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ABSTRACT 23 

Vertebrate genomes organize into topologically associating domains (TADs), delimited 24 

by boundaries that insulate regulatory elements from non-target genes. However, how 25 

boundary function is established is not well understood. Here, we combine genome-wide 26 

analyses and transgenic mouse assays to dissect the regulatory logic of clustered-CTCF 27 

boundaries in vivo, interrogating their function at multiple levels: chromatin interactions, 28 

transcription and phenotypes. Individual CTCF binding sites (CBS) deletions revealed that the 29 

characteristics of specific sites can outweigh other factors like CBS number and orientation. 30 

Combined deletions demonstrated that CBS cooperate redundantly and provide boundary 31 

robustness. We show that divergent CBS signatures are not strictly required for effective 32 

insulation and that chromatin loops formed by non-convergently oriented sites could be 33 

mediated by a loop interference mechanism. Further, we observe that insulation strength 34 

constitutes a quantitative modulator of gene expression and phenotypes. Our results highlight 35 

the modular nature of boundaries and their control over developmental processes. 36 

  37 
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INTRODUCTION 38 

The development of complex organisms relies on intricate gene expression patterns that 39 

are essential for the proper differentiation of tissues and cell types. In vertebrates, a major 40 

means of achieving transcriptional control is through the action of distal regulatory elements, 41 

such as enhancers (Long et al., 2016). To elicit a precise transcriptional response, regulatory 42 

elements are required to come into physical proximity with their target gene promoters. Such 43 

functional interaction is mediated by the 3D folding of the chromatin, which facilitates the 44 

regulatory interplay between regions otherwise distant on a linear genome. In recent years, 45 

substantial efforts have been directed towards a better characterization of the molecular 46 

mechanisms that drive 3D chromatin folding and on their influence on developmental processes. 47 

The emergence of high-throughput conformation capture methods (Hi-C) has allowed a detailed 48 

investigation of nuclear interactions (Lieberman-Aiden et al., 2009; de Wit and de Laat, 2012), 49 

revealing that vertebrate genomes organize into topologically associating domains (TADs) 50 

(Dixon et al., 2012; Nora et al., 2012). TADs represent megabase-sized regions containing loci 51 

with increased interaction frequencies and, perhaps more importantly, they often constitute 52 

functional domains in which regulatory elements and their cognate genes are framed (Shen et 53 

al., 2012; Symmons et al., 2014). TADs are separated by boundaries, which are genomic regions 54 

with insulating properties that limit the regulatory crosstalk between adjacent regulatory 55 

domains. TAD boundaries represent an important regulatory hallmark along the genome, as 56 

their disruption has been linked to human disease, including congenital malformations and 57 

cancer (Flavahan et al., 2016; Hnisz et al., 2016; Lupiáñez et al., 2015; Spielmann et al., 2018). 58 

 59 

Genomic analyses of TAD boundaries regions identified the transcriptional repressor 60 

CCCTC-binding factor (CTCF) as a key player in 3D chromatin organization (Ong and Corces, 61 

2014). CTCF is found at the majority of TAD boundaries, where its binding mediates the 62 

insulation properties of these regions (Dixon et al., 2012). Consistent with this notion, CTCF 63 

depletion leads to a genome-wide disappearance of TADs (Nora et al., 2017), thus providing 64 

mechanistic insights into CTCF genome binding properties. The genomic distribution of CTCF is 65 

particularly influenced by the orientation of its DNA binding motif. The formation of chromatin 66 

loops, often associated with TAD boundaries, preferentially occurs between pairs of CTCF 67 

binding sites (CBS) displaying convergent motif orientations (Rao et al., 2014). Accordingly, the 68 

inversion of CTCF motifs can redirect chromatin loops (Guo et al., 2015; de Wit et al., 2015). At 69 

TAD boundaries, the clustering of CBS with divergent orientation is a recurrent molecular 70 

signature that has been conserved through vertebrate evolution (Gómez-Marín et al., 2015). 71 
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From a mechanistic perspective, the orientation bias of CTCF can be explained by the loop 72 

extrusion model (Fudenberg et al., 2016; Sanborn et al., 2015). This model proposes that the 73 

cohesin complex extrudes the chromatin fiber until reaching a CTCF site bound in an opposing 74 

orientation, but continuing when CTCF is oriented otherwise. As occurs for CTCF, the depletion 75 

of the cohesin complex leads to a global loss of TAD insulation (Rao et al., 2017; Schwarzer et 76 

al., 2017; Wutz et al., 2017), revealing a tight regulatory interplay between these two 77 

architectural factors. 78 

Based on this experimental evidence, it is assumed that boundary elements and CTCF 79 

are fundamental players for the spatial organization of genomes. However, the degree to which 80 

TAD boundaries influence developmental gene expression remains highly controversial. While 81 

alterations of TAD boundaries at particular loci can lead to developmental phenotypes or cancer 82 

(Flavahan et al., 2016; Franke et al., 2016; Hnisz et al., 2016; Lupiáñez et al., 2015), it only caused 83 

moderate transcriptional changes in other genomic regions (Despang et al., 2019; Paliou et al., 84 

2019; Williamson et al., 2019). In addition, the global disruption of TADs via CTCF or cohesin 85 

depletion in cultured cells only results in limited changes in gene expression (Nora et al., 2017; 86 

Rao et al., 2017). Furthermore, single-cell Hi-C (Flyamer et al., 2017; Stevens et al., 2017) or 87 

super-resolution microscopy studies (Bintu et al., 2018) have revealed that individual cells can 88 

display chromatin conformations that, in some instances, ignore the TAD boundaries detected 89 

in aggregated or bulk datasets. Such contradictory results demonstrate the need for a 90 

comprehensive dissection of boundary elements in developmental settings. 91 

Here, we combine genome-wide analyses with the systematic dissection of a TAD 92 

boundary in transgenic mice to investigate the molecular principles of boundary function in vivo. 93 

Using the Epha4-Pax3 (EP) boundary region as a testbed for experimental validations, we 94 

generated a collection of 13 mouse homozygous alleles carrying individual or combined CBS 95 

deletions that covers a broad range of regulatory configurations. We subsequently combined 96 

capture Hi-C (cHi-C), gene expression and phenotypical analyses to quantify the functional 97 

consequences of these boundary perturbations at several levels: ectopic chromatin interactions, 98 

gene misexpression and aberrant limb morphologies. We discover that functional characteristics 99 

of specific CBS are major determinants of boundary insulation, outweighing other relevant 100 

parameters such as the number or the orientation of CBS. By performing combined deletions, 101 

we reveal that CBS cooperate to achieve precise levels of insulation. Nevertheless, they are also 102 

partially redundant, a property that confers robustness to boundary regions. Further, we show 103 

that a divergent CBS signature is not a strict requisite for efficient boundary function and that 104 

CBS with a strong insulator function can also establish chromatin loops in non-convergent 105 
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orientations, for which we suggest a mechanism of loop interference. Furthermore, we observe 106 

that insulation strength influences gene expression and phenotypes, by quantitatively 107 

modulating the degree of regulatory interactions across adjacent TADs. Our results reveal 108 

fundamental principles of boundary elements and delineate a tight interplay between genomic 109 

sequence, 3D chromatin structure and developmental function. 110 

  111 
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RESULTS 112 

A genetic setup to investigate boundary function in vivo 113 

By studying a series of deletions in transgenic mice, we previously demonstrated that a 114 

150 Kilobases (Kb) region, marked as a boundary region across multiple tissues and cell types, is 115 

sufficient to segregate the regulatory activities of the Epha4 and Pax3 TADs (Lupiáñez et al., 116 

2015) (Supp. Fig. 1 and 2). The DelB background carries a deletion that removes a portion of the 117 

Epha4 TAD, including the gene itself, as well as the boundary region that separates this domain 118 

from the adjacent Pax3 TAD. This deletion results in the ectopic interaction between the Epha4 119 

limb enhancers and the Pax3 gene, which causes the misexpression of Pax3 in developing limbs 120 

and leads to the shortening of index and thumb fingers (brachydactyly) in mice and also in 121 

human patients with equivalent deletions. In contrast, the DelBs background carries a similar 122 

deletion but not affecting the EP boundary region, which maintains the regulatory partition 123 

between the Epha4 and Pax3 TADs and confines the Epha4 limb-specific enhancers within their 124 

own regulatory domain (Fig. 1A, Supp. Fig. 1). Thereby, the genomic configuration of the DelBs 125 

background provides a simple, but informative, functional readout to investigate boundary 126 

function in vivo. By performing deletions on the genomic components of the EP boundary, we 127 

can quantify the consequences of boundary disruption on a single target gene that is reactive to 128 

ectopic enhancers and can induce developmental defects. This genomic setup allows us to 129 

estimate boundary function at multiple levels: inter-TAD chromatin interactions, gene 130 

misexpression and disease-related phenotypes. 131 

To explore the genomic features of the EP boundary in vivo, we examined ChIP-seq datasets on 132 

developing limbs (Rodríguez-Carballo et al., 2017). This analysis revealed the presence of six 133 

clustered CBS at the EP boundary region (Fig. 1A, 1B; Supp Fig 2). CTCF motif analyses confirmed 134 

the divergent orientation of these sites, a typical signature of TAD boundaries, with four CBS in 135 

a reverse (R) and two in a forward orientation (F). Overall, the profile of CTCF binding at the EP 136 

boundary is conserved across tissues, despite quantitative variations at individual sites (Supp. 137 

