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ABSTRACT

Robust Design of Control Charts for Autocorrelated Processes with Model
Uncertainty. (August 2004)
Hyun Cheol Lee, B.S., Korea University, Korea;
M.S., Texas A&M University

Co-Chair of Advisory Committee: Dr. Daniel Apley
Dr. Yu Ding

Statistical process control (SPC) procedures suitable for autocorrelated processes
have been extensively investigated in recent years. The most popular method is the
residual-based control chart. To implement this method, a time series model, which is
usually an autoregressive moving average (ARMA) model, of the process is required.
However, the model must be estimated from data in practice and the resulting ARMA
modeling errors are unavoidable. Residual-based control charts are known to be
sensitive to ARMA modeling errors and often suffer from inflated false alarm rates.
As an alternative, control charts can be applied directly to the autocorrelated data with
widened control limits. The widened amount is determined by the autocorrelation
function of the process. The alternative method, however, also cannot be free from the
effects of modeling errors because it relies on an accurate process model to be

effective.
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To compare robustness to the ARMA modeling errors between the preceding two
kinds of methods for control charting autocorrelated data, this dissertation investigates
the sensitivity analytically. Then, two robust design procedures for residual-based
control charts are developed from the result of the sensitivity analysis. The first
approach for robust design uses the worst-case (maximum) variance of a chart statistic
to guarantee the initial specification of control charts. The second robust design
method uses the expected variance of the chart statistic. The resulting control limits
are widened by an amount that depends on the variance of the chart statistic —
maximum or expected — as a function of (among other things) the parameter

estimation error covariances.
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CHAPTER I

INTRODUCTION

A control chart is one of the primary techniques in statistical process control
(SPC) procedures. They are widely used to monitor processes and detect shifts in key
quality-related variables. Through the effective implementing control charts in
industrial processes, the product quality can be improved. Traditional control charts
are based on the assumption that process data are independent. Significant advances in
measurement and data collection technology — particularly in the area of in-process
sensing — have created the potential for much more frequent inspection. As a result,
autocorrelated data are now common (Montgomery and Woodall, 1997; Woodall and
Montgomery 1999). The run length properties of traditional control charts like
cumulative sum (CUSUM) and X charts are strongly affected by data autocorrelation,
and the in-control average run length (ARL) can be much shorter than intended if the
autocorrelation is positive (Johnson and Bagshaw, 1974; Vasilopoulos and Stamboulis,
1978). Consequently, there has been considerable research in recent years on
designing control charts suitable for autocorrelated processes (see, e.g., Montgomery

and Woodall, 1997, Lu and Reynolds, 1999, and the references therein).

This dissertation follows the style and the format of Technometrics.



1.1 Motivation of the Study

There are two primary classes of methods for control charting autocorrelated data.
The first class of methods is residual-based control charts (e.g., Alwan and Roberts,
1988; Apley and Shi, 1999; Berthouex, Hunter, and Pallesen, 1978; English,
Krishnamurthi, and Sastri, 1991; Lin and Adams, 1996; Lu and Reynolds, 1999;
Montgomery and Mastrangelo, 1991; Runger, Willemain, and Prabhu, 1995;
Superville and Adams, 1994; Vander Wiel, 1996; Wardell, Moskowitz, and Plante,
1994). One usually assumes the process data x;, (¢ is a time index) follows an
autoregressive moving average (ARMA) model with AR order p and MA order ¢,
denoted ARMA(p,q). Using standard time series notation (see Box, et al., 1994) with

the backward shift operator B defined such that Bx, = x,.;, an ARMA model can be

written as
O\B
X = @EBgat’ (1.1)

— 2 — 2 :
where @(B)=1-6,B— 6:,B°...- g,B%, &(B)=1- $B— 4B ... - $,B’, and a, is
an independently, identically distributed (iid), 0-mean sequence of random shocks

2

with variance o .

The basic idea behind residual-based charts is to directly monitor the residuals (the
one-step-ahead prediction errors), generated via e, = @_1(B)<15(B)xt. From (1.1), e, 1s
exactly the iid sequence a,, after any initial transients have died out. Thus, traditional

Shewhart, CUSUM, and exponentially weighted moving average (EWMA) control



charts can be applied to the uncorrelated residuals with well understood in-control run
length properties. Then, residual-based control charts detect a mean shift of the
original autocorrelated process as recognizing the mean shift “signature” in the
residual process (Apley and Shi 1999).

In practice, however, the model parameters must always be estimated from process
data. One criticism of residual-based charts is that they lack robustness to ARMA
modeling errors (e.g., Adams and Tseng 1998; Apley and Shi 1999; Lu and Reynolds
1999). For example, since the EWMA is a weighted average of the past residuals,
residual autocorrelation due to estimation errors can have a substantial effect on
EWMA variance and the resulting in-control ARL. If the true and estimated
parameters are such that the residual autocorrelation is positive, the in-control ARL
will be shorter than intended, and the control chart may be plagued with frequent false
alarms. Illustrative examples are included in Chapters 11.4 and III.1.

In the second primary class of methods, a traditional control chart is applied

directly to x;, but the control limits are modified (usually widened) to take into

account the autocorrelation. Johnson and Bagshaw (1974), Vasilopoulos and
Stamboulis (1978), and Zhang (1998) discussed modifying the control limits of
CUSUM charts, X charts, and EWMA charts, respectively. The extent to which the
control limits are widened depends on the autocorrelation function or, equivalently, on
the parameters of the ARMA model used to represent the autocorrelation. To be
implemented effectively, this approach also relies on an accurate ARMA process

model (or, equivalently, the autocorrelation function of x;) just as residual-based



control charts do. The difference is that in residual-based control charts, the chart
statistic depends on the model, and the control limits do not. In control charts applied
directly to the autocorrelated process data, the control limits depend on the model,
whereas the chart statistic does not. If the estimated model is inaccurate in either case,
the control limits will fail to provide the desired ARL.

Two main objectives exist in this dissertation. The first objective is to investigate
the sensitivity of parameter modeling errors on the foregoing SPC procedures that deal
with autocorrelated processes. The measure of sensitivity is derived in an analytical
form. Thus, the sensitivity is quantified and used for comparing the robustness
between the methods. The second objective is to develop robust design procedures for
the SPC with respect to parameter modeling errors from sensitivity results. Two kinds
of robust design methods are introduced. The first approach for robust design uses the
concept of worst-case scenario to guarantee a desired level of control specification.
The next robust design method uses the expected variance of chart statistic. The
resulting control limits are widened by an amount that depends on a number of factors,
including the level of model uncertainty. Throughout the dissertation, the EWMA

filter is used as a chart statistic.

1.2 Relation to Prior Work
The majority of the research in the SPC has focused on evaluating performances of
various SPC techniques or comparing performances between SPC techniques under

the assumption of given true parameters. There are much less results of unknown



parameters when compared to the results of known parameters. Even so, there have
been more results of independent process data than autocorrelated process data
because of tractable number of unknown parameters, which are usually a process
mean and variance. Most work has investigated estimation effects of the process mean
and variance on performances of SPC charts within the assumption of iid processes.

Ghosh, Reynolds and Van Hui (1981) studied the effect of unknown process
variance when the X chart is used to monitor a process mean. Quesenberry (1993)
investigated the effects of sample size on the run length distribution of control charts.
The author recommended the sample size for Shewhart and X charts based on
empirical evidence. Chen (1997) enhanced the result of X chart by the analytical
derivation of the run length distribution for three different estimation methods of the
process variance. Jones, Champ and Rigdon (2001) investigated the run length
distribution of estimated process parameters in implementing EWMA control charts.
They suggested the use of bigger sample size with small values of A, the EWMA
constant, when the estimated process parameters were applied. Jones (2002) suggested
using widened control limits to assure the desired level of in-control ARL,
consequently to reduce false alarm rate for the EWMA control charts. Also the author
gave the values of constant L that provides a desired in-control ARL with various
combinations of sample size and in-control ARL magnitude.

There have been limited efforts to understand the effects of parameter estimation
errors in using control charts for autocorrelated processes. As a sensitivity analysis

purpose, some empirical results were shown. Adams and Tseng (1998) empirically



investigated the sensitivity of four kinds of control charts when residuals were
extracted from the autocorrelated process data assumed to follow an autoregressive
(AR)(1) or integrated moving average (IMA)(1,1) model. According to the direction
of estimation errors, the performances of residual-based control charts were severely
affected. Especially, the resulting in-control ARLs of the EWMA and CUSUM
control charts were drastically decreased than the aimed in-control ARL when the
parameters were estimated such that the residuals are positively autocorrelated. This is
because of the structure property of EWMA and CUSUM statistics that use weighted
past values.

Apley and Shi (1999) also investigated the effect of modeling errors for three
residual-based control charts — generalized likelihood ratio test (GLRT), CUSUM
and Shewhart individual — using simulations. They showed that model estimation
errors caused large and adverse impact on performances of the control charts. Lu and
Reynolds (1999) also studied the robustness of the SPC chart with the empirical
evidence. They concluded that the performance of control charts on the residuals or
the original autocorrelated data was strongly influenced by the model estimation errors.
These are, however, not well suitable for robust control chart design purposes.

As a robust design procedure, Apley (2002) proposed a design method to be robust
to parameter modeling errors for autocorrelated processes. The author represented the
variance of EWMA with a first-order of Taylor approximation and provided closed
forms of the EWMA variance for first order ARMA processes. This method was the

pioneering work in the robust SPC design for autocorrelated data. The proposed



control limits were widened properly in accordance with the level of model
uncertainty to guard the aimed in-control ARL.

Previous studies on the robustness of SPC charts for autocorrelated processes have
been mainly based on empirical methods and thus analytical results are practically
nonexistent. In addition, these are mainly for sensitivity analysis purposes and are not
well suited for robust control chart design purposes. In this dissertation, the sensitivity
analysis of SPC charts will be investigated using analytical methods. In addition to
providing better insight into the reasons for lack of robustness, the analytical results
will be used to develop two different approaches for designing robust SPC control

charts for autocorrelated processes.

1.3 Outline of the Dissertation
Chapter II derives a general result for the sensitivity of the variance of a linear-
filtered ARMA(p,q) process and discusses the sensitivity and robustness of EWMAs

on x; and on e, as a special case of the general result. Since the sensitivity of a control

chart is closely related with the sensitivity of the variance of the chart statistic, the
sensitivity is quantified by the sensitivity of the variance of chart statistic with respect
to ARMA parameter estimation errors. Therefore, the measure of sensitivity is
represented by partial derivatives of the variance at each estimated parameter. Finally,
the measure is formed by the weighted sum of autocorrelation function. If an ARMA
process is determined, then the magnitude of the sensitivity is determined based on the

autocorrelation function of the process.



One conclusion is that residual-based EWMA control chart is no less robust than

EWMA control chart on x,. This is significant because in much of the criticism of

residual-based charts, it was implied that alternative methods (i.e., control charts

applied directly to x;) would be more robust. Also, we discuss the sensitivity of control

charts applied to processes in which autocorrelation is removed via feedback control.
The sensitivity result of the residual-based control chart is identical to that of control
chart on the feedback-controlled output when minimum variance (MV) controller is
employed to remove the autocorrelation. Although the focus is on the analytical
sensitivity analysis, some empirical results, which combine performance and
sensitivity information, are also provided.

Chapter III proposes a robust design method for residual-based control charts from
the result of Chapter II. To account for uncertainty in the estimated parameters and
guard against a situation in which the in-control ARL is substantially shorter than
desired, a reasonable precaution is to use control limits that are wider than those used
when the model is assumed perfect. This chapter presents a method for systematically
widening the control limits based on the "worst-case" design approach.

Considering the uncertainty in the true parameters, a confidence interval for the
standard deviation of chart statistic is approximated. To find an approximate
confidence interval, a first-order Taylor approximation is used. Then, the upper
boundary of the confidence interval can be viewed as a worst-case (maximum) value
for the true standard deviation of chart statistic and the worst-case standard deviation

is used for the control chart design. Decreased power by widened control limits is



indicated as a weakness and comparison results to Shewhart chart, which is least
sensitive to parameter modeling errors, is discussed. Also, the sample size
requirements are investigated.

Chapter IV develops another robust design procedure for residual-based control
charts. When modeling errors exist, the actual variance of a chart statistic will be
different from the ideal variance that assumes no modeling errors. The proposed
design approach also quantifies the differences between the actual and ideal variances
and modifies the control limits accordingly. The actual variance of the chart statistic is
represented using a second-order Taylor approximation in this method. After taking
the expectation of the second-order approximation, with respect to the parameter
uncertainty, the result is an expression for the expected variance as a function of
parameter estimates and their covariances.

To evaluate the proposed method, it is compared to an existing robust design
method and the robust design method in Chapter III. From comparison results, this
proposed approach achieves a more suitable balance between false alarms and control
chart power.

Chapter V summarizes conclusions and discusses future work.
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CHAPTER 11
SENSITIVITY AND ROBUSTNESS OF EWMA CHARTS FOR

AUTOCORRELATED PROCESSES WITH MODELING ERRORS

1I.1 Introduction

The EWMA statistic on x,, which is assumed to follow (1.1), is calculated
recursively via z; = (1-4)z;; + Ax,, where 0<A<l is the EWMA parameter. The

control chart signals a mean shift if z, falls outside the upper and lower control limits
(Zhang 1998)

{LCL,UCL} =+ Lo,
where o, is the (steady-state) standard deviation of z;,, and the constant L can be

chosen to provide a specified false alarm rate assuming estimated model is perfect.

Zhang (1998) provided a straightforward approach for calculating o, as a function of
the autocorrelation of x;,.

The standard residual-based EWMA design is to set = Lo, control limits on the
EWMA of the form z, = (1-4)z;_; + Ae,, where ¢, =01 (B)d%(B)xt and the “*” symbol
denotes an estimate of a quantity (Lu and Reynolds 1999). If there are no modeling
errors, then o, = aall/ 2(2-2)"12, and L can be chosen to provide a desired false alarm

rate or in-control average run length (ARL) (Montgomery 2001; Lucas and Saccucci

1990).
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In this chapter we derive relatively compact, closed-form analytical expressions
for the sensitivity of the residual-based EWMA variance o2 with respect to ARMA

parameter estimation errors. We also derive analogous sensitivity results for an

EWMA applied directly to the autocorrelated x,. The sensitivity results that we

develop in this chapter will be also used in Chapters III and IV in order to suitably
widen the control limits of a residual-based EWMA by taking into account the level of
model parameter uncertainty. Standard results for the covariance matrix of ARMA
parameter estimates will be used to quantify the uncertainty.

