distinct gene mutation on activity
to a specific drug. In this study, we performed pairwise comparison
of whole-exome sequencing (WES) from pretreatment and relapsed
MM samples followed by functional CRISPR-Cas9 resistance
screens in order to systematically determine the impact of inactivation
of individual genes on the activity of the 4 most frequently used drugs
in the treatment of MM: bortezomib, lenalidomide, dexamethasone,
and melphalan.

Materials and methods

Study cohort

We included 16 patients with newly diagnosed MM (n 5 15) and
plasma cell leukemia (n 5 1) in our study (Table 1). All patients
provided informed consent to molecular studies according to the
Declaration of Helsinki, and the study was approved by the local
ethics committee of the University of Ulm, Germany.

Exome sequencing

Exome sequencing was performed in a total of 38 samples obtained
at diagnosis and $1 time point during disease progression in all
patients (n5 16). For 4 patients, 2 serial samples and in 1 patient, 3
serial samples were available at disease progression. Pretreatment/
progress samples were derived from bone marrow (BM; n5 37) or
peripheral blood (n 5 1). Genomic DNA (gDNA) was extracted
using the AllPrep DNA/RNA kit (Qiagen). Blood without evidence of

circulating plasma cells was used as nontumor control. Library
preparation for WES was performed with the Nextera Rapid
Capture Exome kit (Illumina) with 50 ng gDNA input followed by
sequencing on an Illumina HiSeq 2000 platform using the 200-
cycle TruSeq SBS v3 kit (Illumina) according to the manufacturer’s
instructions. The median coverage of all sequenced samples was
1303 (supplemental Table 1). The read counts were adjusted for
plasma cell content. One follow-up sample (#3, second relapse)
was excluded for analysis of number and stability of mutations due
to low sequencing quality at various positions but could be analyzed
for the presence of recurrent gene mutations and clonal evolution of
these mutations. WES data analysis and visualization of the clonal
evolution with fishplots were performed using an in-house analysis
pipeline.23 A variant allele frequency (VAF) .5% was defined for
variant calling. The presence of subclonal variants at the time of
diagnosis was determined for selected genes using an ultra-deep
sequencing approach as described previously24 and detailed in
supplemental Methods.

CRISPR-Cas9 screens

Cas9-expressing MM1S, KMS-27, NCI-H929, OPM2, and
RPMI8226 cells were infected with the custom-made lentiviral
single guide RNA (sgRNA) library (supplemental Table 2). To
maintain an sgRNA coverage of 10003, 10 million cells were
infected at ;0.3 multiplicity of infection (transduction rate 30%) to

Table 1. Clinical characteristics of the study cohort

Variable at diagnosis Value

Age, y

Median (range) 64 (45-79)

Sex, n (%)

Male 14 (88)

Female 2 (12)

Type of MM, n (%)

IgA 8 (50)

IgG 8 (50)

k 8 (50)

L 8 (50)

Cytogenetics at diagnosis, n (%)

t(4;14) 5 (31)

t(11;14) 4 (25)

t(14;16) 2 (13)

del13q14 6 (38)

del17p 1 (6)

19q34 6 (38)

11q21 11 (69)

Treatment, n (%)

Low-dose melphalan 4 (25)

High-dose melphalan/autologous SCT 10 (63)

Lenalidomide 16 (100)

Bortezomib 9 (56)

Dexamethasone/prednisolone 16 (100)

Ig, immunoglobulin; SCT, stem cell transplantation.
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limit the number of sgRNAs per cell to 1. Cells were split at day
4 and distributed to treatment with lenalidomide, bortezomib,
dexamethasone, melphalan, or dimethyl sulfoxide (DMSO) (all
compounds from Selleck Chemicals, Houston, TX) as control
(supplemental Table 3). Every 3 days, the media was replaced with
fresh media containing the drug or DMSO. At the end of the screen
(28-35 days depending on cell doubling time), or if cell viability was
,10%, cells were harvested and gDNA was isolated using the
Qiagen DNA isolation kit. PCR amplification of the sgRNA
sequences (supplemental Table 2) was performed using barcoded
primers (supplemental Table 4). Next-generation sequencing of the
amplicons was performed on an Illumina MiSeq.25 The abundance
of each sgRNA in a sample was assessed by an in-house python
script. The MaGeCK software algorithm26 was used to calculate the
P value and false discovery rate (FDR) values for each gene and
sgRNA. The calculated z-score for each gene is based on the
median sgRNA log2 fold change per gene.

