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ABSTRACT 

Robust Design of Control Charts for Autocorrelated Processes with Model 

Uncertainty. (August 2004) 

Hyun Cheol Lee, B.S., Korea University, Korea; 

M.S., Texas A&M University 

Co-Chair of Advisory Committee: Dr. Daniel Apley 
                                                 Dr. Yu Ding 

 

 

 Statistical process control (SPC) procedures suitable for autocorrelated processes 

have been extensively investigated in recent years. The most popular method is the 

residual-based control chart. To implement this method, a time series model, which is 

usually an autoregressive moving average (ARMA) model, of the process is required. 

However, the model must be estimated from data in practice and the resulting ARMA 

modeling errors are unavoidable. Residual-based control charts are known to be 

sensitive to ARMA modeling errors and often suffer from inflated false alarm rates. 

As an alternative, control charts can be applied directly to the autocorrelated data with 

widened control limits. The widened amount is determined by the autocorrelation 

function of the process. The alternative method, however, also cannot be free from the 

effects of modeling errors because it relies on an accurate process model to be 

effective. 
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 To compare robustness to the ARMA modeling errors between the preceding two 

kinds of methods for control charting autocorrelated data, this dissertation investigates 

the sensitivity analytically. Then, two robust design procedures for residual-based 

control charts are developed from the result of the sensitivity analysis. The first 

approach for robust design uses the worst-case (maximum) variance of a chart statistic 

to guarantee the initial specification of control charts. The second robust design 

method uses the expected variance of the chart statistic. The resulting control limits 

are widened by an amount that depends on the variance of the chart statistic  

maximum or expected  as a function of (among other things) the parameter 

estimation error covariances. 
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CHAPTER I 

INTRODUCTION 

 

 A control chart is one of the primary techniques in statistical process control 

(SPC) procedures. They are widely used to monitor processes and detect shifts in key 

quality-related variables. Through the effective implementing control charts in 

industrial processes, the product quality can be improved. Traditional control charts 

are based on the assumption that process data are independent. Significant advances in 

measurement and data collection technology  particularly in the area of in-process 

sensing  have created the potential for much more frequent inspection. As a result, 

autocorrelated data are now common (Montgomery and Woodall, 1997; Woodall and 

Montgomery 1999). The run length properties of traditional control charts like 

cumulative sum (CUSUM) and X  charts are strongly affected by data autocorrelation, 

and the in-control average run length (ARL) can be much shorter than intended if the 

autocorrelation is positive (Johnson and Bagshaw, 1974; Vasilopoulos and Stamboulis, 

1978). Consequently, there has been considerable research in recent years on 

designing control charts suitable for autocorrelated processes (see, e.g., Montgomery 

and Woodall, 1997, Lu and Reynolds, 1999, and the references therein). 

1 

                                                 

This dissertation follows the style and the format of Technometrics. 
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I.1 Motivation of the Study 

 There are two primary classes of methods for control charting autocorrelated data. 

The first class of methods is residual-based control charts (e.g., Alwan and Roberts, 

1988; Apley and Shi, 1999; Berthouex, Hunter, and Pallesen, 1978; English, 

Krishnamurthi, and Sastri, 1991; Lin and Adams, 1996; Lu and Reynolds, 1999; 

Montgomery and Mastrangelo, 1991; Runger, Willemain, and Prabhu, 1995; 

Superville and Adams, 1994; Vander Wiel, 1996; Wardell, Moskowitz, and Plante, 

1994). One usually assumes the process data xt (t is a time index) follows an 

autoregressive moving average (ARMA) model with AR order p and MA order q, 

denoted ARMA(p,q). Using standard time series notation (see Box, et al., 1994) with 

the backward shift operator B defined such that Bxt = xt-1, an ARMA model can be 

written as 

 xt = ( )
( ) ta
BΦ
BΘ ,                                                                                                       (1.1) 

where Θ = 1 − θ1B − θ2B2 . . . − θqBq, ( )B ( )BΦ = 1 − φ1B − φ2B2 . . . − φpBp, and at is 

an independently, identically distributed (iid), 0-mean sequence of random shocks 

with variance .  σ 2
a

 The basic idea behind residual-based charts is to directly monitor the residuals (the 

one-step-ahead prediction errors), generated via et = Θ xt. From (1.1), et is 

exactly the iid sequence at, after any initial transients have died out. Thus, traditional 

Shewhart, CUSUM, and exponentially weighted moving average (EWMA) control 

( ) ( )BΦB1−



 3

charts can be applied to the uncorrelated residuals with well understood in-control run 

length properties. Then, residual-based control charts detect a mean shift of the 

original autocorrelated process as recognizing the mean shift “signature” in the 

residual process (Apley and Shi 1999).  

 In practice, however, the model parameters must always be estimated from process 

data. One criticism of residual-based charts is that they lack robustness to ARMA 

modeling errors (e.g., Adams and Tseng 1998; Apley and Shi 1999; Lu and Reynolds 

1999). For example, since the EWMA is a weighted average of the past residuals, 

residual autocorrelation due to estimation errors can have a substantial effect on 

EWMA variance and the resulting in-control ARL. If the true and estimated 

parameters are such that the residual autocorrelation is positive, the in-control ARL 

will be shorter than intended, and the control chart may be plagued with frequent false 

alarms. Illustrative examples are included in Chapters II.4 and III.1. 

 In the second primary class of methods, a traditional control chart is applied 

directly to xt, but the control limits are modified (usually widened) to take into 

account the autocorrelation. Johnson and Bagshaw (1974), Vasilopoulos and 

Stamboulis (1978), and Zhang (1998) discussed modifying the control limits of 

CUSUM charts, X  charts, and EWMA charts, respectively. The extent to which the 

control limits are widened depends on the autocorrelation function or, equivalently, on 

the parameters of the ARMA model used to represent the autocorrelation. To be 

implemented effectively, this approach also relies on an accurate ARMA process 

model (or, equivalently, the autocorrelation function of xt) just as residual-based 
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control charts do. The difference is that in residual-based control charts, the chart 

statistic depends on the model, and the control limits do not. In control charts applied 

directly to the autocorrelated process data, the control limits depend on the model, 

whereas the chart statistic does not. If the estimated model is inaccurate in either case, 

the control limits will fail to provide the desired ARL.  

 Two main objectives exist in this dissertation. The first objective is to investigate 

the sensitivity of parameter modeling errors on the foregoing SPC procedures that deal 

with autocorrelated processes. The measure of sensitivity is derived in an analytical 

form. Thus, the sensitivity is quantified and used for comparing the robustness 

between the methods. The second objective is to develop robust design procedures for 

the SPC with respect to parameter modeling errors from sensitivity results. Two kinds 

of robust design methods are introduced. The first approach for robust design uses the 

concept of worst-case scenario to guarantee a desired level of control specification. 

The next robust design method uses the expected variance of chart statistic. The 

resulting control limits are widened by an amount that depends on a number of factors, 

including the level of model uncertainty. Throughout the dissertation, the EWMA 

filter is used as a chart statistic. 

 

I.2 Relation to Prior Work 

 The majority of the research in the SPC has focused on evaluating performances of 

various SPC techniques or comparing performances between SPC techniques under 

the assumption of given true parameters. There are much less results of unknown 
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parameters when compared to the results of known parameters. Even so, there have 

been more results of independent process data than autocorrelated process data 

because of tractable number of unknown parameters, which are usually a process 

mean and variance. Most work has investigated estimation effects of the process mean 

and variance on performances of SPC charts within the assumption of iid processes.  

 Ghosh, Reynolds and Van Hui (1981) studied the effect of unknown process 

variance when the X chart is used to monitor a process mean. Quesenberry (1993) 

investigated the effects of sample size on the run length distribution of control charts. 

The author recommended the sample size for Shewhart and X  charts based on 

empirical evidence. Chen (1997) enhanced the result of X  chart by the analytical 

derivation of the run length distribution for three different estimation methods of the 

process variance. Jones, Champ and Rigdon (2001) investigated the run length 

distribution of estimated process parameters in implementing EWMA control charts. 

They suggested the use of bigger sample size with small values of λ, the EWMA 

constant, when the estimated process parameters were applied. Jones (2002) suggested 

using widened control limits to assure the desired level of in-control ARL, 

consequently to reduce false alarm rate for the EWMA control charts. Also the author 

gave the values of constant L that provides a desired in-control ARL with various 

combinations of sample size and in-control ARL magnitude.  

 There have been limited efforts to understand the effects of parameter estimation 

errors in using control charts for autocorrelated processes. As a sensitivity analysis 

purpose, some empirical results were shown. Adams and Tseng (1998) empirically 
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investigated the sensitivity of four kinds of control charts when residuals were 

extracted from the autocorrelated process data assumed to follow an autoregressive 

(AR)(1) or integrated moving average (IMA)(1,1) model. According to the direction 

of estimation errors, the performances of residual-based control charts were severely 

affected. Especially, the resulting in-control ARLs of the EWMA and CUSUM 

control charts were drastically decreased than the aimed in-control ARL when the 

parameters were estimated such that the residuals are positively autocorrelated. This is 

because of the structure property of EWMA and CUSUM statistics that use weighted 

past values.  

 Apley and Shi (1999) also investigated the effect of modeling errors for three 

residual-based control charts  generalized likelihood ratio test (GLRT), CUSUM 

and Shewhart individual  using simulations. They showed that model estimation 

errors caused large and adverse impact on performances of the control charts. Lu and 

Reynolds (1999) also studied the robustness of the SPC chart with the empirical 

evidence. They concluded that the performance of control charts on the residuals or 

the original autocorrelated data was strongly influenced by the model estimation errors. 

These are, however, not well suitable for robust control chart design purposes. 

 As a robust design procedure, Apley (2002) proposed a design method to be robust 

to parameter modeling errors for autocorrelated processes. The author represented the 

variance of EWMA with a first-order of Taylor approximation and provided closed 

forms of the EWMA variance for first order ARMA processes. This method was the 

pioneering work in the robust SPC design for autocorrelated data. The proposed 
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control limits were widened properly in accordance with the level of model 

uncertainty to guard the aimed in-control ARL. 

 Previous studies on the robustness of SPC charts for autocorrelated processes have 

been mainly based on empirical methods and thus analytical results are practically 

nonexistent. In addition, these are mainly for sensitivity analysis purposes and are not 

well suited for robust control chart design purposes. In this dissertation, the sensitivity 

analysis of SPC charts will be investigated using analytical methods. In addition to 

providing better insight into the reasons for lack of robustness, the analytical results 

will be used to develop two different approaches for designing robust SPC control 

charts for autocorrelated processes. 

 

I.3 Outline of the Dissertation 

 Chapter II derives a general result for the sensitivity of the variance of a linear-

filtered ARMA(p,q) process and discusses the sensitivity and robustness of EWMAs 

on xt and on et as a special case of the general result. Since the sensitivity of a control 

chart is closely related with the sensitivity of the variance of the chart statistic, the 

sensitivity is quantified by the sensitivity of the variance of chart statistic with respect 

to ARMA parameter estimation errors. Therefore, the measure of sensitivity is 

represented by partial derivatives of the variance at each estimated parameter. Finally, 

the measure is formed by the weighted sum of autocorrelation function. If an ARMA 

process is determined, then the magnitude of the sensitivity is determined based on the 

autocorrelation function of the process.  
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 One conclusion is that residual-based EWMA control chart is no less robust than 

EWMA control chart on xt. This is significant because in much of the criticism of 

residual-based charts, it was implied that alternative methods (i.e., control charts 

applied directly to xt) would be more robust. Also, we discuss the sensitivity of control 

charts applied to processes in which autocorrelation is removed via feedback control. 

The sensitivity result of the residual-based control chart is identical to that of control 

chart on the feedback-controlled output when minimum variance (MV) controller is 

employed to remove the autocorrelation. Although the focus is on the analytical 

sensitivity analysis, some empirical results, which combine performance and 

sensitivity information, are also provided.  

 Chapter III proposes a robust design method for residual-based control charts from 

the result of Chapter II. To account for uncertainty in the estimated parameters and 

guard against a situation in which the in-control ARL is substantially shorter than 

desired, a reasonable precaution is to use control limits that are wider than those used 

when the model is assumed perfect. This chapter presents a method for systematically 

widening the control limits based on the "worst-case" design approach.  

 Considering the uncertainty in the true parameters, a confidence interval for the 

standard deviation of chart statistic is approximated. To find an approximate 

confidence interval, a first-order Taylor approximation is used. Then, the upper 

boundary of the confidence interval can be viewed as a worst-case (maximum) value 

for the true standard deviation of chart statistic and the worst-case standard deviation 

is used for the control chart design.  Decreased power by widened control limits is 
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indicated as a weakness and comparison results to Shewhart chart, which is least 

sensitive to parameter modeling errors, is discussed. Also, the sample size 

requirements are investigated. 

 Chapter IV develops another robust design procedure for residual-based control 

charts. When modeling errors exist, the actual variance of a chart statistic will be 

different from the ideal variance that assumes no modeling errors. The proposed 

design approach also quantifies the differences between the actual and ideal variances 

and modifies the control limits accordingly. The actual variance of the chart statistic is 

represented using a second-order Taylor approximation in this method. After taking 

the expectation of the second-order approximation, with respect to the parameter 

uncertainty, the result is an expression for the expected variance as a function of 

parameter estimates and their covariances.  

 To evaluate the proposed method, it is compared to an existing robust design 

method and the robust design method in Chapter III. From comparison results, this 

proposed approach achieves a more suitable balance between false alarms and control 

chart power. 

 Chapter V summarizes conclusions and discusses future work.  
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CHAPTER II 

SENSITIVITY AND ROBUSTNESS OF EWMA CHARTS FOR 

AUTOCORRELATED PROCESSES WITH MODELING ERRORS 

 

II.1 Introduction 

 The EWMA statistic on xt, which is assumed to follow (1.1), is calculated 

recursively via zt = (1−λ)zt−1 + λxt, where 0<λ≤1 is the EWMA parameter. The 

control chart signals a mean shift if zt falls outside the upper and lower control limits 

(Zhang 1998) 

 {LCL,UCL} = ± Lσz, 

where σz is the (steady-state) standard deviation of zt, and the constant L can be 

chosen to provide a specified false alarm rate assuming estimated model is perfect. 

Zhang (1998) provided a straightforward approach for calculating σz as a function of 

the autocorrelation of xt. 

 The standard residual-based EWMA design is to set ± Lσz control limits on the 

EWMA of the form zt = (1−λ)zt−1 + λet, where et = ( ) ( )BΦ̂Bˆ 1−Θ xt and the “^” symbol 

denotes an estimate of a quantity (Lu and Reynolds 1999). If there are no modeling 

errors, then σz = σaλ1/2(2−λ)−1/2, and L can be chosen to provide a desired false alarm 

rate or in-control average run length (ARL) (Montgomery 2001; Lucas and Saccucci 

1990). 
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 In this chapter we derive relatively compact, closed-form analytical expressions 

for the sensitivity of the residual-based EWMA variance 2
zσ  with respect to ARMA 

parameter estimation errors. We also derive analogous sensitivity results for an 

EWMA applied directly to the autocorrelated xt. The sensitivity results that we 

develop in this chapter will be also used in Chapters III and IV in order to suitably 

widen the control limits of a residual-based EWMA by taking into account the level of 

model parameter uncertainty. Standard results for the covariance matrix of ARMA 

parameter estimates will be used to quantify the uncertainty. 