The format of the remainder of the chapter is as follows. In Chapter I11.2 we derive
a general result for the sensitivity of the variance of a linear-filtered ARMA(p,q)
process. In Chapter I1.3, we derive sensitivity results for the residual-based EWMA as
a special case of the general result. Although the results for a residual-based EWMA

are of simpler form than for an EWMA on x,, the results for x; are relatively simple for

first-order ARMA processes. These are derived in Chapter II. 4. Chapter I1.5 provides
a discussion on the sensitivity of control charts applied to processes in which
autocorrelation is removed via feedback-control. In Chapter 1.6, we compare the

sensitivity and performance of a residual-based EWMA versus an EWMA on x;.
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I1.2 General Sensitivity Results for Linear-filtered ARMA Processes

Consider the output z; of a linear filter H(B) = Zf:oh ij applied to an

ARMA(p,q) process x,, where {A;: j =0, 1, 2, ... } are the impulse response

coefficients (Box, et al. 1994) of H(B). Write this as

z,=HB)x,= G(B)a,= X5-08 jar-; 2.1)
where G(B) = @ 1{(B)&B)H(B) 2239:0 g jBf . In this chapter, we derive a general
result for the sensitivity of o—% with respect to the ARMA parameters. Note that the
EWMASs on x; and on e; are special cases with H(B) = (1-v)(1-vB)~! and H(B) =
(1-v)i- VB)_I @A_I(B)cl%(B), respectively, where v= 1-A. The variance of z, is given

by (Box, et al. 1994)

2_ 2% 2
oz=04 Zogj (2.2)
J:

Suppose that we have the estimates @(B) and d%(B) available, and that the filter
H(B) does not depend on the unknown, true parameters & B) and &(B). G(B) and g%

are unknown because they depend on @B) and E(B), but consider

G(B) = d~1(B)®(B)H(B) and

o0
0'22:022 _Azag > g% (2.3)
Y=y j=0
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where y=[¢; ¢ ... ¢, 6, 6, ... Hq]T is the vector of ARMA parameters. As measures

of the sensitivity of g% with respect to the ARMA parameters, we use the quantities

oo?
0f; |y=y

S(#)=——5— :i=1.2,....p,and
O-Z
oo 2
00; |y=7

S(Hl-)= > i=1,2,...,4.
GZ

Theorem: For a general linear filter z, = H(B)x;, the sensitivities are

o0
S(4,)= 2 SPepisk :i=1,2,...,p,and
k=0

o0
S(6:)=-2 ZOQkPi+k 1i=1,2,...,
k:

(2.4)

2.5)

(2.6)

2.7)

where pj denotes the autocorrelation function of z; |},:}; (z; when there are no

modeling errors), and {Pj:j =0,1,2,...} and {Qj:j =0, 1,2, ...} denote the impulse

response coefficients of P(B)= ! (B)= Z;f’:o P;B J

0(B)= 6! (B)= Z?:OQJ-BJ , respectively.
Proof: Differentiating (2.2) gives

2 o0
do; =202 ¥ gjdﬁi , and
09i |y=7 Jj=0

and

2.8)
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60-2 ©
2y

]
00; |y=7 J=0

2.9)

0Q>

where d¢ 0g ; /8¢ ly—5 and dez =0g /849, |y=5 - From the relationship G(B) =

@ 1(B)&B)H(B), we have g —0g1 — P82~ - —Bgip=hi —Ohiy —hiy —
.. — G4h;4. Differentiating both sides with respect to ¢; and §;, and evaluating the

result at the ARMA parameter estimates gives

d?l_&ld?i_l_'“_épd?l_p_gj_j:09and (210)
dﬁi_¢1d§i_1_"'_¢pd§i—p:_hj—i’ (2.11)
where it is understood thath-:hj: g; = ? = § =0 for j <0, and we have used

the fact that H(B) does not depend on the true ARMA parameters. If we view d?i and

d?i as sequences in the index j, rearranging (2.10) and (2.11) gives

d%=¢"'(B)g, ;= z Pkg] ;_»and

d%i==- ' B hj_i=-d ' (B)G' BDBE; ;=-6 ' (B)E, ;= Z Q€ ik

Using these in (2.4) and (2.5), the sensitivity measures become

2 o0 . o0 2 ® ~ A
207 gog]kg‘OPk 8 j-i—k o Ga g‘og]g]—(ﬁk)
S(g,)-—L——= =2yp —I= ,and
2 % 22 k=0 2 v 52
o 2 g oq 2 g
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0 o0
o F0ST SRSy S
(o) =——— —230
2 A2 k=0 2 52
O-a z gj O-a Z gj
j=0 Jj=0

Recognizing that the denominator and numerator in the far right expressions are the

variance and lag—(k+i) autocovariance of z; |},:}; = zj?;og jar—j (Box, et al. 1994)

completes the proof. =

S(¢#;) and S(6,) are the weighted sums of the impulse response coefficients of

®&~1(B) and ©®~!(B), where the weights are given by the autocorrelation function of

zt ly=y - For the case that z, is an EWMA, an EWMA on positively autocorrelated data

x; will have a more slowly decaying autocorrelation function than an EWMA on e;
with the same value of A. Consequently, it will generally be the case that an EWMA
on x, is more sensitive to modeling errors than an EWMA on e, We demonstrate this

more concretely in Chapter 11.4 for the special case of first-order ARMA processes.
This conclusion is somewhat surprising given that an EWMA on the ARMA residuals

may appear to rely more heavily on the ARMA model than an EWMA on x;. The
control limits (£ Lo,) for an EWMA on x; do, however, depend heavily on the ARMA

parameters.
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I1.3 Sensitivity Results for the Residual-based EWMA
The sensitivity expressions in the theorem of the preceding chapter simplify

considerably when z, is a residual-based EWMA. In this case, H(B) =
(1-v)1-vB) 167 (B)A(B) , and G(B) = &~ '(B)OB)H(B) = (1-v)(1-vB)"|,
where v = 1-A. With no modeling errors, the residual-based EWMA is the first-order
AR process z; ]},:}; = (l—v)(l—VB)_la,, with autocorrelation function p; =,

Substituting this into (2.6) and (2.7), the sensitivities for the residual-based EWMA

become
0 . . © — 2410
Se(g,)= 2 SR V=201 TP BR|p_ =20 7 (B)lpo, = L (2.12)
k=0 k=0 D(v)
and
0 . o) o ) i
Se(0,)=-2 X0 vi+i==21 30 B¥l5_, =206 B)lpo, == (2.13)
k=0 k=0 O)
where @(v) =1—¢?1v—452v2 —...—¢2pvl’, and @(V)=1—é1v—ézvz —...—éqvq. We

have added the subscript e on the sensitivities to indicate they are for an EWMA on e,.

S.(¢#;) and S,(6;) have clearer interpretations if we factor the AR and MA
polynomials in terms of their roots. Consider the factorization of @(B) = (1-mB)(1-
mB). . .(1-1,B) in terms of its roots {7y, 71, . . ., np}. The magnitude of the

sensitivity in (2.12) becomes

‘Se(¢i]:2‘/i IE[ 1

2.14
j:1|1_77jV| ( )
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Each term [1-7;1f in the denominator in (2.14) represents the distance between the
scaled root 7;v and the point 1.0 (i.e., the intersection of the unit circle and the real
axis) in the complex plane. This is illustrated in Figure 1 for a complex root and v =
0.9. The sensitivity will be large if any root is close to the point 1.0 and the EWMA
parameter A is small (v close to 1). Complex conjugate roots near the stability
boundary (the unit circle) do not necessarily result in large sensitivity. In contrast,
roots on the positive real axis near the stability boundary always result in large

sensitivity if A is small. Similar results hold for S,(6)) in terms of the roots of @(B) .

Im[ 7]
1
L .
mv
1-
0 | m |
1.0
Re[7]

Figure 1 Illustration of the distance between the scaled root 7; v and the point 1.0 in
the complex plane. Smaller distances increase the sensitivity S (¢,).
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I1.4 Sensitivity Results for First-order ARMA Processes
Although there are no simple closed-form expressions analogous to (2.12) and

(2.13) for the sensitivity of the EWMA on x, for general ARMA processes, (2.6) and
(2.7) can be simplified for ARMA(1,1) processes. When x, is ARMA(1,1), the

EWMA statistic z, |7: 7 with no modeling errors follows the ARMA(2,1) model

(1-v)i-6B

Ztly=5= (L B)i- ¢B (2.15)

where we have dropped the subscripts on the ARMA parameters. A closed-form

expression for the autocorrelation function of the ARMA(2,1) process is (Pandit and

Wu 1983)
Pr= icz (clqﬁk +c2vk) (2.16)
where
___(p-0k-4o)

- -dh-7)

)
C-vli-gvh-v2)

e G-6)1-6) (v-6)i-bv)]_(1+62)i+gv)-26(+4)
! 2_(¢?—vx1—¢fv) 1—¢?2 1-v2 (1 ¢2X1 V2x1 ¢v)

From Box, et al. (1994), the impulse response coefficients of P(B) = (1—(138)_1 and

OB) = (l—éB)_1 are Py =¢?k and Oy, =0k, Substituting these and (2.16) into (2.6)

gives the following expressions for the sensitivity of the EWMA on x,.
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S S 2 2 1 cHV
Sx(¢)=2szkpl+k= Z¢k(cl¢k+l+62vk+1): { 19 L ca }

€1 €2 k=0 cp+ey|1-92  1-gv

__ 2 |Vlate), af  av } 2 {V(cl+c2)+ eilg—v) }

Cater| I-gv 1= 1-gv| a+er| 1-gv (-2 )i-gv)

_ v ) ) 1
gy (- i 02 s gv)-260+ 4] 2.17)

and

5 gy ; -2 14 %
Sx(9)=—2kZOQkP1+k= Zé’k(c1¢k+1+c2vk+1): { 1 ZA}

€1 tC2 k=0 cp+ep 1—¢?9A 1-0v

__—2 V(CI+C2)+ Clé _qav :|_ -2 {V(01+02)+ cl(¢?—v) :|

_Cl+62 1-6v l—éé 1-6v _Cl+6‘2 1-6v (l—ééXI—éV)
_ o2
v -2(‘? QXIAV)A . (2.18)
1-6v  (1-6v)1+62 J1+dv)-26( +4)
In comparison, for the residual-based EWMA, (2.12) and (2.13) reduce to
2v
S,(¢)=—"—, and (2.19)
1-¢v
-2v
S 0)=——= 2.20
(0)=—> (2.20)

which are identical to the first terms in (2.17) and (2.18). Note that S,(¢) for an AR(1)
process and S,(6) for an MA(1) process are obtained by substituting 0 = 0 into (2.17)

and 413 = 0 into (2.18), respectively.
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For ARMAC(1,1) processes we can restrict attention to the case |¢3| <1and |é| <1,
which must hold for stable, invertible ARMA processes. Moreover, the EWMA

parameter is restricted to 0 < v < 1. Because negatively autocorrelated data are rare in
industrial processes, we might also restrict attention to the case that 0 < gz; Under
these conditions, it is straightforward to show that |S,(#)| > |S.(#)| and |S,(O)| > |S.(O)|
always hold. By inspection of (2.17) and (2.18), we only need to show that

(1 +62 Xl + év)— 2é(v + ¢?) > 0, and this follows because 1+ gv >‘ v+é| and

1+ 62 >‘ 260 ‘ .
Example. As an example, consider the Series A data from Box, et al. (1994), which

are 197 concentration measurements from a chemical process. Box, et al. (1994) found
that an ARMA(1,1) model fit the data well, and the estimated parameters were ¢3 =
0.87, 6 = 0.48, and g”% = 0.098. Suppose we intend to monitor the process for mean
shifts using EWMA control charts on x; and e, with EWMA parameter A = 0.10. If we
neglect modeling errors, the assumed standard deviation for the EWMA on x;is &,

= 0.220, which follows from (2.4) using the impulse response coefficients of the

ARMA(2,1) process (2.15). The assumed standard deviation for the EWMA on e, is
Gze = Og (1-»12(1+1) 12 = 0.0718. In order to gage the effects of modeling errors

on the EWMAS, we can calculate the sensitivities. For the residual-based EWMA,

(2.19) and (2.20) give Su(¢) = 8.29 and S,(6) = -3.17. For the EWMA on x;, (2.17)
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and (2.18) give S\(¢) = 11.60 and S,(6) = —3.70. Both charts are sensitive to modeling
errors, although the EWMA on x, is somewhat more sensitive. To illustrate the effects
of modeling errors, suppose that & and o, coincide with their estimates, but that ¢ =
0.90. The top two panels in Figure 2 show 1000 simulated observations of x; and e,
and the bottom two panels show the EWMASs on x, and e,. The control limits for the

EWMA on x; and e,. were set at £3 5, = £0.660 and £ 3 5, ,= £0.216, respectively.

No mean shifts were added, so that the frequent alarms in the control chart are all false

alarms.

Because ¢ differs from ¢f, the residuals actually follow the ARMA(1,1) model

- d?(B)xl _ Q?(B) @(B)a[ _1-0878
1-0.90B

.. (2.21)

With ¢ underestimated, the residual autocorrelation is positive. Although the standard

deviation of the residuals in (2.21) is only 0.24% larger than o,, and the residual

autocorrelation at any given lag is quite small, the autocorrelation dies out slowly. The

result is that the actual standard deviation o, of the EWMA on the residuals is
substantially larger than &, .. Similar arguments hold for the EWMA on x,, which

also has an inflated standard deviation. The sensitivities can be used to approximate

the increase in the EWMA standard deviation. For the EWMA on x;, the approximate
percentage increase in the EWMA variance is S,(¢@)(¢- 413 ) = 34.8%. Thus, the

approximate percentage increase in the EWMA standard deviation is (1.348)1/2-1 =



EWMA on x,

EWMA on ¢,
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Figure 2 Example illustrating the increased false alarm rate for EWMA charts with
modeling errors. The four panels from top to bottom are x,, e;,, an EWMA on x;, and an

EWMA on e,.
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15.8%. Similarly, the approximate percentage increase in the standard deviation of the
residual-based EWMA is 11.8%. The inflated EWMA standard deviation is evident in
the frequent false alarms in Figure 2.

Although the sensitivities provide a reasonable basis for comparison, they result in
a first-order approximation of the effects of modeling errors on the EWMA standard
deviation. The exact effects can be calculated using (2.2) and the impulse response

coefficients for z, with parameter errors. Based on this it can be shown that the actual
standard deviation of the EWMA on x; is o,, = 0.267, which is 21.3% larger than
Gz x - Similarly, the actual standard deviation of the residual-based EWMA is o, , =
0.0828, which is 15.3% larger than &, ,. Because L = 3 was used in the control limits,
the assumed false alarm probability for both charts is 0.0027. For the EWMA on x,,

for which o , is 21.3% larger than &, ., the actual false alarm probability is 0.0134 —

roughly five times larger than the assumed value. For the EWMA on ¢,, for which o,
is 15.3% larger than &, ., the actual false alarm probability is 0.0093.

Although it is tempting to conclude from the preceding discussion that the
residual-based EWMA is more robust than an EWMA on x;, the direct comparison is
not entirely fair. In the preceding discussion, the two charts were compared under the
assumption that the same value for the EWMA parameter was selected for both. If x;
has large positive autocorrelation, to achieve more comparable performance in

detecting mean shifts one might use a smaller value of v for an EWMA on x; than for
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a residual-based EWMA. As v decreases, the EWMA on x; becomes less sensitive to

modeling errors. In Chapter I1.6 we provide a more elaborate comparison of the

EWMASs on x; and on e, in which we consider both performance and sensitivity.

I1.5 Removing Autocorrelation with Feedback Control

In light of the lack of robustness of control charts for autocorrelated data, some
authors (e.g, Adams and Tseng 1998) have recommended removing autocorrelation
via feedback control when applicable and applying the control charts to the closed-

loop output. To illustrate, suppose that the process output x; obeys the model x; = fu,_;

+ d,, where u; is an adjustable process input, f represents the effects of the input on

the output, d;, = & 1(B) OXB)a, is an ARMA process disturbance, and the output target

value is zero. Refer to Figure 3. It is well known (Box et al. 1994) that if minimum
variance control is used and there is no model uncertainty, then the closed-loop

process output is x; = a,. Consequently, the closed-loop output is uncorrelated, and

traditional control charts can be applied.
To understand the effects of parameter uncertainty on the closed-loop output, write

the minimum variance control law as (Astréom and Wittenmark 1990)

v -1,
0N

where BH (B)=0(B) - é(B) If we temporarily assume #= £, then substituting the

control law into the model x;, = fu, | + & I(B) OB)a, gives
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A A

Substituting BH (B)=06(B) — ®(B) and rearranging terms, it follows that the closed-

loop process output with ARMA parameter errors obeys the model

Because this is precisely the equation describing the residuals of the ARMA
disturbance model, we see that ARMA parameter errors would affect a control chart
applied to the closed-loop output in exactly the same manner as a residual-based
control chart. If in addition we consider errors in the parameter f, it is reasonable to
conclude that control charts applied to the closed-loop output would be even less

robust than residual-based control charts.