Fig. 2) (Bonev et al., 2017; Rodríguez-Carballo et al., 2017). Other prominent features associated 138 

with boundary regions, such as active transcription or housekeeping genes were not found in 139 

the region (Supp. Fig. 3). High-resolution Capture Hi-C (cHi-C) data from DelBs E11.5 distal limbs 140 

revealed that the EP boundary region establishes chromatin loops with the immediately 141 

centromeric and telomeric TAD boundaries (Bianco et al., 2018). Consistent with the convergent 142 

CTCF orientation bias (Guo et al., 2015; Rao et al., 2014; de Wit et al., 2015), two chromatin 143 

loops connect the two forward-oriented CBS (F1 and F2) with the telomeric boundary of the 144 
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Pax3 TAD (Fig. 1A and B). Similarly, chromatin loops are also established between the 145 

centromeric boundary of the Epha4 TAD and the reverse-oriented CBS R1, R2 and R3 (Fig. 1A). 146 

However, the close genomic distances between R2 and F1 and between R3 and F2 precludes the 147 

unambiguous assignment of chromatin loops to specific sites. Intriguingly, only R1, F1 and F2 148 

are specifically bound by the cohesin complex (Andrey et al., 2017) (Supp. Fig. 3), an essential 149 

component for the formation of chromatin loops (Rao et al., 2017; Schwarzer et al., 2017; Wutz 150 

et al., 2017). Overall, these results delineate the EP element as a prototypical boundary region 151 

with insulating properties that are likely encoded and controlled by CBS. 152 

 153 

Figure 1. Impact of individual CBS deletions on boundary function 154 

A. c-HiC maps from E11.5 distal limbs from DelBs mutants at 10 kb resolution. Data mapped on custom 155 

genome containing the DelBs deletion. Red rectangle marks the EP boundary region. Insets represent a 156 

magnification (5kb resolution) of the centromeric (left) and telomeric (right) loops highlighted by brackets 157 

on the map. Arrowheads represent reverse (light blue) and forward (orange) oriented CBS. Below, Lac-Z 158 

staining (left) and WISH (right) of E11.5 mouse forelimbs show activation pattern of Epha4 enhancers and 159 

Pax3 expression respectively. B. CTCF ChIP-seq track in E11.5 mouse forelimbs (Andrey et al., 2017). 160 

Schematic shows CBS orientation. C. Insulation score values. Gray dot represents the local minima of the 161 

insulation score at EP boundary, also measured as boundary strength (BS). D. Relationship between 162 

Boundary Scores (BS) and the number of CBS (data from (Bonev et al., 2017)).  The boxes in the boxplots 163 
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indicate the median and the first and third quartiles (Q1 and Q3). Whiskers extend 1.5 times the 164 

interquartile range below and above Q1 and QR respectively. E. WISH shows Pax3 expression in E11.5 165 

forelimbs from CBS mutants. Note Pax3 misexpression on the distal anterior region in ΔR1, ΔF1 and ΔF2 166 

mutants (white arrowheads). Scale bar 250 μm. F. Pax3 qPCR analysis in E11.5 limb buds from CBS 167 

mutants. Bars represent the mean and white dots represent individual replicates. Values normalized 168 

against DelBs mutant (ΔΔCt). (* p-value ≤ 0.05; ns: non-significant). 169 

 170 

The characteristics of individual CTCF binding sites are major determinants of boundary 171 

function  172 

Boundary regions are predominantly composed of CBS clusters (Kentepozidou et al., 173 

2020), suggesting that the number of sites might be relevant for their function. We explored this 174 

hypothesis by calculating boundary scores (Crane et al., 2015), a proxy for insulator function, on 175 

available ultra-high resolution Hi-C maps (Bonev et al., 2017). Specifically, we employed this 176 

parameter to identify boundary regions, which we further categorized according to the CBS 177 

number, identified by CTCF ChIP-seq experiments. Overall, we observe that boundary scores 178 

increase monotonically with the number of clustered CBS, reaching a stabilization at 10 CBS (Fig. 179 

1D). According to this distribution, the EP boundary would fall within a range where its function 180 

might be sensitive to alterations on the CBS number. To test this, we took advantage of a mouse 181 

homozygous embryonic stem cell (mESC) line for the DelBs background (Bianco et al., 2018). 182 

Using CRISPR/Cas9 technology, we systematically targeted the DelBs mESCs to generate 183 

individual homozygous deletions for each of the six CBS that constitute the EP boundary region. 184 

For each deletion, we selected clones that display a successful disruption of the CTCF binding 185 

motif in both alleles (Supp. Fig 4). ChIP-seq experiments revealed that, in all cases, the disruption 186 

of the binding motif was sufficient to completely abolish CTCF recruitment at the targeted site 187 

(Supp. Fig. 5). Subsequently, we employed tetraploid complementation assays to generate 188 

mutant embryos and measure the functional consequences of these individual deletions in vivo 189 

(Artus and Hadjantonakis, 2011; Kraft et al., 2015).  190 

Whole mount in situ hybridization (WISH) on E11.5 mutant embryos revealed that the 191 

insulation function of the EP boundary could be sensitive to individual perturbations of CBS (Fig. 192 

1E). However, this effect was not observed for each CBS deletion, but only for those previously 193 

associated with RAD21 binding (R1, F1 and F2) (Fig. 1A; Supp. Fig. 3). For ΔR1, ΔF1 and ΔF2 194 

mutants, the alteration of boundary function is evidenced by the ectopic expression of Pax3 on 195 

a reduced area of the anterior limb. The expression domains of Pax3 in other tissues remained 196 

unaltered (Supp. Fig. 6), thus confirming that changes of its endogenous pattern of expression 197 
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are restricted to the limb bud. The disruption of the other CBS of the boundary (ΔR2, ΔR3 and 198 

ΔR4 mutants) did not result in observable changes in Pax3 expression, demonstrating that the 199 

EP boundary can also preserve its function despite a reduction in the total number of CBS.  200 

To quantify the levels of Pax3 misexpression, we performed quantitative PCR (qPCR) 201 

experiments in developing forelimbs at E11.5. We observe a modest, but significant, 202 

upregulation in ΔR1, ΔF1 and ΔF2 mutants, compared to DelBs control animals (1.5-fold 203 

upregulation) (Fig 1F). No significant differences were detected in the other mutants, in 204 

agreement with the results obtained from WISH experiments. Importantly, we observe that the 205 

functionality of individual CBS is not strictly correlated with CTCF occupancy, as the deletion of 206 

R3, which displays the highest levels of CTCF binding among the cluster (Supp. Fig. 3), does not 207 

result in measurable gene expression changes (Fig. 1F). Overall, these results suggest that, while 208 

the CBS number influences insulation, the individual characteristics of specific sites constitute 209 

major determinants of boundary function.  210 

 211 

CTCF binding sites cooperate redundantly to provide insulator robustness  212 

The perturbed boundary insulation observed across several mutants (Fig. 1E and F), as 213 

well as the correlative increase of boundary strength and CBS number (Fig. 1D), may suggest 214 

functional cooperation between sites. To further explore this hypothesis, we retargeted our ΔR1 215 

mESC line to generate double knockout mutants of CBS for which individual deletions led to 216 

reduced insulation. We chose CBS combinations with either different (R1 and F2 for ΔR1+F2) or 217 

identical orientations (F1 and F2 for ΔF-all) (Fig. 2A). Both combined CBS deletions led to an 218 

expansion of Pax3 misexpression towards the posterior region of the limb, suggesting that the 219 

EP boundary is further compromised in the double mutants. These results are consistent with 220 

our previous observations, supporting an important role of CBS F1, F2 and R1 on EP boundary 221 

function (Fig. 1B). Next, we sought to determine the nature of CBS cooperation by performing 222 

qPCR analyses in developing limbs (Fig. 2B). The increased Pax3 misexpression exceeded the 223 

summed expression levels from the corresponding individual deletions, for both mutants. In 224 

particular, ΔR1+F2 mutants display an increase in Pax3 misexpression of up to 6.3-fold compared 225 

to DelBs controls, contrasting with the 1.8-fold and 1.5-fold observed in ΔR1 and ΔF2 mutants. 226 

For ΔF-all mutants, this effect is even more prominent, as denoted by a 9.1-fold increase of Pax3 227 

misexpression compared to the 1.8-fold of ΔF1 and 1.6-fold increase of ΔF2 mutants. The 228 

negative epistatic effects of the combined mutations indicate that the different CBS of the 229 

boundary display partially redundant functions, compensating for the absence of each other. 230 
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 231 

Figure 2. Impact of combined CBS deletions on boundary function 232 

A. WISH shows Pax3 expression in E11.5 forelimbs from CBS mutants. Arrowheads represent reverse (light 233 

blue) and forward (orange) oriented CBS. Crosses indicate deleted CBS. Note increased Pax3 234 

misexpression towards the posterior regions of the limbs. Scale bar: 250μm. B. Pax3 qPCR analysis in E11.5 235 

limb buds from CBS mutants. Bars represent the mean and white dots represent individual replicates. 236 

Values normalized against DelBs mutant (ΔΔCt). (* p-value ≤ 0.05; ns: non-significant). C. c-HiC maps from 237 

E11.5 mutant distal limbs at 10 kb resolution (top). Data mapped on custom genome containing the DelBs 238 

deletion. Insets represent a magnification (5kb resolution) of the centromeric (left) and telomeric (right) 239 

loops highlighted by brackets on the map. Gained or lost chromatin loops represented by full or empty 240 

dots, respectively. Subtraction maps (bottom) showing gain (red) or loss (blue) of interactions in mutants 241 

compared to DelBs. D. Insulation score values. Lines represent indicated mutants. Dots represent the local 242 

minima of the insulation score at EP boundary for each mutant, also measured as boundary score (BS). E. 243 