Results

Clonal evolution in relapsed MM

Sixteen patients with MM with available pretreatment and $1
progression sample were included in the study. The median age of
the patients was 64 years (range 45-79 years). Treatment
comprised melphalan in 14 patients (88%), lenalidomide in 16
patients (100%), bortezomib in 9 patients (56%), and dexameth-
asone in 16 patients (100%) (Table 1). The median time between
pretreatment and progression samples was 26 months (range 2-86
months) (supplemental Table 5).

Fluorescence in situ hybridization analyses revealed the presence of
a chromosomal translocation in 11 patients (69%; 31% t(4;14),
33% t(11;14), and 13% t(14;16)) that persisted in all cases
analyzed. Copy-number alterations at diagnosis were gain at 9q
indicating a hyperdiploid karyotype in 6 patients (38%), gain at
1q21 in 11 patients (69%), del13q14 in 6 patients (38%), and
del17p13 in 1 patient (6%). At relapse, 3 out of 14 patients (21%)
acquired del13q14, 2 out of 14 patients (14%) acquired a new
11q21, 1 patient displayed a del13q14, and 1 patient lost a19q34
(supplemental Figure 1).

The median number of mutations detected by WES was similar at
diagnosis (median 30, range 10-207) and relapse (median 40,
range 9-227, P 5 .33). The majority of mutations was stable
between diagnosis and relapse indicated by the number of
mutations shared in both samples (730/1162; 63%). Eighty-one
(7%) mutations were found only at diagnosis and 351 (30%) only at
relapse (Figure 1A). Between individual patients, the percentage of
stable mutations between diagnosis and the first progression
sample varied (Figure 1A-B; supplemental Figure 2). In all patients
$1 new mutation was gained at relapse (median 9, range 1-55),
and in addition, a median of 2 (range 0-20) gene mutations showed
an increase of the VAF .10% between diagnosis and relapse
samples for a total number of acquired/increased mutations of 10
(range 1-56) per patient. In contrast, a median of 4 (range 0-8)
mutations detected at diagnosis were not present at disease
progression, and the VAF decreased .10% in a median of 11
(range 0-141) mutations for a total median number of lost/
decreased mutations of 13 (range 1-141). In 4 patients (patients
6-8 and 11) with serial progression samples, a median of 3 (range
0-15) mutations were newly acquired or increased with a VAF

.10% and only few mutations were lost or decreased in the
second relapse sample (median 3, range 0-11).

In general, we observed a high degree of interindividual genetic
heterogeneity with only few recurrently mutated genes in pre-
treatment and progression samples. At diagnosis, we found
recurrent mutations in $2 patients in 17 genes including KRAS
(n 5 4), NRAS (n 5 3), BRAF (n 5 2), DIS3 (n 5 3) and IGLL5
(n 5 3) (Figure 1C). At the time of progression most of these
mutations were stable with one patient acquiring a KRAS mutation.
In contrast, 4 patients acquired mutations in DNAH5 and 3 in
WSCD2. TP53 mutations were detected by WES in 4 patients at
relapse and persisted in subsequent follow-up samples (Figure 1C,
supplemental Table 6A). In order to determine whether relapse-
specific mutations were newly acquired or present at diagnosis, we
performed ultra-deep targeted resequencing for selected relapse-
specific genes in diagnostic specimen. For 3 of 4 cases with TP53
mutation identified by WES at relapse, we found the exact same
mutation in a small subclone (VAF 0.1%-6.7%) in the pretreatment
sample, implying that they expanded under therapy. (supplemental
Table 6B).