)™

o(B)
®(B)
) Up
.| input/output -~
- model -
Xy
MV
controller [

Figure 3 Block diagram of minimum variance controlled process.
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I1.6 Performance and Sensitivity Comparison
As discussed in Chapters 11.3 and I1.4, a residual-based EWMA is generally more

robust than an EWMA on x; if both charts use the same value of A. This is not

necessarily an appropriate basis for comparison, however. The value of A that would
typically be selected for each chart depends on many factors, including the out-of-
control ARL performance of the chart. One might compare the two charts by choosing
each A so that the out-of-control ARL with no modeling errors are equivalent for the
two charts, and then comparing the sensitivities of each. However, it will not always
be possible to equate the out-of-control ARLs for the two charts. Consequently, we
compare the two charts by selecting values of A that provide equal sensitivities, and
then comparing the resulting out-of-control ARL performance. All ARL values are for
the case that there are no modeling errors and were calculated using Monte Carlo
simulation with 10,000 replicates.

For each replicate, the a; sequence was generated from the standard normal
distribution, and then the x, sequence was generated using (2.1). For the EWMA on x,,
the initial values of the x, sequence were discarded, so that the remaining sequence
can be assumed to have reached steady state. The EWMA was then applied directly to

x; with control limits chosen to provide an in-control ARL of 500 (with no modeling

errors). To calculate an out-of-control ARL, a mean shift of magnitude x was added to

X, at the initial timestep (but after the initial transient data was discarded). Similar

procedures were used for the EWMA on e,. After generating the residuals, the initial
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values containing transient dynamics were discarded. The mean shift was added to x,

before generating the residuals, at the timestep corresponding to the first retained
residual. The standard error for all ARL values was roughly 1%.

Tables 1 through 4 show the results of the Monte Carlo Simulation for four
different ARMA models. ARL(x) denotes the ARL for a mean shift of size uo,. The
in-control ARL was 500 for all cases. Each column of the tables contains values for
both EWMASs except for the cases where the last rows of the table can only display
EWMA on e; values, with the values for the EWMA on x; in parentheses. The
numbers in bold font in each of the ARL columns indicates the smallest out-of-control
ARL for that size mean shift. Tables 1 and 2 are for AR(1) processes with ¢=0.9 and
¢=0.5, respectively. Each row compares the results for the two EWMAs with A chosen
to provide a common sensitivity S(¢@) with respect to the AR parameter. For the cases
where only EWMA on ¢, values are displayed, there exist no values of A that satisfies
the common sensitivity for EWMA on x,. Table 3 is for the ARMA(1,1) example
considered in Chapter I1.4, and Table 4 is for an ARMA(1,1) process with ¢= 0.7 and
6= 0.3. In Tables 3 and 4, each row compares the two EWMAs with common AR
parameter sensitivity. The resulting MA parameter sensitivies S(6) are also shown.

Although Tables 1 through 4 indicate that the out-of-control ARL performances of
the two charts are generally comparable for common sensitivity, the residual-based

EWMA appears to have slightly better performance for most cases. Moreover, for

each specific size mean shift, the minimum ARL (indicated by bold font) is generally
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Table 1 Comparison of ARL performance for EWMAs on ¢, and on x, with common
sensitivity and in-control ARL of 500. x; is AR(1) with ¢ = 0.9. The values for the
EWMA on x, are in parentheses.

mean shift magnitude (in units of o)

S(¢| A L | ARL(0) | ARL(1) | ARL(2) | ARL(3) | ARL(4) | ARL(5)
180 | 00110 | 2.0177 500 213 90.1 | 51.6 | 33.6 | 24.1
7 1(0.0243) | (1.9723) | (500) | (225) | (92.9) | (50.7) | (33.0) | (24.0)
170 00173 [ 22156 [ 500 225 91.6 | 50.1 | 319 | 217
7 1(0.0409) | (2.1177) | (500) | (245) | (97.6) | (50.5) | (31.2) | (2L.5)
160 | 00244 | 23570 [ 500 231 937 | 486 | 302 | 20.0
7 1(0.0621) | (2.2287) | (500) | (259) | (102) | (50.9) | (30.2) | (19.9)
150 00323 | 24636 [ 500 244 98.0 | 495 | 29.6 | 189
1 (0.0901) | (2.3148) | (500) | (270) | (109) | (52.6) | (29.8) | (19.0)
140 | 00411 | 25471 | 500 260 105 520 | 300 | 184
7 1(0.1287) | (2.3957) | (500) | (286) | (118) | (55.5) | (30.5) | (18.6)
130 0:0511 [ 2.6212 [ 500 274 111 541 | 303 17.9
Y 1(0.1851) | (2.4722) | (500) | (295) | (123) | 57.7) | 31.1) | (18.2)
120 | 0-0625 | 2.6791 [ 500 283 118 560 | 308 | 176
V1 (0.2749) | (2.5504) | (500) | (300) | (128) | (59.3) | (30.5) | (17.7)
Lo | 0:0756 | 2.7337 [ 500 295 127 60.8 | 316 | 172
1 (0.4345) | (2.6444) | (500) | (307) | (134) | (61.5) | (31.3) | (17.3)
Lo | 0:0909 | 2.7866 | 500 306 137 643 | 333 17.1
7 1(0.7501) | (2.7551) | (500) | (306) | (136) | (62.2) | (31.4) | (16.7)
8.0 | 0.1304 | 2.8749 | 500 336 161 773 | 383 15.4
6.0 | 0.1892 | 2.9522 | 500 360 187 93.1 | 416 | 143
4.0 | 0.2857 | 3.0135 | 500 397 233 113 43.1 10.9
2.0 | 04737 | 3.0658 | 500 425 282 138 | 420 | 7.16
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slightly smaller for the residual-based EWMA, and the corresponding sensitivity is

also slightly smaller. Especially for Table 1 where the rows have only the values for

EWMA on e, there exist no values of A that can make the EWMA on x; as robust as

the EWMA on e; with larger A values. In addition, EWMA on e, has a much smaller

ARL value than EWMA on x, at column ARL(5). Therefore, EWMA on e, has better

performance and more robustness in this case. These ideal cases can be also found in

Table 3.

Table 2 Comparison of ARL performance for EWMAs on e, and on x; with common
sensitivity and in-control ARL of 500. x; is AR(1) with ¢ = 0.5. The values for the
EWMA on x, are in parentheses.

mean shift magnitude (in units of o)

NO I L | ARL(0) | ARL(1) | ARL(2) | ARL(3) | ARL(4) | ARL(5)
39 | 00127 [ 20805 | 500 [ 316 | 141 [ 890 | 640 | 496
7 1(0.0229) | 2.2216) | (500) | (29.3) | (12.7) | (8.15) | (6.04) | (4.86)
37| 00390 | 25289 | 500 [ 27.6 | 109 | 655 | 455 [ 343
1 (0.0716) | (2.5898) | (500) | (28.1) | (9.98) | (5.98) | (4.33) | (3.44)
35 | 00667 | 26977 | 500 [ 278 | 980 [ 556 | 375 | 277
=1 (0.1243) | 2.7160) | (500) | (30.7) | (9.17) | (5.12) | (3.61) | (2.83)
33 | 00959 | 2.8020 [ 500 [ 300 | 928 [ 507 | 329 | 239
> 1 (0.1814) | (2.7979) | (500) | (35.0) | (8.97) | (4.66) | (3.19) | (2.47)
3 | 01268 | 28685 | 500 [ 323 | 9.05 [ 469 | 299 | 210
1 (0.2432) | (2.8593) | (500) | (39.9) | (9.01) | (4.41) | (2.90) | (2.25)
5 | 01594 [ 20188 | 500 [ 354 | 918 | 444 | 274 | 134
71 (0.3099) | (2.9044) | (500) | (43.8) | (9.41) | (4.22) | (2.69) | (2.08)
57 | 0.1940 [ 29571 [ 500 [ 406 | 937 [ 432 [ 252 | 163
1 (0.3819) | (2.9430) | (500) | (51.0) | (10.0) | (4.15) | (2.53) | (1.90)
55| 02308 [ 29848 | 500 | 445 | 962 | 417 | 234 | 146
> ] (0.4593) | (2.9720) | (500) | (55.0) | (10.3) | (4.07) | (2.39) | (1.70)
53 | 02698 | 3.0064 | 500 [ 485 | 101 [ 409 | 216 | 134
] (0.5420) | (2.9950) | (500) | (59.1) | (10.9) | (4.04) | (2.25) | (1.54)
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Table 3 Comparison of ARL performance for EWMAs on e, and on x; with common
sensitivity to ¢ and in-control ARL of 500. x; is ARMA(1,1) with ¢ = 0.87 and 8=
0.48. The values for the EWMA on x; are in parentheses.

mean shift magnitude (in units of o)
S(¢) | S(6 | y) L ARL(0) | ARL(1) | ARL(2) | ARL(3) | ARL(4) | ARL(5)
14.0 3.75 0.0127 | 2.0805 500 69.7 26.6 14.6 9.08 6.03
| (3.81) | (0.0263) | (2.0791) | (500) | (70.1) | (25.4) | (14.7) | (10.4) | (8.11)
13.0 3.68 0.0233 2.3389 500 70.0 23.8 12.2 7.19 4.57
| (3.77) | (0.0514) | (22777) | (500) | (74.2) | (22.9) | (12.2) | (8.25) | (6.32)
12.0 3.59 0.0354 | 2.4954 500 73.4 22.8 10.8 5.87 3.70
(3.72) | (0.0842) | (2.4086) | (500) | (80.9) | (22.3) | (10.8) | (6.87) | (5.14)
11.0 3.50 0.0493 | 2.6101 500 78.3 22.0 9.55 4.96 3.09
| (3.65) | (0.1280) | (2.5152) | (500) | (87.5) | (21.9) | (9.59) | (5.80) | (4.25)
10.0 3.39 0.0654 | 2.6921 500 85.6 22.5 8.83 4.29 2.68
| (3.56) | (0.1883) | (2.6133) | (500) | (95.3) | (22.8) | (8.90) | (5.01) | (3.56)
90 3.27 0.0844 | 2.7653 500 93.5 22.7 8.35 3.81 2.38
| (3.42) | (0.2728) | (2.7068) | (500) | (100) | (23.1) | (8.44) | (4.37) | (2.92)
3.0 3.13 0.1071 2.8297 500 105 24.1 7.97 3.47 2.15
| (3.22) | (0.3906) | (2.8038) | (500) | (108) | (24.0) | (8.09) | (3.81) | (2.44)
70 2.96 0.1347 | 2.8823 500 117 26.1 7.84 3.10 1.94
| (2.94) | (0.5472) | (2.8911) | (500) | (114) | (25.1) | (7.94) | (3.39) | (2.00)
6.0 2.76 0.1690 | 2.9302 500 131 28.9 7.68 2.81 1.70
) (2.56) | (0.7367) | (2.9646) | (500) | (119) | (26.6) | (8.00) | (3.07) | (1.63)
50 2.53 0.2126 | 2.9723 500 149 32.7 7.94 2.63 1.51
Y (2.11) | (0.9432) | (3.0204) | (500) | (129) | (28.2) | (8.39) | (2.93) | (1.44)
4.0 2.25 0.2701 3.0065 500 172 38.9 8.55 2.36 1.32
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Table 4 Comparison of ARL performance for EWMASs on ¢, and on x, with common
sensitivity and in-control ARL of 500. x; is ARMA(1,1) with ¢= 0.7 and &= 0.3. The
values for the EWMA on x, are in parentheses.

mean shift magnitude (in units of o)
S(o) | N | A L ARL(0) | ARL(1) | ARL(2) | ARL(3) | ARL(4) | ARL(5)
6.4 2.81 0.0123 2.0665 500 37.5 16.1 9.79 6.78 5.06
) 2.83 | (0.0227) | (2.1649) | (500) | (35.2) | (14.7) | (9.25) | (6.83) | (5.44)
6.0 2.73 0.0323 2.4636 500 34.0 12.9 7.39 4.87 3.53
) 2.77 | (0.0610) | (2.4823) | (500) | (34.5) | (11.9) | (7.01) | (5.01) | (3.97)
56 2.64 0.0541 2.6376 500 345 11.5 6.21 3.99 2.82
) 2.71 | (0.1052) | (2.6240) | (500) | (37.4) | (10.9) | (5.97) | (4.16) | (3.26)
59 2.55 0.0780 | 2.7427 500 36.4 11.0 5.55 3.44 | 2.40
) 2.64 | (0.1565) | (2.7157) | (500) | (41.4) | (10.6) | (5.35) | (3.62) | (2.79)
48 2.45 0.1045 | 2.8241 500 40.1 10.7 5.06 3.03 2.15
) 2.55 | (0.2163) | (2.7915) | (500) | (47.0) | (10.7) | (4.91) | (3.19) | (2.43)
4.4 2.34 0.1339 | 2.8810 500 44.7 10.8 4.76 2.76 1.92
) 2.45 | (0.2859) | (2.8471) | (500) | (52.1) | (10.9) | (4.64) | (2.89) | (2.21)
4.0 2.22 0.1667 | 2.9275 500 50.1 11.0 | 451 2.52 1.70
) 2.33 | (0.3666) | (2.9050) | (500) | (57.5) | (11.3) | (4.39) | (2.66) | (1.98)
36 2.09 0.2035 2.9656 500 56.5 11.4 4.34 2.34 1.51
' 2.18 | (0.4596) | (2.9513) | (500) | (62.3) | (11.7) | (4.27) | (2.42) | (1.72)
39 1.95 0.2453 | 2.9941 500 63.9 124 | 430 2.16 1.38
) 2.01 | (0.5652) | (2.9863) | (500) | (67.1) | (12.8) | (4.33) | (2.23) | (1.50)
28 1.80 0.2929 3.0165 500 72.9 13.4 4.25 1.97 1.27
' 1.80 | (0.6830) | (2.9050) | (500) | (73.2) | (13.2) | (4.22) | (2.03) | (1.32)
24 1.62 0.3478 3.0377 500 83.9 15.2 4.30 1.83 1.19
) 1.57 | (0.8112) | (2.9513) | (500) | (79.2) | (14.3) | (4.26) | (1.89) | (1.22)
20 1.43 04118 3.0569 500 96.9 17.3 4.49 1.75 1.14
' 1.30 | (0.9474) | (2.9863) | (500) | (85.8) | (15.3) | (4.48) | (1.83) | (1.16)
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I1.7 Chapter Summary

In this chapter, we have developed analytical results for the sensitivity of EWMA
control charts on autocorrelated data and on the residuals of an ARMA model of the
process. For an EWMA on x,, or more generally a linear filter on x,, the sensitivities
are expressed in terms of the nominal autocorrelation function of the filter output. For
the residual-based EWMA, the sensitivities reduce to relatively simple expressions of
the nominal ARMA polynomials qg(B) and @(B) and the EWMA parameter.