Virtual 4C profiles with Pax3 promoter as a viewpoint for the genomic region displayed in panel C. Light 244 

gray rectangle highlights Epha4 enhancer region. Note increased interactions between Pax3 promoter 245 

and Epha4 enhancer in ΔR1+F2 and ΔF-all (purple and orange) compared to DelBs mutants (gray). 246 
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To gain further insights on the molecular mechanisms of CBS cooperation, we generated 247 

cHi-C maps of the Epha4-Pax3 locus on distal limbs from mutant E11.5 embryos (Fig. 2C; Supp 248 

Fig. 7). Interaction maps from ΔR1+F2 embryos denoted a clear partition between the EphaA4 249 

and Pax3, analogous to DelBs control mutants (Fig. 2C). However, subtraction maps against 250 

DelBs controls showed a decrease in the intra-TAD interactions for both the Epha4 and Pax3 251 

TADs, concomitant with an increase in the interactions between these two domains. 252 

Accordingly, the boundary scores of the EP boundary in ΔR1+F2 mutants decreased 17% 253 

compared to DelBs, reflecting a weakened insulating capacity (Fig. 2D). Virtual 4C-profiles 254 

demonstrated that the perturbation of the EP boundary leads to increased chromatin 255 

interactions between the Pax3 promoter and the Epha4 limb enhancers (Fig. 2E), consistent with 256 

the upregulation of Pax3. Additionally, the combined disruption of R1 and F2 also induced 257 

relevant structural changes in the 3D organization of the locus. Two of the chromatin loops that 258 

connect the EP boundary and the telomeric boundary were abolished, due to the deletion of the 259 

F2 CBS anchor (Fig. 2C; Supp. Fig. 8). Consequently, the adjacent chromatin loop exhibited a 260 

compensatory effect, with a notable increase in the interactions mediated by the F1 anchor. At 261 

the centromeric site, the deletion of R1 causes the relocation of the loop anchor towards an 262 

adjacent region containing the reverse CBS (R2) and the only remaining forward CBS (F1). While 263 

the loop extrusion model would indeed predict a stabilization at a reverse CBS (Fudenberg et al., 264 

2016; Sanborn et al., 2015), the short genomic distance between R2 and F1 does not allow us to 265 

assign the anchor point for this loop unambiguously. Moreover, we observed the presence of 266 

contacts at R3 and R4, suggesting that these sites are also functionally redundant. 267 

Then, we examined cHi-C maps from ΔF-all mutants, from which we had detected a 268 

more pronounced Pax3 misexpression (Fig. 2B; 1.45-fold compared to the ΔR1+F2 mutant). 269 

Interaction maps revealed a partial fusion of the Epha4 and Pax3 domains (Fig. 2C), 270 

accompanied by a notable decrease of the boundary score at the EP boundary (Fig. 2D; 271 

boundary score decreased by 62%). Virtual 4C profiles confirmed the increase in interactions 272 

between Pax3 and the Epha4 enhancers in ΔF-all compared to ΔR1+F2 mutants, in agreement 273 

with the more pronounced Pax3 upregulation (Fig. 2E). As for ΔR1+F2 mutants, we also observed 274 

differences in ΔF-all interaction maps that can be attributed to the perturbation of specific CBS 275 

(Fig. 2C; Supp. Fig. 8). In particular, the deletion of all CBS with forward orientation abolishes all 276 

chromatin loops that connect with the telomeric Pax3 boundary. Towards the centromeric side, 277 

R1 maintains its chromatin loop with the centromeric Epha4 boundary. However, other 278 

chromatin loops are still discernible and anchored by the R3 and R4 sites, confirming previous 279 

indications that these sites perform distinct yet partially overlapping functions. Overall, these 280 
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results demonstrate that, in the context of a boundary, CBS cooperate but also can partially 281 

compensate for the absence of each other, therefore conferring functional robustness to 282 

boundary regions.      283 

 284 

Formation of chromatin loops by non-convergent CTCF binding sites through loop interference 285 

As previously mentioned, chromatin loops are predominantly anchored by CBS pairs 286 

displaying convergent motif orientation, with both anchor sites oriented inwards with respect 287 

to the loop (Rao et al., 2014; de Wit et al., 2015). Intriguingly, we observed that the combined 288 

deletion of the forward F1 and F2 sites (ΔF-all) not only disrupts the telomeric loops, but also 289 

impacts the centromeric one, an effect that is visible in the subtraction maps (Fig. 2C). This effect 290 

is noticeable at the R2/F1 site, which was associated with a centromeric chromatin loop in the 291 

DelBs background (Fig. 1A). The disruption of this loop in the ΔF-all mutant demonstrates that 292 

its main anchor point was not the R2 but the F1 site (Supp. Fig 8). ChIP-seq analyses in limbs 293 

showed differences in CTCF binding between these two sites that might partially explain the 294 

preferential anchoring (Fig. 1B). Nevertheless, these results also suggest that the F1 CBS can 295 

form chromatin loops in a non-convergent orientation. A plausible mechanistic explanation is 296 

described by the loop extrusion model, which predicts that existing chromatin loops could create 297 

steric impediments that might prevent additional cohesin complexes from sliding through 298 

anchor sites (Fudenberg et al., 2016; Sanborn et al., 2015). This effect would stabilize these 299 

additional cohesin complexes, resulting in the establishment of simultaneous and paired non-300 

convergent and convergent loops, which would manifest as a similar structure as observed in 301 

our cHi-C maps. 302 

We searched for further biological indications of this mechanism by analyzing ultra-high 303 

resolution Hi-C datasets (Bonev et al., 2017). First, we identified loop anchors and classified them 304 

according to the motif orientation of their CBS and the loops they form. Namely, loop anchors 305 

were split in convergent-only (if they always contain CBS oriented in the same direction as their 306 

anchored loops), non-convergent (if they anchor at least one loop in a direction for which they 307 

lack a directional CBS) and no-CTCF (if they do not contain any CBS). Consistent with previous 308 

reports, most loop anchors belong to the convergent-only category (Rao et al., 2014; de Wit et 309 

al., 2015). However, 7.6% of them were classified as non-convergent. Then, we explored 310 

whether these non-convergent loops could be explained by the fact that the non-convergent 311 

anchor simultaneously establishes a convergent loop in the opposite direction (Fig. 3A). We 312 

calculated the frequency of anchors involved in loops in both directions in each of the three 313 
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different categories and discovered that, while only 5% of convergent-only or no-CTCF anchors 314 

participate in bidirectional loops, this percentage increases significantly up to 45% for non-315 

convergent anchors (Fig. 3B; χ2 p-val < 10-225). Therefore, non-convergent anchors establish 316 

loops in both directions more often than convergent-only and no-CTCF anchors. To gain further 317 

insights into the mechanisms that establish convergent/non-convergent pairs of loops, we 318 

calculated the strength of each corresponding paired loop (Flyamer et al., 2017). This analysis 319 

revealed that the convergent loops linked to a non-convergent loop are significantly stronger 320 

than their non-convergent mates (Fig. 3C and D; Mann-Whitney U p-value=6x10-6).  Next, we 321 

explore if convergent loops paired to non-convergent loops are particularly strong in comparison 322 

to other types of convergent loops.  This analysis revealed that the strength of these convergent 323 

loops is similar to other unpaired convergent loops across the genome (single-sided convergent 324 

category; Supp. Fig. 9). However, paired convergent/non-convergent loops appear to be 325 

mechanistically different from unpaired loops, as they are more often associated with TAD 326 

corners (χ2 p-val<3.5x10-6, Supp. Fig. 9C) and therefore connect anchor points that are located 327 

farther away in the linear genome (Mann-Whitney U p-value <4.8x10-8, Supp. Fig. 9D). A 328 

comparison against pairs of convergent/convergent loops, which are similarly associated with 329 

TAD-corners (category double-sided convergent in Supp. Fig. 9B), revealed that the convergent 330 

loops in convergent/non-convergent pairs are on average stronger (Mann-Whitney U p-val = 331 

7x10-5). Importantly, this type of convergent/non-convergent loops can be observed at relevant 332 

developmental loci, such as the Osr1, Ebf1 and Has2 (Supp. Fig. 10).  Overall, our analyses 333 

suggest that a considerable number of non-convergent loops could be mechanistically explained 334 

by the presence of a stronger and convergent chromatin loop in the opposite orientation and 335 

anchored by the same CBS. 336 

To validate these findings in vivo, we sequentially retargeted our ΔR1 mESCs to create a 337 

mutant that only retains the forward F1 and F2 sites. These CBS display a strong functionality 338 

according to their individual and combined deletions (Fig. 2A and 2B). Of note, both CBS are 339 

arranged in the same orientation, therefore the resulting mutant would lack the typical 340 

divergent CBS signature at the EP boundary. While generating this mutant, we also obtained 341 

intermediate mutants with a double deletion of the R1 and R3 sites (ΔR1+R3) and a triple 342 

deletion of R1, R3 and R4 (ΔR1+R3+R4), as well as the intended quadruple knockout lacking all 343 

reverse CBS (ΔR-all). WISH experiments in mutant limbs revealed an expanded Pax3 expression 344 

pattern towards the posterior region of the limb, an effect that is more pronounced as the 345 

number of deleted CBS increases (Fig. 3E). Expression analyses by qPCR confirmed a significant 346 

increasing trend in Pax3 misexpression levels across mutants (Fig. 3F; Pearson correlation > 0 p-347 
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value ≤ 2x10-7). These results, in combination with our observations on previous mutants, 348 

demonstrate that R2, R3 and R4 are indeed functionally redundant sites, despite the absence of 349 

measurable effects upon individual deletions (Fig. 1B). However, despite the increased 350 

expression, we noted that Pax3 levels were only moderately increased (3-fold) compared to the 351 

increase in expression in mutants retaining reverse CBS (9-fold, ΔF-all). This is in stark contrast 352 

with the fact that ΔR-all mutants only retain two intact CBS in the forward orientation, while up 353 

to four CBS are still present in ΔF-all mutants. This suggests that the two forward CBS (F1 and 354 

