
RELIABILITY-YIELD ALLOCATION FOR SEMICONDUCTOR

INTEGRATED CIRCUITS:

MODELING AND OPTIMIZATION

A Dissertation

by

CHUNGHUN HA

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2004

Major Subject: Industrial Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4269895?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

RELIABILITY-YIELD ALLOCATION FOR SEMICONDUCTOR

INTEGRATED CIRCUITS:

MODELING AND OPTIMIZATION

A Dissertation

by

CHUNGHUN HA

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Approved as to style and content by:

Way Kuo
(Chair of Committee)

Bryan L. Deuermeyer
(Member)

Daniel W. Apley
(Member)

Jianer Chen
(Member)

Mark L. Spearman
(Head of Department)

August 2004

Major Subject: Industrial Engineering

iii

ABSTRACT

Reliability-Yield Allocation for Semiconductor Integrated Circuits:

Modeling and Optimization. (August 2004)

Chunghun Ha, B.A., Yonsei University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Way Kuo

This research develops yield and reliability models for fault-tolerant semiconductor

integrated circuits and develops optimization algorithms that can be directly applied

to these models. Since defects cause failures in microelectronics systems, accurate

yield and reliability models considering these defects as well as optimization tech-

niques determining efficient defect-tolerant schemes are essential in semiconductor

manufacturing and nanomanufacturing to ensure manufacturability and productiv-

ity. The defect-based yield model considers various types of failures, fault-tolerant

schemes such as hierarchical redundancy and error correcting code, and burn-in ef-

fects, simultaneously. The reliability model counts on carry-over single-cell failures

accompanied by the failure rate of the semiconductor integrated circuits under the

assumption of an error correcting code policy. The redundancy allocation problem,

which seeks to find an optimal allocation of redundancy that maximizes system reli-

ability, is one of the representative problems in reliability optimization. The problem

is typically formulated as a nonconvex integer nonlinear programming problem that

is nonseparable and coherent. Two iterative heuristics, tree and scanning heuristics,

and variants are studied to obtain local optima and a branch-and-bound algorithm

is proposed to find the global optimum for redundancy allocation problems. The

iv

proposed algorithms engage a multiple-search paths strategy to accelerate efficiency.

Experimental results of these algorithms indicate that they are superior to the ex-

isting algorithms in terms of computation time and solution quality. An example of

memory semiconductor integrated circuits is presented to show the applicability of

both the yield and reliability models and the optimization algorithms to fault-tolerant

semiconductor integrated circuits.

v

ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor, Professor Way Kuo, who provided

guidance, encouragement in my research, and continuous financial support during this

study. Special thanks go to my advisory committee Professor Bryan L. Deuermeyer,

Professor Daniel A. Apley, and Professor Jianer Chen for their continuous attention.

I have learned much from those individuals which was of value in completing this

dissertation as well as of help in cultivating my career.

My fellow graduate students, Wen Luo, Jung Yoon Hwang, Linda Maria, Dini

Sunardi, and Hsiang Lee deserve my thanks for their valuable comments and technical

discussions on this research.

This dissertation is devoted to my parents, Jeong Kwang Ha and Jeong Ja

Jeon. I could not have finished this research without their endless love, encourage-

ment, and support. I am also indebted to my wife, Seong Hee Kim, for her sacrifice

and support, and my daughter, Yeo Heun Ha, for the happiness and joy she brings

to my life. I also want to thank to my parents-in-law for their continuous help to my

family.

vi

NOMENCLATURE

YIELDS

YMFT manufacturing yield of a semiconductor integrated circuit

YWP yield at wafer production stage

YFAB yield at wafer fabrication stage

YAP yield at assembly and packaging stage

YBI yield at burn-in and final test stage

YPOI the Poisson yield model

YNB the negative binomial yield model

YY D yield related to yield defects

YBD yield related to burn-in defects

YIC yield of a semiconductor integrated circuit

YPC yield of peripheral circuits

YMB yield of a memory block

YBF yield related to block failures

YSC yield related to single cell failures

YBI burin-in yield

YDC yield of supporting circuits in a memory block

YMA yield of memory segments in a memory block

YLF yield related to line failures in a memory block

vii

YSCN yield of a single cell without an ECC

YBDC yield of supporting circuits at a block redundancy

YBLF yield related to line failures in a block redundancy

YBM yield of a block module

YBR yield of a block redundancy

YICN yield of a integrated circuit without fault-tolerance

RELIABILITIES

RIC reliability of a integrated circuit in an useful life period

RNC reliability of non-memory components in a chip

RSC reliability of memory segments in a chip

AREAS

Achip total area of a chip

AIC total area of IC

APC area of peripheral circuits per HALF

AMB area of a memory block

AMB0 area of a memory block without fault-tolerance

ABR area of a block redundancy

ABR0 area of a block redundancy without fault-tolerance

AWL area of a word line

ABL area of a bit line

ABWL area of a word line at a block redundancy

viii

ABBL area of a bit line at a block redundancy

Ac average critical area of all sizes of defects

Ac
Φ critical area for area Φ

FUNCTIONS

R(t) reliability function at time t

µ(t) failure rate at time t

h(t) hazard rate or instantaneous failure rate at time t

D(x) defect density for defect size x

Ac(x) critical area for defect size x

fs(x) probability density function for defect size x

pof(x) probability of failure for defect size x

PARAMETERS

x defect size, diameter of a defect

x0 the size of a defect with the highest probability of occurrence

s0 the size of a critical defect

D0 average defect density for all sizes of defects

λ the average number of defects (faults)

λi the average number of i type defects (faults)

α clustering factor for the negative binomial yield model

αi clustering factor of i type failures

γ a ratio constant for a burn-in yield model

ix

µNC failure rate of non-memory components in a chip

µSC failure rate of memory segments in a chip

t0 mission time of an integrated circuit

Nmb the number of memory blocks

Nwlc the total number of memory words at a chip

Nbm the number of block modules with the same size of block redundancy

Nwl the number of word lines at a memory block

Nbl the number of bit lines at a memory block

Ntbw the total number of bits in in a memory word

Ncbw the number of correctable bits in a memory word

Npar the number of parity bits in a memory word

Nbwl the number of word lines at a block redundancy

Nbbl the number of bit lines at a block redundancy

VARIABLES

nbr the number of block redundancies

nwl the number of row redundancies

nbl the number of column redundancies

nbwl the number of row redundancies at a block redundancy

nbbl the number of column redundancies at a block redundancy

necc existence of ECC

x

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

II DEFECTS AND DEFECT MANAGEMENT 8

II.1. Defect, Fault, Error, and Failure 8

II.2. Defect Management 13

III YIELD AND RELIABILITY MODELS 17

III.1. Manufacturing Yield 18

III.2. Reliability of Semiconductor Integrated Circuits . . . 19

III.3. Defect Size, Defect Density, and Critical Area 22

III.4. Poisson and Negative Binomial Yield Models 25

III.5. Defect-based Burn-in Yield Models 29

III.6. Reliability Model in an Useful Life Period 33

IV MODELING OF FAULT-TOLERANT MEMORY INTEGRATED

CIRCUITS . 36

IV.1. System Architecture of a Typical Memory IC 36

IV.2. Yield Model with Redundancy 39

IV.3. Yield Model with Various Types of Failures 40

IV.4. Yield Model with ECC 41

IV.5. Integrated Model for Memory Integrated Circuits . . . 42

V OPTIMIZATION OF YIELD AND RELIABILITY 52

V.1. Coherent System . 52

V.2. Formulation of Optimization Problems 53

V.3. Reliability Redundancy Optimization Algorithms . . . 57

VI EXACT ALGORITHM FOR REDUNDANCY ALLOCATION . . 59

VI.1. Theoretical Study for Global Optimization 63

VI.2. Multi-path Branch-and-Bound Method 66

VI.3. Numerical Examples 69

VI.4. Numerical Experimentation 75

VII HEURISTIC FOR REDUNDANCY ALLOCATION 80

xi

CHAPTER Page

VII.1. Definitions and Notation 84

VII.2. Steepest Ascent Rate Heuristic Method 85

VII.3. Tree Heuristic Method 86

VII.4. Scanning Heuristic Method 91

VII.5. Combinations of Heuristic Methods 94

VII.6. Computational Complexity of Heuristics 96

VII.7. Numerical Experimentation 98

VIII CASE STUDY: REDUNDANCY ALLOCATION OPTIMIZA-

TION FOR MEMORY INTEGRATED CIRCUITS 108

VIII.1. Optimization Problems 108

VIII.2. Numerical Experimentation 111

IX CONCLUDING REMARKS . 120

REFERENCES . 123

VITA . 130

xii

LIST OF TABLES

TABLE Page

1 Formulas for Yield and Reliability Calculation 51

2 Parameters Used in Example II . 73

3 Comparison of Computation Time for Three Algorithms 78

4 History of Iteration Heuristics for Redundancy Allocation 82

5 Iterative Heuristic Classification by Advantage 95

6 Experimental Results of OR for Various Heuristics 104

7 Experimental Results of AAE for Various Heuristics 104

8 Experimental Results of MAE for Various Heuristics 105

9 Experimental Results of the Average Computation Time for Var-

ious Heuristics (Absolute) . 105

10 Experimental Results of SR for Various Heuristics 106

11 Experimental Results of ARE for Various Heuristics 106

12 Experimental Results of MRE for Various Heuristics 107

13 Experimental Results of the Average Computation Time for Var-

ious Heuristics (Relative) . 107

14 Basic Parameters for Calculating Yield and Reliability 111

15 Optimal Allocations for the Various Conditions 119

xiii

LIST OF FIGURES

FIGURE Page

1 Manufacturing and Inspection Processes of Semiconductor Inte-

grated Circuits . 9

2 Hard and Soft Defects at an Intra-Layer 11

3 Possible Combinations of Defects and Faults 13

4 Bathtub Shape Failure Rate . 22

5 Distribution and Classification According to Defect Size 23

6 Schematic Diagram of a Typical Memory Integrated Circuit 37

7 Relationship of Yield, Reliability, Failure Type, and Fault-Tolerant

Scheme . 38

8 A Bridge System . 70

9 A HSP System . 73

10 A Series of HSP Systems . 76

11 Graphical Example of a Tree Heuristic 88

12 Graphical Example of a Scanning Heuristic 93

13 A Series of Bridge Systems . 99

14 A Complex System . 101

15 A Block Diagram of a 1Gb DRAM 109

16 Comparison of IC Yield Related to the Existence of ECC 113

17 Comparison of IC Yield Related to the Various Row and Column

Redundancy Policies . 114

xiv

FIGURE Page

18 Comparison of IC Reliability Related to the Various Row and

Column Redundancy Policies . 115

19 Comparison of Optimal Yield Related to the Various Conditions . . . 118

1

CHAPTER I

INTRODUCTION

Nanotechnology is considered one of the promising technologies for 21st century. The

prefix “nano-” indicates one billionth (10−9), i.e., one nanometer (nm) is equal to

10−9m or 0.001µm. In a narrow sense, nanotechnology means the design, fabrication,

and manipulation of atoms and molecules. Therefore, it is sometimes referred to

as molecular technology. In a broad sense, nanotechnology can be defined as any

science and technology that manipulates matter and systems whose size or tolerance

is less than 100nm. It is widely known that classical Newtonian physics describes

the interaction of matter with sizes of more than 100nm and that quantum physics

handles matter less than 10nm. Nanotechnology acts as a link between those two

fields of physics.

Nanotechnology today is pervasive due to its broad applications. Anticipated

applications include electronics, telecommunications, materials, pharmaceutical and

medical fields, bioengineering, the environment, energy, space, and so on. It is gen-

erally accepted that human life will change dramatically when nanotechnology is

successfully implemented in the real-world. Nanotechnology should also result in

breakthroughs in other leading technologies. For example, evolution of information

technology is required to manipulate large amounts of information in biotechnology,

and the success of information technology will critically rely on nanotechnology in

the form of nanocomputer and quantum computing.

Since the invention of Scanning Tunneling Microscopy (STM) in 1983 and

This dissertation follows the style of the IEEE Transactions on Reliability.

2

the discovery of the molecular structure, Fullerenes (C60), in 1985, numerous research

results have been announced by various institutes and academia related to nanotech-

nology over the last two decades. However, most of the results have not guaranteed

feasibility in industry, but have been limited to the laboratory. To elevate nanotech-

nology from the science to the engineering, the assurance of manufacturability and

productivity is indispensable. Nanomanufacturing is defined as a series of processes

for building nano-systems whose scale is less than 100nm. This includes various

multidisciplinary areas such as materials, devices, design, architecture, fabrication,

analysis and estimation, modeling and control, optimization, simulation, testing and

inspection, various facilities for manufacturing, and so on.

The heart of nanomanufacturing is nanofabrication which is achieved by two

fundamentally distinct approaches, top-down and bottom-up. The top-down ap-

proach follows a technology similar to current semiconductor manufacturing, such

as photolithography, thin film diffusion, polymer molding, cutting, wrapping, polish-

ing. Electron-beam lithography, molecular beam epitaxy, microcontact print, nano-

imprint lithography, etc. are included in this approach. The main advantage of this

approach is its repeatability which makes volume production possible. On the other

hand, the bottom-up approach employs self-assembly methods using a molecular ar-

ray and the stiction property of atoms through Scanning Probe Microscopes (SPM).

Self-assembly, robotic nano-assembly, template develop, etc. are included in this

class. Although the bottom-up approach is very difficult to develop, it is expected

that bottom-up will be the dominate form of nanofabrication in the end because of

the resolution limitations of the top-down approach.

During nanomanufacturing, large numbers of defects inevitably occur because

of the tiny scale of the devices, complex manufacturing processes, contamination,

insufficient resolution of the lithography facilities, uncertainty of the connectivity

3

between devices, and so on [1]. These defects reduce the yield and reliability of

manufactured nano-systems, as a result, decrease manufacturability and productivity.

It is impossible to detect all occurring defects, and is very expensive, exhaustive,

and sometimes impossible to eliminate them. Nano-systems may also have severe

reliability problems because they are very sensitive to external environmental factors

such as temperature, humidity, and the electric field.

The ITRS Semiconductor Roadmap [2], assessed by several semiconductor

associations at all over the world is the most reliable source for obtaining current

and future physical and technical trends in semiconductor integrated circuits. Ac-

cording to the roadmap, the half pitch of manufactured semiconductor integrated

circuits at 2002 is about 130nm, and it will become 65nm by 2007 and 22nm by 2016

for dynamic random access memory (DRAM). In addition to the nano-scale, manu-

facturing technology of semiconductor integrated circuits is similar to the top-down

approach of nanomanufacturing. Therefore, it is reasonable to include semiconductor

manufacturing into the nanomanufacturing in a broad sense.

The assurance of manufacturing yield and system reliability is also very im-

portant in semiconductor manufacturing. The ITRS 2002 update [2] suggests several

grand challenges related to yield and reliability. In the near future (through 2007),

new reliability screen methods for burn-in, inspection techniques for non-visual defect

sources with high aspect ratio inspection, and design methods considering manufac-

turing and test are considered the critical technologies. In the distant future (2008

through 2016), error-tolerant design techniques, yield models for new materials and

devices, and integration of them will take an important role in semiconductor manu-

facturing. In summary, key technologies related to yield and reliability in nanoman-

ufacturing as well as in future semiconductor manufacturing are defect detection and

analysis, accurate yield modeling, and defect-tolerant design.