 The format of the remainder of the chapter is as follows. In Chapter II.2 we derive 

a general result for the sensitivity of the variance of a linear-filtered ARMA(p,q) 

process. In Chapter II.3, we derive sensitivity results for the residual-based EWMA as 

a special case of the general result. Although the results for a residual-based EWMA 

are of simpler form than for an EWMA on xt, the results for xt are relatively simple for 

first-order ARMA processes. These are derived in Chapter II. 4. Chapter II.5 provides 

a discussion on the sensitivity of control charts applied to processes in which 

autocorrelation is removed via feedback-control. In Chapter II.6, we compare the 

sensitivity and performance of a residual-based EWMA versus an EWMA on xt. 
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II.2 General Sensitivity Results for Linear-filtered ARMA Processes 

 Consider the output zt of a linear filter H(B) = j
j j Bh∑∞
=0  applied to an 

ARMA(p,q) process xt, where {hj: j = 0, 1, 2, . . . } are the impulse response 

coefficients (Box, et al. 1994) of H(B). Write this as 

 zt = H(B)xt = G(B)at =                                                                  (2.1) ∑∞
= −0j jtj ag

where G(B) = Φ−1(B)Θ(B)H(B) = j
j j Bg∑∞
=0 . In this chapter, we derive a general 

result for the sensitivity of σ 2
z  with respect to the ARMA parameters. Note that the 

EWMAs on xt and on et are special cases with H(B) = (1−ν)(1−νB)−1 and H(B) = 

, respectively, where ν = 1–λ. The variance of zt is given 

by (Box, et al. 1994) 

( )( ) ( ) (BΦBΘB ˆˆ11 11 −−−− νν )

                                                                                                   (2.2) ∑=
∞

=0

222
j

jaz gσσ

 Suppose that we have the estimates Θ  and Φ  available, and that the filter 

H(B) does not depend on the unknown, true parameters Θ(B) and Φ(B). G(B) and 

)(Bˆ )(Bˆ

σ 2
z  

are unknown because they depend on Φ(B) and Θ(B), but consider 

 and )()()()( 1 BHBΘ̂BΦ̂BĜ −=

 ∑==
∞

== 0j
jaˆzz ĝˆ 2222     σσσ

γγ
                                                                                 (2.3) 
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where γ = [φ1 φ2 … φp θ1 θ2 … θq]T is the vector of ARMA parameters. As measures 

of the sensitivity of σ 2
z  with respect to the ARMA parameters, we use the quantities 

 ( )  

 

  S 2

2

z

i

z
ˆ

i σ̂

φ
σ

φ
γγ∂

∂

=
=

: i = 1, 2, . . ., p, and                                                              (2.4) 

 ( )  

 

  S 2

2

z

i

z
ˆ

i σ̂

θ
σ

γγ
θ

∂
∂

=
=

: i = 1, 2, . . ., q.                                                                     (2.5) 

Theorem:  For a general linear filter zt = H(B)xt, the sensitivities are 

    : i = 1, 2, . . ., p, and                                                        (2.6) ( )  2   S ∑=
∞

=
+

0k
kiki P ρφ

 : i = 1, 2, . . ., q,                                                              (2.7) ( )  2   S ∑−=
∞

=
+

0k
kiki Q ρθ

where ρj denotes the autocorrelation function of z  (zt when there are no 

modeling errors), and {Pj: j = 0, 1, 2, . . .} and {Qj: j = 0, 1, 2, . . .} denote the impulse 

response coefficients of P and 

, respectively. 

γγ ˆt | =

( )BΦ −1ˆ( ) j
j j BP B ∑== ∞
=0

( ) ( ) j
j j BQBΘ  BQ ∑== ∞
=

−
0

1ˆ

Proof:  Differentiating (2.2) gives 

  2  
0

2
2

∑=
∂
∂ ∞

== j
jja

ˆi

z dĝ iφ
γγ

σ
φ
σ , and                                                                       (2.8) 
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  2  
0

2
2

∑=
∂
∂ ∞

== j
jja

ˆi

z dĝ iθ
γγ

σ
θ
σ                                                                                (2.9) 

where γγ ˆ| =∂∂= φφ
ijj gd i  and γγ ˆ| =∂∂= θθ ijj gd i . From the relationship G(B) = 

Φ−1(B)Θ(B)H(B), we have gj − φ1gj-1 − φ2gj-2 − … − φpgj-p = hj − θ1hj-1 − θ2hj-2  − 

… − θqhj-q. Differentiating both sides with respect to φi and θi, and evaluating the 

result at the ARMA parameter estimates gives 

 0 , and                                                  (2.10) 11 =−−−− −−− ĝdˆdˆd ijpjpjj iii φφφ φφ L

 ,                                                            (2.11) hdˆdˆd ijpjpjj iii −=−−− −−−
θθθ φφ L11

where it is understood that gj = hj =  =  = d  = 0 for j < 0, and we have used 

the fact that H(B) does not depend on the true ARMA parameters. If we view  and 

 as sequences in the index j, rearranging (2.10) and (2.11) gives 

ĝ j d ij
φ ij

θ

d ij
φ

d ij
θ

 , and ∑==
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−−−
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0

1 )(
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−

0

1111 )()()()()(
k

kijkijijijj ĝQĝBˆĝBˆBˆBˆhBˆd i ΘΦΘΦΦθ  

Using these in (2.4) and (2.5), the sensitivity measures become 
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Recognizing that the denominator and numerator in the far right expressions are the 

variance and lag−(k+i) autocovariance of z  = ∑γγ ˆt | =
∞

= −0j jtj aĝ  (Box, et al. 1994) 

completes the proof.      ■ 

 

 S(φi) and S(θi) are the weighted sums of the impulse response coefficients of 

( )BΦ̂ 1−  and ( )Bˆ 1−Θ , where the weights are given by the autocorrelation function of 

. For the case that zt is an EWMA, an EWMA on positively autocorrelated data 

xt will have a more slowly decaying autocorrelation function than an EWMA on et 

with the same value of λ. Consequently, it will generally be the case that an EWMA 

on xt is more sensitive to modeling errors than an EWMA on et. We demonstrate this 

more concretely in Chapter II.4 for the special case of first-order ARMA processes. 

This conclusion is somewhat surprising given that an EWMA on the ARMA residuals 

may appear to rely more heavily on the ARMA model than an EWMA on xt. The 

control limits (± Lσz) for an EWMA on xt do, however, depend heavily on the ARMA 

parameters. 

γγ ˆt |z =
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II.3 Sensitivity Results for the Residual-based EWMA 

 The sensitivity expressions in the theorem of the preceding chapter simplify 

considerably when zt is a residual-based EWMA. In this case, H(B) = 

, and G  =  = (1−ν)(1−νB)−1, 

where ν = 1–λ. With no modeling errors, the residual-based EWMA is the first-order 

AR process z  = (1−ν)(1−νB)−1at, with autocorrelation function ρj =νj. 

Substituting this into (2.6) and (2.7), the sensitivities for the residual-based EWMA 

become 

( )( ) ( ) ( )BΦBΘB ˆˆ11 11 −−−− νν

γγ ˆt | =

)(Bˆ )()()(1 BHBΘ̂BΦ̂−

 ( )
)(

2)(2 2 2   1
νΦ

ν
Φνννφ νν ˆ|Bˆ|BPPS

i
B

i
B

k
k

k
i

k
ik

kie ==∑=∑= =
−

=
∞

=

∞

=

+

00
           (2.12) 

and 

 ( )
)(

2)(2 2 2 1
νΘΘνννθ νν ˆ
ν|Bˆ|BQQS

i
B

i
B

k
k

k
i

k
ik

kie
−

=−=∑−=∑−= =
−

=
∞

=

∞

=

+

00
   (2.13) 

where , and . We 

have added the subscript e on the sensitivities to indicate they are for an EWMA on et. 

p
pˆˆˆˆ νφνφνφνΦ         1)( 2

21 −−−−= K q
qˆˆˆˆ νθνθνθνΘ         1)( 2

21 −−−−= K

 Se(φi) and Se(θi) have clearer interpretations if we factor the AR and MA 

polynomials in terms of their roots. Consider the factorization of  = (1–η1B)(1–

η2B). . .(1–ηpB) in terms of its roots {η1, η1, . . ., ηp}. The magnitude of the 

sensitivity in (2.12) becomes 

)(BΦ̂

 ( ) ∏
−

=
=

p

j j

i
ie ||

S
1 1

12
νη

νφ                                                                                  (2.14) 
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Each term |1–ηjν| in the denominator in (2.14) represents the distance between the 

scaled root ηjν  and the point 1.0 (i.e., the intersection of the unit circle and the real 

axis) in the complex plane. This is illustrated in Figure 1 for a complex root and ν = 

0.9. The sensitivity will be large if any root is close to the point 1.0 and the EWMA 

parameter λ is small (ν close to 1). Complex conjugate roots near the stability 

boundary (the unit circle) do not necessarily result in large sensitivity. In contrast, 

roots on the positive real axis near the stability boundary always result in large 

sensitivity if λ is small. Similar results hold for Se(θi) in terms of the roots of . )(BΘ̂

 

 

 

 

 
Im[η] 1 

 
 η1

η1ν  
 1−η1ν 

0  
Re[η]
1.0

 
 
 

-1  
 
 1 0 -1
 
 
Figure 1 Illustration of the distance between the scaled root η1ν and the point 1.0 in 
the complex plane. Smaller distances increase the sensitivity Se(φi).  
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II.4 Sensitivity Results for First-order ARMA Processes 

 Although there are no simple closed-form expressions analogous to (2.12) and 

(2.13) for the sensitivity of the EWMA on xt for general ARMA processes, (2.6) and 

(2.7) can be simplified for ARMA(1,1) processes. When xt is ARMA(1,1), the 

EWMA statistic  with no modeling errors follows the ARMA(2,1) model γγ ˆt |z =

 ( )( )
( )( ) tˆt a

BˆB
Bˆ|z

φν
θν
  1  1
  1  1 

−−
−−

==γγ                                                                                 (2.15) 

where we have dropped the subscripts on the ARMA parameters. A closed-form 

expression for the autocorrelation function of the ARMA(2,1) process is (Pandit and 

Wu 1983) 

 ( kk
k cc 

cc
  νφρ 21

21
ˆ1

+
+

= )                                                                             (2.16) 
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From Box, et al. (1994), the impulse response coefficients of P(B) = (1−φ̂ B)−1 and 

Q(B) = (1− B)−1 are P  and Q . Substituting these and (2.16) into (2.6) 

gives the following expressions for the sensitivity of the EWMA on xt. 

θ̂ k
k φ̂  = k

k θ̂  =
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 In comparison, for the residual-based EWMA, (2.12) and (2.13) reduce to 

 ( )
νφ

νφ ˆSe   1
2  
−

= , and                                                                                           (2.19) 

 ( )
νθ

νθ ˆSe −
−

=
 1

2                                                                                                     (2.20) 

which are identical to the first terms in (2.17) and (2.18). Note that Sx(φ) for an AR(1) 

process and Sx(θ) for an MA(1) process are obtained by substituting  = 0 into (2.17) 

and  = 0 into (2.18), respectively. 

θ̂

φ̂
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 For ARMA(1,1) processes we can restrict attention to the case |φ̂ | < 1 and | | < 1, 

which must hold for stable, invertible ARMA processes. Moreover, the EWMA 

parameter is restricted to 0 ≤ ν < 1. Because negatively autocorrelated data are rare in 

industrial processes, we might also restrict attention to the case that  < .  Under 

these conditions, it is straightforward to show that |Sx(φ)| > |Se(φ)| and |Sx(θ)| > |Se(θ)| 

always hold. By inspection of (2.17) and (2.18), we only need to show that 

θ̂

θ̂ φ̂

( )( ) ( )φνθνφθ ˆˆˆˆ   2    1  1 2 +−++  > 0, and this follows because  φ̂     ν + ν >φ̂+ 1  and 

 ˆ2   ˆ  1 2 θθ >+ . 

Example.  As an example, consider the Series A data from Box, et al. (1994), which 

are 197 concentration measurements from a chemical process. Box, et al. (1994) found 

that an ARMA(1,1) model fit the data well, and the estimated parameters were φ̂  = 

0.87,  = 0.48, and  = 0.098. Suppose we intend to monitor the process for mean 

shifts using EWMA control charts on xt and et with EWMA parameter λ = 0.10. If we 

neglect modeling errors, the assumed standard deviation for the EWMA on xt is 

θ̂ σ̂ a
2

σ̂ ,z x  

= 0.220, which follows from (2.4) using the impulse response coefficients of the 

ARMA(2,1) process (2.15). The assumed standard deviation for the EWMA on et is 

σ̂ e,z  = σ̂ a (1–ν)1/2(1+ν)−1/2 = 0.0718. In order to gage the effects of modeling errors 

on the EWMAs, we can calculate the sensitivities. For the residual-based EWMA, 

(2.19) and (2.20) give Se(φ) = 8.29 and Se(θ) = −3.17. For the EWMA on xt, (2.17) 
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and (2.18) give Sx(φ) = 11.60 and Sx(θ) = −3.70. Both charts are sensitive to modeling 

errors, although the EWMA on xt is somewhat more sensitive. To illustrate the effects 

of modeling errors, suppose that θ and σa coincide with their estimates, but that φ = 

0.90. The top two panels in Figure 2 show 1000 simulated observations of xt and et, 

and the bottom two panels show the EWMAs on xt and et. The control limits for the 

EWMA on xt and et. were set at ±3σ̂ x,z = ±0.660 and ± 3σ̂ e,z = ±0.216, respectively. 

No mean shifts were added, so that the frequent alarms in the control chart are all false 

alarms. 

.

.
01
01

−
−

 Because φ differs from φ̂ , the residuals actually follow the ARMA(1,1) model 

 et = ( )
( )

( )
( )

( )
( ) ttt a

B
Ba

BΦ
BΘ

Bˆ
BΦ̂x

Bˆ
BΦ̂

90
87

==
ΘΘ

.                                                   (2.21) 

With φ underestimated, the residual autocorrelation is positive. Although the standard 

deviation of the residuals in (2.21) is only 0.24% larger than σa, and the residual 

autocorrelation at any given lag is quite small, the autocorrelation dies out slowly. The 

result is that the actual standard deviation σz,e of the EWMA on the residuals is 

substantially larger than σ̂ e,z . Similar arguments hold for the EWMA on xt, which 

also has an inflated standard deviation. The sensitivities can be used to approximate 

the increase in the EWMA standard deviation. For the EWMA on xt, the approximate 

percentage increase in the EWMA variance is Sx(φ)(φ− φ̂ ) = 34.8%. Thus, the 

approximate percentage increase in the EWMA standard deviation is (1.348)1/2−1 = 
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Figure 2 Example illustrating the increased false alarm rate for EWMA charts with 
modeling errors. The four panels from top to bottom are xt, et, an EWMA on xt, and an 
EWMA on et. 
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15.8%. Similarly, the approximate percentage increase in the standard deviation of the 

residual-based EWMA is 11.8%. The inflated EWMA standard deviation is evident in 

the frequent false alarms in Figure 2. 

 Although the sensitivities provide a reasonable basis for comparison, they result in 

a first-order approximation of the effects of modeling errors on the EWMA standard 

deviation. The exact effects can be calculated using (2.2) and the impulse response 

coefficients for zt with parameter errors. Based on this it can be shown that the actual 

standard deviation of the EWMA on xt is σz,x = 0.267, which is 21.3% larger than 

σ̂ x,z . Similarly, the actual standard deviation of the residual-based EWMA is σz,e = 

0.0828, which is 15.3% larger than σ̂ e,z . Because L = 3 was used in the control limits, 

the assumed false alarm probability for both charts is 0.0027. For the EWMA on xt, 

for which σz,x is 21.3% larger than σ̂ x,z , the actual false alarm probability is 0.0134 – 

roughly five times larger than the assumed value. For the EWMA on et, for which σz,e 

is 15.3% larger than σ̂ e,z , the actual false alarm probability is 0.0093. 

 Although it is tempting to conclude from the preceding discussion that the 

residual-based EWMA is more robust than an EWMA on xt, the direct comparison is 

not entirely fair. In the preceding discussion, the two charts were compared under the 

assumption that the same value for the EWMA parameter was selected for both. If xt 

has large positive autocorrelation, to achieve more comparable performance in 

detecting mean shifts one might use a smaller value of ν for an EWMA on xt than for 



 24

a residual-based EWMA. As ν decreases, the EWMA on xt becomes less sensitive to 

modeling errors. In Chapter II.6 we provide a more elaborate comparison of the 

EWMAs on xt and on et in which we consider both performance and sensitivity. 