The analytical results and the simulation results both indicate that although the
residual-based EWMA is sensitive to modeling errors, it is generally less sensitive
than the EWMA on x,. Likewise, it is no more sensitive than a control chart applied to

the closed-loop process output after attempting to remove the autocorrelation with

feedback control.
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CHAPTER III
ROBUST DESIGN OF RESIDUAL-BASED CONTROL CHARTS
FOR AUTOCORRELATED PROCESSES: WORST CASE

APPROACH*

I1.1 Introduction
In Chapter II, it was shown that both methods for control charts — residual-based

EWMA control charts and EWMA control charts directly on x, — were sensitive to

the ARMA modeling errors. Moreover, applying the EWMA control charts directly to
x; could not be an effective option to resolve the sensitivity problem of the residual-
based EWMA control charts. Rather, the residual-based EWMA chart was more
robust with respect to the ARMA modeling errors than the alternative EWMA chart
for the same value of A. Consequently, a reasonable strategy can be to use a residual-
based EWMA, but widen the control limits to some extent, in order to account for the
model uncertainty when we apply to control charts in practice. In this chapter, we
develop a robust design method for the residual-based EWMA control chart in the

presence of ARMA modeling errors.

*Reprinted with permission from “Design of Exponentially Weighted Moving Average Control Charts
for Autocorrelated Processes With Model Uncertainty” by Daniel W. Apley and Hyun Cheol Lee, 2003.
Technometrics, 45(3), 187-198. Copyright 2003 by the American Statistical Association.
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It is assumed that the autocorrelated process data, x;, follows (1.1) and the in-
control process mean has been subtracted so that x; is 0-mean until there is a shift. For

notational convenience the results in this chapter are derived for ARMA processes,
although a straightforward extension to autoregressive integrated moving average
(ARIMA) processes is discussed in Chapter I11.2.

When ARMA modeling errors exist, the residuals, e,, generated via the estimated

model behave as the ARMA(p+q, p+q) process

a; . (3.1)

and are no longer iid. When the EWMA statistic is applied to the residuals, then z, can

be written as the ARMA(p+g+1, p+q) proce

_1-v _ (1-v)®(B)o(B)
Z, = B e = (1—vB)@(B)<D(B)at (3.2)

From Chapter II, the standard residual-based EWMA chart design is to set the upper

control limit (UCL) and lower control limit (LCL) on z, at

{LCLLUCL}=xLé,, (3.3)
where 6,=6, (1-»12(1+v) 12 is the steady-state standard deviation of z, assuming

the estimated model is perfect. To improve the sensitivity to mean shifts that occur
when the control chart is first initiated, time-varying control limits that gradually
widen to the steady-state limits (3.3) can also be used (Montgomery, 2001). This study

considers only constant steady-state control limits.
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Let g2 denote the actual variance of the EWMA statistic (3.2), which is a

function of the true parameters and their estimates. As discussed in Chapter 1.1, if the

true and estimated models are such that the residual autocorrelation is positive, then
o—% will be larger (possibly much larger) than believed, the control chart will be
frequently interrupted by false alarms.

To illustrate the effects of modeling errors, suppose that x; is an AR(1) process

with ¢; = 0.9 and & = 1.0 and that the estimated parameters are ¢1 0.85and 62 =

1.0. Using an EWMA with A = 0.1 and treating the estimates as perfect, the assumed

EWMA variance is o2 =64 2 (1-v)(1+w)~! = 0.053. For a desired in-control ARL of

500, L = 2.814 (Lucas and Saccucci, 1990) and the control limits = L&, = + 0.647

would be used. Using (2.2) for calculating the variance of z,, however, it can be shown

that the actual EWMA variance is g2 = 0.084 — roughly 60% larger than the

assumed variance. If the control limits based on the assumed variance are used, then
Monte Carlo simulation (refer to Chapter I11.4 for details) reveals the actual in-control
ARL is approximately 165, which is substantially shorter than intended. Figure 4,
which shows the EWMA statistic for 500 simulated observations with the + 0.647
control limits, illustrates the frequent false alarms that result in this situation.

To protect against a situation in which the in-control ARL is considerably shorter
than desired, a logical precaution is to use control limits that are wider than those used

when the model is assumed perfect. This chapter presents a method for widening the
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EWMA control limits based on the following "worst-case" design approach. For a
specified 4 and a given set of ARMA parameter estimates, (3.2) implies o, is a
function of the true, unknown parameters. Considering the uncertainty in the true
parameters, Chapter III1.2 derives an approximate upper one-sided 1—« confidence
interval for o, for some user-selected 0<a<l. Let o, , denote the upper boundary of
this confidence interval, which can be viewed as a worst-case (maximum) value for

the true EWMA standard deviation. o, , will be represented in the form that involves

the sensitivity results of (2.12) and (2.13) for the residual-based EWMA derived in

Chapter I1.
1
UCL =0.647
0.5+ :
Zt
0 |
0.5+ :
LCL=-0.647
_1 | | | |
0 100 200 300 400 500

t
Figure 4 Example EWMA chart for an in-control AR(1) process with ¢

underestimated. The desired in-control ARL is 500, whereas the actual ARL is much
lower due to frequent false alarms.
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The proposed method is to monitor the EWMA statistic (3.2), but to use the worst-
case control limits

{LCL,UCL} =% Lo, , (3.4)
instead of the standard control limits (3.3). Chapter III1.3 discusses guidelines for
selecting the design parameters L, A, and . L can be chosen so that the worst-case
ARL (roughly, the in-control ARL that would result if o, assumed its worst-case
value) approximately equals some desired ARL value specified by the user. Widened
control limits will inevitably increase the out-of-control ARL for any size mean shift
and reduce the power of the chart. Chapter I11.4 discusses this drawback of the worst-
case design approach and illustrate with examples. It also discusses sample size
requirements and compare the EWMA with a Shewhart individual chart, which is less

powerful for small to moderate mean shifts but more robust to modeling errors.

I11.2 Worst Case EWMA Variance
Form Chapter I1.2, the EWMA statistic (3.2) can be rewritten as (2.1) where G(B)
~1 5-1( p\4 -1 « .
=(1-v)1-vB)" 0~ (B)D(B)d ™ (B)O(B) = X%_g B/ and {g;:j =0, 1,2, ...} are
the impulse response coefficients of the ARMA(p+g+1,p+q) transfer function G(B).

For a fixed set of ARMA parameters and their estimates, the EWMA variance is

calculated by (2.2).

Define the ARMA parameter vector y=[¢; ¢, ... 4, 6) & ... G, o217, and let

denote a point estimate. Note that we also consider the modeling error of &2 in this



38

chapter, therefore 2 is additionally included in y. To find an approximate confidence

interval for o,, we use a first-order Taylor approximation of the ratio o-% / 5—% about y
= y. If the parameter error vector is defined asy = y—, then the first-order Taylor

approximation is

o262 =1+VT7, (3.5)
where
2 2 T
po|=2v =t A ) N
o(v)  o(v) o(v) o) o) o)
with &) = @B)lg-, = 1-gp1=h’~ . . . ~g,)/, and V) = AB)p-, =
1-6,v-6, Ve -0, Y. When (2.13) and (2.14) are compared to V (except for the

last element), we can see that signs become reversed and the estimates of ARMA
polynomials are replaced by true polynomials in V. This is because we use the Taylor

approximation about ¥ = yin this chapter instead of y= 7. In Chapter II, we viewed y

as a random variable and differentiated with respect to y to derive the sensitivity

measure. On the contrary, if we differentiate G(B) with respect toy, the final result

changes to the shown form because the impulse response coefficient, g;, becomes the
linear function of @ (B) from G(B) = (l—v)(l—VB)_I(;)_l(B)qS(B)@_I(B)@(B). This

is discussed more specifically in Chapter 1V.5.2. For o%, since the ratio,o-g/ 5—%, is

(l—v)_1(1+v)6'g 20'5239:0 gjz- , differentiating the ratio with respect to 6'5, and
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evaluating the result at ag gives — (1 - v)_l (1+v)o, 2 239:0 g? , , - Therefore, the

result is — 0'52 since 239:0 g? , 5 = (1-v)1+ v)_1 .
64=0}

Let N denote the number of observations in the sample used to estimate the
ARMA parameters. For most estimation methods, the distribution of ¥ for large N is

approximately multivariate normal with mean 0 and some covariance matrix X, that is

inversely proportional to N (Box, et al., 1994; Brockwell and Davis, 1991).

Commercial statistical software packages for ARMA modeling often provide an

estimate ﬁy of the covariance along with the parameter estimates. Alternatively, the
method outlined in Appendix A may be used to calculate > y when only the parameter

estimates are available. Closed-form expressions for ﬁy are also provided in

Appendix A for the special case of first-order ARMA processes.

Using the multivariate normal approximation to the distribution of 7 , the ratio
g%/ 5—% in (3.5) is approximately normally distributed with mean 1 and variance
VT 2, V. Thus, for any probability 0 < o<1,

l—a = P 62/62 <1+ 2,072 )12] = Pr 0. < 6, {1+ 20T )12} 1],

where z, denotes the upper o percentile of the standard normal distribution.

Substituting 3 y and
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T
R e S T R R (3.6)
o(v) @(v) o(v) o) o) o(v)
for £, and ¥ leads to the approximate 1-a confidence interval
0,< 0, 0= 6, {1 T2V 5, 7)1 (3.7)

for the EWMA standard deviation. After selecting L as described in the following

chapter, o , can be used in the worst-case control limits (3.4).

The Taylor approximation (3.5) has an interesting interpretation when the process

is ARMA(1,1). In this case, (3.5) reduces to

0% N A2{1_2V(¢1_¢1)+ 2‘/(91_91)_6'621—0%}'

1 ¢1v 1-0yv or
The EWMA variance increases (relative to the assumed value 5—%) when ¢ is
underestimated (¢31 < ¢;) and/or 6, is overestimated (g, > ;). The reason is that the

autocorrelation of x, is underestimated in this situation, resulting in residuals with

positive autocorrelation. When the residuals are positively autocorrelated, the variance
of their EWMA is larger than if the residuals were iid. This was discussed in more
detail in Adams and Tseng (1998). The foregoing equation also indicates that the

effects of parameter estimation errors are larger for larger values of v. In the limiting

case with v =0 (a Shewhart individual chart on the residuals), errors in estimating ¢;
and @) have very little effect on the EWMA variance, which is further discussed in

Chapter 111.4.3.
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The confidence interval (3.7) and the expressions for f:y in Appendix A are also

valid for ARIMA(p,1,q9) processes of the form x; = ( 1-B) '@ i(B) O(B)a,. The reason

is that when estimating the parameters of an ARIMA model, one fits an ARMA model
to the differenced data (1-B)x,. Since the residuals are still generated via (3.1) with x;
replaced by the differenced data, the EWMA statistic follows the same

ARMA(p+g+1,p+q) model (3.2). The parameter errors therefore have the exact same

effect on the EWMA variance as in the ARMA case.

IT1.3 Selecting Design Parameters

When designing an EWMA chart for iid data with no consideration of model
uncertainty, the parameters A and L are often jointly selected to minimize the out-of-
control ARL for a specified mean shift, while ensuring the in-control ARL equals
some desired value. Lucas and Saccucci (1990) provide tables for selecting values of
A and L that are optimal in this sense. For a residual-based EWMA with autocorrelated
data, optimally selecting A and L is complicated even when perfect models are
assumed. The optimal A and L depend on many factors, including the desired in-
control ARL, the specified mean shift of interest, and the ARMA parameters. For
first-order autoregressive models, Lu and Reynolds (1999) provide tables for selecting

the optimal A and L for the specific cases of ¢;= 0.4 and ¢;= 0.8 with a desired in-

control ARL of 370. When considering model uncertainty as in this chapter, jointly

selecting A and L to satisfy some optimality criterion is prohibitively complex.
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In light of this, it is recommended that one first select A as if the estimated model
were perfect. The rule-of-thumb 0.05 < A< 0.5 (Lu and Reynolds, 1999) may be used,
where it is understood that smaller A values result in better detection of small mean
shifts, but slower detection of large shifts. For more detailed guidelines, the reader is
referred to the thorough discussions in Lucas and Saccucci (1990) and Lu and
Reynolds (1999).

After specifying A, suppose that the tables of Lucas and Saccucci (1990) are used
to select L based on some desired in-control ARL (denoted ARLy). If used in the
standard EWMA control limits (3.3), this value of L would provide the desired ARL
when there is no model uncertainty and the residuals are iid. With model uncertainty
considered, using the same value of L in the worst-case EWMA control limits (3.4) is

recommended. If the EWMA standard deviation o, happens to coincides with its
worst-case value o, ,, then the control limits (3.4) will provide an in-control ARL that
approximately equals the desired value ARL,4. The examples in Chapter II1.4 indicate

that this choice of L also results in an appealing Bayesian interpretation of the control
chart: If an appropriate posterior distribution for the ARMA parameters is considered,

then the posterior probability that the ARL is less than ARL is reasonably close to the
a value specified in the confidence interval on o,

Using a slightly smaller value of L in the control limits (3.4) also might have been
considered for the following reason. When there are no modeling errors, and the

standard control limits (3.3) are used, the value of L that provides a desired in-control
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ARL depends on A. This is primarily because the autocorrelation of the EWMA
statistic z; depends on A. As A decreases, the autocorrelation of z; increases, and the in-
control ARL increases for any fixed L. Consequently, as A decreases, smaller values
of L will provide the same in-control ARL. When modeling errors are present, the
errors also affect the autocorrelation of z,. When the true parameters are such that o,
coincides with o, ,, the autocorrelation of the residuals will generally be positive, and
the autocorrelation of z, will be larger than when there are no modeling errors.
Consequently, a slightly smaller value of L may provide the desired ARL when o,
coincides with o, ,. On the other hand, a first-order Taylor approximation of the
EWMA variance was also used in developing the expression for o,,. This
approximation tends to underestimate the EWMA variance, and the resulting o, , is

slightly smaller than what would result from a more exact confidence interval. Since
the control limits (3.4) are the product of L and o, ,, the effects of the Taylor
approximation are partially compensated by taking L directly from the tables Lucas
and Saccucci (1990) as recommended, as opposed to using a slightly smaller value.
Note that the ARL that one specifies in the design procedure should be viewed as
a worst-case ARL that results when the EWMA variance equals its worst-case value
(within the 1-« confidence interval). If the true ARMA parameters and the EWMA

variance are close to their estimates, the ARL will generally be larger than ARL,. To

avoid overly conservative control limits, this should be kept in mind when selecting
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the remaining design parameter . A small value such as @ = 0.01 may widen the
control limits to an extent that makes it difficult to detect most mean shifts of interest.
This tradeoff in using the worst-case control limits is discussed in more detail in
Chapter I11.4.1 and I11.4.2, with a recommended range 0.1 < < 0.3.

The design procedure is illustrated with the Series A data from Box, et al. (1994),
which are N = 197 concentration measurements from a chemical process. Box, et al.
(1994) found that an ARMA(1,1) model fit the data well, and the estimated parameters
were (omitting their subscripts) ¢? =0.87, 0 = 0.48, and 62 =0.098. Using Equation
(A.4), the estimated parameter covariance is

275 364 O
3, = {3.64 871 0 ]x10_3.
0 0 0.098
If A =0.1 and ARL4 = 500 are selected, the tables of Lucas and Saccucci (1990)
indicate that L = 2.814 should be used. Since &, =5, (1-¥2(1+v)~12 = 0.0718, the
standard control limits (3.3) become +L &, = +0.202. If o = 0.1 is also selected, then
(3.6) and (3.7) result in ¥ = [-8.29 3.17 —10.20]7, and 0, ¢ = 0.0849. The worst-

case control limits (3.4) are therefore + Lo, , =+0.239, which are 18% wider than the

standard control limits.
Figure 5 shows an EWMA control chart applied to 500 simulated observations

from the process when the true parameters assume the values ¢ = 0.917, 6 = 0.491,

and o2 = 0.102. These parameter values were chosen because the resulting Taylor
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approximation (3.5) of O—% (with V replaced by V) equals the worst-case value 03, a-

One can also show that of all parameter combinations that result in a Taylor
approximation equal to g; o » these values have the highest likelihood (minimize

T

4 f;;l 7). Both the standard and the worst-case control limits are shown in Figure 5.