4

Critical defects cause failures in semiconductors. Since the manufacturing

yield and reliability of manufactured systems rely on these failures, it is necessary to

efficiently manage the defects. There are two approaches for enhancing yield and reli-

ability on the basis of defects. The first approach is to decrease the number of defects,

and the second approach is to develop defect-robust design. Decreasing the defects

can be accomplished by tightly controlling the contamination level, by increasing the

quality of the cleaning processes, and by precisely controlling the manufacturing pro-

cesses using statistical process control methods. Defect-robust design can be achieved

by designing physically reliable devices such as high-k dielectric gate materials and by

employing fault-tolerant schemes. Since it is technically impossible to fabricate per-

fect devices and to eliminate all defects, defect-tolerance has been considered a worthy

method for dealing with defects. Heath et al. [1] have defined defect-tolerance as the

capability of a circuit to operate as desired without physical repair or the removal of

random mistakes incorporated in the system during the manufacturing process. The

most cost-efficient defect-tolerant method for improving yield and reliability is to as-

sign and manage additional replaceable components in vulnerable components. These

redundancies may have self testing and repairing ability, so called BIST (built-in self

test) and BISR (built-in self repair) [3].

With any defect management methods, accurate yield and reliability mod-

els are essential. Accurate models are very useful for evaluating the feasibility of

new devices, identifying and monitoring the sources of defects, providing accurate

simulations for the improvement of physical and logical device designs, and so on.

For the past four decades, various forms of yield and reliability models have been

proposed [4, 5]. Yield models are primarily based on statistical inference for defect

size distribution, defect density, critical area, and failure types. On the other hand,

reliability models are primarily based on the physical behavior of the electronic de-

5

vices. There are many factors that affecting yield and reliability, such as the failure

types, the system architecture, defect density, critical area, defect clustering, burn-in

effects, fault-tolerant schemes such as redundancies and error correcting code, and

so on. However, most of the models developed so far, only partially consider these

factors due to the complex structure of, and the complicated correlation relationships

of, these factors.

Since the late 1950’s, redundancy techniques have been successfully employed

and their effectiveness has been verified by diverse applications. Yield and reliabil-

ity can be enhanced by adding redundancies on failed or unreliable components or

by increasing the robustness of the components physically. Looking at the manner

in which manufacturing and design technologies have developed, improving compo-

nent reliability appears to have been generally preferred over adding redundancies

in industry, because, in many cases, redundancy is difficult to add to real systems

due to technical limitations and the relatively large quantities of resources, such as

weight, volume, and cost, that are required. However, recently developed advanced

technologies, such as semiconductor integrated circuits and nanotechnology, have re-

vived the importance of the redundancy strategy [1, 6]. The current down-scaling

trend in semiconductor manufacturing places certain limitations on enhancing reli-

ability or yield by developing relevant physical technologies [7, 8]. Hence, various

fault-tolerant and self-repairable techniques are generally recommended [6]. In fact,

most advanced memory integrated circuits and VLSI, which include internal memory

blocks, currently use a hierarchical redundancy scheme and an error correcting code.

The objectives of this dissertation are to develop accurate yield and reliability

models for defect-tolerant semiconductor integrated circuits and to develop optimiza-

tion algorithms that can be applied to various complex systems including the devel-

oped models; thus, the models and the optimization algorithms can be applied to

6

current semiconductor-systems and to future nano-systems with minor modifications.

The defect-based yield and reliability models consider as many critical factors as pos-

sible for yield and reliability, which include various types of failures, burn-in effects,

and fault-tolerant architecture with a hierarchical redundancy structure and an error

correcting code, while the computational efficiency endures. Defect-tolerant architec-

ture using redundancy increases yield and reliability, but consumes other resources

such as area, volume, weight, cost, test and repair algorithm, and repair architecture.

To efficiently achieve fault-tolerant systems, the number of redundancies should be

optimized to maximize yield and reliability with the available resources, the so-called

the redundancy allocation problem. Typical yield and reliability models are non-

convex, nonlinear, nonseparable, and coherent, and optimization problems have the

same properties. Coherent systems have component-wise increasing property, that is,

adding redundancies increases the yield and reliability. In this study, I propose an effi-

cient branch-and-bound approach for obtaining the global optimum and two iterative

heuristics, a scanning heuristic and a tree heuristic, and their variants for achieving

the local optimum of yield or reliability redundancy allocation problems. The global

optimization method is based primarily on a search space elimination of disjoint sets

in a solution space that does not require any relaxation of branched subproblems. The

scanning heuristic finds a better local optimum by solving the problem from several

systematically generated initial points, and the tree heuristic obtains several local

optima by branching off solution paths from the main solution path, which is a set

of points with a maximum sensitivity factor. The main advantage of these methods

is flexibility (i.e., it does not rely on any assumptions of linearity, separability, single

constraint, or convexity) which make the method adaptive to various applications.

This dissertation is organized into three major parts: modeling, optimization,

and a case study. In Chapter II, the terms defect, fault, error, and failure, are defined

7

and classified. Then, the methods for managing defects are briefly reviewed. Chapter

III begins with a description of yield and reliability. Basic defect-based yield models,

the Poisson model and the negative binomial model, are reviewed considering defect

size, defect density, and critical area. At the end, the defect-based burn-in yield

models and the reliability model in an useful life period are introduced. In Chapter

IV, an integrated yield model and a reliability model considering carry-over failures

for memory integrated circuits are proposed based on the models in Chapter III.

Chapter V introduces coherent systems, and redundancy allocation problems

are defined under mathematical programming techniques. In Chapter VI and VII,

new algorithms for solving reliability optimization problems are proposed. Chapter

VI offers a branch-and-bound algorithm employed for redundancy allocation prob-

lems. Chapter VII proposes two efficient iterative heuristics, the tree heuristic and

the scanning heuristic, for redundancy allocation problems. Numerical experimenta-

tion in Chapter VI and VII shows that the proposed global and local optimization

algorithms are superior to other existing algorithms for redundancy allocation prob-

lems in terms of computation time and/or solution quality.

In Chapter VIII, the optimization algorithms in Chapter VI and VII are ap-

plied to the integrated yield model and the reliability model in Chapter IV to obtain

an optimal number of redundancies in an example problem. Finally, Chapter IX sum-

marizes the work in the modeling and the optimization of semiconductor integrated

circuits. The directions for future research in nanomanufacturing are described.

8

CHAPTER II

DEFECTS AND DEFECT MANAGEMENT

Semiconductor manufacturing consists of several stages of circuit design and mask

preparation, wafer production, wafer fabrication, assembly and packaging, and burn-

in and testing [9]. Each stage also includes a series of processes. For instance, wafer

fabrication consists of oxidation, photoresist coating and etching, polysilicon masking

and etching, ion implantation, metal deposition and etching, and so on. Figure 1

presents a diagram of the complex semiconductor manufacturing process. For mod-

ern complex semiconductor products, more than 400 steps of individual processes are

required, and it often takes more than two months to complete the manufacturing

process. The complexity of the semiconductor manufacturing process presents many

opportunities defects to occur. Defects cause faults, errors, and failures in manufac-

tured integrated circuits, and they result in yield loss and reliability degradation. In

this chapter, defects and related terms are defined and classified, and defect manage-

ment methods for enhancing yield and reliability are discussed.

II.1. Defect, Fault, Error, and Failure

Defect, fault, error, and failure are frequently used terms in semiconductor engineering

as are yield and reliability engineering. In semiconductor engineering, a defect is

defined as any physical imperfection which does not satisfy specified requirements.

A fault is a critical defect which affects the performance or functional behavior of

the integrated circuit. An error, which is a manifestation of a fault, is a discrepancy

between the theoretical value of a correctly designed function and real observed value

of the function in the semiconductor system. A failure is an event, or inoperable state,

9

Figure 1: Manufacturing and Inspection Processes of Semiconductor Integrated Cir-

cuits

10

in which any item, or part of an item, does not, or would not, perform as previously

specified [10]; in other words, failure is a status which does not function correctly

without repair. In many cases, fault, error, and failure are used interchangeably to

indicate a malfunction. However, strictly speaking, they have different definitions:

a fault is physical and local; error is logical and functional; failure is physical and

global. Not all defects result in faults, and not all errors are failures. For example,

a memory bit can be temporarily changed by an α-particle in a memory integrated

circuit and it can be fixed by an error correcting code immediately. In this case, the

changed bit is not a failure, but an error.

To efficiently enhance yield and reliability, classification, diagnosis, and anal-

ysis of the defects and faults are very important. Since they are sources of failure,

further investigation of them is required. Defects can be classified into several types

according to their size, sources, location, and types as follows:

Global and point defects

Global defects, or gross area defects, are defects which occur on relatively large areas

of a wafer surface. The main sources of global defects are wafer dislocations, wafer

mishandling, mask misalignment, over etching or under etching, variation of implan-

tation levels, and so on. Global defects can be gradually decreased during volume

production by precisely controlling corresponding manufacturing processes. Point

defects, or spot defects, are random local defects which mainly come from undesir-

able airborne particles, metallic impurities, and electrostatic discharge (ESD). They

are mainly caused by cleanroom contamination, imperfect manufacturing processes,

wafer mishandling, and so on. Since it is very difficult to control for spot defects,

spot defects are a major concern of semiconductor manufacturers and, thus, a major

focus of this research.

11

Figure 2: Hard and Soft Defects at an Intra-Layer

Hard and soft defects

Spot defects can be further classified into hard and soft defects. A hard defect is a

spot defect which results in an open, or short, circuit; that is, failure of the integrated

circuit. On the contrary, a soft defect does not affect the functionality of circuits, but

it decreases or increases the physical dimensions of a device which may change the

characteristics of the device. Soft defects can lead to system failure during manufac-

turing, the burn-in process, or operation. A graphical description of hard and soft

defects appears in Figure 2. A defect is considered as a hard or soft defect based on

size, location, and type. For example, the hard defect D in Figure 2 could be a soft

defect if the defect was not a hole but a conductor.

Inter-layer and intra-layer defects

Based on their locations, spot defects are classified into inter- and intra-layer defects.

Current complex integrated circuits have more than 8 layers built to avoid intercon-

nections of the conductive lines which electronically connect devices [2]. Intra-layer

defects, or photolithographic defects, are located on the same layer. Inter-layer de-

12

fects occur between two adjacent layers. Missing or extra material at the intra-layer

or inter-layer may result in an open, or short, circuit, respectively.

Faults can be also classified into several types. The major types of faults are

summarized below:

Functional and parametric faults

Functional faults, or logical faults, cause catastrophic behavior in a circuit device,

which prevent it from performing its intended function correctly. Stuck-at-0 and

stuck-at-1 faults, bridging, stuck-open or -short, and so on, are included in this cat-

egory of faults. Parametric faults do not change any functional values, but they

generate time delays of the signal or magnitude variations in some electrical param-

eters, such as voltage, current, and resistance, and capacitance.

Permanent and temporary faults

Permanent faults, or hard faults, are continuous and stable faults which endure re-

gardless of time. Design faults, broken wire, and missing or extra material are perma-

nent faults. On the other hand, temporary faults occur randomly (transient faults)

or regularly with unknown intervals (intermittent faults). The transient faults are

mainly caused by environmental conditions such as α-particle hits, cosmic rays, tem-

perature variations, and electromagnetic interference. Intermittent faults are caused

by non-environmental conditions such as variations of resistance and capacitance,

noise, and wear-out.

Some types of defects and faults are correlated. They can be comprehend as

a mixed form; for example, a soft spot defect at an intra-layer can be a parametric

permanent fault. The possible combinations of the defects and faults are depicted as

a block diagram in Figure 3.

13

Figure 3: Possible Combinations of Defects and Faults

II.2. Defect Management

Various types of defects and faults can be detected by several different inspection

processes. Defect inspection, or defect monitoring, can be performed during wafer

fabrication (on-line inspections) using manual detection with an optical microscope

and automatic detection with light scattering (or laser scattering) facilities. Global

defects can be detected by a parameter monitoring approach, and local defects can

be investigated by in-line monitors, gate-oxide monitors, and interconnect monitors.

However, some defects may not be detected during any visual inspection process. At

the end of wafer fabrication, a pattered wafer contains several hundred dies (or chips)

which is a unit of the actual integrated circuits. The wafer sort process, probe testing

or wafer probing, is performed to test parametric and electrical operation on each die

by contacting bonding pads. Failed dies on the wafer sort process are marked, and

discarded from further manufacturing stages. The various inspection processes and

their flows during semiconductor manufacturing are depicted in Figure 1.

14

To enhance yield and reliability, manufacturing defects and faults should be

managed effectively. One approach for defect management is to minimize the number

of occurring defects and faults by controlling contamination levels and manufacturing

processes with a low tolerance. The keys to this approach are how to retrieve main

defect sources as correctly as possible to control the related processes, and how to

perform the control process as precisely and fast as possible to increase yield as

much, and as soon, as possible. Defect and fault classification, fault diagnosis, failure

analysis, and statistical process control (SPC) are the main methods used to in this

approach. However, there are certain limitations to this approach. Not all defects

and faults can be detected by inspection processes because they may be located inside

the physical layers or their size may be smaller than the resolution of the inspection

facilities. Even when all of the defects and faults can be detected, it is still may not

be possible to eliminate them entirely because of complex manufacturing processes,

the resolution limit of the photolithography, or extremely high facilities costs.

Optical lithography is the key technology for future semiconductor manufac-

turing. Current extremely high density semiconductor integrated circuits are expected

to meet its physical limitations in a few years [7, 8]. The most used light sources for

lithography, at present, are the KrF laser (wavelength 248nm) and the ArF laser

(wavelength 193nm). However, their resolution is not accurate enough for future use.

The resolution of lithography is proportional to the wavelength of the light source

and the processing techniques, and inversely proportional to the numerical aperture

of the lens [9]. Due to technical difficulties, the resolution is generally similar to, or

a little less than, the wavelength. Several alternative technologies, such as the F2

excimer laser (wavelength 157nm), extreme ultraviolet (wavelength 10− 14nm), and

electron projection lithography, have been investigated by many research institutions

for use in the near future [11]. However, as device dimensions decrease, the initial fa-

15

cility cost and the mask cost for lithography with the same or less resolution increase

exponentially; and, as a consequence, so does the cost of fabrication of semiconductor

integrated circuits.

Another approach to managing defects and faults is to design circuits and

architecture that are more robust, the so-called defect-tolerant or fault-tolerant tech-

nique. This approach can be classified into two methods. The first method is to

design devices on integrated circuits that are more tolerant to defects and other en-

vironmental variations. Most current semiconductor integrated circuits use CMOS

(Complementary Metal Oxide Semiconductor) as a device. In current CMOS technol-

ogy, the thickness of the gate dielectric (SiO2) is less than 40Å [12] and the physical

gate length is about 50nm [2]. Sizes continue to decrease to a few Å to meet the

electrical requirements, such as capacity and resistance, of the new down-scaled de-

vices. However, ultra-thin gate dielectric film invokes many manufacturing problems

which affect yield and reliability. These problems include dielectric thickness varia-

tions, penetration of impurities from the gate into the gate dielectric, leakage current

of the gate, and gate breakdown [12]. To overcome these problems, various high-k

materials are being investigated as a substitute for the currently used SiO2. With

high-k materials, we can preserve the thickness of the gate dielectric, and, as a result,

further down-scaling can be achieved without loss of yield and reliability. In addition

to robust device design, yield can be also enhanced by decreasing the critical area of

a chip. The critical area is the area where a certain size defect causes failure. The

critical area can be decreased by optimizing the conducting lines, by optimizing the

layout of devices, and by changing the floor plan of integrated circuits [6].

The second type of fault-tolerant techniques involves replacing failed devices

with other working devices. Redundancy and error correcting codes (ECC) are the

most used techniques in this category. From the late 1970’s, these techniques have

16

been popular on memory integrated circuits; in fact, most advanced memory inte-

grated circuits such as DRAM, SRAM, flash memories and microprocessors, which

include an internal memory section, employ a hierarchical redundancy structure and

ECC to increase yield and reliability [13]. There are several types of failures in the

memory array related to the size and the location of defects. When a redundancy

technique is employed on memory integrated circuits, word line failures, bit lines fail-

ures, cell failures, and block failures should be compensated for by the proper type of

redundancies. At the end of wafer probing, this reconfiguration is typically performed

by blowing and connecting built-in fuses/antifuses using laser equipments. However,

the reconfiguration method using fuses has several disadvantages: 1) it requires addi-

tional processes which increase manufacturing cost; 2) it can not repair failures that

occurred during operation due to its physical limitations; 3) it is unable to detect

and test defects and faults; and 4) it is expensive due to the extremely high testing

facility cost. Thus, the various automatic reconfiguration techniques such as BIST

(built-in self test), BISD (built-in self diagnosis), and BISR (built-in self repair) have

been proposed [3]. To perform the function correctly and efficiently, these built-in

techniques require additional hierarchical cell array architecture and algorithms for

finding the proper redundancies for detected failures.