Although all patients received lenalidomide, only 1 clonal outgrowth
of a DDB1-mutation–harboring clone was detected, and 1 newly
acquired subclonal IKZF3 mutation was found at relapse. No
mutations in other genes involved in IMiD activity, including CRBN,
CUL4B, IKZF1, CSNK1A1, MCT1, or CD147, were found.27-31

CRISPR-Cas9 knockout screens in MM reveal

drug-specific resistance and sensitivity

In order to investigate the functional impact of the identified relapse-
specific gene mutations on sensitivity to 4 commonly used drugs in
MM, we performed pooled CRISPR-Cas9–based knockout re-
sistance screens for melphalan, dexamethasone, bortezomib, and
lenalidomide. To exclude cell-line–specific effects, the screens
were performed in 5 MM cell lines of different genetic background
(supplemental Table 7): MM1S, OPM2, NCI-H929, RPMI, and
KMS-27. The screening included 156 genes that were found
mutated at progression and fulfilled following criteria: (1) VAF of
.20% at the time of progression, (2) found exclusively in
progression samples with a .10% VAF or more than twofold
increase of VAF at progression, (3) CRBN binders, and (4)
predicted to be loss of function (supplemental Tables 8 and 9).
In addition, we included genes that were found to be recurrently
mutated and enriched in relapsed/refractory MM in previously
published studies (supplemental Table 10).3,7,11,21,32 Each gene
was targeted by 4 different sgRNAs. In addition, 30 control
nontargeting sgRNAs and 30 sgRNAs against pan-essential
genes were included as positive controls for a total of 745
sgRNAs. Two independent screens performed in MM1S cells
demonstrated a high reliability (Pearson correlation r 5 0.60,
P , .0001) (supplemental Figure 3). The nontargeting control
sgRNAs displayed a stable read count, while sgRNAs targeting
essential genes were depleted at the end of the screen in the
DMSO control in all 5 cell lines (supplemental Figure 3 and
supplemental Table 11). sgRNAs targeting 2 frequently mutated
genes in MM, TRAF3 and FAM46c, were enriched in the
absence of a drug in the respective wild-type cell lines, but not in
those that carry inactivating mutations (supplemental Figure 4).
Each drug in our CRISPR screen revealed genes whose inactivation
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caused resistance. These genes were highly drug-specific, with little
overlap between the tested drugs (Figure 2).33

Alterations in DNA damage repair genes affect

sensitivity to melphalan

Melphalan is an alkylating cytotoxic agent that induces apoptosis
in cells by induction of DNA damage. CRISPR-Cas9 screens in
the presence of melphalan revealed sgRNAs targeting 4 of the
177 included genes (2%) to be significantly enriched indicating

resistance in $1 of the 5 cell lines (Figure 3). TP53 was the
only gene that scored in the 2 TP53 wild-type cell line (MM1S and
NCI-H929) screen (z-score 2.5, FDR , 0.1, P , .05), and
experiments with individual sgRNAs validated these findings
(Figure 3D). In contrast, in the 3 other cell lines carrying inactivating
TP53 mutations (KMS27, OPM2, and RPMI8226), all sgRNAs
targeting TP53 had no additional effect.34-37 Further genes were
only enriched in individual cell lines and included VPS35 (z-score
3.2), NDUFA10 (z-score 2.8), SMARCD2 (z-score 3.7), andCHD8
(z-score 3.1) (Figure 3A-B).
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In addition to sgRNAs causing resistance, we also found sgRNAs
that were depleted in melphalan-treated cells, indicating that
inactivation of the targeted genes increases sensitivity to melphalan
(Figure 3C-D; supplemental Figure 6A,C). The top sensitizing hits
were members of the DNA damage repair pathway: FANCA (5/5
cell lines, z-score 25.8), RAD54B (3/5 cell lines, z-score 25.5),
ATM (3/5 cell lines, z-score 23.6), and BRCC3 (2/5 cell lines,
z-score 23.19). In independent experiments using single sgRNAs,
inactivation of FANCA increased DNA damage and apoptosis and
diminished cell viability after melphalan treatment (supplemental
Figure 6B-C).

Other genes whose inactivation increased sensitivity in a single cell
line were SMARCD2 (z-score 23.2), SETD2 (z-score 22.5), and
RIC1 (z-score 22.4).

The functional association of gene inactivation and drug sensitivity
found in our screens highly correlated with the clinical course in
patients; in 3 patients (patients 7, 8, and 14), a TP53-mutated clone
strongly evolved under melphalan therapy (Figure 3E; supplemental
Figure 7). In patient 13, we detected a new VPS35 mutation after 2
courses of high-dose melphalan and tandem auto-PBSCT.