F2) grant most of the insulator activity of the EP boundary. Thereby, these experiments confirm 355 

that the distinct functional characteristics of specific CBS can outweigh other predictive 356 

parameters of boundary function like the total number of sites.  357 

 358 
Figure 3. Formation of chromatin loops by non-convergently oriented CTCF binding sites 359 

A. Schematic showing a hypothetical convergent loop (right) that indirectly generates a non-convergent 360 

loop in the opposite direction (left). B. Percentage of loop anchors that establish loops in both directions 361 

(dataset of mouse ES -cells from Bonev et al., 2017). Anchor categories: convergent-only (if they always 362 
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contain CBS oriented in the same direction as their anchored loops), non-convergent (if they anchor at 363 

least one loop in a direction for which they lack a directional CBS) and no-CTCF (they do not contain any 364 

CBS).  C. Loop strengths (calculated as in Flyamer et al. 2017, dataset of mouse ES-cells from Bonev et al., 365 

2017) in pairs of convergent/non-convergent loops. The loops are classified in non-conv. associated (non-366 

convergent loop that share the non-convergent anchor with a convergent loop established in the opposite 367 

direction -loop to the left in A-) and conv-associated (convergent loop that share one of the anchors with 368 

a non-convergent loop in the opposite direction -loop to the right in A-). D. Aggregated loop signal for 369 

categories described in C. Arrows in schematic represent CBS orientation. E. WISH shows Pax3 expression 370 

in E11.5 forelimbs from CBS mutants. Arrowheads represent reverse (light blue) and forward (orange) 371 

oriented CBS. Crosses indicate deleted CBS. Note positive correlation between expanded Pax3 372 

misexpression and increase number of deleted CBS. Scale bar: 250μm. F. Pax3 qPCR analysis in E11.5 limb 373 

buds from CBS mutants. Bars represent the mean and white dots represent individual replicates. Values 374 

normalized against DelBs mutant (ΔΔCt). Note positive correlation of Pax3 misexpression with the 375 

increase in deleted CBS (Pearson correlation significantly >0; *** p-value ≤0,001). G. c-HiC maps from 376 

E11.5 mutant distal limbs at 10 kb resolution (top). Data mapped on custom genome containing the DelBs 377 

deletion. Insets represent a magnification (5kb resolution) of the centromeric (left) and telomeric (right) 378 

loops highlighted by brackets on the map. Gained or lost chromatin loops represented by full or empty 379 

dots, respectively. Subtraction maps (bottom) showing gain (red) or loss (blue) of interactions in mutants 380 

compared to DelBs. H. Insulation score values. Lines represent mutants. Dots represent the local minima 381 

of the insulation score at EP boundary for each mutant, also measured as boundary score (BS). I. Virtual 382 

4C profiles with Pax3 promoter as a viewpoint for the genomic region displayed in panel C. Light gray 383 

rectangle highlights Epha4 enhancer region. Note increased interactions between Pax3 promoter and 384 

Epha4 enhancer in ΔR-all (blue) compared to DelBs mutants (gray). 385 

 386 

As expected, the examination of cHi-C maps from ΔR-all mutant limbs revealed a clear 387 

partition between the Epha4 and Pax3 TADs (Fig. 3G), consistent with the reduced levels of Pax3 388 

misexpression. Boundary scores at the EP boundary were also only moderately reduced in 389 

comparison with the ΔF-all mutant, with only a 19% decrease compared to DelBs controls (Fig. 390 

3H, compared to ΔF-all in Fig.2D). Accordingly, intra-TAD interactions modestly decreased while 391 

inter-TAD interactions increased, as observed for the interaction frequencies between the Pax3 392 

promoter and Epha4 limb enhancers (Fig. 3I) Despite the multiple deletions, the telomeric 393 

chromatin loops remain unaffected and anchored by the F1 and F2 sites (Fig. 3G; Supp. Fig. 8). 394 

However, we noticed the persistence of centromeric chromatin loops in the complete absence 395 

of CBS with reverse orientation. Further examinations revealed that these loops become 396 

anchored by the F1 and F2 sites, despite their non-convergent forward orientation. In fact, we 397 

observe a higher contact intensity at F1, which would be the first CBS encountered by cohesin 398 
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complexes sliding from the centromeric side. Therefore, our results in transgenic mice confirm 399 

our findings at the genome-wide level (Fig. 3A, B and C), demonstrating that CBS with robust 400 

insulator function can create chromatin loops independently of their CTCF motif orientation, 401 

most likely through a process of loop interference. 402 

 403 

The clustering of divergently-oriented CTCF binding sites is not a strict requirement for robust 404 

boundary insulation 405 

Previous studies described the presence of divergent CBS clusters as a recurrent 406 

signature of TAD boundaries, suggesting a potential role on insulation (Gómez-Marín et al., 407 

2015; Kentepozidou et al., 2020). While our analysis on mutants with non-divergent and only 408 

reverse CBS orientation (ΔF-all) showed a severe impairment of boundary function (Fig 2C), this 409 

was not the case for ΔR-all mutants, which only retain CBS in a forward orientation (Fig 3F). 410 

Indeed, the degree of Pax3 misexpression in these mutants evidenced that insulation is more 411 

preserved than in ΔR1+F2 mutants, which still conserve a divergent CBS signature (Fig. 2C).  412 

This prompted us to explore the relation between the composition of CBS at boundaries 413 

and insulation strength. We examined available Hi-C datasets, classifying boundary regions 414 

according to different parameters of CBS composition (i.e., number and orientation) and 415 

calculating their boundary scores (Fig. 4A). Our analysis revealed that, for the same number of 416 

CBS, boundaries with a divergent signature generally display more insulation than their non-417 

divergent counterparts. However, we observe that up to 6% of non-divergent boundaries display 418 

scores above 1.0, a value that we find to provide robust functional insulation to the EP boundary 419 

region (DelBs mutants; Fig. 1C). Manual inspection of specific loci showed that non-divergent 420 

boundaries with strong boundary scores present an evident TAD partition between adjacent 421 

domains in Hi-C maps. At these loci, insulation is not associated with prominent transcription or 422 

RNAPII occupancy at the boundary region. Furthermore, genes located at either side are unlikely 423 

to be coregulated (Supp. Fig. 11). These results, combined with our observation on CBS mutants, 424 

suggest that a divergent signature is not strictly required to form strong functional boundaries.  425 
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 426 

Figure 4. Non-divergent boundary signatures and effects of surrounding genomic context 427 

A. Relation between Boundary Scores (BS) and the number of CBS for divergent and non-divergent 428 

boundaries in mouse ES-cell high-resolution Hi-C dataset (Bonev et al., 2017). The boxes in the boxplots 429 

indicate the median and the first and third quartiles (Q1 and Q3). Whiskers extend 1.5 times the 430 

interquartile range below and above Q1 and QR respectively. B. WISH shows Pax3 expression in E11.5 431 

forelimbs from CBS mutants. Arrowheads represent reverse (light blue) and forward (orange) oriented 432 

CBS. Crosses indicate deleted CBS. Light gray rectangle marks inverted region. Note similar Pax3 433 

misexpression pattern between ΔF-all-Inv and ΔF-all mutants. Scale bar: 500μm. C. Pax3 qPCR analysis in 434 

E11.5 limb buds from CBS mutants. Bars represent the mean and white dots represent individual 435 

replicates. Values normalized against DelBs mutant (ΔΔCt). Note positive correlation of Pax3 436 

misexpression with the increase in deleted CBS (ns: non-significant). D. c-HiC maps from E11.5 mutant 437 

distal limbs at 10 kb resolution (top). Data mapped on custom genome containing the DelBs deletion and 438 

the inverted EP boundary. Insets represent a magnification (5kb resolution) of the centromeric (left) and 439 

telomeric (right) loops highlighted by brackets on the map. Gained or lost chromatin loops represented 440 

by full or empty dots, respectively. Subtraction maps (bottom) showing gain (red) or loss (blue) of 441 

interactions in mutants compared to DelBs. E. Insulation score values. Lines represent mutants. Dots 442 

represent the local minima of the insulation score at EP boundary for each mutant, also measured as 443 

boundary score (BS). F. Virtual 4C profiles with Pax3 promoter as a viewpoint for the genomic region 444 
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displayed in panel C. Light gray rectangle highlights Epha4 enhancer region. Note similar interaction 445 

profile between ΔF-all-Inv (yellow) and ΔF-all mutants (orange). 446 

 447 

The orientation of large boundary regions has a limited impact on boundary insulation 448 

 Our analyses on individual mutants suggest a strong influence of CBS characteristics on 449 

boundary function. This effect can explain the prominent differences in insulation observed 450 

between mutants with only-reverse (ΔF-all) or only-forward (ΔR-all) sites. However, it is also 451 

plausible that the different genomic contexts at both sides of the EP boundary region could 452 

account for these functional differences. To evaluate this hypothesis, we generated a mutant 453 

that carries an inversion of the entire boundary region, on the ΔF-all background (ΔF-all-Inv) 454 