 

II.5 Removing Autocorrelation with Feedback Control 

 In light of the lack of robustness of control charts for autocorrelated data, some 

authors (e.g, Adams and Tseng 1998) have recommended removing autocorrelation 

via feedback control when applicable and applying the control charts to the closed-

loop output. To illustrate, suppose that the process output xt obeys the model xt = βut-1 

+ dt, where ut is an adjustable process input, β represents the effects of the input on 

the output, dt = Φ-1(B)Θ(B)at is an ARMA process disturbance, and the output target 

value is zero. Refer to Figure 3. It is well known (Box et al. 1994) that if minimum 

variance control is used and there is no model uncertainty, then the closed-loop 

process output is xt = at. Consequently, the closed-loop output is uncorrelated, and 

traditional control charts can be applied. 

 To understand the effects of parameter uncertainty on the closed-loop output, write 

the minimum variance control law as (Åström and Wittenmark 1990) 

 ( )
( ) tt x
BΦ̂ˆ
BĤu

β
−

=  , 

where . If we temporarily assume β = ( ) ( ) ( )BΦBΘBHB ˆ   ˆ  ˆ −= β̂ , then substituting the 

control law into the model xt = βut-1 + Φ-1(B)Θ(B)at gives 
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 ( )
( )

( )
( ) tt a
BΦ
BΘx

BΦ̂
BĤB     1 =








+  

Substituting ( ) ( ) ( )BΦBΘBHB ˆ   ˆ  ˆ −=  and rearranging terms, it follows that the closed-

loop process output with ARMA parameter errors obeys the model 

 ( ) ( )
( ) ( ) tt a

BΦBΘ
BΘBΦx ˆ

ˆ
 =  

Because this is precisely the equation describing the residuals of the ARMA 

disturbance model, we see that ARMA parameter errors would affect a control chart 

applied to the closed-loop output in exactly the same manner as a residual-based 

control chart. If in addition we consider errors in the parameter β, it is reasonable to 

conclude that control charts applied to the closed-loop output would be even less 

robust than residual-based control charts. 

( )
( )BΦ
BΘ

at 

 

ut−1input/output 
model 

+

xt 
MV 

controller 

 

Figure 3 Block diagram of minimum variance controlled process. 
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II.6 Performance and Sensitivity Comparison 

 As discussed in Chapters II.3 and II.4, a residual-based EWMA is generally more 

robust than an EWMA on xt if both charts use the same value of λ. This is not 

necessarily an appropriate basis for comparison, however. The value of λ that would 

typically be selected for each chart depends on many factors, including the out-of-

control ARL performance of the chart. One might compare the two charts by choosing 

each λ so that the out-of-control ARL with no modeling errors are equivalent for the 

two charts, and then comparing the sensitivities of each. However, it will not always 

be possible to equate the out-of-control ARLs for the two charts. Consequently, we 

compare the two charts by selecting values of λ that provide equal sensitivities, and 

then comparing the resulting out-of-control ARL performance. All ARL values are for 

the case that there are no modeling errors and were calculated using Monte Carlo 

simulation with 10,000 replicates. 

 For each replicate, the at sequence was generated from the standard normal 

distribution, and then the xt sequence was generated using (2.1). For the EWMA on xt, 

the initial values of the xt sequence were discarded, so that the remaining sequence 

can be assumed to have reached steady state. The EWMA was then applied directly to 

xt with control limits chosen to provide an in-control ARL of 500 (with no modeling 

errors). To calculate an out-of-control ARL, a mean shift of magnitude µ was added to 

xt at the initial timestep (but after the initial transient data was discarded). Similar 

procedures were used for the EWMA on et. After generating the residuals, the initial 
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values containing transient dynamics were discarded. The mean shift was added to xt 

before generating the residuals, at the timestep corresponding to the first retained 

residual. The standard error for all ARL values was roughly 1%. 

 Tables 1 through 4 show the results of the Monte Carlo Simulation for four 

different ARMA models. ARL(µ) denotes the ARL for a mean shift of size µσa. The 

in-control ARL was 500 for all cases. Each column of the tables contains values for 

both EWMAs except for the cases where the last rows of the table can only display 

EWMA on et values, with the values for the EWMA on xt in parentheses. The 

numbers in bold font in each of the ARL columns indicates the smallest out-of-control 

ARL for that size mean shift. Tables 1 and 2 are for AR(1) processes with φ=0.9 and  

φ=0.5, respectively. Each row compares the results for the two EWMAs with λ chosen 

to provide a common sensitivity S(φ) with respect to the AR parameter. For the cases 

where only EWMA on et values are displayed, there exist no values of λ that satisfies 

the common sensitivity for EWMA on xt. Table 3 is for the ARMA(1,1) example 

considered in Chapter II.4, and Table 4 is for an ARMA(1,1) process with φ = 0.7 and 

θ = 0.3. In Tables 3 and 4, each row compares the two EWMAs with common AR 

parameter sensitivity. The resulting MA parameter sensitivies S(θ) are also shown. 

 Although Tables 1 through 4 indicate that the out-of-control ARL performances of 

the two charts are generally comparable for common sensitivity, the residual-based 

EWMA appears to have slightly better performance for most cases. Moreover, for 

each specific size mean shift, the minimum ARL (indicated by bold font) is generally  
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Table 1 Comparison of ARL performance for EWMAs on et and on xt with common 
sensitivity and in-control ARL of 500. xt is AR(1) with φ = 0.9. The values for the 
EWMA on xt are in parentheses. 

 mean shift magnitude (in units of σa) 

S(φ) λ L ARL(0) ARL(1) ARL(2) ARL(3) ARL(4) ARL(5)

18.0 0.0110    
(0.0243) 

2.0177    
(1.9723) 

500      
(500) 

213      
(225) 

90.1     
(92.9) 

51.6     
(50.7) 

33.6     
(33.0) 

24.1     
(24.0) 

17.0 0.0173    
(0.0409) 

2.2156    
(2.1177) 

500      
(500) 

225      
(245) 

91.6     
(97.6) 

50.1     
(50.5) 

31.9     
(31.2) 

21.7     
(21.5) 

16.0 0.0244    
(0.0621)  

2.3570    
(2.2287) 

500      
(500) 

231      
(259) 

93.7     
(102) 

48.6     
(50.9) 

30.2     
(30.2) 

20.0     
(19.9) 

15.0 0.0323    
(0.0901) 

2.4636    
(2.3148) 

500      
(500) 

244      
(270) 

98.0     
(109) 

49.5     
(52.6) 

29.6     
(29.8) 

18.9     
(19.0) 

14.0 0.0411    
(0.1287) 

2.5471    
(2.3957) 

500      
(500) 

260      
(286) 

105      
(118) 

52.0     
(55.5) 

30.0     
(30.5) 

18.4     
(18.6) 

13.0 0.0511    
(0.1851) 

2.6212    
(2.4722) 

500      
(500) 

274      
(295) 

111      
(123) 

54.1     
(57.7) 

30.3     
(31.1) 

17.9     
(18.2) 

12.0 0.0625    
(0.2749) 

2.6791    
(2.5504) 

500      
(500) 

283      
(300) 

118      
(128) 

56.0     
(59.3) 

30.8     
(30.5) 

17.6     
(17.7) 

11.0 0.0756    
(0.4345) 

2.7337    
(2.6444) 

500      
(500) 

295      
(307) 

127      
(134) 

60.8     
(61.5) 

31.6     
(31.3) 

17.2     
(17.3) 

10.0 0.0909    
(0.7501) 

2.7866    
(2.7551) 

500      
(500) 

306      
(306) 

137      
(136) 

64.3     
(62.2) 

33.3     
(31.4) 

17.1     
(16.7) 

8.0 0.1304 2.8749 500 336 161 77.3 38.3 15.4     

6.0 0.1892 2.9522 500 360 187 93.1 41.6 14.3 

4.0 0.2857 3.0135 500 397 233 113 43.1 10.9 

2.0 0.4737 3.0658 500 425 282 138 42.0 7.16 
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slightly smaller for the residual-based EWMA, and the corresponding sensitivity is 

also slightly smaller. Especially for Table 1 where the rows have only the values for 

EWMA on et, there exist no values of λ that can make the EWMA on xt as robust as 

the EWMA on et with larger λ values. In addition, EWMA on et has a much smaller 

ARL value than EWMA on xt at column ARL(5). Therefore, EWMA on et has better 

performance and more robustness in this case. These ideal cases can be also found in 

Table 3. 

 

 

Table 2 Comparison of ARL performance for EWMAs on et and on xt with common 
sensitivity and in-control ARL of 500. xt is AR(1) with φ = 0.5. The values for the 
EWMA on xt are in parentheses. 

 mean shift magnitude (in units of σa) 

S(φ) λ L ARL(0) ARL(1) ARL(2) ARL(3) ARL(4) ARL(5)

3.9 0.0127    
(0.0229) 

2.0805    
(2.2216) 

500      
(500) 

31.6     
(29.3) 

14.1     
(12.7) 

8.90     
(8.15) 

6.40     
(6.04) 

4.96     
(4.86) 

3.7 0.0390    
(0.0716) 

2.5289    
(2.5898) 

500      
(500) 

27.6     
(28.1) 

10.9     
(9.98) 

6.55     
(5.98) 

4.55     
(4.33) 

3.43     
(3.44) 

3.5 0.0667    
(0.1243) 

2.6977    
(2.7160) 

500      
(500) 

27.8     
(30.7) 

9.80    
(9.17) 

5.56     
(5.12) 

3.75     
(3.61) 

2.77     
(2.83) 

3.3 0.0959    
(0.1814) 

2.8020    
(2.7979) 

500      
(500) 

30.0     
(35.0) 

9.28     
(8.97) 

5.07     
(4.66) 

3.29     
(3.19) 

2.39     
(2.47) 

3.1 0.1268    
(0.2432) 

2.8685    
(2.8593) 

500      
(500) 

32.3     
(39.9) 

9.05     
(9.01) 

4.69     
(4.41) 

2.99     
(2.90) 

2.10     
(2.25) 

2.9 0.1594    
(0.3099) 

2.9188    
(2.9044) 

500      
(500) 

35.4     
(43.8) 

9.18     
(9.41) 

4.44     
(4.22) 

2.74     
(2.69) 

1.84     
(2.08) 

2.7 0.1940    
(0.3819) 

2.9571    
(2.9430) 

500      
(500) 

40.6     
(51.0) 

9.37     
(10.0) 

4.32     
(4.15) 

2.52     
(2.53) 

1.63     
(1.90) 

2.5 0.2308    
(0.4593) 

2.9848    
(2.9720) 

500      
(500) 

44.5     
(55.0) 

9.62     
(10.3) 

4.17     
(4.07) 

2.34     
(2.39) 

1.46     
(1.70) 

2.3 0.2698    
(0.5420) 

3.0064    
(2.9950) 

500      
(500) 

48.5     
(59.1) 

10.1     
(10.9) 

4.09     
(4.04) 

2.16     
(2.25) 

1.34     
(1.54) 



 30

Table 3 Comparison of ARL performance for EWMAs on et and on xt with common 
sensitivity to φ and in-control ARL of 500. xt is ARMA(1,1) with φ = 0.87 and θ = 
0.48. The values for the EWMA on xt are in parentheses. 

 mean shift magnitude (in units of σa) 

S(φ) S(θ  λ L ARL(0) ARL(1) ARL(2) ARL(3) ARL(4) ARL(5)

14.0 3.75    
(3.81) 

0.0127    
(0.0263) 

2.0805    
(2.0791)

500     
(500)

69.7    
(70.1)

26.6    
(25.4)

14.6    
(14.7) 

9.08    
(10.4) 

6.03    
(8.11)

13.0 3.68    
(3.77) 

0.0233    
(0.0514) 

2.3389    
(2.2777)

500     
(500)

70.0    
(74.2)

23.8    
(22.9)

12.2    
(12.2) 

7.19    
(8.25) 

4.57    
(6.32)

12.0 3.59    
(3.72) 

0.0354    
(0.0842) 

2.4954    
(2.4086)

500     
(500)

73.4    
(80.9)

22.8    
(22.3)

10.8    
(10.8) 

5.87    
(6.87) 

3.70    
(5.14)

11.0 3.50    
(3.65) 

0.0493    
(0.1280) 

2.6101    
(2.5152)

500     
(500)

78.3    
(87.5)

22.0    
(21.9)

9.55    
(9.59) 

4.96    
(5.80) 

3.09    
(4.25)

10.0 3.39    
(3.56) 

0.0654    
(0.1883) 

2.6921    
(2.6133)

500     
(500)

85.6    
(95.3)

22.5    
(22.8)

8.83    
(8.90) 

4.29    
(5.01) 

2.68    
(3.56)

9.0 3.27    
(3.42) 

0.0844    
(0.2728) 

2.7653    
(2.7068)

500    
(500)

93.5    
(100)

22.7    
(23.1)

8.35    
(8.44) 

3.81    
(4.37) 

2.38    
(2.92)

8.0 3.13    
(3.22) 

0.1071    
(0.3906) 

2.8297    
(2.8038)

500     
(500)

105     
(108)

24.1    
(24.0)

7.97    
(8.09) 

3.47    
(3.81) 

2.15    
(2.44)

7.0 2.96    
(2.94) 

0.1347    
(0.5472) 

2.8823    
(2.8911)

500     
(500)

117     
(114)

26.1    
(25.1)

7.84    
(7.94) 

3.10    
(3.39) 

1.94    
(2.00)

6.0 2.76    
(2.56) 

0.1690    
(0.7367) 

2.9302    
(2.9646)

500     
(500)

131     
(119)

28.9    
(26.6)

7.68    
(8.00) 

2.81    
(3.07) 

1.70    
(1.63)

5.0 2.53    
(2.11) 

0.2126    
(0.9432) 

2.9723    
(3.0204)

500     
(500)

149     
(129)

32.7    
(28.2)

7.94    
(8.39) 

2.63    
(2.93) 

1.51    
(1.44)

4.0 2.25    0.2701 3.0065 500 172 38.9 8.55 2.36 1.32 
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Table 4 Comparison of ARL performance for EWMAs on et and on xt with common 
sensitivity and in-control ARL of 500. xt is ARMA(1,1) with φ = 0.7 and θ = 0.3. The 
values for the EWMA on xt are in parentheses. 

 mean shift magnitude (in units of σa) 

S(φ) S(θ  λ L ARL(0) ARL(1) ARL(2) ARL(3) ARL(4) ARL(5)

6.4 2.81    
2.83 

0.0123    
(0.0227) 

2.0665    
(2.1649)

500     
(500)

37.5    
(35.2)

16.1    
(14.7)

9.79    
(9.25) 

6.78    
(6.83) 

5.06    
(5.44)

6.0 2.73    
2.77 

0.0323    
(0.0610) 

2.4636    
(2.4823)

500    
(500)

34.0    
(34.5)

12.9    
(11.9)

7.39    
(7.01) 

4.87    
(5.01) 

3.53    
(3.97)

5.6 2.64    
2.71 

0.0541    
(0.1052) 

2.6376    
(2.6240)

500     
(500)

34.5    
(37.4)

11.5    
(10.9)

6.21    
(5.97) 

3.99    
(4.16) 

2.82    
(3.26)

5.2 2.55    
2.64 

0.0780    
(0.1565) 

2.7427    
(2.7157)

500     
(500)

36.4    
(41.4)

11.0    
(10.6)

5.55    
(5.35) 

3.44    
(3.62) 

2.40    
(2.79)

4.8 2.45    
2.55 

0.1045    
(0.2163) 

2.8241    
(2.7915)

500     
(500)

40.1    
(47.0)