Inactivation of CRBN-CRL4 E3 ligase members confer

resistance to lenalidomide

In the lenalidomide resistance screens, we found 3 genes whose
inactivation by CRISPR-Cas9 conferred resistance in $1 cell line
(Figure 2). The 4 most-enriched sgRNAs in all 5 cell lines targeted
CRBN (z-score 9.2), the target of all IMiDs and substrate receptor
of the CRL4 E3 ubiquitin ligase (Figure 4A-B; supplemental
Figure 5A). sgRNAs targeting 2 other members of the E3 ligase,

CUL4B (z-score 3.3) and DDB1 (z-score 3.7), were significantly
enriched after lenalidomide treatment in 2 and 1 cell lines,
respectively. In MM1S cells, DDB1 was slightly above the FDR
threshold of 0.1, with a P value, .05. None of the other genes were
associated with reduced or increased lenalidomide sensitivity.
Consistent with the essential role of the CRBN-CRL4 E3 ligase for
IMiD activity, we observed expansion of a DDB1-mutated subclone
in patient 3 during a lenalidomide-comprising second-line treatment
(Figure 4C).

Loss of cell-cycle regulators impair

bortezomib activity

The clinical activity of proteasome inhibitors in MM is reflected by
a high sensitivity of MM cell lines in vitro. In CRISPR-Cas9 screens
performed with continuous low-dose bortezomib (1-3 nM), we
found significantly enriched or depleted sgRNAs in OPM2, but not
in the other cell lines (Figure 2). sgRNAs targeting VPS35 (z-score
3.1) and ZNF236 (z-score 2.67), a zinc-finger protein of unknown
function, caused resistance, while sgRNAs targeting NFKB2
(z-score 22.6) and RIC1 (z-score 22.9) enhanced sensitivity to
bortezomib (Figure 5A-C).

Because of these low numbers of resistance genes identified in
5 cell lines for continuous exposure to bortezomib, we explored
an alternative treatment approach. Bortezomib and other protea-
some inhibitors in MM treatment are applied once or twice
weekly resulting in a high peak plasma concentration of ;100 nM
within 1 hour followed by a steep decline over 4 hours and
a slower decline in the terminal phase.37,38 We therefore performed
a bortezomib CRISPR-Cas9 resistance screen in MM1S cells
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mimicking these drug kinetics. The cells were exposed to high
bortezomib concentrations (20 nM and 100 nM) for only 1 and
4 hours, and the treatment was repeated after 7 days. Here, sgRNAs
targeting the cell-cycle regulators RB1 (z-score 1.9) and CDKN2C
(z-score 2.3), both found homozygously deleted in relapsed MM,15

were enriched in all treatment conditions (Figures 5A-C and 2).

Dexamethasone efficacy is affected by mutations in

structural genes and the NF-kB pathway

Dexamethasone is a glucocorticoid with high clinical activity in MM
and other lymphoid malignancies. In the dexamethasone resistance
CRISPR-Cas9 screens, we found a total of 6 genes whose sgRNAs
were significantly enriched in $1 cell line (Figure 2). sgRNAs

targeting ANKMY2, a downstream activator of the sonic hedgehog
signaling pathway,39,40 were highly enriched in MM1S (z-score
2.28) and NCI-H929 cells (z-score 2.0). In MM1S cells, we found
additional sgRNAs enriched targeting the cadherin superfamily
gene members PCDHA5 (z-score 4.68) and PCDHGB4 (z-score
1.3) (Figure 6A-B). Individual evaluation of sgRNAs targeting
PCDHA5 and PCDHGB4 showed a reduction of dexamethasone
sensitivity over a broad range of concentrations (Figure 6C). The
protocadherin gene locus is located on chromosome 5 around 2
megabases upstream of the glucocorticoid receptor gene locus
NR3C1, which prompted us to evaluate whether sgRNAs targeting
PCDHA5 and PCDHGB4 cause dexamethasone resistance
through downregulation of NR3C1 by targeting regulatory regions
or through introduction of large genetic deletions. We found that
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NR3C1 protein levels remained unchanged after PCDHA5 and
PCDHGB4 inactivation, implying a different mode of action for
dexamethasone resistance (supplemental Figure 8). Consistent
with the dexamethasone-specific resistance identified by CRISPR-
Cas9 screens, we found a clone with an ANKMY2 and PCDHGB4
mutation in a relapse sample (patient 1) after 3 years of dexamethasone-
comprising therapy (Figure 6D).