(Fig. 4B). Following the retargeting of our ΔF-all mESC, we confirmed the presence of two 455 

inverted alleles by qPCR (Supp. Fig. 12). Then, mutant embryos were generated from the 456 

modified mESC via tetraploid aggregation methods and subsequently analyzed. 457 

WISH and qPCR experiments show that the pattern of Pax3 expression is almost 458 

indistinguishable from the ΔF-all mutants, both spatially and at the quantitative level (Fig. 4B 459 

and 4C). The examination of cHi-C maps from ΔF-all-Inv mutants also revealed a partial fusion 460 

of the Epha4 and Pax3 TADs, similar to the spatial configuration of ΔF-all mutants (Fig. 4D). 461 

However, subtraction maps revealed qualitative differences related to the chromatin loops 462 

anchored at the EP boundary. Specifically, the inversion of the entire boundary region causes a 463 

redirection of chromatin loops, which now interact mainly with the telomeric Pax3 boundary 464 

instead of the centromeric Epha4 boundary. Nevertheless, these ectopic loops are mainly 465 

anchored by the R1 site, which preserves its marked functionality among the cluster. However, 466 

despite the observed local differences, the boundary scores indicate that boundary function is 467 

comparable between ΔF-all-Inv and ΔF-all mutants (Fig. 4E). This is also evident on virtual 4C 468 

profiles, which show a similar degree of interactions between Pax3 and the Epha4 enhancers 469 

(Fig. 4F). These results suggest that the orientation of entire boundary regions, as well as the 470 

differences in the surrounding genomic context, play a minor role in insulator function. 471 

 472 

Genomic distances can influence gene expression levels 473 

To determine to what extent CTCF binding contributes to the function of the EP 474 

boundary region, we retargeted our mESCs to generate a sextuple knockout mutant where all 475 

CBSs are deleted (ΔALL). WISH experiments on tetraploid-derived embryos revealed a further 476 
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expansion on the spatial pattern of Pax3 misexpression, which covered the entire distal limb 477 

from the anterior to the posterior region. This expanded expression mirrors the pattern 478 

observed in DelB mutants, where the entire boundary region is deleted (Figure 5A). Expression 479 

analyses revealed that Pax3 misexpression levels in ΔALL mutants exceed the combined sum of 480 

expression of the ΔR-all and ΔF-all mutants (Fig. 5B), again indicating the cooperative and 481 

redundant action of CBS in preserving insulation. Intriguingly, ΔALL mutants only reach 65% of 482 

the Pax3 misexpression levels observed in the DelB mutants (Figure 5B), an effect that could be 483 

attributed to the 150Kb inter-CTCF region that differentiates both mutants. 484 

 485 

Figure 5. Contribution of CTCF binding to the insulation function of the EP boundary 486 

A. WISH shows Pax3 expression in E11.5 forelimbs from CBS mutants. Arrowheads represent reverse (light 487 

blue) and forward (orange) oriented CBS. Crosses indicate deleted CBS and gray rectangle represents 488 

deleted region. Note the similarities in expression pattern between mutants. Scale bar: 250μm B. Pax3 489 

qPCR analysis in E11.5 limb buds from CBS mutants. Bars represent the mean and white dots represent 490 

individual replicates. Values normalized against DelBs mutants (ΔΔCt). Note positive correlation of Pax3 491 

misexpression with the increase in deleted CBS (* p-value ≤ 0.05) C. c-HiC maps from E11.5 mutant distal 492 

limbs at 10 kb resolution (top). Data mapped on custom genome containing the DelBs deletion and the 493 

inverted EP boundary. Insets represent a magnification (5kb resolution) of the centromeric (left) and 494 
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telomeric (right) loops highlighted by brackets on the map. Gained or lost chromatin loops represented 495 

by full or empty dots, respectively. Subtraction maps (bottom) showing gain (red) or loss (blue) of 496 

interactions in mutants compared to DelBs. D. Insulation score values. Lines represent mutants. Dots 497 

represent the local minima of the insulation score at EP boundary for each mutant, also measured as 498 

boundary score (BS). E. Virtual 4C profiles with Pax3 promoter as a viewpoint for the genomic region 499 

displayed in panel C. Light gray rectangle highlights Epha4 enhancer region.  500 

 501 

To investigate the molecular cause of the reduced Pax3 misexpression in ΔALL mutants, 502 

we performed cHi-C experiments in distal developing limbs (Fig. 5C). These experiments 503 

revealed a prominent fusion of the Epha4 and Pax3 TADs. This results from a severe disruption 504 

of the EP boundary, which displays a lower boundary score compared to the DelBs (Fig. 5D; 81% 505 

boundary score reduction) and a complete absence of anchored chromatin loops within the 506 

region. In fact, the interaction profile at the EP boundary is not different from other internal 507 

locations of the Epha4 TAD (Fig. 5C). However, virtual 4C profiles from ΔALL mutants showed 508 

decreased interactions between Pax3 and the Epha4 enhancers, in comparison to DelB mutants 509 

(Fig. 5E) thus in agreement with the differences of Pax3 misexpression observed between these 510 

mutants. ChIP-seq datasets for epigenetic marks did not reveal additional regions with 511 

regulatory potential within the 150 Kb region (Supp. Fig. 3), making it unlikely that the higher 512 

levels of Pax3 misexpression in DelB mutants are caused by a deletion of regulatory elements. 513 

Taken together, these results suggest that enhancer-promoter distances might influence gene 514 

expression levels, thus providing a potential explanation for the reduced Pax3 expression levels 515 

in ΔALL compared to DelB mutant embryos. 516 

 517 

Boundary insulation as a modulator of developmental gene expression and phenotypes 518 

We previously reported that the misexpression of PAX3 during early limb development 519 

can lead to a severe shortening of index and thumb fingers (brachydactyly), as observed in 520 

human patients carrying large deletions at the EPHA4 locus and in their corresponding mouse 521 

models (DelB) (Lupiáñez et al., 2015). Therefore, our collection of mouse mutants provides a 522 

unique opportunity to study how boundary insulation strengths directly translate into 523 

developmental phenotypes. 524 

To evaluate this aspect, we performed tetraploid aggregation experiments with several 525 

of our mutant mESC lines and obtained mutant fetuses at E17.5, a developmental stage where 526 

the limb defects are already observable (Lupiáñez et al., 2015). We performed alcian 527 
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blue/alizarin red skeletal staining in mutant limbs and measured relative digit length as a proxy 528 

for the phenotype (Fig. 6A and B). First, we analyzed the ΔR1 mutants, which display a moderate 529 

Pax3 misexpression in the anterior region of the distal limb (Fig. 1F). A quantification of finger 530 

length ratios revealed that mutant limbs are indistinguishable from their corresponding 531 

controls. These results demonstrate that the detrimental effects of Pax3 misexpression can be 532 

partially buffered, resulting in the development of normal limbs. 533 

 534 

Figure 6. Boundary strength modulates developmental phenotypes 535 

A. Skeletal staining of forelimbs from E17.5 mutant and control fetuses. White arrowheads indicate 536 

reduced index finger lengths. Black bracket shows the region of the finger measured for the quantification.  537 

Finger length correlates negatively with increased Pax3 misexpression. Scale bar, 500μm. B. Index lengths 538 

relative to ring finger lengths in E17.5 mouse forelimbs. Bars represent the mean and white dots represent 539 

individual replicates. Values normalized on control animals (CTRL). (* p-value ≤ 0.05; ** p-value ≤ 0.01; 540 

ns: non-significant). C. Correlation between the number of remaining CBS at the EP boundary and the 541 

levels of Pax3 expression in the different mutants described in this study. Pearson regression lines are 542 

shown together with R2 values, both for the whole collection of mutants (black) and discarding combined 543 

CBS deletions involving CBS with forward orientation (turquoise).  D.  Correlation and R2 between 544 
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Boundary Scores and the brachydactyly phenotype penetrance measured as the Index to Ring finger 545 

length ratio for controls, ΔR1+F2 and ΔF-all mutants. The color of the dots represents the level of Pax3 546 

misexpression in the limb as measured by qPCR. E. Model for boundary insulation as a quantitative 547 

modulator of gene expression and developmental phenotypes. Left, a strong boundary (B) efficiently 548 

insulates gene A from the enhancers located in the adjacent TAD (E). The boundary shows a cluster of CBS 549 

with different orientations represented with arrowheads. The colored arrow represents a CBS with 550 

prominent contribution to boundary function. Middle, the absence of specific CBS results in a weakened 551 

boundary, moderate gene misexpression (limb, indicated in yellow) and mild phenotypes (reduced digits, 552 

indicated in red and pointed by white arrowhead). Right, the absence of the boundary causes a fusion of 553 

TADs, strong gene misexpression and strong phenotypes.  554 

 555 

Next, we analyzed the phenotypic effects of the ΔR1+F2 mutant. In contrast to individual 556 

deletions, the combined deletion of R1 and F2 led to a moderate reduction of index digit length 557 

(Fig 6A and B; 6.3% compared to controls), consistent with the increased Pax3 misexpression 558 

(Fig. 2B). This phenotype demonstrates that weakened boundaries can be permissive to 559 

functional interactions between adjacent TADs, resulting in developmental gene expression 560 

patterns and associated phenotypes. It is worth noting that the brachydactyly phenotypes of 561 

ΔR1+F2 mutants occur despite an observable partition between the Epha4 and Pax3 TADs and 562 

across a boundary region that has relatively high boundary scores (Fig. 2C and 2D; boundary 563 

score=0.8). Further analyses on the distribution of boundary scores from ultra-high resolution 564 