Since the mean of x; was held at 0 throughout the simulation, all cases where the
EWMA statistic fell outside the control limits were false alarms. The standard control
limits resulted in false alarms around timesteps 50, 275, and 425, whereas the worst-

case control limits eliminated the first two of these. Monte Carlo simulation is used in

the following chapter to provide a more comprehensive analysis of the control chart

performance.
0.3
Worst-case UCL = 0.239
0.2 - | Standard UCL = 0.202 |
0.1+ |
z
t 0 —
-0.1+
02 Standard LCL = -0.202 |
Worst-case LCL = —0.239 I
0 100 200 300 400 500

t
Figure 5 Example EWMA chart with standard and worst-case control limits, when o,

coincides with its worst-case value o, .



46

0.3
Worst-case UCL = 0.239
0.2~ Standard UCL = 0.202 ) i
0.1+
Zt 0 |
0.1+ :
02k andard LCL = -01202 i
Worst-case LCL =-0.239
0 100 200 t 300 400 500

Figure 6 Example EWMA chart with standard and worst-case control limits, when o,
coincides with & .

Figure 6, which is similar to Figure 5 except that the true ARMA parameters were
chosen to coincide with their estimates, illustrates one drawback of using the worst-
case control limits: If the true parameters happen to fall sufficiently close to their
estimates, then the standard control limits provide the desired in-control ARL. The
worst-case control limits are unnecessarily wide in this case, which inevitably
decreases the power of the control chart. This is an inherent consequence of the worst-
case design approach, which is intended to guard against the situation where the true
parameters are not "sufficiently" close to their estimates. To mitigate this drawback,
using both sets of control limits for the EWMA chart is recommended. An observation

falling outside the worst-case control limits provides strong evidence that the process
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has changed. An observation falling within the worst-case control limits but outside
the standard limits should be interpreted with more caution; it could mean that either
the process has changed or that the ARMA parameters differ from their estimates.
Chapter I11.4 provides a detailed discussion of the tradeoffs involved in the worst-case

design approach.

I11.4 Discussions

Monte Carlo simulation is used with exactly the same manner, which was
explained in Chapter 11.6, throughout this chapter to investigate the ARL performance
of EWMA charts with standard and worst-case control limits when the parameters
differ from their estimates. Only difference is that modeling errors are considered in

this chapter. The EWMA for the residuals was calculated via (3.2), with z, initialized

at 0. A signal occurred when z, fell outside the control limits.

I11.4.1 Bayesian Interpretations

Consider a Bayesian alternative to the worst-case design approach, where some
posterior distribution for y is assumed (given the data from which the parameters are
estimated) and the control limits are selected to provide a desired average ARL with
respect to the posterior distribution of . This chapter discusses why designing the
control chart based on an average ARL would actually lead to control limits that are
narrower than the standard limits. In addition, a Bayesian analysis is considered to

investigate the posterior probability that the ARL is less than ARL4 when the worst-
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case control limits are used. For the examples considered here, this probability is
reasonably close to the value of « specified in the confidence interval. For analysis
purposes, it is assumed the posterior distribution of y is approximately multivariate

normal with mean y and covariance fly (see Appendix A). This can be viewed as an

asymptotic approximation when the prior distribution of yis noninformative.

Reconsider the ARMA(1,1) example introduced in Chapter II1.3, where the

A

estimated parameters were ¢ = 0.87, 0 = 0.48, and 5—% = 0.098. For simplicity,

uncertainty in &2 is neglected by modifying the earlier expression for ﬁy so that its

lower-right element (i.e., the variance of 5—%) is 0. This results in o, , = 0.0842 and

worst-case control limits + Lo, , = +0.237, which are only slightly narrower than
when we also considered uncertainty in &2 . Figure 7 shows contour plots of the ARL
as a function of gand @for 52 = &2 . Panel (a) is the in-control ARL contours for the

standard EWMA with control limits £0.202. The parameter estimates are indicated by

the * symbol. Since the EWMA was designed with ARL4 = 500, the ARL = 500

contour passes through the parameter estimates. Numerical integration of the ARL
with respect to the assumed posterior density of ¥ gives a rough approximation of 730
for the average ARL of the EWMA chart with standard control limits. Somewhat
surprisingly, this is larger than the desired ARL of 500 that results when the model is
perfect. It may be concluded that an average ARL of 500 could be achieved with

control limits that are even narrower than the standard control limits.
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Figure 7 ARL contours as a function of ¢ and & for the ARMA(1,1) example. Panels
(a), (c), and (e) show the in-control ARLs for the standard EWMA, worst-case
EWMA, and Shewhart chart, respectively. Panels (b), (d), and (f) show the out-of-
control ARLs for the three charts when the mean shift magnitude is 3o,
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The reason the average ARL is larger than 500 is that the ARL is a highly skewed
function of ¢ and 6, as can be seen in Figure 7(a). For ¢ < ¢? and 0> 6, the ARL
increases dramatically. The average ARL is misleading, however, since the ARL may
decrease to unacceptably small values for ¢ > q; and 6< 6. Numerical integration (of

the posterior density over the ARL < 250 region) also reveals there is a 0.24
probability the ARL is less than 250, which is only half the desired ARL. Likewise,
there is a 0.11 probability the ARL is less than 150.

Figure 7(c) shows analogous in-control ARL contours for the EWMA chart with
worst-case control limits +0.237. With the worst-case control limits, the probability
the ARL is less than the desired value 500 is approximately 0.13, which is reasonably
close to the a = 0.1 value selected when the chart was designed. Moreover, the
probability the ARL is less than 250 is only 0.05, compared to the 0.24 probability
with the standard control limits. The worst-case control limits clearly provide
adequate protection against an unacceptably short in-control ARL. An additional
benefit is that when the parameters coincide with their estimates, the in-control ARL
will be even larger than the desired value. From Figure 7(c), the in-control ARL in this
case is roughly 2000, compared to an ARL of 500 with the standard control limits.
The obvious disadvantage of widening the control limits, which is discussed in the
following chapter, is the resulting decrease in the power of the chart for detecting

mean shifts.
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I11.4.2 In-Control versus Out-of-Control ARL Trade-off
For the same ARMA(1,1) example introduced in Chapter I1I1.3 and continued in
Chapter 111.4.1, Figures 7(b) and 7(d) show the out-of-control ARL contours with a

mean shift of magnitude 3o,. Figure 7(b) is for the standard control limits + 0.202,

and Figure 7(d) is for the worst-case control limits = 0.237. The worst-case control
limits increase the out-of-control ARL by approximately 60% for most combinations
of ¢ and 6. Note that even with the standard control limits, the ARL is approximately
8.0 when the ARMA parameters equal their estimates, which may seem large for a

mean shift of 3o,,. After the initial occurrence of the mean shift, however, the mean of

the residuals rapidly approaches a steady-state value of only 0.750,. Superville and

Adams (1994) and Apley and Shi (1999) discussed this "forecast recovery"
phenomenon in detail. Table 5 presents the out-of-control ARL values for other mean
shifts for the specific case that the ARMA parameters coincide with their estimates. It
also provides results for the Shewhart individual chart, discussed in Chapter 111.4.3.
Widening the control limits clearly has a negative impact on the out-of-control ARL,

particularly for small mean shifts. For a mean shift of size o, which results in a
steady-state residual mean of only 0.250,, widening the control limits causes the out-

of-control ARL to increase from 101 to 247. This is understandable, given that the in-
control ARL (the ARL for a mean shift of size 0) increases from 500 to 2020. The

ARL increase is more moderate, but still substantial, for larger mean shifts.
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Table 5 ARL values for various size mean shifts for the ARMA(1,1) example when
the ARMA parameters coincide with their estimates.
mean shift magnitude (in units of o)
chart control limits 0 1 2 3 4 5
EWMA (1=0.1) | 0.202 (standard) | 500 | 101 | 23.8 | 8.11 | 3.54 | 2.22
EWMA (1=0.1) | 0.237 (worst-case) | 2020 | 247 | 43.3 | 13.3 | 5.29 | 2.89
Shewhart 0.967 (standard) | 500 | 366 | 168 | 49.1 | 7.83 | 1.38

As another example, with consideration of uncertainty in o,, suppose that the
parameters of an AR(1) process are estimated using N = 400 observations and that the

estimates are (13 = (0.5 and 6'52, =1.0. If A=0.1 and a desired ARL4 = 500 are chosen,

again L = 2.814. Since 6,=45, (1-)12(1+v)~12 = 0.2294, the standard control limits

(3.3) are £L 5, = +0.646. Using (AS), the parameter covariance is

zzil—éz 0 :[1.88 0} 103

If & = 0.1 is selected, then (3.6) and (3.7) result in P = [-3.27 —1.00]7, and Ora™
0.2516. The worst-case control limits (3.4) are therefore * Lo, , = +0.708, which are

roughly 10% wider than the standard control limits.

Figure 8 shows results for the AR(1) example that are analogous to Figure 7.
Figures 8(a) and 8(c) show the in-control ARL contours as a function of ¢ and 0'621 for

the standard and worst-case EWMA control limits, respectively. As in the Bayesian

analysis of the previous chapter, suppose that the posterior distribution of y is
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approximately multivariate normal with mean y and covariance 27, . With the worst-

case control limits, the probability that the ARL is less than 500 is roughly 0.105,
almost identical to the selected value of a.
Figures 8(b) and 8(d) show the corresponding out-of-control ARL contours for a

mean shift of magnitude 2 5, . Table 6 gives the out-of-control ARL values for other

mean shifts when the true parameters coincide with their estimates. Since the control
limits are widened by a lesser extent than in the previous ARMA(1,1) example, the
worst-case design results in a much less severe increase in the out-of-control ARL.

For mean shifts with magnitude 2 5, or larger, the out-of-control ARLs increase by

roughly 15%, whereas the in-control ARL doubles.

Given the decreased power of the chart that results from widening the control
limits, to what extent (or even whether) they should be widened to account for model
uncertainty would ideally depend on the costs associated with false alarms and the
costs of failing to detect out-of-control conditions, as well as the a priori probability of
occurrence of out-of-control conditions. If the costs of false alarms are small, then it
may not be desirable to widen the control limits. In the author's experience, however,
the costs of frequent false alarms are often quite high when the hidden costs of
unnecessary shutdowns and production delays and operators who begin to ignore all
alarms, including those that signal real out-of-control conditions, are ocnsidered. To
lessen the severity of the tradeoffs in using worst-case control limits, the best solution

(when possible) would be to collect a larger sample of data to reduce the parameter
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Figure 8 ARL contours as a function of ¢ and 0-621 for the AR(1) example. Panels (a),
(c), and (e) show the in-control ARLs for the standard EWMA, worst-case EWMA,
and Shewhart chart, respectively. Panels (b), (d), and (f) show the out-of-control
ARLs for the three charts when the mean shift magnitude is 2 5, .
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Table 6 ARL values for various size mean shifts for the AR(1) example when the
ARMA parameters coincide with their estimates.
mean shift magnitude (in units of o)
chart control limits 0 1 2 3 4 5
EWMA (1=0.1) | 0.646 (standard) | 500 | 30.0 | 9.37 | 496 | 3.24 | 2.34
EWMA (1=0.1) | 0.708 (worst-case) | 1080 | 39.6 | 10.9 | 5.66 | 3.68 | 2.65
Shewhart 3.09 (standard) 500 | 199 | 48.1 | 10.6 | 2.32 | 1.10

uncertainty. Guidelines for sample size selection are discussed in Chapter 111.4.4.

I11.4.3 Shewhart Individual Charts versus EWMA Charts
Figures 7(e) and 7(f) show the in-control and out-of-control ARL contours for a
Shewhart individual chart on the residuals in the previous ARMA(1,1) example.

Standard control limits of £ 3.09 5, =+ 0.967 were used, which provide an in-control

ARL of 500 when there are no parameter errors. The mean shift magnitude for Figure
7(f) was 3 5, the same as for Figures 7(b) and 7(d). The ARL of the Shewhart chart
is much less dependent on ¢ and & than the ARL of an EWMA chart with small A4,
because, unlike an EWMA, the Shewhart chart considers only individual residuals and
does not take a weighted average of successive residuals. Consequently, residual
autocorrelation has little effect on the Shewhart ARL if no supplementary run rules are

used. Although an increase in the variance of the residuals will affect the Shewhart
ARL, 52 was assumed equal to 52 in this example, and small variations in ¢ and &

do not substantially increase the residual variance. Figures 8(e) and 8(f) show
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analogous results for a Shewhart chart applied to the residuals in the AR(1) example,

2

where + 3.09 5, control limits were again used. In this example, variations in g

were also considered. Figure 8(e) shows that the in-control ARL depends
predominantly on o% and is nearly independent of ¢ over the range of values

considered.

Given the relative insensitivity of the Shewhart individual chart with respect to
parameter errors, an alternative to using an EWMA with worst-case control limits is to
simply use a Shewhart chart with standard control limits. Since the out-of-control
ARL for the EWMA is increased when its control limits are widened, one may
speculate that the Shewhart chart with standard control limits could provide better
detection of mean shifts. Tables 5 and 6 indicate that this is true only for large mean
shifts in the examples considered. Even when the worst-case control limits are used,
the EWMA still has substantially shorter out-of-control ARLs than the Shewhart chart
for small to moderate mean shifts. Table 5 shows that for the ARMA(1,1) example,
the Shewhart chart does not surpass the worst-case EWMA in power until the mean

shift is between 45, and 55,. This is the same level of mean shift at which the

Shewhart chart surpasses the EWMA with standard control limits. Table 6
demonstrates similar results for the AR(1) example. Moreover, comparing Figures
7(e) and 8(e) with Figures 7(c) and 8(c), the EWMA with worst-case control limits
provides the additional benefit of substantially larger in-control ARLs for most

parameter combinations.
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I11.4.4 Sample Size Requirements
In light of the decreased power that results from widening the EWMA control

limits, one may wish to collect a sample of data large enough to ensure o, is

sufficiently close to &, in which case the worst-case control limits will be close to
the standard control limits. It is difficult to provide general guidelines for sample size
requirements without some knowledge of the ARMA parameters, since o, , depends
heavily on the parameter estimates. If initial estimates have been obtained from an
initial set of data, however, this may be used this to determine how much (or whether)
additional data are needed. While waiting for the additional data to be collected, it
may be desirable to use both the worst-case and the standard control limits together
(refer to Figure 5) as temporary control limits until more accurate parameter estimates
and new control limits can be calculated.

Suppose that initial parameter estimates have been obtained and A and o have
been selected. A reasonable strategy is to select the size N of the additional data

sample large enough that the resulting percentage difference between o, , and & is

less than some small value o' (e.g., 6= 0.05). From (3.7), the requirement becomes

12
o T AV/2
=B :{l+za(VT2},V)l/ } <1+5.
aZ

Define Ty =N ij/. As shown in Appendix A, Ty is a function of the parameter

estimates but is otherwise independent of N. If this is substituted into the foregoing

inequality, then the sample size requirement reduces to
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(3.8)

To provide some insight into typical sample size requirements, Figure 9 shows
contour plots of the required N from Equation (3.8) as a function of ¢Z and 6 for an
ARMAC(1,1) process with four different values of A. The contour plots are for the
specific case of 6= 0.05 and & = 0.20. Since neither =y nor ¥ depends on & and ¢,

results for other 0 and « are obtained by multiplying the values of N in Figure 9 by
2622 0.0522.052 zg[ S 2(2+0)% = 0.0148 2621 8 “2(2+0)72. If, for example, a more

conservative o = 0.1 and the same ¢ are considered, then the required sample sizes are
multiplied by 2.32. For a less conservative & = 0.3 and the same o, the same sizes are
multiplied by 0.387. For small o, (3.8) indicates the required N is approximately
inversely proportional to &2.