In dexamethasone-treated MM1S cells, we found additional
sgRNAs enriched targeting the CRL4 E3 ligase member CUL4B

(z-score 0.8) and BIRC3 (z-score 1.6). In NCI-H929 cells, sgRNAs
targeting the NF-kB and interleukin-6 signaling protein TRAF340

(z-score 2.7) were enriched after dexamethasone treatment. Of
note, MM1S cells carry a TRAF3 mutation, and thus, sgRNAs
targeting TRAF3 likely had no additional effect.

Our CRISPR screens for dexamethasone also revealed genes whose
inactivation was associated with increased sensitivity (Figure 2). In
MM1S, the 2 top hits were LEMD3 (z-score 23.8) and SMARCD2
(z-score 24.4). We detected LEMD3 and SMARCD2 mutations
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in 3 relapse samples of patient 7, who responded to a dexameth-
asone-containing treatment of .1 year. Knockout of the non-
canonical poly(A) polymerase FAM46c (z-score 23.5) enhanced
dexamethasone sensitivity in KMS27 cells (Figure 6B) but did not
score in MM1S and NCI-H929, which already harbor a FAM46c
missense mutation (supplemental Table 7).41,42 Consistently,
a FAM46c-mutated clone detected at diagnosis of patient 14
decreased under a dexamethasone-comprising treatment.

Discussion

This is the first study coupling comprehensive genetic profiling with
functional genomics to systematically study the mutational dynam-
ics in putative tumor suppressor genes and drug activity in MM. In
our longitudinal study, WES of pretreatment and progression
samples revealed a high number of gene mutations newly acquired
in progression samples or expanding from a small subclone present
at diagnosis, which is consistent with previous studies.5,7,8 While
many of recurrent MM mutations, like in RAS and DIS3, persisted
during therapy, other mutations, like those inDNAH5,WSCD2, and
TP53, were enriched in relapse samples. Our CRISPR resistance
screens revealed that on average, 1 or 2 of the median 9 mutations
acquired in an individual relapse sample could be functionally linked
to drug sensitivity. Among the most recurrent mutations at relapse
were those in TP53, which occurred predominantly after cytotoxic
chemotherapy treatment. Targeted deep sequencing of the pre-
treatment samples revealed that in all patients analyzed a very small
TP53-mutated subclone preexisted and expanded under therapy.
Previous reports similarly found a higher incidence of inactivating
TP53 mutations and deletions in relapsed/ refractory disease8,11,43

and an association with adverse outcome in MM patients treated
with chemotherapy.15,17,43,44 Our functional genetic analyses
revealed that these observations are explained by reduced
melphalan sensitivity of TP53-mutated cells. TP53 inactivation did
not functionally affect sensitivity to dexamethasone, lenalidomide,
or bortezomib. In accordance, in patients receiving bortezomib
before and after chemotherapy, the chromosomal aberration del17p
comprising TP53 had no effect on outcome.45,46

On the contrary, we found that inactivation of genes involved in
chromosome stability and DNA damage repair enhanced sensitivity
to melphalan, even in cells with coexisting TP53 mutations. For
FANCA, we have shown that inactivation enhances DNA damage
upon chemotherapy, which is in line with previous findings in
MM17,47 and other malignancies.48-50 In relapsed MM, mutations in
the DNA damage repair pathway are found in up to 20% of patients
(supplemental Table 10).8,11 Our findings imply that these patients
might benefit from cytotoxic therapy and possibly other therapies
targeting the DNA repair mechanism, like PARP or ATR inhibition.51,52

This is especially important given that chemotherapy-based regimens
are nowadays less frequently applied in relapsed MM in favor of
chemotherapy-free regimens with new drugs like antibodies, next-
generation IMiDs, and proteasome inhibitors.