Hi-C datasets (Bonev et al., 2017) revealed that many boundary scores fall within the range 565 

observed in our mutant collection (Supp. Fig. 13). Particularly interesting are the 40% of 566 

boundaries that display scores lower than 0.8, which according to our functional observations 567 

could be permeable for functional interactions across domains, according to our observations 568 

at the EP boundary. Nevertheless, insulation is not the only aspect that should be taken into 569 

account when evaluating enhancer-promoter relationships. Locus-specific features, such as the 570 

variability in enhancer strength or enhancer-promoter compatibility, might compensate for 571 

lower insulation levels.  572 

Finally, we analyzed the ΔF-all mutants, in which the Epha4 and Pax3 TADs appear 573 

largely fused in cHi-C maps (Fig. 2C). In this case, the more severe disruption of TAD organization 574 

led to a prominent reduction of digit length (Fig 6A and B; 12% compared to controls), again 575 

consistent with the higher degree of Pax3 misexpression observed in these mutants (Fig. 2B). 576 

Overall, these results illustrate how boundary insulation strength can serve as a modulator of 577 

gene expression and developmental phenotypes, by allowing permissive functional interactions 578 

between neighboring TADs.  579 
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DISCUSSION 580 

By combining genome-wide analyses and a comprehensive set of mouse mutants, we 581 

reveal principles of boundary function in vivo. Using the EP boundary region as a prototypical 582 

example, we demonstrate that CBS act redundantly and also cooperate to establish precise 583 

levels of regulatory insulation. On the one hand, the EP boundary function was increasingly 584 

compromised with the number of CBS mutations and remained almost unaffected upon 585 

individual deletions. On the other hand, combined mutants carrying either the F1 or F2 CBS 586 

deletions resulted in enhanced Pax3 misexpression, thus escaping the general additive trend 587 

observed for the consecutive mutations of reverse oriented CBS (Fig. 6C). Therefore, boundary 588 

function appears to be highly determined by the characteristics of specific CBS, a parameter that 589 

can contribute more to effective domain insulation than the total number of sites or their 590 

orientation. We also observe that the stark differences in functionality between CBS often 591 

correlate with differences in CTCF occupancy, despite prominent exceptions like for R3. The 592 

latter suggests that additional factors may modulate CBS function. A recent study based on an 593 

in vitro insulator reporter assay revealed that flanking genomic regions can also contribute to 594 

CBS function, potentially serving as binding platforms for such additional modulators that are 595 

yet to be identified (Huang et al., 2020). Interestingly, this study also demonstrates that tandem 596 

CBS can display synergistic effects on insulation. However, we observe that CBS can compensate 597 

for the absence of each other to some extent, as combined deletions are required to 598 

compromise EP boundary insulation severely. Therefore, our results show that synergistic 599 

effects are negligible when the number of clustered CBS increases. 600 

The combination of both cooperative and redundant functions have been also 601 

extensively described for other types of non-coding elements. For example, enhancer 602 

redundancy is a landmark of developmental gene regulation that confers phenotypic robustness 603 

and buffers against the detrimental effects of genetic perturbations (Frankel et al., 2010; 604 

Osterwalder et al., 2018). Several examples illustrate that enhancer elements can build 605 

cooperative regulatory networks that display striking differences on the activity of individual 606 

components, as we also report for CBS (Hay et al., 2016; Shin et al., 2016; Will et al., 2017). 607 

Therefore, our results suggest that boundary elements operate under biological principles that 608 

are not drastically different from other classes of genomic non-coding elements. This is 609 

particularly noticeable for CBS that do not show any apparent function upon individual deletion, 610 

but that can compensate for the loss of neighboring CBS. The redundancy of CBS seems to 611 

converge with additional buffering mechanisms that operate during development. For example, 612 

we observed that the moderate misexpression of Pax3 resulting from the partial disruption of 613 
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the EP boundary is not sufficient to cause abnormal phenotypes, demonstrating that other 614 

regulatory layers can compensate for detrimental gene effects. Therefore, developmental 615 

phenotypes are likely controlled by complementary “fail-safe” mechanisms that operate at 616 

multiple levels: the redundant action of different classes of non-coding elements, like enhancers 617 

and insulators, combined with downstream mechanisms that buffer fluctuations in gene 618 

expression. 619 

The clustering of redundant CBS is a molecular signature that has been conserved across 620 

vertebrate evolution (Gómez-Marín et al., 2015; Vietri Rudan et al., 2015). This signature might 621 

have contributed to the conservation of relevant TAD boundaries across species, despite a 622 

constant turnover of individual CBS (Kentepozidou et al., 2020). Previous studies suggest that 623 

the evolutionary loss of individual CBS at clustered regions might have a low impact on the 624 

expression of nearby genes (Kentepozidou et al., 2020). However, the striking differences in 625 

functionality between individual sites might also result in differential selective pressures over 626 

CBS, thus causing evolutionary remodeling to occur preferentially at sites with reduced function 627 

and leading to minor changes in boundary insulation. Nevertheless, we also demonstrate that 628 

individual CBS deletions can “permeabilize” boundary regions and result in slight variations on 629 

gene expression that might be difficult to identify in quantitative analyses. Thus, it is conceivable 630 

that boundary regions, despite a robust evolutionary conservation, might also serve as a 631 

substrate for gradual changes in gene expression and corresponding phenotypes.  632 

The transcriptional changes upon boundary perturbation show a marked tissue and 633 

temporal specificity. This suggests that selective constraints on insulation are mostly determined 634 

by the specific activity of regulatory elements, as well by the responsiveness of genes located at 635 

the opposite side of a boundary. Thus, it is expected that a global depletion of 3D chromatin 636 

organization in individual cell types may only results in moderate changes in transcription, due 637 

to a reduced number of active enhancers, as reported in in vitro studies (Nora et al., 2017; Rao 638 

et al., 2017). Yet, even a limited number of dysregulated genes can be sufficient to induce severe 639 

developmental defects in vivo (Franke et al., 2016; Lupiáñez et al., 2015). Further studies that 640 

abolish 3D chromatin organization across multiple tissues and at developmental stages will be 641 

essential to ultimately determine the in vivo relevance of this process. 642 

Our study also offers novel mechanistic clues concerning TAD boundary formation.  643 

While divergent CBS signatures are associated with stronger boundaries on average, they are 644 

not a strict requirement for robust boundary function. Non-divergent boundaries can also 645 

display boundary scores that go above those values reported to be functionally robust for the 646 
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EP boundary. While the underrepresentation of non-divergent boundaries across the genome 647 

could be interpreted as a sign of decreased functionality, we cannot ignore the fact that for an 648 

increasing number of CBS the probabilities of not having a divergent signature increase 649 

exponentially. Additionally, we observe that many CBS boundaries with non-divergent 650 

signatures that are formed by non-convergent loops paired to convergent ones. Such 651 

configuration can be mechanistically explained by a process of loop interference, where the 652 

persistent anchoring of a cohesin complex might stall additional complexes. Therefore, our 653 

results constitute an experimental validation for a scenario that is predicted by the loop 654 

extrusion model (Fudenberg et al., 2016; Sanborn et al., 2015) and that might be linked to the 655 

existence of robust chromatin boundaries with non-divergent CBS signatures. 656 

While it is well proven that boundaries can effectively constrain interactions between 657 

neighboring TADs, whether insulation can be considered an absolute property from a functional 658 

and regulatory perspective remained unclear (Chang et al., 2020). Single-cell (Flyamer et al., 659 

2017; Nagano et al., 2017) and super resolution microscopy approaches (Bintu et al., 2018; 660 

Szabo et al., 2018) demonstrated that chromatin interactions in individual cells are stochastic 661 

and, in some instances, ignore the presence of boundaries that are well-defined in bulk data. In 662 

light of these studies, our results reinforce the premise that boundary insulation should be 663 

considered as a quantitative property, as enhancer-promoter cross-talk and gene activation are 664 

largely proportional to boundary insulation strength (Fig. 6D). Further, boundary insulation 665 

appears to be also influenced by genomic distances, as illustrated in our comparison between 666 

DelB and ΔALL mutants where the presence of a 150 Kb region with no observable chromatin 667 

loops causes a 30% reduction in Pax3 activation. A complementary observation was also 668 

described for inversions at the Shh locus, where reducing the distances between the ZRS 669 

enhancer and the Shh gene was sufficient to overcome boundary insulation and cause ectopic 670 

gene activation (Symmons et al., 2016). In any case, insulation strength emerges as a key feature 671 

of boundary function, which can effectively modulate gene activation and phenotypes (Fig. 6E). 672 

In turn, these two parameters would induce further developmental and evolutionary constraints 673 

that would influence the strength of boundary insulation. Therefore, we uncover that chromatin 674 

boundaries are modular and multicomponent genomic regions subjected to several principles 675 

that govern their regulatory logic. These principles should be broadly applicable to other loci, 676 

thus facilitating their functional interpretation in different developmental contexts. Such 677 

knowledge might help to bridge the gap between the information encoded in the 3D structure 678 

of genomes and the biological processes subjected to their control. 679 

  680 
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MATERIAL AND METHODS 681 

 682 

Generation of CBS mutant mice 683 

Mutant mESCs were obtained following an already described method (Kraft et al., 2015). All CBS 684 

deletions were generated using only one single guide RNA (sgRNA) designed in close proximity 685 

to the binding motif using the website Benchling (https://www.benchling.com/), with the only 686 

exception of ΔR2 and ΔF_ALL_Inv that were generated by using a pair of sgRNA. The guide 687 

sequences (listed in Supp. Table 1) were then cloned in px459 CRISPR/Cas9 vector (Addgene Cat. 688 