In the ARMA(1,1) example of Chapter I11.3 with ¢3 =0.87, 0 = 0.48, and N =197,

the values 4 =0.1 and a = 0.1 were selected. This resulted in worst-case control limits
that were 18% wider than the standard control limits. Suppose that one wanted to
collect a sample large enough that the worst-case control limits were only 5% wider
than the standard limits. From Figure 9, a sample size of approximately 1270 would
be required when « = 0.2. For = 0.1, the sample size is 2.32 times larger, or N =

2,940.
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Figure 9 Contours of the required sample size N with 6 = 0.05 and « = 0.20 for an
ARMA(1,1) process with 4 = 0.05, 0.10, 0.20, and 0.40. For other values of ¢ and ¢,

multiply the contours by 0.0148 Zé 572(2+0)2.
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Note that the ridges in Figure 9 are at ¢? =1-Aand = 1-A. Fora specified A, the
EWMA chart is least robust when the parameter estimates coincide with 1-A. This
does not imply that one should avoid choosing a value of A that coincides with 1—(,/3 or
l—é, however. One may show that for any fixed positive values of (13 and é, (3.8)

increases monotonically as A decreases.

0.2] C |

0.1+ 060 \i

Figure 10 Contours of the required sample size N with 6= 0.05 and « = 0.20 for an
AR(1) process. For other values of ¢ and o, multiply the contours by 0.0148 2(21 o

~2(2+8)~2. The results for first-order MA and IMA processes are identical if ¢3 is
replaced by 0.
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Figure 10 shows contour plots of the required sample size as a function of ¢? and 4

for an AR(1) process with 6= 0.05 and « = 0.20. Results for other 6 and « are again

obtained by multiplying the values of N in Figure 10 by 0.0148 zg! 57%(2+6)2. Figure

10 also applies to first-order MA and IMA processes if ¢? is replaced by 6, because of

the symmetry of Xy and ¥ with respect to the AR and MA parameters. Figures 9 and

10 indicate that very large samples are often required to ensure that o, ,, is no more

than 5% larger than &, . Even for an AR(1) process with « = 0.20, sample sizes close

to 1,000 are required for the typical values A= 0.1 and qg >0.5.

II1.5 Chapter Summary

When designing a residual-based EWMA control chart, a natural measure is to use
wider control limits to account for uncertainty in the estimated parameters. The design
approach of this chapter widens the control limits by an amount commensurate with
the worst-case scenario, in which the ARMA parameters are such that the EWMA
variance equals the maximum value within an appropriate confidence interval.
Assuming an estimate of the parameter covariance matrix is available, or can be
calculated as described in Appendix A, the worst-case design approach involves little
additional complexity relative to the standard design approach.

The disadvantage of widening control limits is the decreased power of control

charts. However, since the purpose of this design method is to prevent an
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unacceptably short in-control ARL, the loss of chart power is inevitable. As indicated
in simulation results, however, there was no big difference in chart power between the
proposed method and the standard EWMA design when a mean shift size is large. In
this case, the benefits of using the proposed method are likely to overweigh the loss.
Moreover, if the loss by frequent false alarms is considered more serious than the loss
by missing a signal of out-of-control, the use of this control limit is recommended

although the loss of chart power can be severe in the case of a small mean shift.
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CHAPTER IV
ROBUST DESIGN OF RESIDUAL-BASED CONTROL CHARTS
FOR AUTOCORRELATED PROCESSES: EXPECTED VARIANCE

APPROACH

IV.1 Introduction

In Chapter III, we developed a robust design method for the residual-based
EWMA control charts using the worst-case variance. The design method is aimed at
guarding against the circumstances when the true ARMA parameters sufficiently
differ from their estimates. However, if the estimated and true parameters are such that
modeling errors are small enough to be negligible, the resulting control limits are
unnecessarily wide and lack sufficient power for detecting mean shifts.

Therefore, this chapter presents another design method for widening the residual-
based EWMA control charts to overcome the disadvantages of the worst-case design
method. The control limits of this design method are generally widened by a lesser or
more suitable amount than in the control limits of the worst-case design approach. As
a result, these control limits do not suffer as much from increased out-of-control ARL.
To represent model uncertainty, we use a second-order Taylor approximation in this
method. Also we use an expected value of the actual EWMA variance instead of the

maximum value.
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As in the previous chapter, it is assumed that the autocorrelated process data, x;,
follows (1.1) and the in-control process mean has been subtracted so that x; is 0-mean

until there is a shift. The EWMA statistic, z;, is written as (3.2) when it is applied to

the residuals with modeling errors (3.1). When o—%, which is a function of the true

parameters for a given A and ARMA parameter estimates, denotes the actual variance
of the EWMA statistic (3.2), the proposed method is to monitor the EWMA statistic

(3.2), but to use the control limits
{LCL,UCL} =+ L+E[c2]

instead of the standard control limits (3.3). In Chapter IV.2 we derive the expected
variance of an EWMA. Viewing true parameters as random, we use a second-order
Taylor approximation to represent the actual EWMA variance and take an expectation
on the approximated EWMA variance. The final result is represented by the form of
parameter estimates and their covariance matrix. Chapter IV.3 provides results of the
expected EWMA variance for special ARMA processes of low orders. From the
derived results, we advise actual design procedures in Chapter IV.4. Chapter IV.5
presents some discussions of interest regarding this design method. In the beginning
of the chapter, the proposed method is compared to an existing method and the
method developed in Chapter III. Afterwards, we discuss differences in the results of
expected EWMA variance according to the viewpoint of the random variable—using
either true parameters or estimated parameters. Finally, we briefly explain sample size

requirements for the proposed method.
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IV.2 Expected EWMA Variance
The vector of ARMA parameters is represented as y=[¢ ¢, ... 4, 6 & ... Hq]T

and the corresponding vector of estimated parameters is represented as y . The actual

EWMA Variance,af , can be represented by the second-order Taylor approximation

about y=y as

T
do2 ! 7| 0202 .
olzo?l,; {a—; y=ﬁ] (7—7)+5(7—7)T{722 7=;9](7—7)

As in the previous chapter, N denotes the number of observations in the sample. In
order to derive an expected EWMA variance, considering parameter uncertainty with
the Bayesian view, we use the Bayesian central limit theorem (Carlin and Louis 2000).
When the suitable regularity condition holds and the prior of ¥ is reasonably flat, the

posterior of y can be approximately multivariate normal with mean y and covariance
fly for large N. The expected value of the approximated EWMA variance, where the
expectation is with respect to the distribution of y, is written as

2 2
0“o;
872

E[azz];&22+—tr{ yep 27} (4.1)

where 6'22 = &3 (1-v)(1+v)~! and #r is a matrix trace that sums diagonal elements. The

fundamental reason for selecting the Bayesian view is to set a larger impact on the AR
parameters in this proposed method. This is will be discussed further in Chapter

IV.5.2.
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The expected EWMA variance, E[azz], is comprised of two parts. One is the
standard EWMA variance and the other is a trace of a matrix, which is a product of
the second-order partial derivative matrix of the EWMA variance and the covariance
matrix of parameter estimates. The second term can be considered as a gauge that
quantifies the level of model uncertainty because the first term is used only for the
standard design of EWMA control charts. The second term is represented with a
sample size, N, and is inversely proportional to the sample size at the end of the
derivation. Thus, the expected EWMA variance can become the standard EWMA
variance if we collect plenty of samples to be enough to neglect model uncertainty.

Differentiating (2.2) twice with respect to ¥ gives

T
0°g; [og; e,
g5 5 |3 . (4.2)
ol 7 oy y | oy

82022

2
=20,
oy* J

M8

When (4.2) is substituted for (4.1), the expected EWMA variance is rewritten as

Elo2] - 5(1—}@%{
1+v j

where we denote

g;D 5, +zdde (4.3)
0 j=0

I ™8
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D 5 5

and

J~ ‘77’

d;= ag] ‘7
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) 9.9, 9.0, ;.9 0;.6; . ¢ o
Elements of DJ are Dj ,Dj ,Dj ,Dj and elements of dJ are dj , dj .
We derive the form of elements of D; in Appendix B and the form of elements of d; in

Chapter I1.2. From Appendix B, the elements of D; can be also represented as

A

DY =2872(B)g j_(147) =202 (B)G(B)S ;_(141) = 2"’j—(i+l)(qg_zé) and

D0,

90 =7 (B)O T2 ;_(1ur) =— 7 (B)OT (B)G(B)S (1)

-
where {y;(R): j =0, 1, 2, ...} are the impulse response coefficients of any ARMA
transfer function R(B) such that R(B)=Z‘f:0w i (R)Bj . Similarly, using the impulse

response function, a’?" and a’j’l can be represented as j_i(@_lé) and

A

Vi (@_lé) respectively.
Then, from Z‘;’:Ongj in (4.3), z;@zong;ﬁmﬁz is

Zfzong;’.’f"f”f =2(1 —v)zjf;ovfz//j_(m)(q%‘zé): 20-v ™ Ee vy (qS‘zé)vk
=2(1- v)v”lqg_2 (v)@(v): 20-v)1+ v)_1 yitlgp=2 (v).

?zoé’ jD?"’el becomes

This follows since g; = (1 —v)vj and G(v)= (1+v)_1 -
—(1-v)1+ V)_lvi"Llé_1 (v)@_1 (v) in the same manner.

Therefore, using these in (4.3), tr{ Z;f’:o g;D jfl y tbecomes
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|
2v, V]! E—vaj |
s D5 =1V $2(v) | 2()ev) || Lo | Zae
t . DX = SR P U il VOV SV || [P g £ -
A P A ., |Zee ! Zo
~ ~ |
o(v)o(v) | l
2(1-v) VpZaV, _VpZaeoVy
+v | &%) d(v)elv)
Whereé(")zl_él"_éz"z_~-~_¢?pr,é(v)=l—élv—ézvz—...—éqvq,VPZ[V y2

. v P, Vlv v 2. .. v9T and 0 is a gxq zero matrix. Also, flqj,ﬁ@, and
f:dj@ denote the variance of @ estimates, the variance of @ estimates, and the

covariance between @ estimates and @ estimates, respectively. These are submatrices

of the matrix fly such that

Due to the tedious derivation of #r{ Z?:Od jd§ ) y +» this is fully shown in Appendix

C. The result is

tr{Zj?ZOdjd]Tfl}, )
ey 20 20, 3¢ pd, IV, 2/6) 20,3654, v,
= pPtq+ 5 + ~ :
(1+v)N d(v) 2

Thus, the expected EWMA variance is
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T T<
E[o?]= &5(1__Vj+&3(1_vj ooty pie0lg , ptq
1+v 1+v ®2(v) o(v)0(v) N

. 2[¢1 24, 3¢5 - pg, ]Vp s 2[91 260, 305 -+-q0, ]Vq
N(ﬁ(v) N@(v)

~ tptq

S(1-v 1[2VIZ4v, 2vIZ4ev,
s
N dﬁz(v) o(v)0(v)

N 2[¢?1 2&2 3¢Z3 "'pép ]Vp . Z[él 292 3?3 "'qéq ]Vq] ] (4.6)

(v) o(v)

where f@:Nﬁ\:¢ and§¢@=Nﬁlq§@ .

IV.3 Results for Low-order ARMA Processes

To calculate the expected EWMA variance in (4.6), we need the model order,
estimated parameters and their covariance matrix. Box et al. (1994) presented the
method for finding the covariance matrix of parameter estimates for general ARMA
(p,q) processes. For special cases of AR (1), AR (2), MA (1), MA (2) and ARMA
(1,1), the closed forms of the covariance matrix exist. Subsequently, closed-form
expressions of the expected EWMA variance can be determined for these cases.
For ARMA (1,1) processes, since the covariance matrix has the form of

el )

(qg] _91)2 1- g |- 0; (1—9l 1- 0,

the expected EWMA variance is,
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1220 32) 22(-46 -2 -62)
N =g f-6F  (-dwli-6w)d -6

fye 2y 20 } ]

~

1-gv l—élv

-l 22(1- o fi-d2 o -8 )+ 2 - i-dwh-n?))|
l+v) N -6 Ji-dw(-6v)

Since the covariance matrix of AR (2) processes is

= [ 143 —&lwz)}
> {—él(lw?z) 1= 43

the expected EWMA variance is

E[c?]= 6

z(l—vj 1] 224 =24 —6didv> — v + d3vE v vt
2 £
I+v) N (1_¢1V_¢2V )2

For AR (1) processes, the expected EWMA variance becomes

E[O'2]=

z

of1-v 1| 1-3¢2v2 + 202
%al i )T (T
1—-gv

because the covariance of AR (1) is 1— ¢A12 X

The expected EWMA variances for MA (2) and MA (1) processes become

h oL ,2
E[o2]= 2[1 j1+i _2¥26pv7 - || and
l+v N 1—911/—(921/
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E[Gz]zé_z(l—vj 1+i 1+é11/
‘ “W+v)  N|1-6yv

respectively.
The result of MA (1) processes is exactly the same as the result provided by Apley

(2002). This is because the impulse response function, g;, is the linear function of
@ B) as briefly described in Chapter II1.2. If parameter estimates are viewed as

random instead of true parameters, g; will be a linear function of @ (B). Then, the

result of AR processes will be exactly the same as the Apley’s. More discussions on

this can be found in Chapter IV. 5.2.

IV.4 Design with Expected EWMA Variance

The following procedures introduce the actual design. At first, parameters are
estimated from a data set. If the estimated model is one of the five special cases in the
previous chapter, only the parameter estimates are substituted for the proper
expression according to the model order. Most commercial software packages for time
series modeling will produce the model order, parameter estimates and the covariance
matrix of parameter estimates automatically. Therefore, the expected EWMA variance
with any order of ARMA processes can be calculated from (4.6) even if the closed
form of the covariance matrix is unavailable.

The recommendation for selecting L is to use the known information such as the

tables of Lucas and Saccucci (1990) with a specific value of 4 and an intended value
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of in-control ARL. As explained in Chapter III.3, one reason for using previous
information is that so many factors are involved in choosing L. Another reason for
using the same rule is to exclude effects caused by choosing different L values when
the proposed method is compared to other robust design procedures in Chapter IV .4.
The compared robust residual-based EWMA design methods use the same L values
for a specified level of in-control ARL and A. So, we can fairly investigate differences
between the substituted EWMA variances (which are used in each robust design
method) for the standard EWMA variance by using the same rule for selecting L.

To illustrate the design procedure with an example, we reuse the Series A data

from Box et al. (1994). The model was ARMA(1,1) and parameter estimates were ¢?

A

=0.87, 8 = 0.48, and 6'52, = 0.098. If we use 0.1 as a value of 4 and select 500 as a

desired level of in-control ARL, L is 2.814 from the table of Lucas and Saccucci

(1990). Then, from (4.7), E[O'Zz] is 0.0754 and thus control limits are £0.212. In

Chapter III, the standard and worst-case (a=0.1) control limits were +0.202 and
1+0.239 respectively. The control limits of the proposed method are 5% wider than the

standard control limits. The widened extent is much reduced in this design method.