17

CHAPTER III

YIELD AND RELIABILITY MODELS

Yield and reliability models can be classified into two types: physical models and

statistical models. Physical models explain the electrical and parametric behavior

of semiconductor devices. The famous Arrhenius equation for thermal behavior and

the classic anode hole injection (1/E) model and the thermochemical (E) model for

gate oxide are included in this class. This type of model is mainly used to improve

reliability by changing the device characteristics. Statistical models are primarily

based on statistical inference and the estimation of defect and failure data that are

obtained in field. Most models, such as the Poisson and the negative binomial models

for yield and the exponential and the Weibull models for reliability, belong to this

category.

An accurate yield model is very useful for the following activities:

• verifying the productivity of current or new products by yield projection

• improving yield during volume production by diagnosing the defect types which

cause most of the yield loss and monitoring relative manufacturing processes

• improving device design by providing accurate yields to simulation tools

• determining production control parameters by providing accurate estimations.

Similar to the yield model, reliability model is also very useful for the following

activities [14]:

• evaluating the feasibility of new products

• comparing competing designs in terms of reliability

18

• identifying potential reliability problems

• planning maintenance and logistic support strategies

• providing input to other studies such as life-cycle cost analysis or product se-

lection.

III.1. Manufacturing Yield

Manufacturing yield is defined as the ratio of the number of working units at the end

of production to the total number of possible units at the beginning of production.

Since semiconductor manufacturing consists of a series of stages, manufacturing yield

can be calculated from the following equation:

YMFT = YWP · YFAB · YAP · YBI , (3.1)

where YWP , YFAB, YAP , and YBI denote the yields of wafer production, fabrication,

assembly & packaging, and burn-in stages of Figure 1, respectively. Since this study

does not deal with the wafer production and assembly & packaging stages, for sim-

plicity, we can assume that YWP = 1 and YAP = 1.

Many semiconductor engineers regard manufacturing yield as fabrication yield

because the wafer fabrication stage is the most important stage, and the wafer pro-

duction and the assembly & packaging stage are sometimes performed at different

companies that are not fabrication companies. However, from the reliability point of

view, this perspective is not appropriate. Yield can be interpreted as reliability at

time zero. Since reliability considers the lifetime of a device during operation, the

lifetime should be calculated from the customer’s viewpoint, i.e., operation. How-

ever, if we assume yield to be the fabrication yield, there is a time gap between yield

19

and reliability because of the assembly & packaging and burn-in stages. For this

reason, I will distinguish fabrication yield from manufacturing yield. Therefore, fab-

rication yield and manufacturing yield can be calculated as follows (with field data

in percentage unit):

YFAB =
Average number of good chips per wafer

Total number of possible chips per wafer
× 100%,

where a chip or a die denotes a piece of a silicon wafer that contains the complete

device.

YMFT =
Average number of working ICs per wafer

Total number of possible chips per wafer
× 100%,

where IC indicates the final products that are ready to ship to the customer.

III.2. Reliability of Semiconductor Integrated Circuits

Reliability is one of the important factors determining the productivity of semiconduc-

tor integrated circuits. Reliability is defined as the probability that a device operates

properly for a given period of time (a mission time) under designated operating con-

ditions. Each device has a lifetime which is the length of time that the device works

properly. Let T be a random variable for the lifetime of a integrated circuit. If the

mission time of the integrated circuit is unspecified, the reliability of the integrated

circuit becomes a real-value function for the mission time, i.e., the so-called reliabil-

ity function. Note that the mission time is not a random variable. The reliability

function, R(t), which is the probability that lifetime T is greater than mission time

t, can be formulated as follows:

R(t) = Pr(T > t) =

∫ ∞

t

f(θ)dθ, (3.2)

20

where f(θ) is the probability density function (pdf) of lifetime T with respect to

operating time θ. An unreliability function which implies the probability of failure at

time t is also defined as follows:

F (t) = Pr(T ≤ t) =

∫ t

0

f(θ)dθ = 1−R(t). (3.3)

The failure rate is the ratio of failures during a particular interval given that

the product works properly by time t. Let the interval be (t, t+∆t]. Then, the failure

rate is:

µ(t) =
Pr(t < T ≤ t + ∆t)

∆t Pr(t < T)
=

F (t + ∆t)− F (t)

∆tR(t)
=

R(t)−R(t + ∆t)

∆tR(t)
(3.4)

The instantaneous failure rate, or hazard rate h(t), is the limit of the failure rate as

∆t approaches zero, and it is expressed as:

h(t) = lim
∆t→0

µ(t) = lim
∆t→0

F (t + ∆t)− F (t)

∆tR(t)
=

dF (t)/dt

R(t)
=

f(t)

R(t)
(3.5)

Now, take the integral on both sides of Equation (3.5). Then, the following mathe-

matical relationship between h(t) and R(t) holds:

∫ t

0

h(θ)dθ =

∫ t

0

1

R(θ)

dF (θ)

dθ
dθ =

∫ t

0

−1

R(θ)
dR(θ) = − ln R(θ)|t0 = − ln R(t) + ln R(0).

We can assume that R(0) = 1, i.e., no failure at time zero, because any product is

totally reliable at the beginning of its life. Then, the reliability function at mission

time t can be computed with a hazard rate as follows:

R(t) = exp

(
−

∫ t

0

h(θ)dθ

)
. (3.6)

Assuming that the instantaneous failure rate h(t) is a constant µ w.r.t. at time t, the

21

reliability function becomes:

R(t) = e−µt (3.7)

and it is a exponential distribution.

Failures are counted in calculating yield and reliability. In semiconductor

engineering, failures can be classified into three types according to the failure source:

extrinsic, intrinsic, and wear-out. If a failure is caused by unrevealed manufacturing

defects, it is called an extrinsic failure. Defects which do not materialize into yield

losses can be grown to failures during operation depending on the quantity of external

and internal stresses. The extrinsic failures usually observed during the infant mor-

tality period have a decreasing failure rate (DFR). These failures can be effectively

screened by accelerated life testing and burn-in. Intrinsic failures, sometimes called

defect-free failures, occur randomly during operation. These failures have a constant

failure rate (CFR) and can be observed during the useful life period. The most impor-

tant reliability measure in semiconductor integrated circuits, time-dependent dielec-

tric breakdown (TDDB), is related to both extrinsic and intrinsic failures. Wear-out

failures, which have an increasing failure rate (IFR), are the result of device aging

such as electromigration and transistor degradation. In general, wear-out failures

should be avoided in the design stage of semiconductor devices [15]. Thus, wear-out

failures will be ignored in this study. Since actual semiconductor integrated circuits

include all of the types of failure, the failure rate function of an integrated circuit

can be represented by the famous bathtub curve by summing the three failure rate

functions. Figure 4 describes all of the failure rate functions and their corresponding

periods.

22

Figure 4: Bathtub Shape Failure Rate

III.3. Defect Size, Defect Density, and Critical Area

Defect-oriented yield models are significantly related to defect sizes, defect density,

and critical area. Commonly, a spot defect, which is our major concern, is assumed to

be a circle with a specific diameter, which is called the defect size. It has been verified

empirically that the density of the number of defects has a peak at a specified defect

size. The density linearly increases if the size of defect is less than the specific size

and inverse polynomially decreases if the size of the defect is lager than the specific

size. The defect size at the peak of the pdf depends on the contamination level and

the resolution of the processes during manufacturing. Let the defect size be x and the

specific size be x0. The pdf of the defect size, fs(x), is generally described as follows

[16]:

fs(x) =

2(p− 1)

p + 1

x

(x0)2
, 0 ≤ x ≤ x0,

2(p− 1)

p + 1

(x0)
p−1

xp
, x0 ≤ x ≤ ∞.

(3.8)

23

Figure 5: Distribution and Classification According to Defect Size

Many empirical data show that a reasonable value of p is in the interval [2.5, 3.7] [16].

The pdf for the defect size is described in Figure 5. In the figure, s0 is the critical

size of the defects which affect the yield, and a typical value of s0 is a half of the

minimum device feature size. Generally, x0 is smaller than s0.

Defect density, D(x), is the number of defects of size x in a unit area (cm2

or m2). The average defect density for all defect sizes, D0, can be computed by:

D0 =

∫ ∞

0

D(x)dx.

Since fs(x) is a pdf of the defect size, the following relationship between the defect

density and the pdf of the defect sizes holds:

D(x) = D0fs(x).

24

The critical area is a set of locations where a defect with a certain size results

in a failure of the integrated circuit. In other words, if a defect, which size is greater

than, or equal to, x, falls in a critical area, Ac(x), the integrated circuit fails. The

probability of failure (pof) is the failure probability when a defect falls on a chip.

Thus, the pof can be interpreted by a ratio of the critical area to the total area of the

chip as follows:

pof(x) =
Ac(x)

Achip

, (3.9)

where Achip is a total area of the chip. For all defect sizes, the average critical area

can be computed by following:

Ac =

∫ ∞

0

Ac(x)fs(x)dx,

In a yield model, the most important parameter is the average number of

defects which is denoted by λ. λ can be computed with the following equation:

λ =

∫ ∞

0

Ac(x)D(x)dx

= D0

∫ ∞

0

Ac(x)fs(x)dx

= AcD0. (3.10)

To calculate the λ, we must know the critical area, Ac(x) (or pof(x) by Equation

(3.9)), since D0 can be obtained from the field data and fs(x) can be computed by

Equation (3.8). There are various methods for achieving Ac(x) and pof(x). Ge-

ometrical methods applying a Boolean polygon operation can calculate Ac(x) and

Monte-Carlo methods can compute pof(x). For a good summary and references on

calculating the critical area, refer to [5]. These methods for calculating Ac(x) or

pof(x) can be repeatedly performed at the design stage in order to decrease the

25

critical area of a chip.

III.4. Poisson and Negative Binomial Yield Models

The Poisson distribution is the most widely used discrete distribution for a statistical

model with random occurrences in a specified interval or area. Since the number of

defects varies from wafer to wafer and chip to chip, the Poisson model is appropriate

for our purpose. To employ the Poisson distribution to a yield model, the following

assumptions must be satisfied:

• all defects are chip-kill defects which induce failure of the integrated circuit

• all defects are mutually independent, i.e., the occurrence of a defect at any

location does not affect the occurrence of any other defects.

Let a random variable X denote the number of defects in a chip. X follows

the Poisson distribution with an intensity parameter of λ. The probability that a

chip contains k defects is:

Pr(X = k|λ) =
e−λλk

k!
, k = 0, 1, (3.11)

Since the mean of X is λ, λ can be interpreted as the average number of defects

occurring on a chip - this coincides with the definition of λ in Section III.3. Since

yield is the probability of a no chip-kill defect, the yield of the Poisson model can be

formulated by Equation (3.10) and (3.11):

YPOI = Pr(X = 0|λ) = e−λ = e−AcD0 . (3.12)

Although the Poisson yield model is a reasonable yield model for the random

occurrences of defects, the projected yield of the Poisson model is often pessimistic

26

because of the clustering effect of the defects. If defects are not evenly distributed

on a wafer, some chips contain more defects than the average and some chips contain

none. The failure of an integrated circuit does not depend on the number of defects

but only on the existence of defects. Note that we are not yet employing defect-

tolerant techniques. The clustering effect generally cause real yield to be larger than

the projected yield using the Poisson model. To reflect the clustering effect of defects,

many researchers have studied compound Poisson models [17, 18, 19].

The compound Poisson model assumes that the average number of defects,

λ, (or the average defect density D0) has a type of distribution. Murphy [17] com-

pounded the Simpson distribution (triangular distribution) and the rectangular distri-

bution, and Seed [18] applied an exponential distribution as a compounder. However,

the most widely accepted compounder is the Gamma distribution [19]. Let L be a

random variable which indicates the average number of defects. If L has a constant

value AcD0, the pdf of L is a sifted Dirac δ function as follows:

fL(λ) = δ(λ− AcD0),

the yield can be computed by:

Y =

∫ ∞

0

e−λfL(λ)dλ = e−AcD0 . (3.13)

This coincides with the Poisson yield model of Equation (3.12).

Now, let the pdf of the random variable L be the Gamma distribution as

follows:

fL(λ|α, β) =
1

Γ(α)βα
λα−1e−λ/β, 0 < λ < ∞, α > 0, β > 0,

where EL = AcD0 = λ = αβ and var(D) = αβ2. Since the number of defects

on a chip, X, depends on the average number of defects, L, the random variable

27

X has a mixture distribution. It is well known that if X has a hierarchical mixture

distribution of X|L ∼ Poisson(L) and L ∼ Gamma(α, β) with integer α, the marginal

distribution of X follows a negative binomial distribution. Thus, the probability that

a chip contains k defects is:

Pr(X = k|α, β) =

∫ ∞

0

e−λλk

k!
fL(λ|α, β)dλ

=
1

k!Γ(α)βα

∫ ∞

0

λα+k−1e−λ(1+1/β)dλ

=
Γ(α + k)

(
1 + 1

β

)−(α+k)

k!Γ(α)βα

∫ ∞

0

fL(λ|α + k, (1 + 1/β)−1)dλ

=
Γ(α + k) (β)k

k!Γ(α) (1 + β)α+k
∼ negative binomial

(
α,

1

1 + β

)

=
Γ(α + k)

(
λ
α

)k

k!Γ(α)
(
1 + λ

α

)α+k
(3.14)

Since yield is the probability of a zero chip-kill defect, the yield can be computed by

the following:

YNB = Pr(X = 0|α, β)

=

(
1 +

λ

α

)−α

=

(
1 +

AcD0

α

)−α

. (3.15)

This yield model is normally called a generalized negative binomial yield model or

a Stapper model [19]. In this model, the clustering factor, α, is used to adjust the

clustering level compared to the observed field data.

Poisson and negative binomial yield models assume that the λ and the α are

constants in the whole chip. However, in real applications, the chip area is often

divided into several independent areas which have distinct values of the λ and the

α. For example, a memory integrated circuits consists of several sections, including

peripheral circuits and memory arrays. The critical area of the peripheral circuit area

28

is normally designed to be much smaller than that of the memory array area because

any fault on the area cause chip failure. Thus, the λ of the peripheral circuit area is

much less than the λ of the memory array area even though the defect density is the

same. Consider a chip which consists of n statistically independent partitions. Let a

random variable Xi be the number of defects for the ith section for i = 1, . . . , n and

the total number of defects on the chip X =
∑n

i=1 Xi. Then, the probability that k

defects occur at a chip is:

P (X = k) =
∑

k∈K

n∏
i=0

P (Xi = ki),

where ki denotes the number of defects in the ith section, k = (k1, . . . , kn), and

K = {k|∑n
i=1 ki = k}. Since yield is the probability of no defects on a chip, yield

can be computed by:

Y = P (X = 0) =
n∏

i=0

P (Xi = 0) =
n∏

i=0

Yi, (3.16)

where Yi is the yield of the ith section. If Xi follows the Poison distribution with

parameter λi for i = 1, . . . , n, the yield becomes:

Y =
n∏

i=0

P (Xi = 0|λi) =
n∏

i=0

e−λi = e−λ, (3.17)

where λ =
∑n

i=1 λi. If Xi follows the negative binomial distribution with parameters

λi and αi for i = 1, . . . , n, the yield can be computed by:

Y =
n∏

i=0

P (Xi = 0|λi, αi) =
n∏

i=0

(
1 +

λi

αi

)−αi

. (3.18)

29

III.5. Defect-based Burn-in Yield Models

Yield and reliability are two important factors for productivity and manufacturabil-

ity, but they are different from each other. A simple way to divide them is to define

yield as reliability at time zero. Time zero, however, is sometimes vague because of

the burn-in process. Burn-in imposes excess electrical and thermic stresses to man-

ufactured semiconductor products, which causes unreliable ones to fail early in the

process. The failed products are discarded from the population. Since the remaining

products have passed the infant mortality period, the reliability of the final products

increase. Depending on the time zero, burn-in is included in the yield or the relia-

bility calculation. Many semiconductor engineers include the burn-in process in the

reliability area. However, as I mentioned before in Section III.1, I will include the

burn-in process in yield area.