In our CRISPR-Cas9 screens, inactivation of CRBN or other CRL4
E3 ligase complex members (DDB1 and CUL4B) caused re-
sistance to lenalidomide, consistent with previous studies.11,20,21

The discrepancy of the essential functional role of the CRBN-CRL4
ligase and the low frequency of mutations in these genes is
currently not explained. Remarkably, we could not link any other
gene inactivation, including high-risk deletions/mutations in TP53,
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BIRC3, or RB1,15,32 to lenalidomide sensitivity, suggesting that
other, not genetically defined resistance mechanisms exist.

Continuous low-dose bortezomib treatment yielded only a small
number of resistance genes despite analyzing 5 different cell lines,
which is consistent with previous findings.22,53 By using an
alternative treatment approach with short-term high-dose bortezo-
mib equivalent to the peak levels in patients,37 we found in addition
inactivation of 2 cell-cycle regulators, CDK2NC and RB1, to cause
resistance. Homozygous deletions of chromosome 1p32.3, in-
cluding CDK2NC and loss of del13q/RB1, are recurrent genetic
events enriched in relapsed MM and associated with poor
outcome.3,15,54,55 In our cohort, 3 patients had heterozygous loss
of RB1 by chromosome 13q deletion at relapse. The exact mechanism
by which loss of function of CDK2NC and RB1 contributes
selectively to resistance to bortezomib, but none of the other drugs
in MM, remains to be determined. These findings further highlight
the need to functionally test different treatment schedules to identify
the full spectrum of resistance-causing gene alterations.

Almost all MM patients initially respond to glucocorticoids that are
included in most treatment combinations, yet the understanding of
the exact mechanism in MM is incomplete. Glucocorticoids induce
apoptosis in MM and inhibit NF-kB signaling.56 Consistently, in our
dexamethasone screen, we found several genes, like TRAF3 and
BIRC3, whose inactivation enhance NF-kB signaling.40,57 Further-
more, protocadherin members PCDHGB4 and PCDHA5 caused
resistance in MM1S cells. PCDH10, another member of the
protocadherin family, was shown to be a negative regulator of NF-kB
and WNT signaling, providing a possible functional connection.58,59

Mutations in the large protocadherin gene family, including
PCDHGB4 and PCDHA5, are found in ;50% of patients with
MM.4 Despite this high frequency, an association of mutations in
protocadherin members with outcome in MM hast not been
reported yet. Reasons for this may be that not all protocadherin
members affect glucocorticoid response and dexamethasone is
virtually always combined with other drugs whose activity was not
altered by protocadherin-targeting sgRNAs.
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In aggregate, our systematic functional evaluation of relapse-
associated mutations found in a cohort of MM patients revealed
drivers of resistance and new vulnerabilities for distinct drugs that
highly correlate with drug activity in patients (Figure 2). By our
integrated approach, we were able to trace gene mutations that
functionally alter drug sensitivity. While some of these mutations are
known high-risk markers frequently mutated in MM, others, including
rare mutations, have not been associated with therapy resistance.
Remarkably, we did not observe relevant cross-resistance among
the 4 drugs investigated (Figure 2), allowing for tailoring the most
active drug combinations according to the genetic profile of
a patient. For a slow-growing malignancy such as MM, it may even
be feasible to perform a targeted functional genetic screen based
on the individual genetic alterations of a patient to guide treatment.
Our integrated approach revealed genetic determinants of sensi-
tivity to 4 main MM drugs currently approved for first-line treatment.
Surprisingly, sgRNAs targeting DNAH53,11,13 and WSCD2 had no
impact on any of the drugs despite being among the most
recurrently mutated genes acquired at relapse. However, our study
was performed in vitro and therefore limited to assess direct drug
effects and, due to the unavailability of better models, was
performed in cell lines that already harbor many genetic alterations.
Future studies need to evaluate the direct and indirect impact of
genetic and nongenetic alterations on MM treatments, including
antibodies and chimeric antigen receptor T cells as well as
combination treatments in more sophisticated model systems like
primary patient cells and xenograft models once they become
available. Uncovering the genetic determinants of drug sensitivity
will help to further facilitate personalized treatment in MM.
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11. Kortüm KM, Mai EK, Hanafiah NH, et al. Targeted sequencing of refractory myeloma reveals a high incidence of mutations in CRBN and Ras pathway
genes. Blood. 2016;128(9):1226-1233.
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