N. 62988), previously digested with Bbs1. Delbs mESCs (4x105) were seeded on a layer of inactive 689 

CD1- feeders and cultured with standard ES culture conditions. Cells were transfected using 690 

FuGene HD reagents (Promega) and 8 μg of each px459 vector containing the sgRNA of interest, 691 

following the kit guidelines. Twenty-four hours post-transfection, cells were split on puromycin 692 

resistant DR4- feeders and selected with puromycin for 48 hours. After selection, mESC colonies 693 

were left to recover for 3-5 days, then individual clones were picked and transferred to 96-well 694 

plates coated with CD1- feeders. After a few days, when cells had reached confluency, they were 695 

split in three; two parts were frozen and one part was left growing more for DNA isolation 696 

without feeders. Every clone was genotyped by PCR (MangoTaq, Bioline, Cat.N. 25033) (primers 697 

listed in Supp. Table 2) and positive clones were selected only if they showed two distinguishable 698 

bands on agarose gel, representing two different deleted alleles. Homozygous deletions were 699 

further confirmed by Sanger sequencing. Positive clones were thawed, expanded and genotyped 700 

again to further confirm the genotyping results. In order to obtain the combined CBS deletions, 701 

some individual CBS mutants were re-targeted following the procedure described.  702 

The engineered cells were successively used to generate embryos by tetraploid aggregation 703 

methods (Artus and Hadjantonakis, 2011; Kraft et al., 2015). Mice were handled according to 704 

institutional guidelines under an experimentation license (G0111/17) approved by the 705 

Landesamt fuer Gesundheit und Soziales (Berlin, Germany) and housed in standard cages in a 706 

specific pathogen-free facility. 707 

Whole-mount in situ hybridization (WISH) 708 

E11.5 mouse embryos were dissected in 1X PBS and fixed overnight in 4% PFS/PBS at 4°C. The 709 

following day, embryos were washed twice (10 minutes each) in 1X PBS/DEPC water and 710 

gradually dehydrated with different Methanol dilutions in PBS/DEPC water (25%, 50%, 75%) at 711 

4°C for 30 minutes. Finally, embryos were washed twice (10 minutes each) with 100% Methanol 712 

and stored at -20°C. Pax3 digoxigenin (DIG) - labeled antisense riboprobes were transcribed from 713 
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linearized gene-specific probes (PCR DIG probe Synthesis Kit, Roche). WISH experiment was 714 

performed as follows. Embryos were re-hydrated stepwise in 75%,50%,25% Methanol/PBS-715 

Tween20 (PBST), washed twice in PBST (10 minutes each wash), bleached on ice in 6% hydrogen 716 

peroxide/PBST for 1 hour and washed again in PBST. Embryos were then digested using 717 

Proteinase K (Sigma-Aldrich, REF 03115836001) (10mg/mL) for 3 minutes. Proteinase K was 718 

stopped by washing the embryos twice with Glycine (2mg/mL) in PBST. Then, embryos were 719 

washed 5 times in PBST and finally re-fixed for 20 minutes in 4% PFA/PBS, 0.2% glutaraldehyde 720 

and 0.1% Tween at room temperature. After further washing steps with PBST, embryos were 721 

incubated at 68°C in L1 Buffer (50% deionized formamide, 5X SSC, 1% SDS,0.1% Tween20 in DEPC 722 

water; pH4.5) for 10 minutes. For pre-hybridization, embryos were incubated in H1 Buffer (L1 723 

Buffer with 0.1% tRNA and 0.05% heparin) for 2 hours at 68°C. Before the hybridization, Pax3 724 

DIG-probes were diluted in H1 Buffer and denatured for 10 minutes at 80°C. Embryos were 725 

finally incubated overnight at 68°C in H2 Buffer (H1 Buffer with 0.1% tRNA, 0.05% heparin and 726 

1:100 Pax3-DIG probes). The day after, in order to remove the unbound probes embryos went 727 

through several washing steps with pre heated (68°C) L1, L2 (50% deionized formamide, 2X SSC 728 

pH4.5, 0.1% Tween20 in DEPC water, pH4.5) and L3 (2X SSC pH4.5, 0.1% Tween20 in DEPC water, 729 

pH4.5). 3 washes per buffer, 30 minutes each, were performed. Embryos were cooled down to 730 

room temperature and washed in 1:1 L3 Buffer/RNAse solution (0.1M NaCl, 0.01M Tris pH 7.5, 731 

0.2% Tween20, 10mg/mL RNAse A in H2O) for 5 minutes. Afterwards, embryos were incubated 732 

twice for 30 minutes at 37°C with RNAse solution, followed by 5 minutes incubation at room 733 

temperature with 1:1 RNAse solution/TBST-1 (140mM NaCl, 2.7mM KCl, 25mM Tris-HCl, 1% 734 

Tween20, pH7.5). After 3 washes in TBST1 (each of 5 minutes), embryos were incubated in 735 

blocking solution (TBST1 with 2% calf-serum, 0.2% bovine serum albumin) for 2 hours shaking 736 

at room temperature. Embryos were incubated overnight with anti-DIG antibody conjugated to 737 

alkaline phosphatase (1:5000) (no. 11093274910, Roche) at 4°C. After the overnight incubation, 738 

the unbound antibody was washed out with 8 times at room temperature (30 minutes each) 739 

with TBST 2 (TBST with 0.1% Tween 20 and 0.05% levamisole–tetramisole) and finally left at 4°C 740 

overnight. On the last day, embryos were stained after 3 equilibration washes of 20 minutes in 741 

AP buffer (0.02 M NaCl, 0.05 M MgCl2, 0.1% Tween 20, 0.1 M Tris–HCl and 0.05% levamisole–742 

tetramisole in H2O), followed by staining with BM Purple AP Substrate (Roche). Embryos were 743 

then washed twice in alkaline phosphatase buffer, fixed in 4 % PFA/ PBS/ 0,2 % glutaraldehyde 744 

and 5mM EDTA and stored at 4°C. The stained embryos were imaged using a Zeiss Discovery 745 

V12 microscope and Leica DFC420 digital camera. 746 

  747 
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Quantitative polymerase chain reaction (qPCR)  748 

E11.5 mutant forelimb buds were dissected in 1X PBS, collected and snap frozen in liquid 749 

nitrogen. Tissue was dissolved in RLT with the help of syringes and RNA extracted following the 750 

guidelines of RNeasy Mini Kit (Qiagen). Reverse transcription was performed using Applied 751 

Biosystems_High-Capacity cDNA Reverse Transcription Kit (Cat. No. 4368814) following the 752 

manufacturer instructions and using 500ng of RNA as input material. qPCR was then performed 753 

for at least 3 biological replicates using Biozym Blue S’Green qPCR Mix Separate ROX (No. 754 

331416XL) on QuantStudio 7 Flex Real-Time PCR System from Applied Biosystems. Pax3 fold 755 

change was calculated from ΔCt using Gapdh as housekeeping gene (2^-(ΔCt)). ΔΔCt was then 756 

calculated using DelBs mean as a reference value. 757 

ChIP-seq 758 

MEFs depleted mutant mESCs (5x106) were washed twice washed with 1X PBS, dissociated with 759 

1mL Trypsin and centrifuged for 5 minutes at 1100 rpm at room temperature.  Cell pellet was 760 

resuspended in 11.7 mL of 10% FCS and then fixed by adding 325 μL of 37% Formaldehyde 761 

(Sigma-Aldrich) (final 1% FA) and incubated for 10 minutes at room temperature, while rotating. 762 

To stop the fixation process, the reaction was quenched on ice by adding 1 mL of 1.425M 763 

Glycine. Nuclei extraction was performed by adding 5 mL of ice-cold lysis buffer (10mM Tris HCl 764 

pH 7.5, 10 mM NaCl, 5 mM MgCl2, 0.1 mM EGTA, 1X Protease Inhibitor (Roche Ref. 5892791001) 765 

in Milli-Q Water). Extracted nuclei were then collected by centrifugation at 460g for 5 minutes 766 

at 4°C, washed with 1X PBS, snap frozen and stored at -80 °C or further processed using iDeal 767 

ChIP for Transcriptional Factors Kit (Diagenode) (Cat. N. C01010055). Briefly, cell nuclei were 768 

resuspended in 300μl of Shearing Buffer and Chromatin was sheared using Diagenode Bioruptor 769 

in order to achieve a fragment size ranging from 200-500 bp. Immunoprecipitation was done 770 

using 15-20 μg of DNA and 1 μg of CTCF Ab (Diagenode:C15410210) and all steps were 771 

performed following the manufacturer instructions. ChIP-seq libraries were prepared using the 772 

NEBNext Ultra II Library Prep Kit for Illumina. Input material ranged from 500pg to 15ng of 773 

immunoprecipitated DNA and processed according to the kit guidelines (NEBNext End Prep, 774 

Adaptor Ligation, PCR enrichment of Adaptor-Ligated DNA using NEBNext Multiplex Oligos for 775 

Illumina). Clean up and size selection were performed with AMPure beads (NEB). Library was 776 

sequenced with 30 millions of single end read of 75 nt on HiSeq4000 or NovaSeq platform. 777 