According to whether defects affect yield, burn-in, and reliability, they can be

categorized into yield defects, burn-in defects, and reliability defects. Yield defects,

or chip-kill defects, which have a relatively large size, cause failures at the wafer

fabrication stage, so the defects are considered in calculating fabrication yield. Burn-

in defects, or infant mortality defects, which typically are of medium size, do not cause

failures at the fabrication stage, but result in failures in burn-in stage. Reliability

defects, which have a relatively small size, do not cause failures during manufacturing,

but they result in failures during operation. From now on, I will use the subscripts

Y D for yield defects and BD for burn-in defects to distinguish burn-in defects from

yield defects. The types of failures are determined by the size and location of the

defects; in other words, there are some interactions between the defects. Figure 5

describes the relationship between defect size and the classification of defects.

Since a defect can be the yield or the burn-in defects, many researchers have

30

attempted to find an unified model for both yield and burn-in defects, the so-called

yield-reliability model [15, 20, 21, 22, 23]. The first model was introduced by Huston

and Clarke [15]. Their model employs both a average critical area for yield defects,

AY D, and a average critical area for burn-in defects, ABD, in the unified form. Similar

to AY D, ABD is defined as a average critical area where the defects result in failures

during the burn-in process. ABD can be also obtained by a Monte-Carlo simulation.

Assume that the number of defects follows the Poisson distribution. Then, yield can

be computed by the following equation using Equation (3.12):

YY D = YY D0e
−DY DAY D , (3.19)

where YY D0 is the yield of the non-random yield defects and DY D is the average defect

density for the yield defects. Similar to the yield for yield defects in Equation (3.19),

the yield for burn-in defects can be formulated with ABD:

YBD = YBD0e
−DBDABD , (3.20)

where YBD0 is the burn-in yield of the non-random burn-in defects, and DBD is the

average defect density for the burn-in defects. The DBD is assumed to be the same as

the DY D. Thus, if we ignore the non-random terms YY D0 and YBI0, the relationship

between the yields for yield defects and burn-in defects can be formulated as following

the equation by the simple manipulation of Equations (3.19) and (4.17):

YBD = (YY D)ABD/AY D . (3.21)

Kuper and van der Pol [22, 23] proposed another yield-reliability model. They

assumed that there is no difference between yield defects and burn-in defects but that

only some of the yield defects become burn-in defects. This assumption implies that

31

the average defect density for burn-in defects is a fraction of the average defect density

for yield defects, i.e, DBD = αDY D, where α is a constant much less than 1. They

employed the Poisson yield model as follows:

YY D = Me−DY DA, (3.22)

where A is the total area, or the average critical area, of a chip and M is the maximum

possible yield fraction which reflects the clustering effects. Similarly, the burn-in yield

can be formulated by the Poisson model as follows:

YBD = e−DBDA. (3.23)

Combining Equations (3.22) and (3.23), the following relationship holds:

YBD =

(
YY D

M

)α

. (3.24)

The Kim and Kuo model [21] considered time-dependent dielectric breakdown

which is one of the major failures in integrated circuits. Let ZOX be the thickness

of the gate oxide and ZEOX is the effective oxide thickness, which is the remaining

thickness of the gate oxide due to defects. Then, the following relationship holds for

ZOX , ZEOX , and s:

ZEOX = sZOX , (3.25)

where s is the severity of the defect growth at time t during operation temperature

T0. The severity factor is calculated by the following equation[21]:

s =
t

τ0(T0)
exp

[
−G(T0)ZOX

VOX

]
,

where τ0(T0) and G(T0) are constants depending on temperature and VOX is the

32

voltage across the gate oxide. Now, consider a single gate oxide where the critical

area for yield defects is AY DOX and critical area for burn-in defects is ABDOX . Then,

the ratio of critical area can be computed by following equation:

ABDOX

AY DOX

=
Z2

OX

(ZOX − ZEOX)2
− 1 =

1

(1− s)2
− 1. (3.26)

By incorporating Equation (3.26) into Equation (3.21), the burn-in yield at burn-in

time t can be computed by:

YBD(t) = (YY D)ABDOX/AY DOX = (YY D)1/(1−s)2−1 . (3.27)

Barnett [24] assumed that the average number of yield defects λY D and the

average number of burn-in defects λBD have the following relationship:

λY D = γλBD, (3.28)

where γ is a constant of less than one. Let Y D(m) and BD(n) denote the events of

exactly m yield defects and exactly n burn-in defects, respectively. If we employ a

negative binomial yield model and assume the defects are statistically independent,

the total yield, i.e., the probability of no yield or burn-in defects is:

Y = Pr{Y D(0), BD(0)} =

(
1 +

λY D + λBD

α

)−α

,

and the probability of no yield defects is:

YY D = Pr{Y D(0)} =

(
1 +

λY D

α

)−α

, (3.29)

and the probability of no burn-in defects given no yield defects is:

YBD = Pr{BD(0)|Y D(0)} =

(
1 +

λBD

α + λY D

)−α

, (3.30)

33

By merging Equations from (3.28) to (3.30), the burn-in yield can be formulated by:

YBD =
[
1 + γ

(
1− (YY D)1/α

)]−α
. (3.31)

III.6. Reliability Model in an Useful Life Period

In the useful life period, it is very difficult to develop a generalized reliability model

because of the complex failure mechanisms of integrated circuits. Since the failure rate

in this period is generally assumed to be a constant, a simple exponential reliability

model of Equation (3.7) is extensively used:

R(t) = e−µt,

where t is the mission time and µ is the failure rate of an integrated circuit. General

measurement unit of the failure rate is failures per 109 operation hours (FIT). In

typical, λ stands for the failure rate, but, in this dissertation, I will use µ for the

failure rate to distinguish it from the average number of defects in the yield model.

For this exponential reliability model, both mean time to failure (MTTF) and mean

time between failures (MTBF) are 1/µ.

Assuming the exponential reliability model, the only remaining problem is

to find the appropriate value of µ because the mission time t is determined by the

customer’s needs and the manufacturer’s strategy. There are two approaches to es-

timate µ. The first approach is to use accelerated life testing (ALT) [4, 25]. Most

microelectronics products have a very long lifetime with a very low failure rate. ALT

imposes excessive electrical and environmental stresses, which are greater than the

normal operating conditions, for a reasonable amount of time. The lifetime and failure

rate of a product, therefore, can be estimated by extrapolating the ALT results into

34

normal operating conditions. A temperature test for chemical reactions, a voltage

test for time-dependant dielectric breakdown (TDDB), a humidity test for moisture

resistance, and a current density test for electromigration are the widely used ALT

methods in semiconductor manufacturing [25].

For example, let us consider ALT for temperature stress and voltage stress. It

is generally agreed that the famous Arrhenius equation explains well the relationship

between a chemical reaction and temperature as follows:

Rr = k0 exp

(
−Ea

kT

)
, (3.32)

where Rr is the chemical reaction rate; k0 is a constant; Ea is the activation energy in

the eV unit; k is the Boltzmann’s constant (8.617e-5 eV/K); and T is the temperature

in the K unit. Let T1 be the temperature of the ALT and T2 be the temperature at

the normal operating condition. Then, the lifetime of the system can be estimated

by modifying Equation (3.32) as follows:

LT2 = LT1 exp

[
−Ea

k

(
1

T1

− 1

T2

)]
, (3.33)

where LT1 and LT2 are measured or estimated lifetimes related to temperature T1

and T2, respectively. For voltage stress, the following relationship is typically used:

LV 2 = LV 1 exp [−B(V2 − V1)] , (3.34)

where LV 1 and LV 2 are lifetimes related to applied voltage V1 and V2, respectively, and

B is the voltage acceleration constant which depends on the oxide film. The lifetime

of the integrated circuit can be computed by projecting the accelerated conditions,

T1 and V1, into the normal condition, T2 and V2, respectively. If we consider both of

35

the tests, the failure rate µ can be estimated with a confidence level as follows:

µ =
X 2

1−α(2n + 2)

2 · Af · t0 · 109(FITS), (3.35)

where r is the number of failures; α is the confidence level for the X 2 distribution; n

is the number of samples; t0 is the test time; and Af is the acceleration coefficient,

i.e., (LT2/LT1) · (LV 2/LV 1).

A second approach is to use industry or military standards such as MIL-

STD-217, Bellcore, JAP, etc. With these standards, many factors are involved in the

estimation of µ: temperature, quality, voltage stress, environmental factors, etc. The

only difference in these standards is that they consider different factors and formulae

to calculate µ. To see detailed explanations of and references to the various stan-

dards for microelectronic devices, refer to a good summary paper [14]. In fact, some

formulae in the standards include the ALT feature. However, the estimated µ using

the standards is often different from the actual field data for recently developed semi-

conductor devices because they do not reflect emerging devices and manufacturing

technology.

36

CHAPTER IV

MODELING OF FAULT-TOLERANT MEMORY INTEGRATED

CIRCUITS

Memory integrated circuits such as DRAM (dynamic random access memory), SRAM

(static random access memory), and flash memories have often employed fault-tolerant

techniques to enhance manufacturing yield at a low additional cost. The importance

of fault-tolerant techniques will increase even more as microprocessors and system-

on-a-chips (SoC) demand more memory capability on their chips. Since the 1980’s,

various yield and reliability models for fault-tolerant memory integrated circuits have

been developed [5, 6, 26, 27, 28, 29]. However, most of these models gave only par-

tial consideration to failure types, redundancies, error correcting codes, and burn-in

effects. In this section, these yield and reliability models are integrated into the

defect-based yield model and the reliability model that consider both hierarchical

redundancies and error correcting codes.

IV.1. System Architecture of a Typical Memory IC

A modern memory integrated circuit consists largely of peripheral circuits for the

controller and the interface circuits and memory arrays for information data storage.

Figure 6 shows the design architecture of a typical memory integrated circuit. We

define a memory block as a memory array which includes column and row redun-

dancies. Each memory block consists of a sey of memory segments, row and column

redundancies, and supporting circuits such as a row decoder and stitching region,

a column decoder and sense amplifier, buses, selection switches, and a fuse box for

replacing failed memories as redundancies. Block redundancy (BR in Figure 6) may

37

Figure 6: Schematic Diagram of a Typical Memory Integrated Circuit

also be added to integrated circuits to decrease the yield loss caused by block failures

which often occur at the introductory stages of manufacturing [13]. A memory seg-

ment contains a number of memory words which consist of data bits and parity bits

for error correction. Detailed memory chip architecture can be described as follows:

• total chip = peripheral circuits + memory blocks + block redundancies

• memory block = memory segments + row redundancies + column redundancies

+ supporting circuits

• block redundancy = memory segments + row redundancies + column redun-

dancies + supporting circuits

• memory segment = memory words with error correcting code

• memory word = data bits + parity bits.

38

Figure 7: Relationship of Yield, Reliability, Failure Type, and Fault-Tolerant Scheme

Fault-tolerant schemes can be employed in any part of an semiconductor

integrated circuit; however, we assume that fault-tolerance are applied for only mem-

ory arrays. In other words, failure is unavoidable if any faults fall in peripheral or

supporting circuits. Faults occurring during wafer fabrication are covered by both re-

dundancies and an error correcting code (ECC). On the other hand, faults occurring

during operation are covered only by the ECC. Therefore, yield is affected by both

redundancies and ECC and reliability is affected by only ECC. A row redundancy

can repair any failed word line in the memory block and a column redundancy can

replace any failed bit line in the memory block until corresponding redundancies are

exhausted. A block redundancy can repair any failed memory segments with a size

that is the same as the block redundancy in the whole memory array. The ECC can

fix any failed bit in a word line.

39

Failures at the memory array can be classified into several types [29]: single

cell failures (SC), single word line failures (SWL), two adjacent word lines failures

(DWL), single bit line failures (SBL), two adjacent bit lines failures (DBL), and

single cross lines failures (CL). A block failure (BK), or island failure, is separated

from other failures because it can be repaired only by a block redundancy. Fault-

tolerant schemes, i.e., row redundancy, column redundancy, block redundancy, and

ECC, can repair several types of memory failures. For example, two row redundancies

can repair two SWLs, one DWL, one SWL and one SC, or two SCs. The relationship

between yield, reliability, failure type, and fault-tolerant scheme is described in Figure

7.

IV.2. Yield Model with Redundancy

Both redundancy and ECC are based on a redundancy technique. There are two types

of redundancy: identical and nonidentical. With identical redundancy, the exact same

memory module replaces a failed memory module. Row and column redundancy and

ECC are included in this category. On the other hand, nonidentical redundancy is

different. Block redundancy is categorized as nonidentical redundancy because block

redundancy includes its own row and column redundancies, and it is different from a

failed memory module in the memory array.

Consider a memory array which employs identical redundancy. In this case,

redundancies tend to be surplus memory modules, the memory array is a k-out-of-n:G

system. Let Nm be the required number of memory modules for the functioning of

the system and nr be the number of redundancies. The memory array system works

properly if at least Nm modules function properly among the total of (Nm + nr)

modules, i.e., Nm-out-of-(Nm + nr):G system. Then, the yield of the memory array

40

system is the probability of the survival of the Nm-out-of-(Nm + nr):G system as

follows:

YMA =
Nm+nr∑
j=Nm

(
Nm + nr

j

)
(YM)j(1− YM)Nm+nr−j

=
nr∑

j=0

(
Nm + nr

j

)
(YM)Nm+nr−j(1− YM)j, (4.1)

where YM is the yield of a memory module. It can be the Poisson yield model of

Equation (3.12) or the negative binomial model of Equation (3.15).

If the redundancy is nonidentical, the memory array system becomes a mod-

ified Nm-out-of-(Nm + nr):G system. Let YR be the yield of a redundancy which is

different from the original memory module, i.e, YR 6= YM . The yield of the memory

array system can be computed as follows:

YMA = Pr{at least Nm modules work}

=
nr∑

j=0

Pr{at least j redundancies survive|j memory modules fail}

=
nr∑

j=0

[(
Nm

j

)
(YM)(Nm−j)(1− YM)j

nr∑

k=j

(
nr

k

)
(YR)k(1− YR)(nr−k)

]

=
nr∑

j=0

nr∑

k=j

(
Nm

j

)(
nr

k

)
(YM)(Nm−j)(1− YM)j(YR)k(1− YR)(nr−k). (4.2)

IV.3. Yield Model with Various Types of Failures

For various types of memory failures, multivariate yield models have been developed

[26, 29, 30]. Assume that SC, SWL, DWL, SBL, DBL, and CL occur independently.

Let λi be the average number of the ith failure and xi be the number of the ith failure,

where i indicates a index for failure types, i.e., I = {SC, SWL,DWL, SBL, DBL, CL}.
Let Xi be a random variable for the number of the ith failure. If row and column re-

41

dundancies are employed in the memory array, the Poisson yield model of the system

for the various types of failures can be formulated as:

YMA = Pr{x is a fixable pattern}

=
∑
x∈S

∏
i∈I

Pr{Xi = xi}

=
∑
x∈S

∏
i∈I

λxi
i

xi!
e−λi , (4.3)

where x = (xSC , xSWL, xDWL, xSBL, xDBL, xCL) and S is the set of fixable patterns

which satisfies the following constraints [26]:

nwl ≥ xSWL + 2xDWL + xCL,

nbl ≥ xSBL + 2xDBL + xCL,

nwl + nbl ≥ xSC + xSWL + 2xDWL + 2xCL + xSBL + 2xDBL, (4.4)

where nwl and nbl denote the number of row redundancies and the number of column

redundancies, respectively. Similar to the Poisson model, the negative binomial model

with different clustering factors can also be developed as follows:

YMA =
∑
x∈S

∏
i∈I

Γ(αi + xi)

xi!Γ(αi)

(λi/αi)
xi

(1 + λi/αi)αi+xi
. (4.5)

IV.4. Yield Model with ECC

ECCs have been developed to compensate for soft errors which occur during operation.