For the worst-case design, relative increment to the standard control limits was 18%.

IV.5 Discussions
Some points of interest are discussed about the proposed method. Comparison

results among robust design methodologies are mainly presented and discussed. The
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average run length (ARL) is used for the performance measure of control charts. As in
other chapters, the same procedure of Monte Carlo simulation is applied for

calculating single in-control or out-of-control ARLs. Refer to Chapter I1.6 for details.

IV.5.1 Comparisons

This chapter evaluates the proposed method via several comparisons. Two
different design procedures are employed for comparison to the proposed design
method. The first one is the design method developed by Apley (2002) (hereafter A
method). This method is similar to the proposed method in the sense that the expected
value of EWMA variance is used. The differences lie in the viewpoints of random
variables and the accuracy level of approximation. Parameter estimates are considered
as random and a first-order Taylor approximation is used for representing expected
EWMA variance in the A method. The other method for comparison is the design
procedure proposed in Chapter III using worst-case EWMA variance (hereafter W
method).

Suppose that four sets of parameter estimates are obtained from four separate time
series modelings. No modeling errors on g% (=1) is assumed for simplicity. For the
parameter estimates when A is 0.05, Table 7 shows control limits (CL) of three robust
design approaches and their widened amount to standard control limits. All control
limits are designed for providing an in-control ARL of 500. The standard residual-
based EWMA control limits are + 0.4187. In the W method, ¢=0.2 (which is the

middle value of the recommended range for the significance level) is used to design
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the control limits. The relative increment is calculated as (o — &, )/&, x100 % where
6:=64 (1-»2(1+1)12 and o is the amount that replaces the standard EWMA

standard deviation in each robust design approach.

Generally, the control limits of the proposed method are wider than control limits
of the A method and narrower than control limits of the W method. Only when él =0.6

and N=50 in Table 7, the control limits of the proposed method are slightly wider than
those of the W method. In Table 7, when the sample size is 100, the control limits of
the proposed method are around 12 to 17 % wider than those of the standard control
limits. For the case of the A method, the relative increment to the standard control
limits is below 10%, around 5 to 8 %. The W method provides at least 20 % wider
control limits than the standard. Since all these design methods use an EWMA statistic,
the reasonable inference is that the proposed method provides larger in-control ARLs
than the A method does, whereas the chart power can be less than the power of the A
method. On the contrary, the proposed method is expected to provide shorter out-of-
control ARLs than those of the W method, as in the case of in-control ARLs. The
effects of widening control limits on ARLs are more thoroughly discussed in Chapter
111.4.2.

It seems that the control limits of the W method are quite conservative especially
when the sample size is relatively large. In Table 7, when the sample size is 500, the
relative increment of the W method is approximately three times larger than that of the

proposed method. When the sample size is considered, the increased amount to the
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standard control limits is substantial. This is due to the inherent characteristic of the W
method, which uses the maximum EWMA variance to guarantee an in-control ARL.
The widened amount of the W method cannot be small unless the sample size and/or
the significance level (« ) are quite large. For example, when the sample size is 500,
the control limits of the proposed method are £0.4339 at the first set of parameter
estimates. To produce control limits of a similar magnitude in the W method, the

sample size would be around 5000 or « would be larger than 0.3 at least.

Table 7 Control limits of robust EWMA design methods and their increases relative
to standard EWMA control limit when A is 0.05. CL and RI represent control limits
and relative increments.

A A Proposed A \

h| o N CL RI CL RI CL RI
50 0.5517 | 31.8% | 0.4827 | 152% | 0.5484 | 31.0%

0.9 | 0.6 100 0.4898 | 17.0% | 04519 | 7.9% | 0.5138 | 22.7%
200 0.4556 | 8.8% | 0.4356 | 4.0% | 0.4879 | 16.5%
500 04339 | 3.6% | 04256 | 1.6% | 0.4637 | 10.7%
50 0.5413 | 29.3% | 04775 | 14.0% | 0.5475 | 30.8%
100 0.4839 | 15.6% | 0.4491 | 7.2% | 0.5132 | 22.6%

09]04| 200 04525 | 8.1% | 04342 | 3.7% | 0.4874 | 16.4%
500 0.4326 | 33% | 04250 | 1.5% | 0.4634 | 10.7%
50 0.5455 | 30.0% | 0.4624 | 10.6% | 0.5372 | 28.3%
100 0.4863 | 16.1% | 04411 | 53% | 0.5054 | 20.7%

0.8]0.6| 200 0.4538 | 84% | 04301 | 2.7% | 0.4816 | 15.0%
500 04331 | 3.4% | 04233 | 1.1% | 04595 | 9.7%
50 0.5182 | 23.8% | 04570 | 9.1% | 0.5339 | 27.5%

08 | 0.4 100 04711 | 12.5% | 04383 | 4.7% | 0.5029 | 20.1%
200 0.4457 | 6.4% | 04286 | 2.4% | 0.4798 | 14.6%
500 04297 | 2.6% | 04227 | 1.0% | 0.4583 | 9.4%
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As the sample size increases, the widening in control limits decreases for all cases.
The relative increment is influenced by the magnitude of A as well as the sample size
(Apley 2002). As A increases, the relative increment decreases for every design
method. Tables 8 and 9 present information analogous to Table 7 when A is 0.1 and
0.2 respectively. Overall observations about the results are similar to the case of Table
7. However, relative increments of the proposed method are not as severe as when A4 is
0.05. For large N, the conservativeness of the W method is consistent with Table 7.
When N is 500, the relative increment of the W method is almost four times to five

times larger than that of the proposed method.

Table 8 Control limits of robust EWMA design methods and their increases relative
to standard EWMA control limit when A is 0.1. CL and RI represent control limits and
relative increments.

A A Proposed A w

h| G N CL RI CL RI CL RI
50 0.7715 | 19.5% | 0.7239 | 12.1% | 0.7958 | 23.3%

09 | 0.6 100 | 07113 | 10.2% | 0.6859 | 6.2% | 0.7549 | 16.9%
200 | 0.6792 | 52% | 0.6660 | 3.2% | 0.7246 | 12.2%
500 | 0.6592 | 2.1% | 0.6538 | 1.3% | 0.6966 | 7.9%
50 0.7648 | 18.5% | 0.7169 | 11.0% | 0.7948 | 23.1%
100 | 0.7077 | 9.6% | 0.6821 | 5.7% | 0.7541 | 16.8%

09104 200 | 06774 | 4.9% | 0.6641 | 2.9% | 0.7242 | 12.2%
500 | 0.6585 | 2.0% | 0.6531 | 1.2% | 0.6964 | 7.9%
50 0.7753 | 20.1% | 0.7042 | 9.1% | 0.7924 | 22.8%
100 | 0.7134 | 10.5% | 0.6755 | 4.6% | 0.7524 | 16.5%

08106 200 | 0.6803 | 5.4% | 0.6607 | 2.3% | 0.7228 | 12.0%
500 | 0.6597 | 22% | 0.6517 | 0.9% | 0.6954 | 7.7%
50 0.7537 | 16.7% | 0.6969 | 8.0% | 0.7910 | 22.5%

0.8 | 04 100 | 07017 | 8.7% | 0.6717 | 4.0% | 0.7513 | 16.4%
200 | 0.6742 | 4.4% | 0.6588 | 2.0% | 0.7219 | 11.8%
500 | 0.6572 | 1.8% | 0.6509 | 0.8% | 0.6948 | 7.6%
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Table 9 Control limits of robust EWMA design methods and their increases relative
to standard EWMA control limit when A is 0.2. CL and RI represent control limits and
relative increments.

A A Proposed A W

h| G N CL RI CL RI CL RI
50 1.0889 | 10.3% | 1.0724 | 8.6% | 1.1500 | 16.5%
100 1.0394 | 53% | 1.0308 | 4.4% | 1.1048 | 11.9%
200 1.0137 | 2.7% | 1.0093 | 2.2% | 1.0717 | 8.5%
500 0.9980 | 1.1% | 09962 | 0.9% | 1.0415 | 5.5%
50 1.0853 | 9.9% | 1.0642 | 7.8% | 1.1485 | 16.3%
100 1.0375 | 5.1% | 1.0265 | 4.0% | 1.1037 | 11.8%
0904 200 1.0127 | 2.6% | 1.0071 | 2.0% | 1.0709 | 8.5%
500 0.9976 | 1.0% | 0.9953 | 0.8% | 1.0410 | 5.4%
50 1.0902 | 104% | 1.0579 | 7.1% | 1.1511 | 16.6%
100 1.0400 | 53% | 1.0232 | 3.6% | 1.1057 | 12.0%
0.8]0.6| 200 1.0140 | 2.7% | 1.0054 | 1.8% | 1.0724 | 8.6%
500 09981 | 1.1% | 09946 | 0.7% | 1.0419 | 5.5%
50 1.0820 | 9.6% | 1.0495 | 63% | 1.1498 | 16.5%
100 1.0358 | 4.9% | 1.0189 | 3.2% | 1.1049 | 11.9%
200 1.0118 | 2.5% | 1.0032 | 1.6% | 1.0718 | 8.6%
500 0.9972 | 1.0% | 0.9937 | 0.6% | 1.0410 | 5.4%

0910.6

0804

To compare the capability of detecting mean shifts among design methods, the
chemical process data example in Chapters II and III is used again. We assume that
the true parameters equal the estimated parameters and the in-control and out-of-
control ARLs are then calculated using Monte Carlo simulation; the results are
summarized in Table 10. Two rows, which represent the proposed and A methods, are
additionally included in Table 5. If we look at Table 10, the proposed method
outperforms the W method, especially when the size of mean shift is small. For the

mean shift size of 1o, the proposed method reduces the ARL value to almost half of
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that of the W method. For the mean shift size of 25, the proposed method still

outperforms the W method. When the proposed method is compared to the standard
design method, differences in timesteps are within one step in detecting the mean shift

if the mean shift size is larger than 3o,.

As discussed in Chapter 111.4.2, widening control limits has an adverse influence
on the out-of-control ARLs. Since the control limits of the proposed method are
widened by a lesser amount than those of the W method, however, the proposed
method does not suffer as much from increased out-of-control ARLs. The A method is
in the exact opposite situation when compared to the proposed method. Meanwhile,
the proposed method is more likely to provide the desired level of in-control ARL
than the A method and W method with the same amount of modeling errors.
Consequently, it is reasonable to conclude that the proposed method attains more
adequate trade-offs between in-control ARLs and out-of-control ARLs than other

design methods.

Table 10 ARL values for various size mean shifts for the ARMA(1,1) example when
the ARMA parameters coincide with their estimates.
mean shift magnitude (in units of o)
chart control limits 0 1 2 3 4 5
EWMA (1=0.1) | 0.202 (Standard) | 500 | 101 | 23.8 | 8.11 | 3.54 | 2.22
EWMA (1=0.1) | 0.212 (Proposed) | 729 | 129 | 27.7 | 9.24 | 4.00 | 2.39
EWMA (1=0.1) | 0.208 (A method) | 612 | 115 | 25.5 | 8.58 | 3.79 | 2.30
EWMA (1=0.1) | 0.237 (W method) | 2020 | 247 | 43.3 | 13.3 | 529 | 2.89
Shewhart 0.967 (Standard) | 500 | 366 | 168 | 49.1 | 7.83 | 1.38
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IV.5.2 Bayesian or Non-Bayesian

The true parameter vector y = [¢ ¢ ... 4, 0; & ... Gq]T is considered as random

in this method. The approximate posterior distribution of y was used for deriving the
expected EWMA variance in Chapter IV.2. According to the Bayesian central limit
theorem, under the regularity condition and for large N, the posterior distribution of
can be approximated as normally distributed with mean of the posterior mode and
covariance of the negative inverse second derivative matrix of the log posterior
evaluated at the mode (Carlin and Louis 2000). In addition, the Bayesian estimation is
approximately equivalent to most estimation methods such as exact or approximate
maximum likelihood and exact or conditional least squares, when the prior
distribution of ¥ is nearly flat (Box et al. 1994). In this case, it is interpreted that the
posterior mode can be replaced by a general maximum likelihood estimator (MLE).

Thus, the posterior of y is approximately multivariate normal with mean y and

A

covariance E}, .

Within the Bayesian viewpoint, G(B) is the linear function of GXB) as seen in
GB)=(1-v)1- vB)_1 (:)_I(B)qﬁ(B)(li_1 (B)O(B). The second-order partial derivatives
of the impulse response function, g;, with respect to the MA parameters are zero.

Consequently, the expected EWMA variance does not involve the covariance of the
MA parameter estimates. This means we can represent the actual EWMA variance
more accurately by second-order Taylor approximation only in AR and ARMA

processes, and not in MA processes. On the contrary, in non-Bayesian view, G(B) is
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the linear function of @ (B). Then, the second-order differentiation affects MA and
ARMA processes in this case. Consequently, the basic reason for using the Bayesian
viewpoint is to place greater emphasis on the AR parameters and thus they have more

effect on the expected EWMA variance.

IV.5.3 Sample Size Requirements

From (4.6), if we use an infinite number of samples to estimate parameters, the
expected EWMA variance goes to the standard EWMA variance. This means that the
widened control limits by the amount of model uncertainty can coincide with standard
EWMA control limits as long as the sample size is large enough to neglect the effects
of model estimation. However, in practice, it is preferred to know a somewhat exact
sample size that will guarantee the widened control limits are close to the standard
control limits by some degree. If any parameter estimates exist, an additional sample
size can be determined to achieve the purpose, which is to know the sample size
information (Apley and Lee 2003). Considering that the initial estimation is
performed with in-control process data, the additional sample, N, should be collected
from the in-control process as well.

When ¢ denotes the small difference in magnitude between standard EWMA

standard deviation, &, and square root of expected EWMA variance, \/E[Jz2 ], then

the following inequality should be satisfied
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For ARMA (1,1) processes, the required sample would be

wy 22 0=40 1= v =6,)+ 206 -0 h - fi-6)
(52 +26)3 )i g Pli- o)

to obtain the control limits that are (6x100)% larger than the standard EWMA control

limits. From the chemical process data example, the model was ARMA (1,1) and the
estimated parameters were ¢31= 0.87, él= 0.48. N should be at least around 310 to
ensure that the control limits are 5% larger than the standard control limits when A is
0.05. When ¢'is 0.01 with the same A, the required sample size is around 1600.

For AR (1) processes, sample size requirements should satisfy the following
inequality.

1- 3¢312v2 +2v2

(52 +25)1- g ]

N)

IV.6 Chapter Summary

Likewise other robust EWMA design procedures, the proposed method modifies
the control limits based on the level of model uncertainty. In order to represent the
actual EWMA variance, a second-order Taylor approximation is used in the proposed
design. This more accurate approximation results in a more fitting increment in

modifying control limits by the proposed design. Comparisons to existing design
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methods showed suitable properties required for a robust design. In conclusion, the
proposed method provides control limits that reduce the risk of excessive false alarms

and possess a less severe loss of power in detecting mean shifts.
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CHAPTER YV

CONCLUSIONS AND FUTURE WORK

V.1 Conclusions

This dissertation has considered model uncertainty in order to develop design
procedures that incorporate it into the design process when statistical process control
charts are applied to autocorrelated processes. To investigate the effects of modeling
errors, Chapter II has represented sensitivity as a function of the autocorrelation of the
process. Since the sensitivity is quantified, we have attained an easy interpretation of
the effects of modeling errors and compared robustness by numbers between EWMA
control charts on x, and e,. Especially, the sensitivity of the residual-based EWMA
results in simple expressions and used for the robust design of residual-based EWMA
control charts in the following chapters.