10.7    
(10.7)

5.06    
(4.91) 

3.03    
(3.19) 

2.15    
(2.43)

4.4 2.34    
2.45 

0.1339    
(0.2859) 

2.8810    
(2.8471)

500     
(500)

44.7    
(52.1)

10.8    
(10.9)

4.76    
(4.64) 

2.76    
(2.89) 

1.92    
(2.21)

4.0 2.22    
2.33 

0.1667    
(0.3666) 

2.9275    
(2.9050)

500     
(500)

50.1    
(57.5)

11.0    
(11.3)

4.51    
(4.39) 

2.52    
(2.66) 

1.70    
(1.98)

3.6 2.09    
2.18 

0.2035    
(0.4596) 

2.9656    
(2.9513)

500     
(500)

56.5    
(62.3)

11.4    
(11.7)

4.34    
(4.27) 

2.34    
(2.42) 

1.51   
(1.72)

3.2 1.95    
2.01 

0.2453    
(0.5652)   

2.9941    
(2.9863)

500     
(500)

63.9    
(67.1)

12.4    
(12.8)

4.30    
(4.33) 

2.16    
(2.23) 

1.38    
(1.50)

2.8 1.80 
1.80 

0.2929    
(0.6830) 

3.0165    
(2.9050)

500     
(500)

72.9    
(73.2)

13.4    
(13.2)

4.25    
(4.22) 

1.97    
(2.03) 

1.27    
(1.32)

2.4 1.62 
1.57 

0.3478    
(0.8112) 

3.0377    
(2.9513)

500     
(500)

83.9    
(79.2)

15.2    
(14.3)

4.30    
(4.26) 

1.83    
(1.89) 

1.19    
(1.22)

2.0 1.43 
1.30 

0.4118    
(0.9474)   

3.0569    
(2.9863)

500     
(500)

96.9    
(85.8)

17.3    
(15.3)

4.49    
(4.48) 

1.75    
(1.83) 

1.14    
(1.16)
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II.7 Chapter Summary 

 In this chapter, we have developed analytical results for the sensitivity of EWMA 

control charts on autocorrelated data and on the residuals of an ARMA model of the 

process. For an EWMA on xt, or more generally a linear filter on xt, the sensitivities 

are expressed in terms of the nominal autocorrelation function of the filter output. For 

the residual-based EWMA, the sensitivities reduce to relatively simple expressions of 

the nominal ARMA polynomials ( )BΦ̂  and ( )BΘ̂  and the EWMA parameter.  

 The analytical results and the simulation results both indicate that although the 

residual-based EWMA is sensitive to modeling errors, it is generally less sensitive 

than the EWMA on xt. Likewise, it is no more sensitive than a control chart applied to 

the closed-loop process output after attempting to remove the autocorrelation with 

feedback control. 
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CHAPTER III 

ROBUST DESIGN OF RESIDUAL-BASED CONTROL CHARTS 

FOR AUTOCORRELATED PROCESSES: WORST CASE 

APPROACH* 

 

III.1 Introduction 

 In Chapter II, it was shown that both methods for control charts  residual-based 

EWMA control charts and EWMA control charts directly on xt  were sensitive to 

the ARMA modeling errors. Moreover, applying the EWMA control charts directly to 

xt could not be an effective option to resolve the sensitivity problem of the residual-

based EWMA control charts. Rather, the residual-based EWMA chart was more 

robust with respect to the ARMA modeling errors than the alternative EWMA chart 

for the same value of λ. Consequently, a reasonable strategy can be to use a residual-

based EWMA, but widen the control limits to some extent, in order to account for the 

model uncertainty when we apply to control charts in practice. In this chapter, we 

develop a robust design method for the residual-based EWMA control chart in the 

presence of ARMA modeling errors. 2 

                                                 

*Reprinted with permission from “Design of Exponentially Weighted Moving Average Control Charts 
for Autocorrelated Processes With Model Uncertainty” by Daniel W. Apley and Hyun Cheol Lee, 2003. 
Technometrics, 45(3), 187-198. Copyright 2003 by the American Statistical Association. 
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 It is assumed that the autocorrelated process data, xt, follows (1.1) and the in-

control process mean has been subtracted so that xt is 0-mean until there is a shift. For 

notational convenience the results in this chapter are derived for ARMA processes, 

although a straightforward extension to autoregressive integrated moving average 

(ARIMA) processes is discussed in Chapter III.2. 

When ARMA modeling errors exist, the residuals, et, generated via the estimated 

model behave as the ARMA(p+q, p+q) process 

 et = ( )
( ) tx
BΘ
BΦ

ˆ
ˆ

= ( ) ( )
( ) ( ) ta

BΦBΘ
BΘBΦ

ˆ
ˆ

.                                                                              (3.1) 

and are no longer iid. When the EWMA statistic is applied to the residuals, then zt can 

be written as the ARMA(p+q+1, p+q) proce 

 ( ) ( ) ( )
( ) ( ) ( ) ttt a

BΦBΘB
BΘBΦ  e

B
    z ˆ  1

ˆ1
  1

1
ν
ν

ν
ν

−
−

=
−
−

=                                                                   (3.2) 

From Chapter II, the standard residual-based EWMA chart design is to set the upper 

control limit (UCL) and lower control limit (LCL) on zt at  

 {LCL,UCL} = ± Lσ̂ z ,                                                                                        (3.3) 

where σ̂ z =σ̂ a (1–ν)1/2(1+ν)−1/2 is the steady-state standard deviation of zt assuming 

the estimated model is perfect. To improve the sensitivity to mean shifts that occur 

when the control chart is first initiated, time-varying control limits that gradually 

widen to the steady-state limits (3.3) can also be used (Montgomery, 2001). This study 

considers only constant steady-state control limits. 



 35

 Let σ 2
z  denote the actual variance of the EWMA statistic (3.2), which is a 

function of the true parameters and their estimates. As discussed in Chapter I.1, if the 

true and estimated models are such that the residual autocorrelation is positive, then 

σ 2
z  will be larger (possibly much larger) than believed, the control chart will be 

frequently interrupted by false alarms.  

  To illustrate the effects of modeling errors, suppose that xt is an AR(1) process 

with φ1 = 0.9 and  = 1.0 and that the estimated parameters are σ 2
a 1φ̂  = 0.85 and  = 

1.0. Using an EWMA with λ = 0.1 and treating the estimates as perfect, the assumed 

EWMA variance is 

σ̂ a
2

σ 2
z  = (1–ν)(1+ν)−1 = 0.053. For a desired in-control ARL of 

500, L = 2.814 (Lucas and Saccucci, 1990) and the control limits ± L

σ̂ a
2

σ̂ z  = ± 0.647 

would be used. Using (2.2) for calculating the variance of zt, however, it can be shown 

that the actual EWMA variance is σ 2
z  = 0.084  roughly 60% larger than the 

assumed variance. If the control limits based on the assumed variance are used, then 

Monte Carlo simulation (refer to Chapter III.4 for details) reveals the actual in-control 

ARL is approximately 165, which is substantially shorter than intended. Figure 4, 

which shows the EWMA statistic for 500 simulated observations with the ± 0.647 

control limits, illustrates the frequent false alarms that result in this situation.  

 To protect against a situation in which the in-control ARL is considerably shorter 

than desired, a logical precaution is to use control limits that are wider than those used 

when the model is assumed perfect. This chapter presents a method for widening the 
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EWMA control limits based on the following "worst-case" design approach. For a 

specified λ and a given set of ARMA parameter estimates, (3.2) implies σz is a 

function of the true, unknown parameters. Considering the uncertainty in the true 

parameters, Chapter III.2 derives an approximate upper one-sided 1−α confidence 

interval for σz for some user-selected 0<α<1. Let σz,α denote the upper boundary of 

this confidence interval, which can be viewed as a worst-case (maximum) value for 

the true EWMA standard deviation. σz,α will be represented in the form that involves 

the sensitivity results of  (2.12) and (2.13) for the residual-based EWMA derived in 

Chapter II.    
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Figure 4 Example EWMA chart for an in-control AR(1) process with φ1 
underestimated. The desired in-control ARL is 500, whereas the actual ARL is much 
lower due to frequent false alarms. 
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 The proposed method is to monitor the EWMA statistic (3.2), but to use the worst-

case control limits 

 {LCL,UCL} = ± Lσz,α                                                                                        (3.4) 

instead of the standard control limits (3.3). Chapter III.3 discusses guidelines for 

selecting the design parameters L, λ, and α. L can be chosen so that the worst-case 

ARL (roughly, the in-control ARL that would result if σz assumed its worst-case 

value) approximately equals some desired ARL value specified by the user. Widened 

control limits will inevitably increase the out-of-control ARL for any size mean shift 

and reduce the power of the chart. Chapter III.4 discusses this drawback of the worst-

case design approach and illustrate with examples. It also discusses sample size 

requirements and compare the EWMA with a Shewhart individual chart, which is less 

powerful for small to moderate mean shifts but more robust to modeling errors. 

 

III.2 Worst Case EWMA Variance 

 Form Chapter II.2, the EWMA statistic (3.2) can be rewritten as (2.1) where G(B) 

=  = ( )( ) ( ) ( ) ( ) ( )BΘBΦBΦBΘB 111 ˆˆ11 −−−−− νν j
j j Bg∑∞
=0 and {gj: j = 0, 1, 2, . . .} are 

the impulse response coefficients of the ARMA(p+q+1,p+q) transfer function G(B). 

For a fixed set of ARMA parameters and their estimates, the EWMA variance is 

calculated by (2.2). 

Define the ARMA parameter vector γ = [φ1 φ2 . . . φp θ1 θ2 . . . θq  ]T, and let σ 2
a γ̂  

denote a point estimate. Note that we also consider the modeling error of  in this σ 2
a
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chapter, therefore  is additionally included in γ. To find an approximate confidence 

interval for σz, we use a first-order Taylor approximation of the ratio 

σ 2
a

σσ ˆ 22
zz  about γ̂  

= γ. If the parameter error vector is defined asγ~  = γ̂ −γ, then the first-order Taylor 

approximation is  

( )Θ ν
ν 22

Φ
−

ν
ν2

L

ˆ ) Θ1−B−ν

22
aσ

 σσ ˆ 22
zz  ≅ 1 + VTγ~ ,                                                                                            (3.5) 

where 

 V  = ( ) ( ) ( ) ( ) ( )

T

a
qp

ΘΘΦΦ 










−

−− −σ
ν

ν
ν
ν

ν
ν

ν
ν 2

2 2222
L  

with Φ(ν) = Φ(B)|B=ν = 1−φ1ν−φ2ν2− . . . −φpνp, and Θ(ν) = Θ(B)|B=ν = 

1−θ1ν−θ2ν2− . . . −θqνq. When (2.13) and (2.14) are compared to V (except for the 

last element), we can see that signs become reversed and the estimates of ARMA 

polynomials are replaced by true polynomials in V. This is because we use the Taylor 

approximation about γ̂  = γ in this chapter instead of γ = γ̂ . In Chapter II, we viewed γ 

as a random variable and differentiated with respect to γ to derive the sensitivity 

measure. On the contrary, if we differentiate G(B) with respect to γ̂ , the final result 

changes to the shown form because the impulse response coefficient, gj, becomes the 

linear function of Φ (B) from G(B) = ( . This 

is discussed more specifically in Chapter IV.5.2. For , since the ratio,

)( ( ) ( ) ( ) ( )BΘBBΦB 1ˆˆ11−ν

σ

Φ−1−

2
a σσ 2 ˆ 2

zz , is 

,  differentiating the ratio with respect to , and ( ) ( )+− ∞
=

−−
0

21 ˆ11 j ja gσνν ∑ 2ˆaσ
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evaluating the result at  gives 2
aσ ( ) ( )

22ˆ0
221 11

aa
j ja g

σσ
σνν

=
∑+−− ∞

=
−− . Therefore, the 

result is  since2−− aσ ( )( ) 12 11
22ˆ

−+−=∑
=

νν
σσ aa

jg0
∞

=j . 

ˆ γ

ˆ γ

 Let N denote the number of observations in the sample used to estimate the 

ARMA parameters. For most estimation methods, the distribution of γ~  for large N is 

approximately multivariate normal with mean 0 and some covariance matrix Σγ that is 

inversely proportional to N (Box, et al., 1994; Brockwell and Davis, 1991). 

Commercial statistical software packages for ARMA modeling often provide an 

estimate Σ of the covariance along with the parameter estimates. Alternatively, the 

method outlined in Appendix A may be used to calculate  when only the parameter 

estimates are available. Closed-form expressions for Σ  are also provided in 

Appendix A for the special case of first-order ARMA processes.  

Σ̂γ

ˆ γ

 Using the multivariate normal approximation to the distribution of γ~ , the ratio 

σσ ˆ 22
zz  in (3.5) is approximately normally distributed with mean 1 and variance 

VTΣγV. Thus, for any probability 0 < α < 1,  

 1−α  ≅ Pr[ σσ ˆ 22
zz  ≤ 1 + zα(VTΣγV)1/2] = Pr[σz ≤ σ̂ z {1 + zα(VTΣγV)1/2}1/2], 

where zα denotes the upper α percentile of the standard normal distribution. 

Substituting Σ  and  
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for Σγ and V leads to the approximate 1−α  confidence interval 

 σz ≤ σz,α = σ̂ z {1 + zα(V )1/2}1/2                                                           (3.7) V̂ˆˆ T
Σγ

for the EWMA standard deviation. After selecting L as described in the following 

chapter, σz,α can be used in the worst-case control limits (3.4). 

 The Taylor approximation (3.5) has an interesting interpretation when the process 

is ARMA(1,1). In this case, (3.5) reduces to 

 σ 2
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









 −

−
−

−
+

−

−
−

σ
σσ

νθ
θθν

νφ

φφν
σ 2

22

1

11

1

112 ˆ
1

ˆ2
1

ˆ2
1ˆ

a

aa
z

)()(
. 

The EWMA variance increases (relative to the assumed value σ̂ 2
z ) when φ1 is 

underestimated (  < φ1) and/or θ1 is overestimated (φ̂1 θ̂1  > θ1). The reason is that the 

autocorrelation of xt is underestimated in this situation, resulting in residuals with 

positive autocorrelation. When the residuals are positively autocorrelated, the variance 

of their EWMA is larger than if the residuals were iid. This was discussed in more 

detail in Adams and Tseng (1998). The foregoing equation also indicates that the 

effects of parameter estimation errors are larger for larger values of ν. In the limiting 

case with ν  = 0 (a Shewhart individual chart on the residuals), errors in estimating φ1 

and θ1 have very little effect on the EWMA variance, which is further discussed in 

Chapter III.4.3. 
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 The confidence interval (3.7) and the expressions for Σ̂γ  in Appendix A are also 

valid for ARIMA(p,1,q) processes of the form xt = (1−B)−1Φ−1(B)Θ(B)at. The reason 

is that when estimating the parameters of an ARIMA model, one fits an ARMA model 

to the differenced data (1−B)xt. Since the residuals are still generated via (3.1) with xt 

replaced by the differenced data, the EWMA statistic follows the same 

ARMA(p+q+1,p+q) model (3.2). The parameter errors therefore have the exact same 

effect on the EWMA variance as in the ARMA case. 

 

III.3 Selecting Design Parameters 

 When designing an EWMA chart for iid data with no consideration of model 

uncertainty, the parameters λ and L are often jointly selected to minimize the out-of-

control ARL for a specified mean shift, while ensuring the in-control ARL equals 

some desired value. Lucas and Saccucci (1990) provide tables for selecting values of 

λ and L that are optimal in this sense. For a residual-based EWMA with autocorrelated 

data, optimally selecting λ and L is complicated even when perfect models are 

assumed. The optimal λ and L depend on many factors, including the desired in-

control ARL, the specified mean shift of interest, and the ARMA parameters. For 

first-order autoregressive models, Lu and Reynolds (1999) provide tables for selecting 

the optimal λ and L for the specific cases of φ1= 0.4 and φ1= 0.8 with a desired in-

control ARL of 370. When considering model uncertainty as in this chapter, jointly 

selecting λ and L to satisfy some optimality criterion is prohibitively complex. 
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 In light of this, it is recommended that one first select λ as if the estimated model 

were perfect. The rule-of-thumb 0.05 < λ ≤ 0.5 (Lu and Reynolds, 1999) may be used, 

where it is understood that smaller λ values result in better detection of small mean 

shifts, but slower detection of large shifts. For more detailed guidelines, the reader is 

referred to the thorough discussions in Lucas and Saccucci (1990) and Lu and 

Reynolds (1999). 