An ECC can increase both yield and reliability by its auto-correcting characteristics.

There are various ECC methods [3]. Among them, the DED/SEC (double error detect

and single error correct) code, which uses odd weight Hamming code, is normally used

in an ECC in memory integrated circuits. It is known that an optimal DED/SEC

42

consists of 128 data bits and 9 parity bits (total 137 bits) [3].

Stapper et al. [27, 28] have considered the effect of an DED/SEC on both

yield and reliability models using the birthday problem under the assumption of the

existence of single cell failures only. Let Nwlc be the total number of memory words

in a chip. If we consider DED/SEC, only a failed bit can be repaired in a memory

word. The probability of less than, or equal to, one failure in a memory word given

k failures is:

Pr {at most one failure in a memory word|k failures} =
k∏

i=1

(Nwlc − k + 1)

Nwlc

.

Let NSC be a random variable which indicates the number of single cell failures and

nsc be the number of single cell failures in the memory array. If the negative binomial

distribution of Equation (3.14) is applied, the yield of the memory array employing

an DED/SEC using the negative binomial model can be derived as follows:

YECC = Pr {at most one failure in a memory word}

=

Nwlc∑
nsc=0

Pr {at most one failure in a memory word, NSC = nsc}

=

Nwlc∑
nsc=0

Pr {at most one failure in a memory word|NSC = nsc}Pr {NSC = nsc}

=

Nwlc∑
nsc=0

{[
nsc∏
i=1

(Nwlc + 1− i)

Nwlc

]
Γ(α + nsc)

(
λSC

α

)nsc

nsc!Γ(α)
(
1 + λSC

α

)α+nsc

}
, (4.6)

where λSC is the average number of single cell failures per chip.

IV.5. Integrated Model for Memory Integrated Circuits

Throughout Section IV.2 to IV.4, various yield and reliability models have been in-

vestigated step by step for redundancy, various types of failures, and ECCs. There is

43

an obvious correlation among these models because a memory array can be expressed

as a set of memory words, memory bits, memory segments, or memory cells at the

same time. In addition, row redundancies, column redundancies, block redundancies,

and ECCs can repair more than two types of failures (refer to Figure 7). Thus, to

consider all of the factors simultaneously, special manipulations for the yield and the

reliability models are required.

Since any failure in the peripheral circuits or memory block causes system

failure, these are connected in series from the yield or reliability viewpoint. Block

redundancies can repair any block failure in a memory array. Burn-in process is

performed at the chip level. Therefore, a memory integrated circuit can be expressed

as a series system of those components, and the total yield can be computed by:

YIC = YPC · (YMB)Nmb · YBF · YBI , (4.7)

where YIC is the yield of the manufactured integrated circuit; YPC is the yield of the

peripheral circuits; YMB is the yield of a memory block; YBF is the yield related to

block failures; YBI is the burn-in yield; and Nmb is the number of memory blocks.

In the following section, these yields and defect-based reliability are derived

step by step.

Estimation of the average number of failures

The average number of failures, λ, is a key parameter for computing defect oriented

yield and reliability models. λ can be obtained by multiplying the average critical

area, Ac, and the average defect density, D0. Data for the critical area is not specified

for a part of a chip, but normally is provided based on the total chip area. Thus,

to compute yields of a word line, a bit line, a cell, or a memory segment, which are

used for calculating yield, some treatment is required. Let us assume that area Aj

44

for j = 1, . . . , k is a partition of the area A and all of the divided areas are identical,

i.e., Ai = Aj and λi = λj for all i and j. Let λ be the average number of failures in

area A. If we employ the Poisson model, the average number of failures in area Aj,

λj, should be satisfied following the relationship expressed by Equation (3.17):

λ =
k∑

j=0

λj = kλj ↔ λj =
λ

k
.

Consider the negative binomial yield model. Let us assume that the clustering factor,

α, is the same for the total area A and all of the partition Aj, and λi = λj for all i

and j. Then, the following relationship is true according to Equation (3.18):

(
1 +

λ

α

)−α

=
k∏

j=1

(
1 +

λj

α

)−α

=

[(
1 +

λj

α

)−α
]k

.

Through some mathematical manipulation, the average number of failures in a par-

tition Aj, λj, can be computed using the average number of failures in the total area

A, λ, as follows:

λj = α

[(
1 +

λ

α

)1/k

− 1

]
. (4.8)

Yield of peripheral circuits (YPC)

Since we assume that peripheral circuits do not employ any fault-tolerant scheme,

YPC can be computed simply by the Poisson yield model of Equation (3.12) or the

negative binomial model of Equation (3.15). If we apply the negative binomial yield

model, YPC is:

YPC =

(
1 +

λPC

αPC

)−αPC

, (4.9)

where λPC and αPC are the average number of defects and the clustering factor in

the peripheral circuits, respectively.

45

Yield of a memory block (YMB)

Now, consider a memory block. A memory block includes complex fault-tolerant

architecture. Let us assume that failed memory modules are substituted for corre-

sponding redundancies in the following order:

word line → bit line → cell → block.

Since block failures are treated on the whole memory array, the effects for the block

failures are excluded from calculating yield of the memory block. Then, yield of a

memory block can be formulated as follows under the assumption of the independence

of word line failures, bit line failures, and single cell failures:

YMB = Pr{supporting circuits work} · Pr{all of memory segments work}

= YDC · YMA (4.10)

where YDC is the yield of the supporting circuits in a memory block and YMA is the

yield of all of memory segments in a memory block. Similar to YPC , YDC can be

simply modeled as:

YDC =

(
1 +

λDC

αDC

)−αDC

, (4.11)

where λDC and αDC are the average number of defects and the clustering factor of

the supporting circuits in a memory block, respectively.

Yield of a memory array, YMA, can be computed by Equation (4.5) using a

set of fixable patterns. However, this method can not be applied directly to calculate

YMA because single cell failures can be repaired by both remaining line redundancies

and ECCs. Thus, we separate YMA again as YLF · YSC , where YLF is a yield related

to line failures and YSC is a yield related to single cell failures. Since YLF does not

related to single cell failures, YMA can be calculated by Equation (4.5) after dropping

46

the last constraint, Equation (4.4).

Now, consider YSC . Let K be a random variable which indicates the number

of the remaining row or column redundancies and Xl be a random variable which

indicates the number of word or bit line failures. Let nl be the total number of line

redundancies, i.e., nwl + nbl, and λL be the average number of word line and bit line

failures, i.e., λSWL + 2λDWL + λSBL + 2λDBL + 2λCL. Then, the probability of k

number of the remaining line redundancies is:

Pr{K = k} =

Pr{Xl ≥ nl|λL} = 1−
nl−1∑
i=0

Γ(α + i)
(

λL

α

)i

i!Γ(α)
(
1 + λL

α

)α+i , k = 0

Pr{Xl = nl − k|λL} =
Γ(α + nl − k)

(
λL

α

)(nl−k)

(nl − k)!Γ(α)
(
1 + λL

α

)α+(nl−k)
, k 6= 0

(4.12)

If an ECC is not employed, the yield for single cell failures is the probability

that the number of single cell failures is less than or equal to the number of the

remaining line redundancies given k number of the remaining line redundancies. Thus,

the yield related to single cell failures without an ECC, YSCN , can be calculated by:

YSCN =

nl∑

k=0

Pr{Xsc ≤ k|λSC}Pr{K = k}

=

nl∑

k=0

k∑
i=0

Γ(αSC + i)
(

λSC

αSC

)i

i!Γ(αSC)
(
1 + λSC

αSC

)αSC+i

 Pr{K = k}

(4.13)

If an ECC is employed, the yield related to single cell failures, YSC , can be

calculated by Equation (4.6). However, in this case, the effect of the remaining line

redundancies is ignored. Then, how do we calculate the λSC considering the remaining

line redundancies? We have already derived YSCN in Equation (4.13), considering the

effect of the remaining line redundancies. Thus, if we can extract λSC from YSCN , we

can obtain λSC which reflects the effect of the remaining line redundancies. Through

47

some mathematical manipulation, we can easily obtain a new λSC as follows:

λSC = α
[
(YSCN)−1/α − 1

]
, (4.14)

Yield of a block redundancy (YBR)

A block redundancy has the same structure as a memory block, and thus the model

is the same. The only difference is the consideration of the effect of an ECC. Memory

words in a block redundancy also employ an ECC. However, it is very complex to

calculate the yield of the memory array if we consider the effect of an ECC in the block

redundancy. Block redundancies affect the yield of the memory array only when they

replace failed block modules in the memory array. Thus, some single cell failures come

from the block redundancies and the others come from the original memory array.

This makes complex yield model of the memory array. This problem can be solved by

not considering ECC on block redundancies, but by considering ECC on the memory

array after the replacement of failed memory modules as block redundancies.

To distinguish from the memory block, I will attach B or b for the block

redundancy at each subscript of models for the memory block. Then, the yield of a

block redundancy can be formulated as follows:

YBR = YBDC · YBLF , (4.15)

where each yield can be formulated in the same way as the memory block.

Yield related to block failures (YBF)

A block redundancy can cover any block module in the memory array. Let Nbm

and nbr be the total number of block modules which have the same size of block

redundancies and number of block redundancies in the chip, respectively. Since the

48

block redundancy also includes fault-tolerant architecture, the block redundancy is

not identical to the block module. In this case, we can apply the yield model with

nonidentical redunduncies of Equation (4.2). Then, YBF can be computed by:

YBF =

nbr∑
j=0

nbr∑

k=j

(
Nbm

j

)(
nbr

k

)
(YBM)(Nbm−j)(1− YBM)j(YBR)k(1− YBR)(nbr−k), (4.16)

where YBM is the yield of a block module and YBR is the yield of a block redundancy.

Burn-in yield (YBI)

Burn-in yield can be formulated by Barnett’s yield-reliability relationship of Equation

(3.31):

YBI =
{

1 + γ
[
1− (YICN)1/αICN

]}−αICN

, (4.17)

where YICN is the yield for yield defects. The actual number of yield defects decreases

when some redundancies substitute for failed memory modules. However, the average

number of yield defects is not changed because it depends on manufacturing processes.

Thus, YICN can be interpreted as yield without fault-tolerant schemes. Then, YICN

can be simply computed by Equation (3.18) as follows:

YICN =
∏

i∈Ĩ

(
1 +

λi

αi

)−αi

, (4.18)

where Ĩ = {PC, BK, SC, SWL,DWL, SBL,DBL, CL}.

Reliability in an useful life period

Detected failures are repaired by corresponding redundancies during the wafer probing

process. Once this repair process is finished, no other repair jobs with redundancies

can be performed during the operation unless BIST and BISR techniques are em-

ployed. Since a semiconductor integrated circuit is a series system of components,

49

the reliability of the integrated circuit can be represented as:

RIC = RNC ·RSC , (4.19)

where RNC is the reliability of the non-memory components and RSC is the reliability

of memory segments related to reliability failures in a chip. RNC and RSC can be

expressed by the exponential reliability model of Equation (3.7) in an useful life

period:

RNC = e−µNCt0 , (4.20)

RSC = e−µSCt0 , (4.21)

where µNC and µSC are the failure rates of the non-memory components and memory

arrays in a chip, respectively, and t0 is the mission time of the integrated circuit.

If a number of single cell failures, which are not repaired by line redundancies,

carry over to the useful life period, the reliability of the integrated circuit should be

modified. Let NCF be a random variable which denotes the number of carry-over

single cell failures, NRF be a random variable which indicates the number of reliability

failures, and NF be a random variable which denotes the number of total failures,

i.e., NF = NCF + NRF . Similar to Equation (4.6), the reliability of the integrated

circuit with the DED/SEC can be formulated by:

RIC = RNC Pr {at most one failure in a memory word}

= RNC

Nwlc∑
nf=0

Pr {at most one failure in a memory word|NF = nf}Pr {Nf = nf}

= RNC

Nwlc∑
nf=0

{[
nf∏
i=1

(Nwlc + 1− i)

Nwlc

]
Pr {Nf = nf}

}
, (4.22)

50

where Pr {Nf = nf} is the probability that the total number of failures is nf . If we

assume that the single cell failures and the reliability failures are independent, the

probability can be computed by:

Pr {Nf = nf} = Pr {NCF + NRF = nf}

=

nf∑
ncf=0

Pr {NCF = ncf}Pr {NRF = nf − ncf}

=

nf∑
ncf=0

{
Γ(α + ncf)

(
λSC

α

)ncf

ncf !Γ(α)
(
1 + λSC

α

)α+ncf

Γ(α + nf − ncf)
(

µSC

α

)(nf−ncf)

(nf − ncf)!Γ(α)
(
1 + µSC

α

)α+nf−ncf

}
.

Note that we should use the new calculated λSC of Equation (4.14) for considering

the carry-over single cell failures.

In this chapter, a large number of equations are derived for building the

integrated yield model and the reliability model considering carry-over failures. To

make them easier to understand, I have summarize these equations in Table 1.

51

Table 1: Formulas for Yield and Reliability Calculation

Yield Formula Equation

YIC [YPC · (YMB)Nmb · YBF] · YBI (4.7)

YPC

(
1 +

λPC

αPC

)−αPC

(4.9)

YMB YDC · YLF · YSC (4.10)

YDC

(
1 +

λDC

αDC

)−αDC

(4.11)

YLF

∑
x∈S

∏
i∈I

Γ(αi + xi)

xi!Γ(αi)

(λi/αi)
xi

(1 + λi/αi)αi+xi
,

I = {SWL, DWL, SBL, DBL, CL} (4.5)

YSC

Nwlc∑
nsc=0

{[
nsc∏
i=1

(Nwlc + 1− i)

Nwlc

]
Γ(α + nsc)

(
λSC

α

)nsc

nsc!Γ(α)
(
1 + λSC

α

)α+nsc

}
(4.6)

YBR YBDC · YBLF (4.15)

YBDC

(
1 +

λBDC

αBDC

)−αBDC

(4.11)

YBLF

∑
x∈S

∏
i∈I

Γ(αi + xi)

xi!Γ(αi)

(λi/αi)
xi

(1 + λi/αi)αi+xi
,

I = {SC, SWL, DWL, SBL, DBL,CL} (4.5)

YBF

nbr∑
j=0

nbr∑

k=j

(
Nbm

j

)(
nbr

k

)
Y

(Nbm−j)
BM (1− YBM)jY

(nbr−k)
BR (1− YBR)k (4.16)

YBI

{
1 + γ

[
1− (YICN)1/αICN

]}−αICN

(4.17)

RIC RNC

Nwlc∑
nf=0

{[
nf∏
i=1

(Nwlc + 1− i)

Nwlc

]
Pr {Nf = nf}

}
(4.22)

52

CHAPTER V

OPTIMIZATION OF YIELD AND RELIABILITY

To efficiently constitute the fault-tolerant systems discussed in previous chapters, the

number of redundancies and the size of the critical areas should be optimized. General

yield and reliability models are nonconvex, nonlinear, nonseparable, and coherent.

Depending on the decision variables of the problems, optimization problems can be

either pure integer or mixed integer problems. In the following two chapters, newly

proposed nonconvex integer nonlinear programming algorithms for coherent systems

will be introduced. Tree and scanning heuristics find local optimum solutions and

branch-and-bound method find global optimum solutions. Those methods can also

be used to optimize general coherent systems.