The main conclusion is that the EWMA on the autocorrelated process data is more
sensitive than the EWMA on the residuals with the same A. Although we would not
necessarily use the same A for both charts, this is important because applying the
control charts directly to x, has been recommended as a more robust alternative to the
residual-based control charts with respect to modeling errors. It is also shown that
control charts on the feedback controlled output are equally affected by ARMA
modeling errors in the same way that residual-based control charts are affected despite

the exclusion the modeling errors of £ (which is the input/output model parameter in
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the closed-loop). Therefore, we can conclude that residual-based control charts are no

less robust than widened control charts directly on x, and control charts on feedback

controlled output data in terms of ARMA modeling errors.

Chapter III has developed robust residual-based EWMA control charts using
worst-case EWMA variance. The design method widens the control limits by an
amount that depends on the level of the model uncertainty. Although some level of
robustness is guaranteed with respect to ARMA estimation errors, the inevitable
drawback of widening control limits is that the chart power decreases. If failures to
detect out-of-control signals are regarded as more critical than false alarms, the worst-
case design approach can not be the best option. On the other hand, if the loss by false
alarms costs more than the loss by missing a signal, the benefits of using the proposed
method are likely to overweigh the loss. To reduce the trade-offs between the in-
control ARLs and the out-of-control ARLSs, the best answer is to collect large samples
when using the proposed method. The guidance for sample size was investigated in
the chapter.

Chapter IV has developed another robust residual-based EWMA control charts
using expected EWMA variance. This method is intended to overcome the drawback
of the worst-case design approach. To represent the actual EWMA variance, this
method used more accurate approximation and employed an expected value instead of
an maximum value. More precise approximation resulted in a more suitable amount of
modification in control limits than in other compared methods. Therefore, this

proposed approach could achieve a better balance between false alarms and control
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chart power than the existing method and the proposed method in Chapter III. In
addition, this method is preferable to worst-case design by virtue of the reduced
complexity involved in designing. In this method, the only information that is needed
is the parameter estimates and their error covariance matrix. On the contrary, in worst-
case design approach we additionally need to choose the significance level. In practice,
an additional parameter choice in implementation can be considerable difficulty to

users.

V.2 Future Work

Only parameter errors are considered with perfect information of model structure
for this dissertation. However, the order of the model (p,q) is often unknown in
practical situations. If a Bayesian structure can be employed to address model order
uncertainty, a complete robust design method can be developed. For a simple example,
suppose that several candidates of model orders exist. If we define the prior

distribution of model order as the probability that Pr(A=m)=Pr(x, comes from ARMA
(Pmsqm) process), Pr(M=m) is the probability for the candidate. Also if the prior of

parameters can be determined, necessary information like the posterior distribution of
parameters can be derived using a general Bayesian analysis.

Although we have only developed analytical results for EWMA control charts, it is
well known (e.g., Adams and Tseng 1998) that other control charts for detecting mean
shifts that perform similarly to the EWMA, such as CUSUM charts, are equally

sensitive to modeling errors. This brings up the question of whether any control
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charting method for autocorrelated processes would be effective at detecting mean
shifts, as well as robust to modeling errors. However, the biggest obstacle of
developing robust CUSUM design is the structure of the CUSUM statistic, which is
analytically intractable. The robust design method for CUSUM charts can be another
challenging future work.

Because we have focused on the sensitivity of the EWMA variance, the results are
only reflective of the sensitivity of the in-control performance of the control chart.
However, a number of empirical studies have shown that the out-of-control
performance (e.g., out-of-control ARL) of residual-based charts is also affected by
modeling errors (Adams and Tseng 1998; Apley and Shi 1999). Although an
analytical analysis of the sensitivity of the out-of-control performance would
necessarily involve many factors other than the EWMA variance and would be much
more complicated, it would also provide more complete insight into the effects of

modeling errors on control charts for autocorrelated data.
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APPENDIX A

CALCULATING PARAMETER COVARIANCE %,

Assume the ARMA parameters are estimated using a method based on minimizing
the sum of the squares of the model residuals, such as the nonlinear least squares or
approximate maximum likelihood methods described in Box, et al. (1994). For sample

size N sufficiently large, the parameter covariance matrix is (Box, et al., 1994)

0 2wl
0T 2N_ Oq N OT 2Ga

where 0 denotes a column vector of p+¢ 0s, and X, denotes the covariance of 7= [¢;
$... 90 6. .. Qq]T . The matrix X, is defined as the covariance matrix of the
random vector w; = [u; upy ... Upp Ve Ve - - vt_q]T , where u, and v, are defined via u;
= &}(B)a, and v, = - (B)a,.

To calculate X, rewrite u; = 239:0 8y jar—; and v, = —239:0 8¢ jar—j» where the

g4's and gy/'s are the impulse response coefficients of & I(B) and @(B),

respectively. Note that the impulse response coefficients can be calculated recursively
forj=1,2,... via
84j= 08pj1 T P8yj2t - T 484 p, and (A2)
2= 01801 T 6hggj0 T - -+ 0,84/ (A3)

with g4, =gg;=0forj <0, and g40=ggo = 1. If the matrix
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B I
g¢,0 () () : _ge’o O ()
g1 E40 ' i 801 860
842 &1 - 0 ! -ggo 891 - O
= : : ! : :

H=1 840! 200
Epp Spp-1 T 84l i —&oq “8o04-1 " o1
Spp+1 Epp T 8p21780g11 “8og T 862

. : : | : . .

is constructed from the impulse response coefficients, then X, = gg H”H results, and

o—%z;vl = [HTH]"! can be substituted in (A1). Since the impulse response coefficients

decay exponentially for stable, invertible ARMA processes, the number of rows that
are needed in H will generally be reasonable.

Because the true ARMA parameters are unknown, their estimates must be

substituted into (Al) through (A3) to calculate the estimate fly for use in the

confidence interval (3.7). Box, et al. (1994) shows that for first-order AR, MA, and

ARMA processes, the estimated covariance of 7 reduces to the following:

¢ - li-go) 1-¢2i-d6) [-4i-4?)

D " N(g-of (1—(32X1—92) (1-42)i-46) o

AR(1): z, = % (AS)
and

MA(1): 3 = 1-6°
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APPENDIX B

DERIVATIONS OF p%%, p#%  p%% AND p%*

From the relationship g ; =@~ (B)O(B)h ., differentiating both sides with respect

to ¢; and 6 gives

g P08k

=g; Z¢k , and (B1)
o 7 F 09
agj —k
——=- Z¢k (B2)
00, k=1 891

Differentiating both sides of (B1) with respect to ¢ gives

azgj 0 [ P agj—kj gj-i P ( agj—k]
= - Z = + z
og0s o4\ 5 2 g, ErR Fve Lr

2
_0gj-i . P Ogy 0%k N § ¢k5 gk
ofy k=104 0@ (=1 Of0g

2
_5gj—i+5gj—l+p 0"k
- k
o9 ¢ k=1 0904

Therefore, by the definition of D?" 4 ,

2
D%t _ _ 08 j-i

J a¢6¢;‘7 AT AP v




2N
(1_ 255 JD¢,,¢Z —dtvat,
k=1

¢ ¢,
dl +d 2

< = gj—(i+1)-

¢z ’¢l
Df
<p(B) gﬁz(B)

Differentiating both sides of (B1) with respect to 6, gives

82g, 0 P 08k 0gj-i P azg,-_k
= g] i z¢k - + k
0¢;00, 5‘91 k=1 09 00; (=1 0¢;00

Therefore, by the definition of D?i’g’

2 2
D¢i»‘gl — 8 agj_i + § ¢ a gj_k

J 5¢601‘}/ / 00, ‘7=}7 04,00, ‘?’ 7

k| b _ 0
( ¢BJD¢ r=a?,

k=1
1)
d.l. 1
6.0, _ “Jj-i _ A
D" = = =—— = i (ix7)-
A 0 R

It can be shown that D]Q" 4 is exactly same as D?”GI .

Differentiating both sides of (B2) with respect to §; gives

o%g p  0°g;
g]:(a{ i Z¢kg]kJ Z¢k 8-k

06,06, 006; k=1 06 00,00,
Therefore,
o = g

7 06,00,7" 7
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APPENDIX C

DERIVATION OF #{3%_d 4%, }

An approximate expression (that is asymptotically exact) for the covariance matrix
of y is (Box et al. 1994)

2
(o) -1
z,- —A‘; DI (C1)

where 2, is the covariance matrix of the random vector w,, defined as w, = [ u; u;_;

U] Ve Vel Vil 7. The random processes u, and v, are defined as u, =

A

& (B)a, and v,= -0 (B)a, .

Lety, = (1-0)(1-vB)'w, = (1-) %_,v¥w,_; , and note that the elements of y, are
time-delayed versions of (I—v)1-vB) '@~ !(B)g,and —(1-v)1-vB) &7 (B)q, .
Therefore, since d% and d are the delayed impulse responses of the filters
(1—v)1-vB) &7 (B) and —(1-v)1—vB) &7 (B), it follows that

_ 2 & T 2 r_ 1
j=0 Jj= 04

We can also write

o0 o0 .
Z,=Ely,y  1=(1- T Sv/VEElww] ]
j=0k=0



Therefore, from (C1) and (C2)

1 0'5

tr{ Z?:Odjdizy } = tr{;}ly7 2;}1 )
a

_ 1 -1
—W tr{ZyEw}

N

2
l_V (e 0] 0] . _
) r{ Y SvivEElw w1z
N j=0k=0

(1-v)° S Rk T -1
= tr v/v" E[ w,w 1=
N {jg()kz::o Lwi t“k_f‘] o

To evaluate this, w, is written as

Wt = AW,_I +bat

b dy e ?, i 0
1 0 0 i : 0
0 1 0 P 0 :
: o i .
where A = ____~;-___O___l___0__i__E)___-A;-___O___--_-__:O_ , b= 0
0 < 016 6 p -1
0 P10 0 0
0 i 0 0
: A
0 -~ 0 - 0 i 0 0 1 ] | 0

Then for any j, k, we have
w, = A|k_f|wt_|k_j| + function of {a; a4, ... a; | |+1}
and the function of {a,a;, ; ... a; |;j|+1} is independent of w,_|;_j|.

Therefore,

96
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T — Akl
E[wtwt_‘k_j‘] Alklg (C4)

When (C4) is combined with (C3),

~—~

2’ o0 (o 6] .
1-v) Y Svivk Alkily

r{Y% od ALz 1 =
J JUITY N 7=0k=0

V)2 © o . . 0 .
_(1=v) {2y Svivk Al - vy
j=0k=j j=0

=2

_(-v)p 2,2 LAY 2,2
= [t S (Af - g Tv ]
Jj=0 /=0 Jj=0

(l—v) 2

- (—2); [20{ S (A } - (p+)]
1—v =0

_ (=)

C(l+v)N

N

[26r{ [I-VAT ™!} = (p+q)] (C5)

where I is a (p+q)x(p+q) identity matrix.

The matrix, [I-vA]~, in (C5) is investigated only by diagonal elements because

of the trace operator. The method for finding diagonal elements of the matrix
[I-vA]~! is provided in Appendix D.

As shown in Appendix D, the 1stand ith diagonal elements of the matrix, [I- vA@]_1
are 1/ @(v) and (1—23.;11& jvj )/ d%(v) respectively where 2 < i < p. The Istand ith
diagonal elements of the matrix, [I-1vA o]~ are 1/ O(v) and (1—23.;11 0 jvj )/ Ov)

respectively where 2 < i< gq.
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Therefore,
2r{ [I-vA]™!} = (ptq)

22{]+(1—¢;1V)+(1—¢;1V—¢32V2)+...+(1—¢?1V_¢?2V2 _..._ép_lvp—l)}

() 7
+2{1+(1—é11/)+(1—élV—é2V2)+"'+(1—é1V—ézV2 —---—9q_1vq_l)} g
o(v)
_p{l—élv—---—qu_lvp_l —gz;pvp}+ 2{&1v+2¢?21/2 +---+(p—1)g$p_1vp_1 +p¢?pvp}
- B(v)
+q{l—élv—---— Aq_lvq_l —éqvq}+2 v+ 20,2 +---+(q—1)éq_1vq_1 + qéqvq}
o(v)

X 24 26,365 pd, IV, X 216, 26, 365 ---46, v,
B(v) o(v)

=ptq
Finally,
0 T —

I R0 PO (ECECR N

o(v) o(v)
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APPENDIX D

FINDING DIAGONAL ELEMENTS OF MATRIX [I-vA]"!

The matrix A in Appendix C can be partitioned as
Ap 1 O
NEIEA
|

let e; denote a column vector that has 1 for the ith row element and zeros for all other

elements such thate;=[00...010 ...01%.

The submatrix of A, A g, satisfies the following two properties.

T o~ T .

e Ag =2 ¢je; , for i=1 (D1)
j=1

el Ap=el |, for 2< i<p (D2)

and the column vector e; satisfies

[le;=1 for i=j (D3)

e
e/ le; =0 for i#j (D4)

where I is a pxp identity matrix.

Denote [I- VA@]_l as M for notational convenience. The matrix M is written as

M:[I_VA@]_IZ Of,(VA@)k=I+1/Aq3+v2Aé+1/3A%_|_ ...... .
k=0

Using (D1)—(D4), for 2 < i < p, the ith diagonal element of M is
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Mii: elTM €l'

l+vel~T_1(I+VA¢ +v2A§5+v3A§p+ ~~~~~~ )el-

= 1+v{e,-T_11 e; +Ve,~T_1A¢,(I +VAp +VIAL +VPAY 4o )e,}
= 1+v2el-T_2(I+vA(p +v2A(2p+v3A§p+ ------ )el-

= 1+v2{el~T_21 e; Jrve}le«s‘(p(l+vAgD +V2AL +V AL e )el}

:1+V3€i7:3(I+VAgD +V2Aé+V3A§p+ ...... )ei

=1+ v"élef(nvAgp +v2AL AL )e,-

+Vlézeg(I+VA@ +V2Aé+V3Aé§+ ...... )el
+ Vlélef(I+VA¢ +V2Aé +V3A35 B EEREE )el

+ Viépeg(l-i-VA@ +V2Ag2Zj +v3A§D Foevenen )el.
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At the last equation above,
eJT-Meizvj_i(eiTMei—l) J<i
Vj_i(el-TMel-) Li<j<p. (D5)

Using these, M;; becomes

ci—1 . .. . p
M;; =1+ Zl¢jvf_l(eiTMei—l)+v’ >
J= J=

-PA
=1+v' ¥ g/ el Me; —v! z¢JvJ’
J=1 j=i

[
I Mw

$gicdMe s g
1 Jj=i

Thus, the ith element of the matrix, [I-vA (p]_l, is

i-1 . . i-1 . .
- gv/ 1-% g/
M. = — =1 __ J=l

ii <
1— § ¢?jVj QD( )
j=1

The first diagonal element of M, My, can be also obtained similarly. In this case
instead of (D5), e]T~M e= y /1 (elTM el) for 1 <j<p. Thus, M11=l/d3(v)

Similarly, diagonal elements of the submatrix A g, can be found as the previous
case. The only modifications are that p and ¢,’s are replaced by g and 8;’s. Therefore,

if a matrix N is denoted as [I-vA @]_1, the 1st and ith diagonal elements of the matrix

arc



1
Nll == and
o)
i-1 . . i-1 .
l—zng] I—ZE’J-VJ
N, =_ J=1 __ J=l
u q . @(V)
1- Z jV]
j=1

where 2 < i <gq.
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