 After specifying λ, suppose that the tables of Lucas and Saccucci (1990) are used 

to select L based on some desired in-control ARL (denoted ARLd). If used in the 

standard EWMA control limits (3.3), this value of L would provide the desired ARL 

when there is no model uncertainty and the residuals are iid. With model uncertainty 

considered, using the same value of L in the worst-case EWMA control limits (3.4) is 

recommended. If the EWMA standard deviation σz happens to coincides with its 

worst-case value σz,α, then the control limits (3.4) will provide an in-control ARL that 

approximately equals the desired value ARLd. The examples in Chapter III.4 indicate 

that this choice of L also results in an appealing Bayesian interpretation of the control 

chart: If an appropriate posterior distribution for the ARMA parameters is considered, 

then the posterior probability that the ARL is less than ARLd is reasonably close to the 

α value specified in the confidence interval on σz. 

 Using a slightly smaller value of L in the control limits (3.4) also might have been 

considered for the following reason. When there are no modeling errors, and the 

standard control limits (3.3) are used, the value of L that provides a desired in-control 
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ARL depends on λ. This is primarily because the autocorrelation of the EWMA 

statistic zt depends on λ. As λ decreases, the autocorrelation of zt increases, and the in-

control ARL increases for any fixed L. Consequently, as λ decreases, smaller values 

of L will provide the same in-control ARL. When modeling errors are present, the 

errors also affect the autocorrelation of zt. When the true parameters are such that σz 

coincides with σz,α, the autocorrelation of the residuals will generally be positive, and 

the autocorrelation of zt will be larger than when there are no modeling errors. 

Consequently, a slightly smaller value of L may provide the desired ARL when σz 

coincides with σz,α. On the other hand, a first-order Taylor approximation of the 

EWMA variance was also used in developing the expression for σz,α. This 

approximation tends to underestimate the EWMA variance, and the resulting σz,α is 

slightly smaller than what would result from a more exact confidence interval. Since 

the control limits (3.4) are the product of L and σz,α, the effects of the Taylor 

approximation are partially compensated by taking L directly from the tables Lucas 

and Saccucci (1990) as recommended, as opposed to using a slightly smaller value. 

 Note that the ARLd that one specifies in the design procedure should be viewed as 

a worst-case ARL that results when the EWMA variance equals its worst-case value 

(within the 1−α confidence interval). If the true ARMA parameters and the EWMA 

variance are close to their estimates, the ARL will generally be larger than ARLd. To 

avoid overly conservative control limits, this should be kept in mind when selecting 
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the remaining design parameter α. A small value such as α  = 0.01 may widen the 

control limits to an extent that makes it difficult to detect most mean shifts of interest. 

This tradeoff in using the worst-case control limits is discussed in more detail in 

Chapter III.4.1 and III.4.2, with a recommended range 0.1 ≤ α ≤ 0.3. 

 The design procedure is illustrated with the Series A data from Box, et al. (1994), 

which are N = 197 concentration measurements from a chemical process. Box, et al. 

(1994) found that an ARMA(1,1) model fit the data well, and the estimated parameters 

were (omitting their subscripts) φ̂  = 0.87,  = 0.48, and  = 0.098. Using Equation 

(A.4), the estimated parameter covariance is 

θ̂ σ̂ a
2

  = . Σ̂γ 10
098000
0718643
0643752

3−×












.
..
..

If λ = 0.1 and ARLd = 500 are selected, the tables of Lucas and Saccucci (1990) 

indicate that L = 2.814 should be used. Since σ̂ z =σ̂ a (1–ν)1/2(1+ν)−1/2 = 0.0718, the 

standard control limits (3.3) become ±Lσ̂ z  = ±0.202. If α = 0.1 is also selected, then 

(3.6) and (3.7) result in V̂  = [−8.29  3.17  −10.20]T, and σz,α = 0.0849. The worst-

case control limits (3.4) are therefore ± Lσz,α  = ±0.239, which are 18% wider than the 

standard control limits. 

 Figure 5 shows an EWMA control chart applied to 500 simulated observations 

from the process when the true parameters assume the values φ = 0.917, θ = 0.491, 

and  = 0.102. These parameter values were chosen because the resulting Taylor σ 2
a
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approximation (3.5) of σ 2
z  (with V replaced by V̂ ) equals the worst-case value . 

One can also show that of all parameter combinations that result in a Taylor 

approximation equal to , these values have the highest likelihood (minimize 

σ α
2
,z

σ α
2
,z

γγ ~ˆ~T
Σ

1−
γ ). Both the standard and the worst-case control limits are shown in Figure 5. 

Since the mean of xt was held at 0 throughout the simulation, all cases where the 

EWMA statistic fell outside the control limits were false alarms. The standard control 

limits resulted in false alarms around timesteps 50, 275, and 425, whereas the worst-

case control limits eliminated the first two of these. Monte Carlo simulation is used in 

the following chapter to provide a more comprehensive analysis of the control chart 

performance. 
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Figure 5  Example EWMA chart with standard and worst-case control limits, when σz 
coincides with its worst-case value σz,α. 
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Figure 6  Example EWMA chart with standard and worst-case control limits, when σz 
coincides with σ̂ z . 
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 Figure 6, which is similar to Figure 5 except that the true ARMA parameters were 

chosen to coincide with their estimates, illustrates one drawback of using the worst-

case control limits: If the true parameters happen to fall sufficiently close to their 

estimates, then the standard control limits provide the desired in-control ARL. The 

worst-case control limits are unnecessarily wide in this case, which inevitably 

decreases the power of the control chart. This is an inherent consequence of the worst-

case design approach, which is intended to guard against the situation where the true 

parameters are not "sufficiently" close to their estimates. To mitigate this drawback, 

using both sets of control limits for the EWMA chart is recommended. An observation 

falling outside the worst-case control limits provides strong evidence that the process 



 47

has changed. An observation falling within the worst-case control limits but outside 

the standard limits should be interpreted with more caution; it could mean that either 

the process has changed or that the ARMA parameters differ from their estimates. 

Chapter III.4 provides a detailed discussion of the tradeoffs involved in the worst-case 

design approach.  

 

III.4 Discussions 

 Monte Carlo simulation is used with exactly the same manner, which was 

explained in Chapter II.6, throughout this chapter to investigate the ARL performance 

of EWMA charts with standard and worst-case control limits when the parameters 

differ from their estimates. Only difference is that modeling errors are considered in 

this chapter. The EWMA for the residuals was calculated via (3.2), with z0 initialized 

at 0. A signal occurred when zt fell outside the control limits.  

 

III.4.1 Bayesian Interpretations 

 Consider a Bayesian alternative to the worst-case design approach, where some 

posterior distribution for γ  is assumed (given the data from which the parameters are 

estimated) and the control limits are selected to provide a desired average ARL with 

respect to the posterior distribution of γ. This chapter discusses why designing the 

control chart based on an average ARL would actually lead to control limits that are 

narrower than the standard limits. In addition, a Bayesian analysis is considered to 

investigate the posterior probability that the ARL is less than ARLd when the worst-
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case control limits are used. For the examples considered here, this probability is 

reasonably close to the value of α specified in the confidence interval. For analysis 

purposes, it is assumed the posterior distribution of γ is approximately multivariate 

normal with mean γ̂  and covariance Σ̂γ  (see Appendix A). This can be viewed as an 

asymptotic approximation when the prior distribution of γ is noninformative. 

 Reconsider the ARMA(1,1) example introduced in Chapter III.3, where the 

estimated parameters were ˆ  = 0.87, φ θ̂  = 0.48, and  = 0.098. For simplicity, 

uncertainty in  is neglected by modifying the earlier expression for Σ

σ̂ a
2

σ 2
a ˆ γ  so that its 

lower-right element (i.e., the variance of ) is 0. This results in σz,α = 0.0842 and 

worst-case control limits ± Lσz,α  = ±0.237, which are only slightly narrower than 

when we also considered uncertainty in . Figure 7 shows contour plots of the ARL 

as a function of φ and θ for  = . Panel (a) is the in-control ARL contours for the 

standard EWMA with control limits ±0.202. The parameter estimates are indicated by 

the * symbol. Since the EWMA was designed with ARLd = 500, the ARL = 500 

contour passes through the parameter estimates. Numerical integration of the ARL 

with respect to the assumed posterior density of γ gives a rough approximation of 730 

for the average ARL of the EWMA chart with standard control limits. Somewhat 

surprisingly, this is larger than the desired ARL of 500 that results when the model is 

perfect. It may be concluded that an average ARL of 500 could be achieved with 

control limits that are even narrower than the standard control limits. 

σ̂ a
2

2
aσ

σ 2
a σ̂ a

2
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Figure 7  ARL contours as a function of φ and θ for the ARMA(1,1) example. Panels 
(a), (c), and (e) show the in-control ARLs for the standard EWMA, worst-case 
EWMA, and Shewhart chart, respectively. Panels (b), (d), and (f) show the out-of-
control ARLs for the three charts when the mean shift magnitude is 3σa.  
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 The reason the average ARL is larger than 500 is that the ARL is a highly skewed 

function of φ and θ, as can be seen in Figure 7(a). For φ < φ̂  and θ > θ̂ , the ARL 

increases dramatically. The average ARL is misleading, however, since the ARL may 

decrease to unacceptably small values for φ >  and θ < φ̂ θ̂ . Numerical integration (of 

the posterior density over the ARL < 250 region) also reveals there is a 0.24 

probability the ARL is less than 250, which is only half the desired ARL. Likewise, 

there is a 0.11 probability the ARL is less than 150. 

 Figure 7(c) shows analogous in-control ARL contours for the EWMA chart with 

worst-case control limits ±0.237. With the worst-case control limits, the probability 

the ARL is less than the desired value 500 is approximately 0.13, which is reasonably 

close to the α = 0.1 value selected when the chart was designed. Moreover, the 

probability the ARL is less than 250 is only 0.05, compared to the 0.24 probability 

with the standard control limits. The worst-case control limits clearly provide 

adequate protection against an unacceptably short in-control ARL. An additional 

benefit is that when the parameters coincide with their estimates, the in-control ARL 

will be even larger than the desired value. From Figure 7(c), the in-control ARL in this 

case is roughly 2000, compared to an ARL of 500 with the standard control limits. 

The obvious disadvantage of widening the control limits, which is discussed in the 

following chapter, is the resulting decrease in the power of the chart for detecting 

mean shifts. 
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III.4.2 In-Control versus Out-of-Control ARL Trade-off 

 For the same ARMA(1,1) example introduced in Chapter III.3 and continued in 

Chapter III.4.1, Figures 7(b) and 7(d) show the out-of-control ARL contours with a 

mean shift of magnitude 3σa. Figure 7(b) is for the standard control limits ± 0.202, 

and Figure 7(d) is for the worst-case control limits ± 0.237. The worst-case control 

limits increase the out-of-control ARL by approximately 60% for most combinations 

of φ and θ. Note that even with the standard control limits, the ARL is approximately 

8.0 when the ARMA parameters equal their estimates, which may seem large for a 

mean shift of 3σa. After the initial occurrence of the mean shift, however, the mean of 

the residuals rapidly approaches a steady-state value of only 0.75σa. Superville and 

Adams (1994) and Apley and Shi (1999) discussed this "forecast recovery" 

phenomenon in detail. Table 5 presents the out-of-control ARL values for other mean 

shifts for the specific case that the ARMA parameters coincide with their estimates. It 

also provides results for the Shewhart individual chart, discussed in Chapter III.4.3. 

Widening the control limits clearly has a negative impact on the out-of-control ARL, 

particularly for small mean shifts. For a mean shift of size σa, which results in a 

steady-state residual mean of only 0.25σa, widening the control limits causes the out-

of-control ARL to increase from 101 to 247. This is understandable, given that the in- 

control ARL (the ARL for a mean shift of size 0) increases from 500 to 2020. The 

ARL increase is more moderate, but still substantial, for larger mean shifts. 
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Table 5  ARL values for various size mean shifts for the ARMA(1,1) example when 
the ARMA parameters coincide with their estimates.  

  mean shift magnitude (in units of σa) 
chart control limits 0 1 2 3 4 5 

EWMA (λ = 0.1) 0.202 (standard) 500 101 23.8 8.11 3.54 2.22
EWMA (λ = 0.1) 0.237 (worst-case) 2020 247 43.3 13.3 5.29 2.89

Shewhart 0.967 (standard) 500 366 168 49.1 7.83 1.38
 

 

 

 As another example, with consideration of uncertainty in σa, suppose that the 

parameters of an AR(1) process are estimated using N = 400 observations and that the 

estimates are φ̂  = 0.5 and  = 1.0. If λ = 0.1 and a desired ARLd = 500 are chosen, 

again L = 2.814. Since 

σ̂ a
2

σ̂ z =σ̂ a (1–ν)1/2(1+ν)−1/2 = 0.2294, the standard control limits 

(3.3) are ±Lσ̂ z  = ±0.646. Using (A5), the parameter covariance is 

 Σγ ≅ 

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If α = 0.1 is selected, then (3.6) and (3.7) result in V̂  = [−3.27  −1.00]T, and σz,α = 

0.2516. The worst-case control limits (3.4) are therefore ± Lσz,α  = ±0.708, which are 

roughly 10% wider than the standard control limits. 

 Figure 8 shows results for the AR(1) example that are analogous to Figure 7. 

Figures 8(a) and 8(c) show the in-control ARL contours as a function of φ and  for 

the standard and worst-case EWMA control limits, respectively. As in the Bayesian 

analysis of the previous chapter, suppose that the posterior distribution of γ is 

σ 2
a
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approximately multivariate normal with mean γ̂  and covariance Σ̂γ . With the worst-

case control limits, the probability that the ARL is less than 500 is roughly 0.105, 

almost identical to the selected value of α. 

 Figures 8(b) and 8(d) show the corresponding out-of-control ARL contours for a 

mean shift of magnitude 2σ̂ a . Table 6 gives the out-of-control ARL values for other 

mean shifts when the true parameters coincide with their estimates. Since the control 

limits are widened by a lesser extent than in the previous ARMA(1,1) example, the 

worst-case design results in a much less severe increase in the out-of-control ARL. 

For mean shifts with magnitude 2σ̂ a  or larger, the out-of-control ARLs increase by 

roughly 15%, whereas the in-control ARL doubles. 

 Given the decreased power of the chart that results from widening the control 

limits, to what extent (or even whether) they should be widened to account for model 

uncertainty would ideally depend on the costs associated with false alarms and the 

costs of failing to detect out-of-control conditions, as well as the a priori probability of 

occurrence of out-of-control conditions. If the costs of false alarms are small, then it 

may not be desirable to widen the control limits. In the author's experience, however, 

the costs of frequent false alarms are often quite high when the hidden costs of 

unnecessary shutdowns and production delays and operators who begin to ignore all 

alarms, including those that signal real out-of-control conditions, are ocnsidered. To 

lessen the severity of the tradeoffs in using worst-case control limits, the best solution  

(when possible) would be to collect a larger sample of data to reduce the parameter 
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Figure 8  ARL contours as a function of φ and  for the AR(1) example. Panels (a), 
(c), and (e) show the in-control ARLs for the standard EWMA, worst-case EWMA, 
and Shewhart chart, respectively. Panels (b), (d), and (f) show the out-of-control 
ARLs for the three charts when the mean shift magnitude is 2

σ 2
a

σ̂ a . 
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Table 6  ARL values for various size mean shifts for the AR(1) example when the 
ARMA parameters coincide with their estimates. 

  mean shift magnitude (in units of σa) 
chart control limits 0 1 2 3 4 5 

EWMA (λ = 0.1) 0.646 (standard) 500 30.0 9.37 4.96 3.24 2.34
EWMA (λ = 0.1) 0.708 (worst-case) 1080 39.6 10.9 5.66 3.68 2.65

Shewhart 3.09 (standard) 500 199 48.1 10.6 2.32 1.10
  

 

uncertainty. Guidelines for sample size selection are discussed in Chapter III.4.4. 