V.1. Coherent System

Consider a reliability system where each component has two states. Let’s assign a

binary indicator variable xi to the ith component, where xi is one if the ith component

is functioning and zero otherwise. The system structure function φ(x) can be defined

if the binary state of the system is completely defined by the states of the components.

φ(x) =

1 if the system is functioning

0 if the system is failing to function,

(5.1)

where x = (x1, . . . , xn) and n is the number of components in the system. Let

(·,xi) = (x1, . . . , xi−1, ·, xi+1, . . . , xn) and I = {1, . . . , n}. A coherent system can be

defined as follows:

53

Definition 1. A system is called coherent if, and only if, the structure function φ(x)

satisfies the following conditions:

i) (relevant) φ(0,xi) 6= φ(1,xi) for all i ∈ I and for all (·,xi),

ii) (increasing) φ(x) is increasing and φ(0,xi) ≤ φ(1,xi) for all i ∈ I and for all

(·,xi),

where the condition i) implies that all of the components are relevant to the system

structure function and condition ii) indicates that the system structure function is

nondecreasing. Let Xi be a random vector which denotes states of the ith component.

All components are independent. Let ri = Pr(Xi = 1). Since the system reliability is

the probability that the system is functioning, the system reliability function is:

Rs(r) = Pr(φ(X) = 1) = E[φ(X)],

where X = (X1, . . . , Xn) and r = (r1, . . . , rn).

V.2. Formulation of Optimization Problems

The objective of the reliability optimization problems is to find the level of redundancy

and/or reliability of the components which maximizes the system reliability under

the given resource constraints, or minimizes the total cost under minimum system

reliability and other resource limitations. Let’s consider the following two reliability

optimization problems:

[INLP]

maximize f(x)

subject to gi(x) ≤ bi, for i = 1, · · · ,m,

lj ≤ xj ≤ uj, xj ∈ Z+, for j = 1, . . . , n,

54

[MINLP]

maximize f(r,x)

subject to gi(r,x) ≤ bi, for i = 1, · · · ,m,

lj ≤ xj ≤ uj, xj ∈ Z+, for j = 1, . . . , n,

rj ∈ (0, 1) ⊂ R, for j = 1, . . . , n,

where n and m are the number of components and the number of constraints, re-

spectively; rj is the component reliability of the jth component; xj is the number of

redundancies at the jth component; x = (x1, . . . , xn); r = (r1, . . . , rn); f(·) is an ob-

jective function of the problem; gi(·) is the ith constraint function; bi is the maximum

allowable amount of the ith resource; Z+ and R denote a set of nonnegative integers

and a real number, respectively. The objective function and constraint functions can

be system reliability, manufacturing yield, manufacturing cost, profit, volume, area,

etc. Redundancy can be added to components with various forms which include iden-

tical components, standby components, choices of multiple components, k-out-of-n

systems, and others. Note that there are no restrictions of convexity, linearity, or

separability on any of the objective functions or constraint functions.

If a system is coherent, the objective function f(·) and the constraint function

gi(·) are a monotonic increasing function over the feasible region S = {(r,x)|gi(r,x) ≤
bi, rj ∈ (0, 1), lj ≤ xj ≤ uj, xj ∈ Z+,∀i, j} and the solution space Ω = {(r,x)|rj ∈
(0, 1), lj ≤ xj ≤ uj, xj ∈ Z+, ∀j}. The problem is called separable if f(r,x) =
∑n

j=1 fj(rj, xj) and gi(r,x) =
∑n

j=1 gij(rj, xj), where fj(·) is the jth subsystem re-

liability function and gij(·) is the consumption of the ith resource at the subsystem

j.

There are various types of system configurations: series, parallel, parallel-

55

series, and series-parallel, hierarchical series-parallel, complex, etc. A series sys-

tem works if all of the components work; a parallel system functions if any com-

ponent works; a parallel-series system is a parallel system with series subsystems; a

series-parallel system is a series system with parallel subsystems; a hierarchical series-

parallel (HSP) system is a combined system with only series or parallel subsystems;

a complex system is a system which can not be reduced into one component system

using the parallel and series reduction technique. The system reliability function of a

complex system can be computed by the pivotal decomposition method, the inclusion-

exclusion method, or the sum-of-disjoint-products method [31]. The relationship of

the components can be graphically expressed using a reliability block diagram. In

the following chapters, system configurations are described by the reliability block

diagram.

The overall system reliability depends on the type of system configuration.

For example, the reliability of a series system and a parallel system can be computed

by the following formulations, respectively:

(series) Rs =
n∏

j=1

Rj,

(parallel) Rs = 1−
n∏

j=1

(1−Rj) ,

where Rs is the overall system reliability; Rj is the jth subsystem reliability; and
∏

is

the product operator. The system reliability function with a general system structure

(including a complex or network structure) is nonlinear, nonconvex (or nonconcave),

and nonseparable. Only series and parallel-series systems are known as quasi-concave

(or log-concave) [32]. Since all reliability optimization problems include the system

reliability function as the objective function or the constraint function, they become

56

nonconvex and nonlinear programming problems.

Reliability optimization problems are categorized into three typical problem

types according to the nature of their decision variables: reliability allocation, redun-

dancy allocation, and reliability-redundancy allocation. If the component reliabilities,

rj’s for all j, are the only variables, the optimization problem is called a reliability allo-

cation problem; if the number of redundancies, xj’s for all j, are the only variables, the

problem becomes a redundancy allocation problem (INLP); if the decision variables

of the problem include both component reliabilities and redundancies, the problem

is called a reliability-redundancy allocation problem (MINLP). From the viewpoint

of mathematical programming, the reliability allocation problem is a continuous non-

linear programming problem (NLP); the redundancy allocation problem is a pure

integer nonlinear programming problem (INLP); and the reliability-redundancy al-

location problem is a mixed integer nonlinear programming problem (MINLP). It is

well known that all of the problems above are classified as NP-hard problems [33].

In other words, as yet, there is no dominant optimization algorithm for them which

achieves a global optimal solution in polynomial time.

These problems are different from others due to several specific properties,

which make them either harder or easier to solve. First, the general system reliability

function is nonlinear, nonseparable, and nonconvex and so are the problems. Thus,

various efficient integer and/or nonlinear programming techniques used to solve linear,

separable, or convex problems are not directly employable. Second, the system under

consideration is a coherent system which has component-wise increasing objective

and constraint functions. This property provides good upper bounds for coherent

functions in a specified solution space. Third, since there are various types of system

structures, it is very difficult to develop an unified algorithm which is appropriate for

all types of structures. Therefore, for global optimal solutions, enumeration methods

57

are used extensively. The proposed algorithms in Chapter VI and Chapter VII are

developed to maximize the advantages and to minimize the disadvantages of the above

properties.

V.3. Reliability Redundancy Optimization Algorithms

The redundancy allocation problem INLP is very difficult to solve. Chern [33] has

proved that even the simplest redundancy allocation problems, a series system with

one constraint or a series system with identical components and two constraints, are

NP-hard. Due to their difficulty, various approaches, such as heuristics, approxi-

mations, and enumerations, have been considered for solving redundancy allocation

problems. The characteristics of the three main types of algorithms are described

below:

Heuristics

Heuristics find a local or a near optimal solution by gradually improving an incumbent

solution using intuition. The steepest ascent method using sensitivity factors, bound-

ary region search, increasing redundancy on minimal path sets, and meta-heuristics

are in this category. Heuristics can be executed in a relatively short time and provide

reasonably good solutions but the global optimality of the solution is generally not

guaranteed.

Approximation methods

In approximations, a relaxed problem which has a larger feasible region than that

of the original problem is solved and its optimal solution is rounded off to an inte-

ger solution. To solve the relaxed problem, mathematical programming techniques,

such as linear, nonlinear, and geometric programming, are normally used. The main

disadvantage of this type of algorithm is that it requires high quality information,

58

e.g., derivatives and mathematical reformulation; therefore, performance critically

depends on the system structure.

Global optimization methods

Since the redundancy allocation problem is a nonconvex INLP, combinatorial op-

timization techniques can be used for global optimization methods. Dynamic pro-

gramming [34], implicit enumeration [35], and branch-and-bound [34] are typical ap-

proaches in this category. Although the approaches guarantee global optimal solu-

tions, they are very time consuming and their efficiency depends on the efficiency of

the search space elimination.

Detailed descriptions of, and references for, the above three types of ap-

proaches are well summarized in [34, 36, 37].

59

CHAPTER VI

EXACT ALGORITHM FOR REDUNDANCY ALLOCATION

The most used global optimization method in redundancy allocation problems is dy-

namic programming (DP). The implementation of DP, however, is limited by the

number of constraints and the system structures it can be applied to. For a system

which has more than two constraints, the computational complexity of DP increases

exponentially. Although this weakness can be compensated for by employing La-

grangian multipliers and dominating sequence techniques, DP is still not applicable

to nonseparable systems such as reliability optimization problems with complex struc-

tures.

Contrary to DP, implicit enumeration and branch-and-bound methods do not

depend on the separability of the objective and the number of constraint functions

because they do not use recursive equations to reduce solution space. The early

research on these methods was based on transforming integer decision variables into

corresponding binary variables. However, the transformed problem, the so-called

0-1 programming problem, was often inefficient because a huge number of decision

variables were generated if the range of variables was large [38].

The most efficient branch-and-bound method for redundancy allocation prob-

lems at present is the method developed by Nakagawa, et al. [39]. This method does

not require a 0-1 programming transformation or relaxation of the integer variables.

The most versatile relaxation these authors applied was dropping the constraints and

fixing the value of the variables. This method evaluates the objective function only

at the terminal nodes of the enumeration tree. Since the number of terminal nodes

rapidly increases depending on the the number of variables and the integer interval of

60

each, the method is time consuming and inapplicable for solving large-scale problems.

Recently, Prasad and Kuo [35] proposed an implicit enumeration algorithm,

the lexicographic search, which is an improved version of Misra’s implicit enumer-

ation method [38]. The algorithm searches every feasible solution lexicographically

and finds the best one; during the search, infeasible solutions and solutions over a

computed upper bound are eliminated. Although they only considered the problem

with separable constraints in the paper [35], it can be easily implemented for a gen-

eral integer programming problem in a coherent system. However, the algorithm is

still exhausting if we do not use the associated solution space elimination techniques,

which cannot be applied to nonseparable systems.

Due to their flexibility and their optimality properties, branch-and-bound

methods have been extensively used in mathematical programming. The general

branch-and-bound method for maximizing INLP problems is based on the following

procedures: 1) find a feasible solution and set the current optimum as the value

of the initial feasible solution; 2) if there is no unsolved subproblem, terminate the

procedure; 3) branch into subproblems where a decision variable is fixed or bounded;

4) apply relaxation for each subproblem and solve the problem, and then update

the upper bound as the maximum value of the solution; 5) fathom this tree node if

the upper bound is less than the current optimum; 6) if the upper bound is feasible,

update the current optimal solution and go to the next subproblem; otherwise branch

into the subproblems again.

The essence of the branch-and-bound algorithm is to design proper relaxations

for each subproblem to obtain sharper lower or upper bounds. The typical relaxation

methods for INLP involve an integer relaxation of some or all of the variables and/or

dropping several critical constraints [39]. Many researchers have concentrated on find-

ing better relaxation methods, but, so far, no superior relaxation methods applicable

61

to the general framework have emerged [37, 40, 41]. For integer linear programming

problems, integer relaxation is appropriate because the relaxed problem can be solved

by well-developed linear programming methods such as the simplex method, cutting

plane algorithm, or interior point method [40]. However, for the INLP case, the sit-

uation is different. If we employ integer relaxation, the relaxed subproblems become

nonlinear programming problems (NLP). Solving the NLPs is also time-consuming

due to the computation of derivative information on the objective and constraint

functions.

If the problem under consideration is a nonconvex INLP, the situation is even

worse. Each integer-relaxed subproblem of a nonconvex INLP becomes a nonconvex

NLP. To guarantee the global optimality of the obtained solution, proper bounds of

the nonconvex subproblems are required. For nonconvex NLPs, obtaining a global

optimum which is the sharpest upper or lower bounds for the relaxed subproblems,

is very difficult. So, advanced bounding techniques such as convexification, a convex

under-estimator, and the cutting plane method are generally preferred in the branch-

and-bound method [42, 43, 44]. However, they are inefficient and inapplicable for

some nonconvex problems, because they require extensive computation to find the

parameters, extra formulary manipulation of the objective and constraint functions,

and excess constraints.

Recently, Tuy and Luc [44] suggested an approach for solving nonlinear pro-

gramming problems with a convex objective function and monotonic nonconvex con-

straints. The method is based on a branch-and-bound procedure and an outer approx-

imation on continuous space. In the algorithm, the upper bound of each subproblem

is computed by polyblock approximation, where the polyblock is the union of a finite

number of multidimensional hypercubes. The basic intuition of the paper is that

for problems with increasing objective and constraint functions, any solution below

62

a feasible solution can not be a global optimum and any solution obove a infeasible

solution is also infeasible. Although the problem and the method are different from

ours, the theoretical derivation and the intuition of the paper inspired our proposed

method.

To overcome the difficulties of nonconvex INLPs and to take advantage of

the coherent property, we propose an efficient global optimization algorithm for co-

herent nonconvex INLPs, such as redundancy allocation problems. The method is

a combination of a heuristic and a branch-and-bound method. The former is used

to find the local optimum in each subproblem, and the latter is used to determine

global optimality. Each subproblem is restricted by a multidimensional hypercube

which is completely defined by the integer upper and lower limits of the decision vari-

ables. Sharper lower or upper bounds of the subproblems are obtained with much

less computation using the coherent property. Therefore, the proposed method can

find the exact solution of an INLP that has monotonic properties without any other

assumptions and restrictions.

The proposed branch-and-bound approach has several advantages compared

to others: 1) when solving subproblems, the proposed method uses a heuristic, instead

of a relaxation, so no nonconvex NLP appears during the procedure; 2) in each

iteration, the proposed algorithm finds an infeasible region using a local maximum

and then eliminates this region. This search space reduction procedure is irrelevant to

the convexity of the problem, so the global optimality of the solution is guaranteed; 3)

by executing a heuristic on each subproblem, a local optimum is obtained. Since an

incumbent solution is frequently updated, the possibility of fathoming nodes increases;

4) since the proposed methods generate multiple subproblems at the same level in

the enumeration tree, it is easy to employ parallel computing.

63

VI.1. Theoretical Study for Global Optimization

This section explains the theoretical basis of the proposed algorithm. All of these

definitions, lemmas, and theorems are used extensively throughout the rest of the

following chapter.

Let Z be a set of integers; then Z+ = {x ∈ Z|x ≥ 0} denotes the set of non-

negative integers and Z++ = {x ∈ Z|x > 0} denotes the set of positive integers. The

n tuples of Z, Z+, and Z++ are denoted by Zn, Zn
+, and Zn

++, where Zn
+ and Zn

++ are

called the nonnegative integer orthant and the positive integer orthant, respectively.

For convenience, the n-dimensional i-th unit vector is denoted as ei.

Let x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Zn. For any two points, x,y ∈ Zn,

the ordering x ¹ y implies that y properly dominates x and denotes xi ≤ yi for

all i = 1, . . . , n. The ordering x ≺ y implies x ¹ y and xi < yi for at least one

i = 1, . . . , n and means that y strictly dominates x. A point y strongly dominates x

if xi < yi for all i = 1, . . . , n and the ordering is written as x ¿ y. Let ¢ be any one

of the orderings ¹, ≺, or ¿. Then the ordering ¢ satisfies the following properties:

• For all z ∈ Zn, x ¢ z and z ¢ y implies x ¢ y;

• For all z ∈ Zn, x ¢ y implies x + z ¢ y + z;

• For all λ > 0, x ¢ y implies λx ¢ λy .

