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Abstract

Summary: Single-cell DNA template strand sequencing (Strand-seq) enables chromosome length haplotype phas-
ing, construction of phased assemblies, mapping sister-chromatid exchange events and structural variant discovery.
The initial quality control of potentially thousands of single-cell libraries is still done manually by domain experts.
ASHLEYS automates this tedious task, delivers near-expert performance and labels even large datasets in seconds.

Availability and implementation: github.com/friendsofstrandseq/ashleys-qc, MIT license.

Contact: peter.ebert@iscb.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Strand-seq is a single-cell short-read sequencing technique that
assays sister chromatid inheritance patterns at the level of individual
chromosomes (Falconer et al., 2012; Sanders et al., 2017). The
Strand-seq protocol generates strand-specific sequencing libraries by
labeling and later removing the non-template strand during DNA
replication. The strand-of-origin information is recovered in silico as
the read alignment either in Crick (C, forward) or in Watson (W, re-
verse) direction. The Strand-seq protocol affords unique insights in
diverse applications, e.g. locating sister chromatid exchange events
(Claussin et al., 2017; Falconer and Lansdorp, 2013), characterizing
complex genomic variation (Sanders et al., 2016, 2020) or providing
long-range phase information to assist genome assembly
(Ghareghani et al., 2018; Porubsk�y et al., 2017, 2020). Decreasing
costs allow for studying larger cohorts, but the initial quality control
(QC) step to discard low-quality libraries or control probes still
requires human intervention. Domain experts manually evaluate
and label each library in datasets comprising up to thousands of sin-
gle cells. Replacing this laborious process with an automated tool
for Strand-seq QC would be a prerequisite for further scaling of
Strand-seq in the future. We developed a software for the Automatic
Selection of High-quality Libraries for the Extensive analYsis of
Strand-seq data (ASHLEYS). ASHLEYS is based on established ma-
chine learning technology and ships with ready-to-use classification
models trained on a large cohort of Strand-seq libraries. ASHLEYS
pretrained classifiers have been vetted on independent test data to
ensure stable generalization performance on new Strand-seq data
with similar feature characteristics. Next, we describe ASHLEYS’

feature model and summarize the performance of the default classi-
fier recommended for QC of new Strand-seq libraries.

2 Materials and methods

ASHLEYS’ main input is a set of BAM (Li et al., 2009) files, one per
single-cell paired-end Strand-seq library aligned to a reference
genome. We provide a supporting pipeline (Supplementary
Information) for data preprocessing following established examples
(Fig. 1A) (Sanders et al., 2017, 2020). ASHLEYS feature modeling
uses statistics that describe either generic library QC characteristics,
e.g. the number of unmapped reads or the number of low-quality
alignments [default: MAPQ < 10, Sanders et al. (2016, 2020)], or
the W/C read distribution, which is a feature unique to Strand-seq
data. Generic count features are normalized by the total library size
to account for varying sequencing depth. The W/C feature computa-
tion is implemented as a sliding window approach covering a range
of window sizes in a single run to capture technical artifacts at vari-
ous size ranges (Supplementary Information). The window is shifted
by half of its size in each step and ASHLEYS counts W and C reads
per window. Due to the complementarity, only the W fraction of
reads is stored. The feature is then modeled by binning the W frac-
tions in steps of 0.1 and counting the number of windows per bin.
The expectation for a high-quality library is to observe a W fraction
of �0:5 for �50% of the windows, and closer to zero or one for
�25% of the windows each, due to the random strand segregation
during (diploid) cell division (Fig. 1B). Other common library issues
lead to W/C signal ‘dropouts’ (Sanders et al., 2017), which are
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modeled as the number of windows with non-zero W/C read cover-
age. The aggregated feature table for all libraries can then be used to
train a new classifier, provided that expert labeling is available, or
to predict quality labels using one of ASHLEYS pretrained models.

ASHLEYS is implemented as a Python3 tool using standard
libraries for BAM processing (Pysam, github.com/pysam-developers/
pysam) and machine learning (Pedregosa et al., 2011), and includes
a test dataset.

3 Models

ASHLEYS pretrained classifiers were tuned on a large dataset
(n¼2304) generated as part of the Human Genome Structural
Variation Consortium (HGSVC) (Chaisson et al., 2019 Ebert, 2021 ).
Model training including hyperparamter tuning and training error esti-
mation was performed with 50 iterations of nested class-balanced 5-
fold cross-validation (Fig. 1C, Supplementary Information). Model
generalization performance was assessed on an independent test dataset
(n¼456) labeled by the same domain expert (Sanders et al., 2020). We
recommend a linear support vector classifier (SVC) as default model
for labeling new Strand-seq data. The SVC model shows consistently
high performance on training (F1 score 93.9%, accuracy 91.6%) and
on independent test data (F1 score 95.6%, accuracy 92.5%) (Fig. 1C),
suggesting that the SVC is not overfitted to the training dataset.

In conclusion, ASHLEYS’ high performance and the resulting
gains in efficiency facilitate scaling Strand-seq to even larger cohorts
without burdening domain experts with an overwhelming amount
of repetitive QC. This raises promising expectations for addressing
further challenges such as extensive aneuploidy in cancer.
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Fig. 1. Summary of Strand-seq QC with ASHLEYS: (A) the Strand-seq protocol generates a large number of single-cell libraries that need to pass QC before downstream ana-

lysis. Strand-seq panels reused from Sanders et al. (2020; Fig. 1a). (B) Example for the Strand-seq specific feature of the Watson/Crick read distribution for high- (top) and

low-quality (middle) libraries. ASHLEYS also evaluates library quality based on generic sequencing library features (bottom text). (C) Performance summary for the SVC

model shipped with ASHLEYS for training and testing stages of model building. Feature names omitted in feature importance plot for improved readability (cf. Supplementary

Fig. S1)
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