 

III.4.3 Shewhart Individual Charts versus EWMA Charts 

 Figures 7(e) and 7(f) show the in-control and out-of-control ARL contours for a 

Shewhart individual chart on the residuals in the previous ARMA(1,1) example. 

Standard control limits of ± 3.09σ̂ a  = ± 0.967 were used, which provide an in-control 

ARL of 500 when there are no parameter errors. The mean shift magnitude for Figure 

7(f) was 3σ̂ a , the same as for Figures 7(b) and 7(d). The ARL of the Shewhart chart 

is much less dependent on φ and θ than the ARL of an EWMA chart with small λ, 

because, unlike an EWMA, the Shewhart chart considers only individual residuals and 

does not take a weighted average of successive residuals. Consequently, residual 

autocorrelation has little effect on the Shewhart ARL if no supplementary run rules are 

used. Although an increase in the variance of the residuals will affect the Shewhart 

ARL,  was assumed equal to  in this example, and small variations in φ and θ 

do not substantially increase the residual variance. Figures 8(e) and 8(f) show 

σ 2
a σ̂ a

2
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analogous results for a Shewhart chart applied to the residuals in the AR(1) example, 

where ± 3.09σ̂ a  control limits were again used. In this example, variations in  

were also considered. Figure 8(e) shows that the in-control ARL depends 

predominantly on  and is nearly independent of φ over the range of values 

considered. 

σ 2
a

σ 2
a

σ̂ a

 Given the relative insensitivity of the Shewhart individual chart with respect to 

parameter errors, an alternative to using an EWMA with worst-case control limits is to 

simply use a Shewhart chart with standard control limits. Since the out-of-control 

ARL for the EWMA is increased when its control limits are widened, one may 

speculate that the Shewhart chart with standard control limits could provide better 

detection of mean shifts. Tables 5 and 6 indicate that this is true only for large mean 

shifts in the examples considered. Even when the worst-case control limits are used, 

the EWMA still has substantially shorter out-of-control ARLs than the Shewhart chart 

for small to moderate mean shifts. Table 5 shows that for the ARMA(1,1) example, 

the Shewhart chart does not surpass the worst-case EWMA in power until the mean 

shift is between 4  and 5σ̂ a . This is the same level of mean shift at which the 

Shewhart chart surpasses the EWMA with standard control limits. Table 6 

demonstrates similar results for the AR(1) example. Moreover, comparing Figures 

7(e) and 8(e) with Figures 7(c) and 8(c), the EWMA with worst-case control limits 

provides the additional benefit of substantially larger in-control ARLs for most 

parameter combinations. 
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III.4.4 Sample Size Requirements 

 In light of the decreased power that results from widening the EWMA control 

limits, one may wish to collect a sample of data large enough to ensure σz,α is 

sufficiently close to σ̂ z , in which case the worst-case control limits will be close to 

the standard control limits. It is difficult to provide general guidelines for sample size 

requirements without some knowledge of the ARMA parameters, since σz,α depends 

heavily on the parameter estimates. If initial estimates have been obtained from an 

initial set of data, however, this may be used this to determine how much (or whether) 

additional data are needed. While waiting for the additional data to be collected, it 

may be desirable to use both the worst-case and the standard control limits together 

(refer to Figure 5) as temporary control limits until more accurate parameter estimates 

and new control limits can be calculated. 

 Suppose that initial parameter estimates have been obtained and λ and α have 

been selected. A reasonable strategy is to select the size N of the additional data 

sample large enough that the resulting percentage difference between σz,α and σ̂ z  is 

less than some small value δ (e.g., δ = 0.05). From (3.7), the requirement becomes 

 ( ) δ
α

σ
γα

α +<



 += 1ˆˆˆz1

ˆ

2121, VV Σ
T

z

z . 

Define ΣΣ ˆN γγ = . As shown in Appendix A, Σ  is a function of the parameter 

estimates but is otherwise independent of N. If this is substituted into the foregoing 

inequality, then the sample size requirement reduces to 

γ
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( )δδ

γα

+
>

2 22

2 VV ˆˆz
N

T Σ .                                                                                                (3.8) 

 To provide some insight into typical sample size requirements, Figure 9 shows 

contour plots of the required N from Equation (3.8) as a function of φ̂  and θ̂  for an 

ARMA(1,1) process with four different values of λ. The contour plots are for the 

specific case of δ = 0.05 and α = 0.20. Since neither Σ  nor Vγ ˆ  depends on δ and α, 

results for other δ and α are obtained by multiplying the values of N in Figure 9 by 

0.0522.052 δ −2(2+δ)−2 = 0.0148 δ −2(2+δ)−2. If, for example, a more 

conservative α = 0.1 and the same δ are considered, then the required sample sizes are 

multiplied by 2.32. For a less conservative α = 0.3 and the same δ, the same sizes are 

multiplied by 0.387. For small δ, (3.8) indicates the required N is approximately 

inversely proportional to δ2. 

z .
2
20

− 2
αz 2

αz

 In the ARMA(1,1) example of Chapter III.3 with φ̂  = 0.87, θ̂  = 0.48, and N = 197, 

the values λ = 0.1 and α = 0.1 were selected. This resulted in worst-case control limits 

that were 18% wider than the standard control limits. Suppose that one wanted to 

collect a sample large enough that the worst-case control limits were only 5% wider 

than the standard limits. From Figure 9, a sample size of approximately 1270 would 

be required when α = 0.2. For α = 0.1, the sample size is 2.32 times larger, or N = 

2,940. 
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Figure 9  Contours of the required sample size N with δ = 0.05 and α = 0.20 for an 
ARMA(1,1) process with λ = 0.05, 0.10, 0.20, and 0.40. For other values of δ and α, 
multiply the contours by 0.0148 δ −2(2+δ)−2.  z2

α
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 Note that the ridges in Figure 9 are at φ̂  = 1−λ and θ̂  = 1−λ. For a specified λ, the 

EWMA chart is least robust when the parameter estimates coincide with 1−λ. This 

does not imply that one should avoid choosing a value of λ that coincides with 1−  or 

1−

φ̂

θ̂ , however. One may show that for any fixed positive values of ˆ  and φ θ̂ , (3.8) 

increases monotonically as λ decreases. 
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Figure 10  Contours of the required sample size N with δ = 0.05 and α = 0.20 for an 
AR(1) process. For other values of δ and α, multiply the contours by 0.0148 δ 

−2(2+δ)−2. The results for first-order MA and IMA processes are identical if 
z2
α

φ̂  is 
replaced by θ̂ .  
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 Figure 10 shows contour plots of the required sample size as a function of φ̂  and λ 

for an AR(1) process with δ = 0.05 and α = 0.20. Results for other δ and α are again 

obtained by multiplying the values of N in Figure 10 by 0.0148 δ −2(2+δ)−2. Figure 

10 also applies to first-order MA and IMA processes if  is replaced by 

2
αz

φ̂ θ̂ , because of 

the symmetry of Σ  and Vγ ˆ  with respect to the AR and MA parameters. Figures 9 and 

10 indicate that very large samples are often required to ensure that σz,α is no more 

than 5% larger than σ̂ z . Even for an AR(1) process with α = 0.20, sample sizes close 

to 1,000 are required for the typical values λ ≈ 0.1 and  > 0.5. φ̂

 

III.5 Chapter Summary 

 When designing a residual-based EWMA control chart, a natural measure is to use 

wider control limits to account for uncertainty in the estimated parameters. The design 

approach of this chapter widens the control limits by an amount commensurate with 

the worst-case scenario, in which the ARMA parameters are such that the EWMA 

variance equals the maximum value within an appropriate confidence interval. 

Assuming an estimate of the parameter covariance matrix is available, or can be 

calculated as described in Appendix A, the worst-case design approach involves little 

additional complexity relative to the standard design approach. 

 The disadvantage of widening control limits is the decreased power of control 

charts. However, since the purpose of this design method is to prevent an 
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unacceptably short in-control ARL, the loss of chart power is inevitable. As indicated 

in simulation results, however, there was no big difference in chart power between the 

proposed method and the standard EWMA design when a mean shift size is large. In 

this case, the benefits of using the proposed method are likely to overweigh the loss. 

Moreover, if the loss by frequent false alarms is considered more serious than the loss 

by missing a signal of out-of-control, the use of this control limit is recommended 

although the loss of chart power can be severe in the case of a small mean shift. 
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CHAPTER IV 

ROBUST DESIGN OF RESIDUAL-BASED CONTROL CHARTS 

FOR AUTOCORRELATED PROCESSES: EXPECTED VARIANCE 

APPROACH 

 

IV.1 Introduction 

 In Chapter III, we developed a robust design method for the residual-based 

EWMA control charts using the worst-case variance. The design method is aimed at 

guarding against the circumstances when the true ARMA parameters sufficiently 

differ from their estimates. However, if the estimated and true parameters are such that 

modeling errors are small enough to be negligible, the resulting control limits are 

unnecessarily wide and lack sufficient power for detecting mean shifts.  

 Therefore, this chapter presents another design method for widening the residual-

based EWMA control charts to overcome the disadvantages of the worst-case design 

method. The control limits of this design method are generally widened by a lesser or 

more suitable amount than in the control limits of the worst-case design approach. As 

a result, these control limits do not suffer as much from increased out-of-control ARL. 

To represent model uncertainty, we use a second-order Taylor approximation in this 

method. Also we use an expected value of the actual EWMA variance instead of the 

maximum value.  
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 As in the previous chapter, it is assumed that the autocorrelated process data, xt, 

follows (1.1) and the in-control process mean has been subtracted so that xt is 0-mean 

until there is a shift. The EWMA statistic, zt, is written as (3.2) when it is applied to 

the residuals with modeling errors (3.1). When σ 2
z , which is a function of the true 

parameters for a given λ and ARMA parameter estimates, denotes the actual variance 

of the EWMA statistic (3.2), the proposed method is to monitor the EWMA statistic 

(3.2), but to use the control limits 

 {LCL,UCL} = ± L ]E[ 2
zσ                         

instead of the standard control limits (3.3). In Chapter IV.2 we derive the expected 

variance of an EWMA. Viewing true parameters as random, we use a second-order 

Taylor approximation to represent the actual EWMA variance and take an expectation 

on the approximated EWMA variance. The final result is represented by the form of 

parameter estimates and their covariance matrix. Chapter IV.3 provides results of the 

expected EWMA variance for special ARMA processes of low orders. From the 

derived results, we advise actual design procedures in Chapter IV.4. Chapter IV.5 

presents some discussions of interest regarding this design method. In the beginning 

of the chapter, the proposed method is compared to an existing method and the 

method developed in Chapter III. Afterwards, we discuss differences in the results of 

expected EWMA variance according to the viewpoint of the random variableusing 

either true parameters or estimated parameters. Finally, we briefly explain sample size 

requirements for the proposed method. 
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IV.2 Expected EWMA Variance 

 The vector of ARMA parameters is represented as γ = [φ1 φ2 … φp θ1 θ2 … θq]T 

and the corresponding vector of estimated parameters is represented as γ̂ . The actual 

EWMA variance, 2
zσ , can be represented by the second-order Taylor approximation 

about γ = γ̂  as 

 ( ) ( ) ( )γγ
γ

γγγγ
γ γγγγγγ ˆˆ

2
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22
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22             zT
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As in the previous chapter, N denotes the number of observations in the sample. In 

order to derive an expected EWMA variance, considering parameter uncertainty with 

the Bayesian view, we use the Bayesian central limit theorem (Carlin and Louis 2000). 

When the suitable regularity condition holds and the prior of γ  is reasonably flat, the 

posterior of γ can be approximately multivariate normal with mean γ̂  and covariance 

 for large N. The expected value of the approximated EWMA variance, where the 

expectation is with respect to the distribution of γ, is written as 

γΣ̂

 E[ 2
zσ ]













∂

∂
+≅ = γγγ

γ
Σ̂

2
1ˆ ˆ2

22
2  tr   z
z

σ
σ                                                                   (4.1) 

where 2ˆ zσ  = (1−ν)(1+ν)−1 and tr is a matrix trace that sums diagonal elements. The 

fundamental reason for selecting the Bayesian view is to set a larger impact on the AR 

parameters in this proposed method. This is will be discussed further in Chapter 

IV.5.2. 

2ˆaσ
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 The expected EWMA variance, E[ 2
zσ ], is comprised of two parts. One is the 

standard EWMA variance and the other is a trace of a matrix, which is a product of 

the second-order partial derivative matrix of the EWMA variance and the covariance 

matrix of parameter estimates. The second term can be considered as a gauge that 

quantifies the level of model uncertainty because the first term is used only for the 

standard design of EWMA control charts. The second term is represented with a 

sample size, N, and is inversely proportional to the sample size at the end of the 

derivation. Thus, the expected EWMA variance can become the standard EWMA 

variance if we collect plenty of samples to be enough to neglect model uncertainty. 

 Differentiating (2.2) twice with respect to γ  gives 

 ∑

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When (4.2) is substituted for (4.1), the expected EWMA variance is rewritten as 

 E[ 2
zσ ] = 




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where we denote 
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Elements of Dj are D li
j

φφ , , li
jD θφ , , li

jD φθ , , li
jD θθ ,  and  elements of dj are d i

j
φ , l

jdθ . 

We derive the form of elements of Dj in Appendix B and the form of elements of dj in 

Chapter II.2. From Appendix B, the elements of Dj can be also represented as  

  ( ) ( ) ( ) ( ) ( ) ( )( )GΦ  BGBΦ  gBΦ  D lijlijlijj
li ˆˆ2ˆˆ2ˆˆ2 222, −
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− === ψδφφ  and 
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                 = ( )( )GΘΦ lij ˆˆˆ 11 −−
+−−ψ . 

where {ψj(R): j = 0, 1, 2, . . .} are the impulse response coefficients of any ARMA 

transfer function R(B) such that R . Similarly, using the impulse 

response function, d

( ) ( ) j
j j BR  B ∑= ∞
=0ψ

i
j
φ and l

jdθ can be represented as ( )GΦij ˆˆ 1−
−ψ  and 
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Therefore, using these in (4.3), tr{ ∑∞
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ˆˆj jjg γΣD }becomes 
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whereΦ ,Θ ,Vp=[ν  ν 2 

… ν p]T, Vq=[ν  ν 2 … ν q]T, and 0 is a q×q zero matrix. Also, Σ , , and 

denote the variance of Φ estimates, the variance of Θ estimates, and the 

covariance between  Φ estimates and Θ estimates, respectively. These are submatrices 

of the matrix  such that 
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Due to the tedious derivation of tr{ ∑ }, this is fully shown in Appendix 

C. The result is 
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Thus, the expected EWMA variance is 



 69

 E[ 2
zσ ] = 

( ) ( ) ( )




 +
+−








+
−

+







+
−

N
qp 

ΘΦ
  

Φ  
    

  
  qΦΘ

T
ppΦ

T
p

aa νννν
νσ

ν
νσ ˆˆ

ˆ2
ˆ

ˆ2
1
1ˆ

1
1ˆ

2
22 VVVV ΣΣ

 

                                          +
[ ]

( )
[ ]

( ) 




+

ν

θθθθ

ν

φφφφ

ΘN

    
  

ΦN

    qqpp
ˆ

ˆqˆ3ˆ2ˆ2
ˆ

ˆpˆ3ˆ2ˆ2 321321 VV LL
 

                 = [
( ) ( ) ( )






++−+








+
− qp  

ΘΦ
  

ΦN
  

  
  qΦΘ

T
ppΦ

T
p

a νννν
νσ ˆˆ

ˆ2
ˆ

ˆ211
1
1ˆ

2
2 VVVV ΣΣ

 

                                         +
[ ]

( )
[ ]

( )
]






+

ν

θθθθ

ν

φφφφ

Θ

q    
  

Φ

p    qqpp
ˆ

ˆˆ3ˆ2ˆ2
ˆ

ˆˆ3ˆ2ˆ2 321321 VV LL
 (4.6) 

where ΦΣ̂ = N Σ   andΦˆ ΦΘΣ̂ = N Σ  . ΦΘˆ

 

IV.3 Results for Low-order ARMA Processes 

 To calculate the expected EWMA variance in (4.6), we need the model order, 

estimated parameters and their covariance matrix. Box et al. (1994) presented the 

method for finding the covariance matrix of parameter estimates for general ARMA 

(p,q) processes. For special cases of AR (1), AR (2), MA (1), MA (2) and ARMA 

(1,1), the closed forms of the covariance matrix exist. Subsequently, closed-form 

expressions of the expected EWMA variance can be determined for these cases.  