Now, let us define multi-dimensional segments. For any two points a =

(a1, . . . , an) and b = (b1, . . . , bn) ∈ Zn
+ such that a ¹ b, an n-dimensional closed seg-

ment [a,b] ⊂ Zn
+ is defined as {x ∈ Zn

+|a ¹ x ¹ b}. Analogously, an n-dimensional

semi-closed segment 〈a,b〉 and an n-dimensional opened segment (a,b) are defined

as {x ∈ Zn
+|a ≺ x ≺ b} and {x ∈ Zn

+|a ¿ x ¿ b}, respectively.

A function f : Zn → Z is increasing on Zn
+ if for any two points x,y ∈ Zn

+,

64

x ¹ y implies f(x) ≤ f(y). Analogously, a function f is strictly increasing whenever

x ≺ (¿)y implies f(x) < f(y). If for any two points a,b ∈ Zn
+, a ¢ x ¢ y ¢ b

implies f(x) ≤ f(y), then the function f is increasing(or strictly increasing) on an

n-dimensional segment [a,b] ⊂ Zn
+. For increasing functions f1 and f2 and any

nonnegative numbers λ1 and λ2, the function λ1f1 + λ2f2 is increasing [44].

Consider the maximization problem INLP where the objective and the con-

straint functions are increasing. Let l = (l1, . . . , ln) and u = (u1, . . . , un). Let

Ω = [l,u] and S = {x ∈ Ω|gi(x) ≤ bi, ∀i}, then S is the set of feasible solutions.

Define the ε-neighborhood at x̄ as Nε(x̄) = {x ∈ Ω|x = x̄ ± εei,∀i}. Then, a point

x̄ ∈ S is a global maximum if f(x̄) ≥ f(x) for all x ∈ S. If x̄ ∈ S and f(x̄) ≥ f(x)

for all x ∈ S ∩N1(x̄), then the point x̄ is called a 1-neighborhood local maximum.

Lemma 1. If f is an increasing function on [a,b] ⊂ Zn
+, then f(a) ≤ f(x) ≤ f(b)

for all x ∈ [a,b].

Proof. Since x ∈ [a,b], a ¹ x ¹ b is true. Thus, f(a) ≤ f(x) ≤ f(b) is true by

definition of the increasing function.

Lemma 2. In the INLP, if a point x is in infeasible region, any point y which

satisfies y Â x is in infeasible region.

Proof. Since x /∈ S, gi(x) > bi for some i. Furthermore, gi(y) ≥ gi(x) is true for all

i because gi(·) is an increasing function and y Â x. Therefore, gi(y) ≥ gi(x) > bi for

some i and this implies that y /∈ S.

Theorem 1. In the INLP, the global maximum is in a set of 1-neighborhood local

maximum T = {x̄ ∈ S|f(x̄) ≥ f(x),x ∈ S ∩N1(x̄)}.

Proof. Assume that x′ 6∈ T is a global maximum, i.e., f(x′) ≥ f(x) for all x ∈ S.

Then, f(x′) ≥ f(x) for all x ∈ S ∩N1(x
′) is also true and it implies x′ ∈ T . This is

a contradiction to the assumption of x′ 6∈ T .

65

Theorem 2. Consider the INLP. Let a point x̄ be a 1-neighborhood local maximum.

Then,

i) any point y Â x̄, i.e., y ∈ 〈x̄,u] implies y 6∈ S.

ii) a global maximum exists on Ω \ 〈x̄,u] = (Ω \ [x̄,u]) ∪ {x̄}.

Proof. i) Consider a point ỹ ∈ N1(x̄) which satisfies ỹ Â x̄. Assume that a point ỹ

is in feasible region S. Then, f(ỹ) > f(x̄) is true by the definition of increasing

function, and this is contradiction to the assumption that x̄ is a 1-neighborhood

local maximum. Therefore, ỹ 6∈ S is true and any point y Â ỹ Â x̄ is also in

infeasible region by Lemma 2.

ii) The proof is obvious from i).

Theorem 3. Consider the INLP. Let us define ljx = (x1, . . . , xj−1, lj, . . . , ln) and

uj
− = (u1, . . . , uj−1, xj − 1, uj+1, . . . , un). If x̄ is a 1-neighborhood local maximum but

not a global maximum, then the global maximum exists on
⋃n

j=1[l
j
x̄,u

j
−].

Proof. From Theorem 2 ii) a global maximum exists on (Ω\ [x̄,u]) if x̄ is not a global

maximum. Note that

Ω \ [x̄,u] = [l1x̄,u
1
−] ∪ ([l2x̄,u] \ [x̄,u]) ,

= [l1x̄,u
1
−] ∪ [l2x̄,u

2
−] ∪ ([l3x̄,u] \ [x̄,u]) ,

=

(
n−1⋃
j=1

[ljx̄,u
j
−]

)
∪ ([lnx̄,u] \ [x̄,u]) ,

=
n⋃

j=1

[ljx̄,u
j
−],

as required.

66

VI.2. Multi-path Branch-and-Bound Method

Initialization

At the beginning of the algorithm, the current optimal point x∗ and value f ∗ are

assigned as the lower limit linitial of INLP and the functional value at the point,

respectively. The initial feasible solution x is also assigned as linitial since the proposed

algorithm has no relevance to the initial point. The upper limit of INLP is computed

by a procedure that we explain later. The detailed description of initialization is as

follows:

procedure initialize

x∗ ⇐ linitial; f
∗ ⇐ f(linitial);

u ⇐ compute-upperlimit(linitial,uinitial);

l ⇐ linitial;

Finding the 1-neighborhood local maximum

There are many ways to find the 1-neighborhood local maximum. Finding a good

local optimum in a short time is very important because the performance depends

on this step. We use a steepest ascent heuristic method which is fast and produces a

reasonably good solution. If the solution is a 1-neighborhood local maximum, other

heuristics such as Gopal, et al. (GAG) [45], Kim and Yum (KY) [46], and others, can

be used for this purpose.

The first step is finding a variable which has a maximum objective function

value, where the increased variable xup = x + ej should be in feasible region S and

less than the assigned upper limit u. After finding the variable with maximum f(xup)

for j = 1, . . . , n, a redundancy is added to it. This procedure is repeated until the

67

feasibility is satisfied. The detailed algorithm is described as follows:

procedure find-local-optimum(x,u)

while (x is feasible) do

for j = 1 to n do

xup ⇐ x + ej;

if (xj ≥ uj or xup is infeasible) then ∆f (j) ⇐ 0;

else ∆f (j) ⇐ f(xup);

k ⇐ arg maxj{∆f (j)}; xk ⇐ xk + 1;

return(x);

Upper limit computation

The most important issue in the branch-and-bound method is how to sharpen the

upper bound of each subproblem. Many researchers have developed various bounding

techniques for a separable INLP [34] to make the problem easier to solve. However,

if the system is nonconvex and nonseparable, all known techniques for computing

lower and upper limits are of no use. We compute an upper limit using the following

general equation which uses constraint functions only [34].

x′j = max{v|v ≤ uj, gi(l1, . . . , lj−1, v, lj+1, . . . , ln ≤ bi, i = 1, . . . , m, v ∈ Z+}

procedure compute-upperlimit(x,u)

for j = 1 to n do

while (x is feasible and xj ≤ uj) do

xj ⇐ xj + 1;

68

return(x);

Main procedure

The heart of our algorithm is in the branch procedure below. At the beginning of

the branch procedure, a 1-neighborhood local maximum is found using the heuristics

described in the previous section. Then the current maximum and the value at that

point are updated according to the value of the 1-neighborhood local maximum. The

branching is performed for each disjoint n-dimensional segment according to Theorem

3.

The whole solution space of the considered problem is bounded. This implies

that the set of points in the solution space is finite because each point is a vector of

integers. At each level of the enumeration tree, the solution space decreases and the

global maximum exists on the union of disjoint n-dimensional segments according to

Theorem 3. Since the solution space is finite, by the end of the algorithm, we find

the global maximum. Note that the optimality condition does not depend on the

1-neighborhood local maximum or the corresponding methods.

Adopting the branch-and-bound method may involve selecting either branch-

ing variables or branching subproblems. Since our approach does not use specific

decision variables for branching, the former situation does not apply here. For select-

ing branching subproblems, we use a depth first and backtracking strategy. There

are three fathom rules for the new lower limit lnew, the new upper limit unew, and

the computed upper limit ucomputed: i) if the functional value of unew is less than

the current optimal value; ii) if lnew is not strictly dominated by ucomputed; or iii)

if the functional value of ucomputed is less than the current optimal value, then the

subproblem is pruned permanently; otherwise the subproblem is branched into n new

subproblems.

69

The main algorithm is fairly simple. Initialization is performed first. If the

value of the computed upper limit is less than the current optimal value or the initial

lower limit is infeasible, then the algorithm stops; otherwise the procedure branch is

executed.

procedure branch(l,u)

x̄ ⇐find-local-optimum(l,u);

if (f(x) > f ∗) then update x∗ and f ∗;

for j = 1 to n do

lnew ⇐ ljx̄;unew ⇐ uj
−;

if (lnew 6≺ unew or lnew is infeasible or f(unew) < f ∗) then

prune this subproblem;

ucomputed ⇐compute-upperlimit(lnew,unew);

if (lnew 6≺ ucomputed or f(ucomputed) < f ∗) then

prune this subproblem;

else branch(lnew,ucomputed);

procedure branch-and-bound

initialize;

if (f(u) < f ∗ or l is infeasible) then stop;

else branch(l,u);

VI.3. Numerical Examples

I. A bridge system (n = 5,m = 3)

70

1 2

3 4

5

Figure 8: A Bridge System

The bridge system shown in Figure 8 is considered in order to demonstrate

the proposed branch-and-bound procedures. The system consists of 5 subsystems

and 3 nonlinear and nonseparable constraints. The subsystems have either parallel,

options, or 2-out-of-n:G structure. The overall system reliability Rs is acquired by

the pivotal decomposition method [31], where Rj = Rj(xj) and Qj = 1 − Rj for all

j = 1, . . . , 5. Since the overall system has a complex structure, the objective function

is also nonlinear and nonseparable. A detailed definition of the problem appears

below:

[E1]

maximize

Rs = R5(1−Q1Q3)(1−Q2Q4) + Q5[1− (1−R1R2)(1−R3R4)]

71

subject to

10 exp
(x1

2

)
x2 + 20x3 + 3x2

4 + 8x5 ≤ 200,

10 exp
(x1

2

)
+ 4 exp(x2) + 2x3

3 + 6
[
x2

4 + exp
(x4

4

)]
+ 7 exp

(x5

4

)
≤ 310,

12
[
x2

2 + exp(x2)
]
+ 5x3 exp

(x3

4

)
+ 3x1x

2
4 + 2x3

5 ≤ 520,

(1, 1, 1, 1, 1) ¹ (x1, x2, x3, x4) ¹ (6, 3, 5, 6, 6),x ∈ Zn
+,

where

R1(x1) = (0.8, 0.85, 0.9, 0.925, 0.95, 0.975);

R2(x2) = 1− (1− 0.75)x2 ;

R3(x3) =

x3+1∑

k=2

(
x3 + 1

k

)
(0.88)k(0.12)x3+1−k;

R4(x4) = 1− (1− 0.7)x4 ;

R5(x5) = 1− (1− 0.85)x5 .

The following steps depict the procedures step by step. Step 1 gives the

assumptions and Step 2 is an initialization. In Steps 3 and 4, because the conditions

are satisfied, the subproblem is branched into disjoint but smaller sized subproblems.

On the other hand, the subproblem in Step 5 is fathomed after computing the updated

current optimal solution. Finally, in Step 8, the global maximum is found. Other

steps accompanied by Step 8 are executed to justify the global optimum.

1. linitial = (1, 1, 1, 1, 1);uinitial = (6, 3, 5, 6, 6);

2. x∗ = (1, 1, 1, 1, 1); f ∗ = 0.8733;u = (5, 3, 5, 6, 6); l = (1, 1, 1, 1, 1);

3. f(u) = 0.9999 > f ∗ and l is feasible ⇒ branch;

4. x = (2, 2, 4, 4, 2); f(x) = 0.9993 > f ∗;⇒ x∗ = (2, 2, 4, 4, 2); f ∗ = 0.9993;

lnew = (2, 1, 1, 1, 1);unew = (5, 1, 5, 6, 6);

72

lnew ¹ unew and lnew is feasible and f(unew) = 0.9998 > f ∗;

ucomputed = (5, 1, 4, 6, 6); lnew ¹ ucomputed and f(ucomputed) = 0.9998 > f ∗ ⇒
branch;

5. x = (3, 1, 3, 5, 2); f(x) = 0.9987;⇒ x∗ = (3, 1, 3, 5, 2); f ∗ = 0.9987;

lnew = (3, 1, 1, 1, 1);unew = (5, 0, 4, 6, 6); lnew 6≺ unew ⇒ prune this subproblem;

6. lnew = (3, 1, 1, 1, 1);unew = (5, 1, 2, 6, 6); f(unew) = 0.9978 < f ∗ ⇒ prune this

subproblem;

...

7. lnew = (1, 2, 4, 1, 1);unew = (1, 3, 5, 3, 6);

lnew ¹ unew and lnew is feasible and f(unew) = 0.9996 > f ∗;

ucomputed = (1, 3, 4, 3, 5); f(ucomputed) = 0.9994 > f ∗ ⇒ branch;

8. x = (1, 3, 4, 3, 3); f(x) = 0.9994;⇒ x∗ = (1, 3, 4, 3, 3); f ∗ = 0.9994;

lnew = (1, 2, 4, 1, 1);unew = (1, 2, 4, 3, 5); f(unew) = 0.9981 < f ∗ ⇒ prune this

subproblem;

...

The final results are x∗ = (1, 3, 4, 3, 3) and f ∗ = 0.999373, and the remaining

resources are 19.5384, 3.6496, and 35.6079 for each constraint, while x∗ = (2, 2, 4, 4, 2)

and f ∗ = 0.999327 are obtained using the GAG heuristic [45].

II. A HSP system (n = 10,m = 2)

The hierarchical series-parallel (HSP) system shown in Figure 9 is also tested

as a numerical example. It has a nonlinear and nonseparable structure and consists of

nested parallel and series systems. The system reliability function is formulated using

the pivotal decomposition method [31]. The HSP system has 10 subsystems and 2

73

1 2

3

4

5 6

7

8

9

10

Figure 9: A HSP System

Table 2: Parameters Used in Example II

j 1 2 3 4 5 6 7 8 9 10

rj 0.83 0.89 0.92 0.85 0.89 0.93 0.83 0.94 0.82 0.91

cj 8 4 2 2 1 6 2 8 - -

wj 16 6 7 12 7 1 9 - - -

lj 1 1 1 1 1 1 1 1 1 1

uj 4 5 6 7 5 5 3 3 4 2

74

constrains. All related component reliabilities and the coefficients of the constraints

are listed in Table 2. The maximum allowable resources b1 and b2 are 120 and 300,

respectively. Table 2 also shows the limit of each decision variable. The mathematical

descriptions and brief results are shown as follows, where Rj = Rj(xj) = 1−(1−rj)
xj

and Qj = 1−Rj for all j = 1, . . . , 10.

[E2]

maximize

Rs = {1− 〈1− [1−Q3(1−R1R2)]R4〉(1−R5R6)}(1−Q7Q8Q9)R10

subject to

c1 exp
(x1

2

)
x2 + c2 exp

(x3

2

)
+ c3x4 + c4

[
x5 + exp

(x5

4

)]

+c5x
2
6x7 + c6x8 + c7x

3
9 exp

(x10

2

)
≤ b1,

w1x
2
1x2 + w2 exp

(x3x4

6

)
+ w3x5 exp

(x6

4

)
+ w4x7x

3
8

+w5

[
x9 + exp

(x9

2

)]
+ w6x2 exp

(x10

4

)
≤ b2,

l ¹ x ¹ u ∈ Zn
+.