Capture-HiC 778 

E11.5 mouse distal limb buds from homozygous mutants were microdissected in 1X PBS, 779 

resuspended and incubated in 1ml pre-warmed Trypsin for 5-10 minutes at 37°C. Trypsin was 780 
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blocked by adding 5mL of 10% FCS/PBS. The tissue was further dissociated to make a single-cell-781 

suspension by using a 40μm cell-strainer (Product N. 352340) and finally centrifuged at 1100 782 

rpm for 5 minutes at room temperature. The pellet was then resuspended in a 2% PFA (in 10% 783 

FCS/PBS) fixation solution and incubated at room temperature for 10 minutes while tumbling. 784 

To stop the fixation process, the reaction was quenched on ice by adding Glycine (final 785 

concentration 125 mM) and centrifuged at 400g for 8 minutes at 4°C. Nuclei extraction was 786 

performed by adding 1.5mL of ice-cold lysis buffer (50mM Tris HCl pH 7.5, 150 mM NaCl, 5 mM 787 

EDTA, 0.5% NP-40, 1.15% Triton X-100, 25X Protease Inhibitor in Milli-Q Water). Extracted nuclei 788 

were then collected by centrifugation at 750g for 5 minutes at 4°C, washed with 1X PBS, snap 789 

frozen and stored at -80 °C. The 3C library was achieved by a DpnII digestion, a re-ligation of the 790 

digested fragments, de-crosslinking and DNA purification and further processed using 791 

SureSelectXT Target Enrichment System for the Illumina Platform (Agilent Technology). 200 ng - 792 

3 μg of input material was sheared using Covaris Sonicator and the following parameters: duty 793 

cycle: 10%, intensity: 5, cycle per burst:200, time: 6 minutes, temperature: 4°C. Sheared DNA 794 

was then processed following the kit guidelines (end repair, dA-tailing, adaptor ligation, PCR 795 

enrichment of Adaptor ligated DNA, DNA purification, hybridization and capture). The 796 

hybridization was performed using SureSelect XT Custom RNA probes library (Cat # 5190-4836) 797 

designed on the genomic region mm9 chr1:71,000,000-81,000,000. The capture was performed 798 

using Streptavidin-Coated Beads (Invitrogen). PCR enrichment and sample indexing were done 799 

following Agilent instructions. Capture libraries were sequenced with 400 millions of 75-100bp 800 

paired-end reads on HiSeq4000 or NovaSeq platforms 801 

Skeletal preparation 802 

E17.5 mouse fetuses were dissected in 1X PBS, sacrificed and then kept for 1 hour in water and 803 

later incubated in 65°C hot water for 1 minute. Skin and organs were removed mechanically with 804 

the help of forceps. Prepared fetuses were further processed with different solutions and serial 805 

overnight incubations at room temperature. On day 1, fetuses were fixed overnight with 100% 806 

Ethanol, while oscillating. On day 2, in order to stain for cartilage, 100% ethanol was replaced 807 

by Alcian Blue solution and samples incubated ove-night (150 mg/L Alcian Blue 8GX (Sigma-808 

Aldrich) in 100% Ethanol and Acetic Acid Glacial). In the following days, Alcian Blue solution was 809 

replaced first with Ethanol 100% (day 3), then with 0.2 % KOH for digesting the tissues (day 4), 810 

with Alizarin Red to stain membranous bones (50 mg/mL Alizarin Red in 0.2% KOH) (day 5) and 811 

finally with 0.2% KOH again to finalize tissue digestion (day6). On day 6, they were placed in 25% 812 

Glycerin in Milli-Q Water for imaging acquisition. Stained fetuses were imaged using Zeiss 813 
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Discovery V.12 microscope and Leica DFC420 digital camera. Fetuses were long-term stored in 814 

60% Glycerin solution. 815 

Capture-HiC analysis 816 

Paired-end reads from all the Capture-C experiments were aligned using bwa mem local aligner 817 

(Li and Durbin, 2010) to a custom reference genome encompassing the captured-region 818 

(chr1:71-81Mb of the mm9 assembly) with the region corresponding to the baseline DelBs 819 

mutation deleted (chr1:76,388,978-77,858,974). There was one exception, the ΔF-all-Inv mutant 820 

Capture-C, in which a different version of the genome was used to account for the inverted 821 

coordinates (chr1:77,861,422-78,062,382). The rest of chromosomes, including the remaining 822 

chr1, were kept in the custom reference genome to be able to distinguish not-uniquely mapped 823 

reads. Then, following the 4DN consortium recommendations, the resulting bam files were 824 

parsed with the pairtools suite (https://github.com/mirnylab/pairtools) to produce 4DN format 825 

files containing pairwise interactions. Briefly, bam files were parsed using pairtools parse. Then, 826 

not-uniquely mapped reads were filtered out using pairtools select (selecting UU, UR and RU 827 

pairs). Subsequently, pairs of reads were sorted and duplicated pairs were removed using 828 

pairtools sort and pairtools dedup respectively. Finally, dangling-ends were filtered out using a 829 

custom python script available in the gitlab repository. Filtered 4DN formatted pairs of 830 

interactions were then used to construct Knight-Ruiz normalized Hi-C matrices in hic format with 831 

Juicer (Durand et al., 2016). Such hic files were further visualized and analyzed with FAN-C (Kruse 832 

et al., 2020) and custom python code also available in our gitlab repository. Briefly, insulation 833 

scores, boundaries and boundary scores were calculated as described elsewhere (Crane et al., 834 

2015) using the dedicated FAN-C functions through the FAN-C Api. Subtraction matrices were 835 

calculated as described elsewhere (Bianco et al., 2018) with minor modifications. Briefly, first 836 

the coverage of the matrices to be subtracted was equalized dividing by the total number of 837 

reads. Then, the two matrices were subtracted element-wise and each value of the subtraction 838 

was converted to a z-score taking into account the rest of values belonging to the same sub-839 

diagonal (corresponding to interactions happening at equivalent genomic distances). Virtual 4C 840 

tracks were visualized and quantified using custom python and R scripts (available). WT, DelBs 841 

and DelB cHi-C raw reads were downloaded from GEO (GSE92291) (Bianco et al., 2018) 842 

 843 

HiC analysis 844 

 845 

Data retrieval: Already processed hic files (Durand et al., 2016) from high resolution Hi-C 846 

datasets in mouse stem cells, neural progenitors and cortical neurons (Bonev et al., 2017) were 847 
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obtained from the Juicebox repository (see index in hicfiles.tc4ga.com/juicebox.properties). 848 

CTCF ChIP-seq datasets from matching cell types were downloaded from GEO (see GSE). Hi-C 849 

data from mouse embryonic proximal and distal forelimbs (Rodríguez-Carballo et al., 2017) were 850 

also downloaded from GEO (see GSE101715) in validPairs format and subsequently converted 851 

to hic files using Juicer. Matching CTCF ChIP-seq data were obtained from GSE101714. 852 

 853 

Boundary analysis: Insulation scores, boundaries and boundary scores (Crane et al., 2015) were 854 

calculated with FAN-C (Kruse et al., 2020) using Knight-Ruiz (KR) normalized matrices at 25kb 855 

resolution with a window size parameter of 250kb. Boundaries located in the vicinity (+-125kb) 856 

of extremely low mappable regions were filtered out. Low mappability regions were defined 857 

using a gaussian mixture model on the marginal counts of the raw Hi-C matrices (further details 858 

and masked regions available in the gitlab repository). CBS were predicted using CTCF peaks 859 

from matching ChIP-seq datasets, and CBS orientation was inferred using FIMO (Grant et al. 860 

2011, using the flags --bfile --motif-- --max-stored-scores 1000000 and the CTCF PWM from 861 

JASPAR, background estimated using MEME fasta-get-markov utility). The highest scoring motif 862 

from each peak was retained for further analysis. For the mouse ES-cells dataset, the total 863 

number of CBS and the total number of divergent CBS pairs was then calculated for each 864 

boundary including a 100kb long flanking region call using BEDTools (Quinlan and Hall, 2010).  865 

 866 

Loop analysis: We calculated loops using CPU hiccups (Durand et al., 2016) with the flags (-m 867 

512 -r 5000,10000,25000 -k KR -f .1,.1,.1 -p 4,2,1 -i 7,5,3 -t 0.02,1.5,1.75,2 -d 868 

20000,20000,50000) in 5kb,10kb and 25kb KR-normalized matrices for the mouse ES-cells 869 

dataset (Bonev et al., 2017). Loop anchors were intersected with the CBS information obtained 870 

as described in the Boundary analysis section using BEDTools. Then, loop anchors were classified 871 

accordingly in convergent-only (loop anchors that display at least one CBS oriented in the 872 

direction of all the loops they are engaged), non-convergent (loop anchors that are engaged in 873 

at least one loop that is formed despite lacking any CBS oriented in that direction) and non-CTCF 874 

(loop anchors that do not display any CBS). CTCF loops were subsequently classified in two 875 

categories according to the nature of their anchors: convergent (loops formed by anchors 876 

displaying convergently oriented CBS) and non-convergent (if not). Convergent loops were 877 

further subdivided in single-sided convergent (if both anchors only engage in loops in the same 878 

direction), double-sided convergent (if at least one of the anchors engage in a convergent loop 879 

in the opposite direction) and convergent associated (if at least one of the anchors engage in a 880 

non-convergent loop in the opposite direction). Non-convergent loops were also subdivided in 881 

simply Non-convergent and non-convergent associated (if at least one of the anchors is engaged 882 
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in a convergent loop in the opposite direction). Loop strengths were calculated for each set of 883 

loops as previously proposed (Flyamer et al., 2017) using the dedicated FAN-C function (Kruse 884 

et al., 2020). Hi-C signal aggregates over the different loop categories were also calculated using 885 

FAN-C and 10Kb matrices.   886 
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