For ARMA (1,1) processes, since the covariance matrix has the form of 
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the expected EWMA variance is, 
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Since the covariance matrix of AR (2) processes is 
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respectively. 

The result of MA (1) processes is exactly the same as the result provided by Apley 

(2002). This is because the impulse response function, gj, is the linear function of 

Θ(B) as briefly described in Chapter III.2. If parameter estimates are viewed as 

random instead of true parameters, gj will be a linear function of Φ (B). Then, the 

result of AR processes will be exactly the same as the Apley’s. More discussions on 

this can be found in Chapter IV. 5.2. 

ˆ

 

IV.4 Design with Expected EWMA Variance 

 The following procedures introduce the actual design. At first, parameters are 

estimated from a data set. If the estimated model is one of the five special cases in the 

previous chapter, only the parameter estimates are substituted for the proper 

expression according to the model order. Most commercial software packages for time 

series modeling will produce the model order, parameter estimates and the covariance 

matrix of parameter estimates automatically. Therefore, the expected EWMA variance 

with any order of ARMA processes can be calculated from (4.6) even if the closed 

form of the covariance matrix is unavailable. 

 The recommendation for selecting L is to use the known information such as the 

tables of Lucas and Saccucci (1990) with a specific value of λ and an intended value 
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of in-control ARL. As explained in Chapter III.3, one reason for using previous 

information is that so many factors are involved in choosing L. Another reason for 

using the same rule is to exclude effects caused by choosing different L values when 

the proposed method is compared to other robust design procedures in Chapter IV.4.  

The compared robust residual-based EWMA design methods use the same L values 

for a specified level of in-control ARL and λ. So, we can fairly investigate differences 

between the substituted EWMA variances (which are used in each robust design 

method) for the standard EWMA variance by using the same rule for selecting L. 

 To illustrate the design procedure with an example, we reuse the Series A data 

from Box et al. (1994). The model was ARMA(1,1) and parameter estimates were φ̂  

= 0.87, θ̂  = 0.48, and  = 0.098. If we use 0.1 as a value of λ  and select 500 as a 

desired level of in-control ARL, L is 2.814 from the table of Lucas and Saccucci 

(1990). Then, from (4.7), 

σ̂ a
2

]E[ 2
zσ  is 0.0754 and thus control limits are ±0.212. In 

Chapter III, the standard and worst-case (α=0.1) control limits were ±0.202 and 

±0.239 respectively. The control limits of the proposed method are 5% wider than the 

standard control limits. The widened extent is much reduced in this design method. 

For the worst-case design, relative increment to the standard control limits was 18%. 

 

IV.5 Discussions 

 Some points of interest are discussed about the proposed method. Comparison 

results among robust design methodologies are mainly presented and discussed. The 
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average run length (ARL) is used for the performance measure of control charts. As in 

other chapters, the same procedure of Monte Carlo simulation is applied for 

calculating single in-control or out-of-control ARLs. Refer to Chapter II.6 for details. 

 

IV.5.1 Comparisons 

 This chapter evaluates the proposed method via several comparisons. Two 

different design procedures are employed for comparison to the proposed design 

method. The first one is the design method developed by Apley (2002) (hereafter A 

method). This method is similar to the proposed method in the sense that the expected 

value of EWMA variance is used. The differences lie in the viewpoints of random 

variables and the accuracy level of approximation. Parameter estimates are considered 

as random and a first-order Taylor approximation is used for representing expected 

EWMA variance in the A method. The other method for comparison is the design 

procedure proposed in Chapter III using worst-case EWMA variance (hereafter W 

method). 

 Suppose that four sets of parameter estimates are obtained from four separate time 

series modelings. No modeling errors on (=1) is assumed for simplicity. For the 

parameter estimates when λ is 0.05, Table 7 shows control limits (CL) of three robust 

design approaches and their widened amount to standard control limits. All control 

limits are designed for providing an in-control ARL of 500. The standard residual-

based EWMA control limits are ± 0.4187. In the W method, α=0.2 (which is the 

middle value of the recommended range for the significance level) is used to design 

σ 2
a
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the control limits. The relative increment is calculated as ( ) 100ˆˆ ×− zz σσσ % where 

σ̂ z = σ̂ a (1–ν)1/2(1+ν)−1/2 and σ is the amount that replaces the standard EWMA 

standard deviation in each robust design approach. 

 Generally, the control limits of the proposed method are wider than control limits 

of the A method and narrower than control limits of the W method. Only when =0.6 

and N=50 in Table 7, the control limits of the proposed method are slightly wider than 

those of the W method. In Table 7, when the sample size is 100, the control limits of 

the proposed method are around 12 to 17 % wider than those of the standard control 

limits. For the case of the A method, the relative increment to the standard control 

limits is below 10%, around 5 to 8 %. The W method provides at least 20 % wider 

control limits than the standard. Since all these design methods use an EWMA statistic, 

the reasonable inference is that the proposed method provides larger in-control ARLs 

than the A method does, whereas the chart power can be less than the power of the A 

method. On the contrary, the proposed method is expected to provide shorter out-of-

control ARLs than those of the W method, as in the case of in-control ARLs. The 

effects of widening control limits on ARLs are more thoroughly discussed in Chapter 

III.4.2. 

1̂θ

 It seems that the control limits of the W method are quite conservative especially 

when the sample size is relatively large. In Table 7, when the sample size is 500, the 

relative increment of the W method is approximately three times larger than that of the 

proposed method. When the sample size is considered, the increased amount to the 
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standard control limits is substantial. This is due to the inherent characteristic of the W 

method, which uses the maximum EWMA variance to guarantee an in-control ARL. 

The widened amount of the W method cannot be small unless the sample size and/or 

the significance level (α ) are quite large. For example, when the sample size is 500, 

the control limits of the proposed method are ±0.4339 at the first set of parameter 

estimates. To produce control limits of a similar magnitude in the W method, the 

sample size would be around 5000 or α would be larger than 0.3 at least. 

 

 

Table 7 Control limits of robust EWMA design methods and their increases relative 
to standard EWMA control limit when λ is 0.05. CL and RI represent control limits 
and relative increments. 

Proposed A W 
1̂φ  1̂θ  N CL RI CL RI CL RI 

50 0.5517 31.8% 0.4827 15.2% 0.5484 31.0% 
100 0.4898 17.0% 0.4519 7.9% 0.5138 22.7% 
200 0.4556 8.8% 0.4356 4.0% 0.4879 16.5% 0.9 0.6 

500 0.4339 3.6% 0.4256 1.6% 0.4637 10.7% 
50 0.5413 29.3% 0.4775 14.0% 0.5475 30.8% 
100 0.4839 15.6% 0.4491 7.2% 0.5132 22.6% 
200 0.4525 8.1% 0.4342 3.7% 0.4874 16.4% 

 
0.9 

 
0.4 

500 0.4326 3.3% 0.4250 1.5% 0.4634 10.7% 
50 0.5455 30.0% 0.4624 10.6% 0.5372 28.3% 
100 0.4863 16.1% 0.4411 5.3% 0.5054 20.7% 
200 0.4538 8.4% 0.4301 2.7% 0.4816 15.0% 

 
0.8 

 
0.6 

500 0.4331 3.4% 0.4233 1.1% 0.4595 9.7% 
50 0.5182 23.8% 0.4570 9.1% 0.5339 27.5% 
100 0.4711 12.5% 0.4383 4.7% 0.5029 20.1% 
200 0.4457 6.4% 0.4286 2.4% 0.4798 14.6% 0.8 0.4 

500 0.4297 2.6% 0.4227 1.0% 0.4583 9.4% 
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 As the sample size increases, the widening in control limits decreases for all cases. 

The relative increment is influenced by the magnitude of λ as well as the sample size 

(Apley 2002). As λ increases, the relative increment decreases for every design 

method. Tables 8 and 9 present information analogous to Table 7 when λ is 0.1 and 

0.2 respectively. Overall observations about the results are similar to the case of Table 

7. However, relative increments of the proposed method are not as severe as when λ is 

0.05. For large N, the conservativeness of the W method is consistent with Table 7. 

When N is 500, the relative increment of the W method is almost four times to five 

times larger than that of the proposed method. 

  

Table 8 Control limits of robust EWMA design methods and their increases relative 
to standard EWMA control limit when λ is 0.1. CL and RI represent control limits and 
relative increments. 

Proposed A W 
1̂φ  1̂θ  N CL RI CL RI CL RI 

50 0.7715 19.5% 0.7239 12.1% 0.7958 23.3% 
100 0.7113 10.2% 0.6859 6.2% 0.7549 16.9% 
200 0.6792 5.2% 0.6660 3.2% 0.7246 12.2% 0.9 0.6 

500 0.6592 2.1% 0.6538 1.3% 0.6966 7.9% 
50 0.7648 18.5% 0.7169 11.0% 0.7948 23.1% 
100 0.7077 9.6% 0.6821 5.7% 0.7541 16.8% 
200 0.6774 4.9% 0.6641 2.9% 0.7242 12.2% 

 
0.9 

 
0.4 

500 0.6585 2.0% 0.6531 1.2% 0.6964 7.9% 
50 0.7753 20.1% 0.7042 9.1% 0.7924 22.8% 
100 0.7134 10.5% 0.6755 4.6% 0.7524 16.5% 
200 0.6803 5.4% 0.6607 2.3% 0.7228 12.0% 

 
0.8 

 
0.6 

500 0.6597 2.2% 0.6517 0.9% 0.6954 7.7% 
50 0.7537 16.7% 0.6969 8.0% 0.7910 22.5% 
100 0.7017 8.7% 0.6717 4.0% 0.7513 16.4% 
200 0.6742 4.4% 0.6588 2.0% 0.7219 11.8% 0.8 0.4 

500 0.6572 1.8% 0.6509 0.8% 0.6948 7.6% 
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Table 9 Control limits of robust EWMA design methods and their increases relative 
to standard EWMA control limit when λ is 0.2. CL and RI represent control limits and 
relative increments. 

Proposed A W 
1̂φ  1̂θ  N CL RI CL RI CL RI 

50 1.0889 10.3% 1.0724 8.6% 1.1500 16.5% 
100 1.0394 5.3% 1.0308 4.4% 1.1048 11.9% 
200 1.0137 2.7% 1.0093 2..2% 1.0717 8.5% 0.9 0.6 

500 0.9980 1.1% 0.9962 0.9% 1.0415 5.5% 
50 1.0853 9.9% 1.0642 7.8% 1.1485 16.3% 
100 1.0375 5.1% 1.0265 4.0% 1.1037 11.8% 
200 1.0127 2.6% 1.0071 2.0% 1.0709 8.5% 

 
0.9 

 
0.4 

500 0.9976 1.0% 0.9953 0.8% 1.0410 5.4% 
50 1.0902 10.4% 1.0579 7.1% 1.1511 16.6% 
100 1.0400 5.3% 1.0232 3.6% 1.1057 12.0% 
200 1.0140 2.7% 1.0054 1.8% 1.0724 8.6% 

 
0.8 

 
0.6 

500 0.9981 1.1% 0.9946 0.7% 1.0419 5.5% 
50 1.0820 9.6% 1.0495 6.3% 1.1498 16.5% 
100 1.0358 4.9% 1.0189 3.2% 1.1049 11.9% 
200 1.0118 2.5% 1.0032 1.6% 1.0718 8.6% 0.8 0.4 

500 0.9972 1.0% 0.9937 0.6% 1.0410 5.4% 
 

 

 

 To compare the capability of detecting mean shifts among design methods, the 

chemical process data example in Chapters II and III is used again. We assume that 

the true parameters equal the estimated parameters and the in-control and out-of-

control ARLs are then calculated using Monte Carlo simulation; the results are 

summarized in Table 10. Two rows, which represent the proposed and A methods, are 

additionally included in Table 5. If we look at Table 10, the proposed method 

outperforms the W method, especially when the size of mean shift is small. For the 

mean shift size of 1σa, the proposed method reduces the ARL value to almost half of 
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that of the W method. For the mean shift size of 2σa, the proposed method still 

outperforms the W method. When the proposed method is compared to the standard 

design method, differences in timesteps are within one step in detecting the mean shift 

if the mean shift size is larger than 3σa.   

 As discussed in Chapter III.4.2, widening control limits has an adverse influence 

on the out-of-control ARLs. Since the control limits of the proposed method are 

widened by a lesser amount than those of the W method, however, the proposed 

method does not suffer as much from increased out-of-control ARLs. The A method is 

in the exact opposite situation when compared to the proposed method. Meanwhile, 

the proposed method is more likely to provide the desired level of in-control ARL 

than the A method and W method with the same amount of modeling errors. 

Consequently, it is reasonable to conclude that the proposed method attains more 

adequate trade-offs between in-control ARLs and out-of-control ARLs than other 

design methods. 

 

 

Table 10 ARL values for various size mean shifts for the ARMA(1,1) example when 
the ARMA parameters coincide with their estimates.  

  mean shift magnitude (in units of σa) 
chart control limits 0 1 2 3 4 5 

EWMA (λ = 0.1) 0.202 (Standard) 500 101 23.8 8.11 3.54 2.22
EWMA (λ = 0.1) 0.212 (Proposed) 729 129 27.7 9.24 4.00 2.39
EWMA (λ = 0.1) 0.208 (A method) 612 115 25.5 8.58 3.79 2.30
EWMA (λ = 0.1) 0.237 (W method) 2020 247 43.3 13.3 5.29 2.89

Shewhart 0.967 (Standard) 500 366 168 49.1 7.83 1.38
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IV.5.2 Bayesian or Non-Bayesian 

 The true parameter vector γ = [φ1 φ2 … φp θ1 θ2 … θq]T is considered as random 

in this method. The approximate posterior distribution of γ was used for deriving the 

expected EWMA variance in Chapter IV.2. According to the Bayesian central limit 

theorem, under the regularity condition and for large N, the posterior distribution of γ  

can be approximated as normally distributed with mean of the posterior mode and 

covariance of the negative inverse second derivative matrix of the log posterior 

evaluated at the mode (Carlin and Louis 2000). In addition, the Bayesian estimation is 

approximately equivalent to most estimation methods such as exact or approximate 

maximum likelihood and exact or conditional least squares, when the prior 

distribution of γ  is nearly flat (Box et al. 1994). In this case, it is interpreted that the 

posterior mode can be replaced by a general maximum likelihood estimator (MLE). 

Thus, the posterior of γ is approximately multivariate normal with mean γ̂  and 

covariance Σ .  γˆ

 Within the Bayesian viewpoint, G(B) is the linear function of Θ(B) as seen in  

G(B) = ( . The second-order partial derivatives 

of the impulse response function, gj, with respect to the MA parameters are zero. 

Consequently, the expected EWMA variance does not involve the covariance of the 

MA parameter estimates. This means we can represent the actual EWMA variance 

more accurately by second-order Taylor approximation only in AR and ARMA 

processes, and not in MA processes. On the contrary, in non-Bayesian view, G(B) is 

)( ) ( ) ( ) ( ) ( )BΘBΦBΦBΘB 111 ˆˆ11 −−−−− νν
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the linear function of Φ (B). Then, the second-order differentiation affects MA and 

ARMA processes in this case. Consequently, the basic reason for using the Bayesian 

viewpoint is to place greater emphasis on the AR parameters and thus they have more 

effect on the expected EWMA variance. 

ˆ

 

IV.5.3 Sample Size Requirements 

 From (4.6), if we use an infinite number of samples to estimate parameters, the 

expected EWMA variance goes to the standard EWMA variance. This means that the 

widened control limits by the amount of model uncertainty can coincide with standard 

EWMA control limits as long as the sample size is large enough to neglect the effects 

of model estimation. However, in practice, it is preferred to know a somewhat exact 

sample size that will guarantee the widened control limits are close to the standard 

control limits by some degree. If any parameter estimates exist, an additional sample 

size can be determined to achieve the purpose, which is to know the sample size 

information (Apley and Lee 2003).  Considering that the initial estimation is 

performed with in-control process data, the additional sample, N, should be collected 

from the in-control process as well. 

 When δ denotes the small difference in magnitude between standard EWMA 

standard deviation, zσ̂ , and square root of expected EWMA variance, ]E[ 2
zσ , then 

the following inequality should be satisfied 
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For ARMA (1,1) processes, the required sample would be 

 N 〉 
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to obtain the control limits that are (δ×100)% larger than the standard EWMA control 

limits. From the chemical process data example, the model was ARMA (1,1) and the 

estimated parameters were = 0.87, = 0.48. N should be at least around 310 to 

ensure that the control limits are 5% larger than the standard control limits when λ is 

0.05. When δ is 0.01 with the same λ, the required sample size is around 1600. 

1̂φ 1̂θ

 

For AR (1) processes, sample size requirements should satisfy the following 

inequality. 

 N 〉 ( )( )21
2

222
1

ˆ12

2ˆ31

νφδδ

ννφ

−+
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IV.6 Chapter Summary 

 Likewise other robust EWMA design procedures, the proposed method modifies 

the control limits based on the level of model uncertainty. In order to represent the 

actual EWMA variance, a second-order Taylor approximation is used in the proposed 

design. This more accurate approximation results in a more fitting increment in 

modifying control limits by the proposed design. Comparisons to existing design 
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methods showed suitable properties required for a robust design. In conclusion, the 

proposed method provides control limits that reduce the risk of excessive false alarms 

and possess a less severe loss of power in detecting mean shifts. 
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CHAPTER V 

CONCLUSIONS AND FUTURE WORK 

 

V.1 Conclusions 

 This dissertation has considered model uncertainty in order to develop design 

procedures that incorporate it into the design process when statistical process control 

charts are applied to autocorrelated processes. To investigate the effects of modeling 

errors, Chapter II has represented sensitivity as a function of the autocorrelation of the 

process. Since the sensitivity is quantified, we have attained an easy interpretation of 

the effects of modeling errors and compared robustness by numbers between EWMA 

control charts on xt and et. Especially, the sensitivity of the residual-based EWMA 

results in simple expressions and used for the robust design of residual-based EWMA 

control charts in the following chapters.  

 The main conclusion is that the EWMA on the autocorrelated process data is more 

sensitive than the EWMA on the residuals with the same λ. Although we would not 

necessarily use the same λ for both charts, this is important because applying the 

control charts directly to xt has been recommended as a more robust alternative to the 

residual-based control charts with respect to modeling errors. It is also shown that 

control charts on the feedback controlled output are equally affected by ARMA 

modeling errors in the same way that residual-based control charts are affected despite 

the exclusion the modeling errors of β (which is the input/output model parameter in 
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the closed-loop). Therefore, we can conclude that residual-based control charts are no 

less robust than widened control charts directly on xt and control charts on feedback 

controlled output data in terms of ARMA modeling errors. 

 Chapter III has developed robust residual-based EWMA control charts using 

worst-case EWMA variance. The design method widens the control limits by an 

amount that depends on the level of the model uncertainty. Although some level of 

robustness is guaranteed with respect to ARMA estimation errors, the inevitable 

drawback of widening control limits is that the chart power decreases. If failures to 

detect out-of-control signals are regarded as more critical than false alarms, the worst-

case design approach can not be the best option. On the other hand, if the loss by false 

alarms costs more than the loss by missing a signal, the benefits of using the proposed 

method are likely to overweigh the loss. To reduce the trade-offs between the in-

control ARLs and the out-of-control ARLs, the best answer is to collect large samples 

when using the proposed method. The guidance for sample size was investigated in 

the chapter. 

 Chapter IV has developed another robust residual-based EWMA control charts 

using expected EWMA variance. This method is intended to overcome the drawback 

of the worst-case design approach. To represent the actual EWMA variance, this 

method used more accurate approximation and employed an expected value instead of 

an maximum value. More precise approximation resulted in a more suitable amount of 

modification in control limits than in other compared methods. Therefore, this 

proposed approach could achieve a better balance between false alarms and control 
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chart power than the existing method and the proposed method in Chapter III. In 

addition, this method is preferable to worst-case design by virtue of the reduced 

complexity involved in designing. In this method, the only information that is needed 

is the parameter estimates and their error covariance matrix. On the contrary, in worst-

case design approach we additionally need to choose the significance level. In practice, 

an additional parameter choice in implementation can be considerable difficulty to 

users.  

 

V.2 Future Work 

 Only parameter errors are considered with perfect information of model structure 

for this dissertation. However, the order of the model (p,q) is often unknown in 

practical situations. If a Bayesian structure can be employed to address model order 

uncertainty, a complete robust design method can be developed. For a simple example, 

suppose that several candidates of model orders exist. If we define the prior 

distribution of model order as the probability that Pr(M=m)=Pr(xt comes from ARMA 

(pm,qm) process), Pr(M=m) is the probability for the candidate. Also if the prior of 

parameters can be determined, necessary information like the posterior distribution of 

parameters can be derived using a general Bayesian analysis. 

 Although we have only developed analytical results for EWMA control charts, it is 

well known (e.g., Adams and Tseng 1998) that other control charts for detecting mean 

shifts that perform similarly to the EWMA, such as CUSUM charts, are equally 

sensitive to modeling errors. This brings up the question of whether any control 
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charting method for autocorrelated processes would be effective at detecting mean 

shifts, as well as robust to modeling errors. However, the biggest obstacle of 

developing robust CUSUM design is the structure of the CUSUM statistic, which is 

analytically intractable. The robust design method for CUSUM charts can be another 

challenging future work. 

 Because we have focused on the sensitivity of the EWMA variance, the results are 

only reflective of the sensitivity of the in-control performance of the control chart. 

However, a number of empirical studies have shown that the out-of-control 

performance (e.g., out-of-control ARL) of residual-based charts is also affected by 

modeling errors (Adams and Tseng 1998; Apley and Shi 1999). Although an 

analytical analysis of the sensitivity of the out-of-control performance would 

necessarily involve many factors other than the EWMA variance and would be much 

more complicated, it would also provide more complete insight into the effects of 

modeling errors on control charts for autocorrelated data. 
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APPENDIX A   

CALCULATING PARAMETER COVARIANCE Σγ 

 

 Assume the ARMA parameters are estimated using a method based on minimizing 

the sum of the squares of the model residuals, such as the nonlinear least squares or 

approximate maximum likelihood methods described in Box, et al. (1994). For sample 

size N sufficiently large, the parameter covariance matrix is (Box, et al., 1994) 

 Σγ ≅  = 







− σ

η
412 aT N0

0Σ







 −

σ
σ

4

12

2
1

aT
wa

N 0
0Σ ,                                                      (A1) 

where 0 denotes a column vector of p+q 0s, and Ση denotes the covariance of η = [φ1 

φ2 . . . φp θ1 θ2 . . . θq]T. The matrix Σw is defined as the covariance matrix of the 

random vector wt = [ut ut-1 . . . ut-p vt vt-1 . . . vt-q]T, where ut and vt are defined via ut 

= Φ-1(B)at and vt = −Θ-1(B)at.  

 To calculate Σw, rewrite ut = ∑∞
= −0j jtj, agφ  and vt = − ∑∞

= −0j jtj, agθ , where the 

gφ,j's and gθ,j's are the impulse response coefficients of Φ-1(B) and Θ-1(B), 

respectively. Note that the impulse response coefficients can be calculated recursively 

for j = 1, 2, . . ., via 

 gφ,j = φ1gφ,j-1 + φ2gφ,j-2 + . . . + φpgφ,j-p, and               (A2) 

 gθ,j = θ1gθ,j-1 + θ2gθ,j-2 + . . . + θqgθ,j-q                           (A3) 

with gφ,j = gθ,j = 0 for j < 0, and gφ,0 = gθ,0 = 1. If the matrix 
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is constructed from the impulse response coefficients, then Σw = HTH results, and 

 = [HTH]-1 can be substituted in (A1). Since the impulse response coefficients 

decay exponentially for stable, invertible ARMA processes, the number of rows that 

are needed in H will generally be reasonable.  

σ 2
a

Σ 12 −
waσ

 Because the true ARMA parameters are unknown, their estimates must be 

substituted into (A1) through (A3) to calculate the estimate Σ̂γ for use in the 

confidence interval (3.7). Box, et al. (1994) shows that for first-order AR, MA, and 

ARMA processes, the estimated covariance of η reduces to the following: 

 ARMA(1,1):  = Σ̂η
( )

( )
( )( ) ( )( )
( )( ) ( )( )


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2                (A4) 

 AR(1):  Σ̂η  = 
N
φ̂

21−
                 (A5) 

and 

 MA(1):   = Σ̂η N
θ̂ 21−  
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APPENDIX B   

DERIVATIONS OF li
jD φφ , ,  ,li

jD θφ , li
jD φθ , AND  li

jD θθ ,

 

 From the relationship , differentiating both sides with respect 

to φi and θl gives 
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Differentiating both sides of (B1) with respect to φl gives 
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Therefore, by the definition of li
jD φφ , , 
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Differentiating both sides of (B1) with respect to θl gives 
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Therefore, by the definition of  li
jD θφ ,
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It can be shown that li
jD φθ , is exactly same as . li

jD θφ ,

Differentiating both sides of (B2) with respect to θl gives 
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APPENDIX C 

 DERIVATION OF tr{ } ∑∞
=0j

T
jj γΣdd

 

 An approximate expression (that is asymptotically exact) for the covariance matrix 

of γ̂  is (Box et al. 1994) 

 Σγ= 
N
a
2σ 1−

wΣ                                                                                                        (C1)                               

where Σw is the covariance matrix of the random vector wt, defined as wt = [ ut ut−1 

… ut−p+1 vt vt−1 …vt−q+1 ]T.  The random processes ut and vt are defined as ut = 

 and vt = − . ( ) taBΦ 1ˆ − ( ) taBΘ 1ˆ −

Let yt = (1−ν)(1−νB)−1wt = (1−ν) ktk
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= w0ν
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∑ , and note that the elements of yt are 

time-delayed versions of ( ) and  − . 

Therefore, since d

) ta11−ν ( )( ) ( ) taBΘB 11 ˆ11 −−−− νν

i
j
φ and l

jdθ are the delayed impulse responses of the filters 

 and − , it follows that ( )( ) ΦB 1 ˆ11 −−−− νν (B1 ) )( )( ) ΘB 11 ˆ1 −−−ν (B1−ν
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2

j

T
jja ddσ ∑
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jjdd 2

1
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We can also write 

 Σy = E[ yt ] = (1−ν)2 E[ wt−j
T
ty ∑ ∑

∞

=

∞

=0 0j k

kjνν T
kt −w ] 
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Therefore, from (C1) and (C2) 
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w

To evaluate this, wt is written as  

wt = Awt−1 +bat 
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Then for any j, k, we have  

wt = Ak−jwt−k−j + function of {at at−1 … at−k−j+1}  

and the function of {at at−1 … at−k−j+1} is independent of  wt−k−j. 

Therefore, 
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 E[ wt
T

jkt −−
w ] = Ak−jΣw.                                                                                (C4) 

When (C4) is combined with (C3),  
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where I is a (p+q)×(p+q) identity matrix. 

 The matrix, [I−νA]−1, in (C5) is investigated only by diagonal elements because 

of the trace operator. The method for finding diagonal elements of the matrix 

[I−νA]−1 is provided in Appendix D.  

As shown in Appendix D, the 1st and ith diagonal elements of the matrix, [I−νAΦ]−1 

are ( )νΦ̂1  and ( ) ( )ννφ Φ  i
j

j
j ˆˆ1 1

1∑− −
=  respectively where 2 ≤  i ≤ p. The 1st and ith 

diagonal elements of the matrix, [I−νAΘ]−1 are ( )νΘ̂1  and ( ) ( )ννθ Θ i
j

j
j ˆˆ1 1

1∑− −
=  

respectively where 2 ≤  i ≤ q. 



 98

Therefore, 
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APPENDIX D 

 FINDING DIAGONAL ELEMENTS OF MATRIX [I−νA]−1    

 

 The matrix A in Appendix C can be partitioned as  

 A = 




 Θ

Φ
A

A
0

0



 and 

let ei denote a column vector that has 1 for the ith row element and zeros for all other 

elements such that ei = [ 0 0 …0 1 0 …0]T. 

The submatrix of A, AΦ, satisfies the following two properties. 

 ,   for   i = 1                                                                            (D1) ∑=
=

p

j

T
jjΦ

T
i e  e

1
φ̂A

 ,          for  2 ≤  i ≤ p                                                                       (D2) T
iΦ

T
i e  e 1−=A

and the column vector ei satisfies 

 1                  for   i = j                                                                            (D3)   ee j
T
i = I

 0                 for   i ≠ j                                                                             (D4)   ee j
T
i = I

where I is a p×p identity matrix. 

 Denote [I−νAΦ]−1 as M for notational convenience. The matrix M is written as 

 M = [ ]  ( ) .3322

0

1 LL++++=∑=−
∞

=

−
ΦΦΦ

k

k
ΦΦ            AAAIAAI ννννν

Using (D1)−(D4), for  2 ≤  i ≤ p, the ith diagonal element of M is 
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At the last equation above, 
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1

1
ˆˆ M

Thus, the ith element of the matrix, [I−νAΦ]−1, is 

 Mii = 
( )ν

νφ

νφ

νφ

Φ

 

  

 
i

j

j
j

p

j

j
j

i

j

j
j

ˆ

ˆ 1

ˆ1

ˆ 1
1

1

1

1

1
∑−

=

∑−

∑−
−

=

=

−

=  

The first diagonal element of M, M11, can be also obtained similarly. In this case 

instead of (D5), = 1e eT
j M ( )11

1 e e Tj M−ν  for 1 ≤ j ≤ p. Thus, M11= ( )νΦ̂1 . 

 Similarly, diagonal elements of the submatrix AΘ., can be found as the previous 

case. The only modifications are that p and φi’s are replaced by q and θi’s. Therefore, 

if a matrix N is denoted as [I−νAΘ]−1, the 1st and ith diagonal elements of the matrix 

are 
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 N11 =
( )νΘ̂
1  and 

 Nii = 
( )ν

νθ

νθ

νθ

Θ

 

  

 
i

j

j
j

q

j

j
j

i

j

j
j

ˆ

ˆ 1

ˆ1

ˆ 1
1

1

1

1

1
∑−

=

∑−

∑−
−

=

=

−

=  

where 2 ≤  i ≤ q. 
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