After a number of steps, the global maximum x∗ = (1, 1, 3, 4, 2, 1, 1, 3, 1, 4)

and the functional value f ∗ = 0.999876 of our algorithm were found with the re-

maining resources of 2.4736 and 26.1036 for the two constraints. On the other hand,

the GAG heuristic failed to find the global maximum (x∗ = (1, 1, 1, 2, 2, 2, 1, 2, 1, 4),

f ∗ = 0.999097).

75

VI.4. Numerical Experimentation

To verify the efficiency of our algorithm, we designed the following experiment. The

first test system has the bridge structure shown in Figure 8 with 3 constraints. Each

block in Figure 8 consists of a series system of 2, 3, 4, or 5 stages when the system

has 10, 15, 20, or 25 components, respectively. The jth component reliability, rj, is

randomly generated according to an uniform distribution with a range of [0.7, 0.9999].

All of the coefficients of constraints, cj, wj, and vj are also generated according to an

uniform distribution with the range of [1, 10]. The mathematical description of the

test problem is as follows:

[T1]

maximize

Rs = R5(1−Q1Q3)(1−Q2Q4) + Q5[1− (1−R1R2)(1−R3R4)]

subject to

n∑
j=1

cjxj ≤ U [2, 3] ·
n∑

j=1

cj,

n∑
j=1

wj

(
xj + exp

(xj

4

))
≤ (1 + e0.25) · U [2, 3] ·

n∑
j=1

wj,

n∑
j=1

vjx
3
j ≤ 2 · U [2, 3] ·

n∑
j=1

vj,

1 ≤ xj ≤ 4, xj ∈ Z, j = 1, . . . , n,

where

Rj =

n/5−1∏
i=0

[1− (1− r5i+j)
x5i+j]

and Qj = 1−Rj for all j = 1, . . . , n and U [a, b] is a uniform distribution on [a,b].

The second test problem is a series of a HSP system with three constraints.

76

Figure 10: A Series of HSP Systems

A reliability block diagram of the HSP system is described in Figure 10 and the

formulated INLP is expressed below:

[T2]

maximize

Rs =

n/5−1∏

k=0

R̃k

subject to

n∑
j=1

cjxj ≤ U [1.5, 2] ·
n∑

j=1

cj,

n∑
j=1

wjx
2
j ≤ U [2.5, 3.5] ·

n∑
j=1

wj,

n∑
j=1

[
vjxj exp

(xj

4

)]
≤ U [1.5, 2] ·

n∑
j=1

vj,

1 ≤ xj ≤ 5, xj ∈ Z, j = 1, . . . , n,

where ri ∈ U [0.7, 0.9999] and ci, wi, and vi ∈ U [1, 10], and Rj, Qj, and R̃k are

formulated as follows:

Rj = 1− (1− rj)
xj , Qj = 1−Rj,

R̃k = [1− [1− (Qk+1Qk+2)Rk+3](1−Rk+4Rk+5)] .

At the moment, the Prasad and Kuo method (PK) [35] is the best and

77

the Nakagawa, Nakashima, and Hattori (NNH) method [39] is the most well-known

branch-and-bound method for solving the redundancy allocation problems described

above. In our work, three algorithms including our proposed branch-and-bound

method (BNB) were coded by C/C++, and two series of experiments for T1 and

T2 were performed on a Pentium IV 2.4GHz PC with 512MB memory using GCC

2.95.3.

50 problems were generated for each test set of n = 10, 15, 20, and 25 ac-

cording to the definition of T1 and T2. Since all of the algorithms found the exact

global optimum, the performance of each algorithm depended only on the computing

time. Available bounding techniques for specific structures and assumptions were

not applied in the experiment in order to demonstrate only the performance of the

algorithms. Table 3 summarizes the experimental results, where each entry, (a, b, c),

contains three computation times: a is the minimum, b the average, and c the max-

imum, respectively, on the CPU time unit (seconds on the testing platform). In the

table, the first 3 columns represent 3 tested algorithms (BNB, PK, and NNH) and

the last 2 columns indicate the computation time ratio of the PK and NNH to the

BNB algorithm.

In the case of n = 10 for T1 and T2, the results are not significantly different,

although the BNB has the minimum average computation time. For the average

computation time of T1 at n = 20, the BNB is 11.07 times and 185.34 times faster

than the PK and the NNH, respectively, and, at n = 25, the BNB is 23.41 times

faster than the PK, while the NNH fails to obtain solutions for many problems in a

given time. In the worst case, the BNB is 134 times (T1, n = 25) and 748.66 times

(T1, n = 20) faster than the PK and the NNH, respectively. For T2, the results are

similar to the results for T1, while computation times for T2 are larger than for T1.

From these results, we can assume that problem T2 is harder than T1. Note that

78

T
ab

le
3:

C
om

p
ar

is
on

of
C

om
p
u
ta

ti
on

T
im

e
fo

r
T

h
re

e
A

lg
or

it
h
m

s

T
n

B
N

B
P

K
N

N
H

P
K

/B
N

B
N

N
H

/B
N

B
10

(0
.0

0,
0.

01
,0

.0
2)

(0
.0

0,
0.

02
,0

.0
5)

(0
.0

2,
0.

03
,0

.0
6)

(0
.0

3,
1.

48
,1

6.
00

)
(0

.9
4,

2.
97

,1
6.

00
)

T
1

15
(0

.0
3,

0.
14

,0
.3

3)
(0

.0
4,

0.
71

,1
.7

2)
(0

.9
1,

3.
84

,9
.8

4)
(0

.2
5,

5.
53

,9
.9

9)
(8

.3
5,

28
.4

9,
61

.9
8)

20
(0

.3
7,

2.
76

,6
.1

9)
(6

.7
3,

29
.6

6,
10

1.
01

)
(4

4.
19

,4
87

.0
1,

26
54

.0
5)

(3
.5

7,
11

.0
7,

23
.8

6)
(1

8.
26

,1
85

.3
4,

74
8.

66
)

25
(7

.8
9,

63
.2

2,
30

1.
87

)
(1

24
.6

2,
12

85
.3

8,
43

05
.9

7)
-

(7
.1

9,
23

.4
1,

13
4.

00
)

-
10

(0
.0

0,
0.

02
,0

.0
5)

(0
.0

2,
0.

03
,0

.0
6)

(0
.0

3,
0.

07
,0

.1
4)

(0
.6

6,
5.

18
,3

2.
00

)
(0

.9
8,

12
.4

6,
94

.0
0)

T
2

15
(0

.0
6,

0.
57

,3
.5

2)
(0

.3
0,

1.
42

,4
.8

3)
(2

.7
8,

10
.3

1,
41

.8
4)

(0
.8

5,
3.

44
,1

2.
38

)
(6

.5
0,

26
.0

3,
11

5.
53

)
20

(0
.6

3,
13

.4
6,

57
.9

2)
(5

.8
0,

52
.3

0,
11

7.
46

)
(2

41
.1

0,
16

79
.6

3,
79

79
.2

6)
(1

.1
7,

6.
65

,2
3.

34
)

(1
5.

54
,2

42
.8

3,
13

14
.5

3)
25

(2
5.

45
,6

71
.7

9,
63

04
.1

0)
(2

00
.7

8,
42

48
.6

4,
40

26
1.

20
)

-
(1

.1
8,

9.
20

,4
5.

62
)

-

79

the ratio of the computation time between algorithms tends to increase rapidly as the

size of the problem increases. In summary, the BNB is the best, the PK the second,

and the NNH is the worst algorithm among these three in terms of computation time

for solving redundancy allocation problems.

80

CHAPTER VII

HEURISTIC FOR REDUNDANCY ALLOCATION

Although recently developed exact algorithms plus the increased computing power

available today have been helpful in finding exact solutions for problems in relatively

shorter times, these methods are still time consuming and inapplicable to large-scale

problems. As substitutes for exact algorithms, various approximation methods and

heuristics have been considered to obtain near or local optimal solutions, respectively.

These methods do not guarantee the global optimality of the solutions, but they can

be run in a quite short time. For abundant references and methods refer to Kuo and

Prasad [36] and Kuo et al. [34].

Let us focus on computational time for the moment. A fast algorithm is

always better than a slow one for solving a problem, but it is not a critical factor if the

application considered does not require real-time computation. In general, since the

redundancy allocation problem is solved at the design stage, computation time is not

a big concern, but solution quality is very important. Since contemporary systems are

larger and more complicated than ever, the demand for good approximation methods

and heuristics with reasonable computation times is also increasing.

Heuristic algorithms for the redundancy allocation problem can be classified

into two main approaches, iterative heuristics and metaheuristics. Iterative algo-

rithms solve problems on the basis of mathematical intuition. The solution is gradu-

ally improved at every iteration according to given factors until finally a local optimal

solution is obtained. Since there is no probabilistic nature to the algorithms, the final

solution of each algorithm is identical if the initial allocation and design parameters

are fixed. On the other hand, metaheuristics, such as simulated annealing, genetic

81

algorithms, and tabu search, are based on probabilistic and artificial reasoning, and

they do not require detailed mathematical information about the problem. The meta-

heuristics are relatively time consuming, but they obtain generally better solutions

than the iterative heuristics. However, as the size of a problem increases, the efficiency

of these methods decreases rapidly [46].

According to Kuo et al. [34], recent developments dealing with the redun-

dancy allocation problem are concentrated on metaheuristics, especially genetic al-

gorithms (GA). The main advantage of GAs is that they can manipulate very com-

plicated problems for which solutions are hard to obtain. An outstanding GA for

application to the redundancy allocation problem was developed by Coit and Smith

[47, 48, 49]. They considered a series-parallel structure to maximize system reliability

[47] and to minimize total cost [48]. Since GA operators, i.e., crossover and muta-

tion, frequently generate infeasible solutions, the use of conventional GA operators is

known to be inefficient in this case. To overcome this weakness, they introduced a

robust adaptive penalty method based on a near-feasibility threshold (NFT) to avoid

the infeasible solutions [49]. The experimental results demonstrate that a GA that

employs an adaptive penalty method is superior to the surrogate constraint method

[50] in terms of solution quality.

Many iterative heuristics have been developed to solve redundancy allocation

problems for general and specific structures. Table 4 lists, in order of chronological

development, the existing iterative heuristics for general systems. All of these heuris-

tics gradually improve system reliability from a given initial point to a local optimum

according to computed sensitivity factors that indicate the impact of each component

at the current allocation. In the 1970s, research (GAG [45, 51] and NN [52, 53])

focused mainly on the development of sensitivity factors that could do a good job

82

Table 4: History of Iteration Heuristics for Redundancy Allocation

year initial developers comment

1976 GAG Aggarwal, et al. [45, 51] 1-neighborhood, sensitivity factor

1977 NN Nakagawa, et al. [52, 53] multiple balancing coefficients

1982 KI Kohda and Inoue [54] 2-neighborhood search

1987 SHI Shi [55] sensitivity factors on minimal path set

1993 KY Kim and Yum [46] bounded infeasible region search

1996 JP Jianping [56] bound points search

of reflecting system structures, e.g., series, series-parallel, and complex systems. The

methods that employ sensitivity factors were improved by KI [54] and SHI [55] in

the 1980s. KI uses sensitivity factors but introduces the idea of deleting as well as

adding redundancy to a component; this is the so-called 2-neighborhood algorithm.

Shi applies a weighted sensitivity factor on a minimal path set while others compute

a sensitivity factor over all of the components. A recent trend in iteration heuris-

tics (KY [46] and JP[56]) is to search from a local optimum computed by previously

developed methods, for better solutions near the boundary of the feasible region.

According to empirical experiments, there are two main factors which deter-

mine solution quality: the initial allocation and the designed sensitivity factors. It is

well known that the initial allocation is crucial to the final solution of iteration heuris-

tics. However, it is very difficult to find a proper initial allocation at the beginning of

a procedure. The easiest way to subdue the effect of the initial allocation is to execute

a heuristic on several randomly generated initial points and pick the best solution.

This method, however, is inefficient because paths from the initial points to the final

solution frequently overlap, and computation for the overlapped paths is redundant.

Designing a sensitivity factor which is effective for all kinds of systems is also difficult

83

because there are many kinds of system structures and many types of constraints. In

the case of the above listed heuristics, except for NN, there exists a unique solution

path from an initial to a final solution. Since a single solution path decreases the

exploitation property of the heuristics, KI, KY, and JP have tried to provide more

likely solutions by repeatedly decreasing or increasing the redundancy on a current

allocation. Those algorithms have generally better solutions than the classical ones,

but the search region of the methods tends to be limited to the neighborhood of the

first found local solution if the dimensions of a system are large.

There is a trade-off between solution quality and computation time. General

rule is that the longer the algorithm’s computation time, the higher the solution qual-

ity. An objective of our proposed algorithms is to improve solution quality without

too much expense in computation time. As mentioned above, there are two critical

factors related to solution quality. To consider these factors efficiently, we propose

two new heuristics: scanning and tree heuristics. The scanning algorithm iteratively

updates an incumbent solution by executing a heuristic over systematically designed

initial points on each phase until no more improvement results. On every phase, a

new solution space is defined by the previous incumbent solution. The tree heuristic

follows the divide-and-conquer approach. The name of the tree heuristic comes from

the shape of the solution paths from the initial point to several verified solutions. The

main solution path is branched whenever gaps in the most likely sensitivity factors

fall within a given criterion.

The proposed heuristics provide three main advantages: i) The performance

of the heuristics surpasses that of any current available heuristics; ii) Since there

are control parameters which control solution quality and computation time, they

are suited to various applications and situations; iii) The heuristics adopt different

84

approaches from other existing heuristics; thus they can be easily combined with

other methods. The solution quality of the combined heuristics is, in fact, markedly

superior to other methods as we will demonstrate in later sections of this chapter.

VII.1. Definitions and Notation

Let Z be the set of integers, then Z+ = {x ∈ Z|x ≥ 0} and Zn
+ = {xi ∈ Z|xi ≥ 0, i =

1, . . . , n}. For any two points, x,y ∈ Zn
+, the ordering x ¹ y denotes xi ≤ yi for all

i = 1, . . . , n. For any two points a,b ∈ Zn
+ such that a ¹ b, an n-dimensional integer

segment [a,b] ⊂ Zn
+ is defined as {x ∈ Zn

+|a ¹ x ¹ b}. A function f : Zn → Z
is increasing on Zn

+ if for any two points x,y ∈ Zn
+, x ¹ y implies f(x) ≤ f(y). A

solution path P = {x0, . . . ,xk} is defined as a sequence of points from an initial point

x0 to xk.

Additional notation

x (x1, . . . , xn)

x∗, f ∗ final allocation and its overall system reliability, respectively

x{i+} (x1, . . . , xi−1, xi + 1, xi+1, . . . , xn)

xy{i} (x1, . . . , xi−1, yi, xi+1, . . . , xn)

xy{i+} (x1, . . . , xi−1, yi + 1, xi+1, . . . , xn)

Fi(x) a sensitivity factor of the ith component

F a set of sensitivity factors, {F1, . . . , Fn}

l0,u0 initial lower and upper limits of x, respectively

∆fi f(xi+)− f(x)

85

∆gj, ∆gij gj(xi+)− gj(x) and gij(xi+)− gij(x), respectively

∆hj (gj(x{i+})− gj(x))/(bj − gj(x))

VII.2. Steepest Ascent Rate Heuristic Method

The simplest greedy heuristic for the redundancy allocation problem is the steepest

ascent heuristic method, which iteratively increases the redundancy of a component

that has a maximum sensitivity factor, where the sensitivity factors can be calculated

as follows:

Fi(x) =

∅ if x{i+} is infeasible or xi = ui

∆fi = f(x{i+})− f(x) otherwise.

This approach, however, is not appropriate if there are several constraints on

the problem because the steepest rate does not reflect the effect of the constraints.

A better approach for this case with multiple constraints is the steepest ascent rate

heuristic. The sensitivity factor of this method is the marginal rate of difference

between the functional values of the objective and the constraints. If the number of

constraints is more than one, the maximum value is selected for each component as

follows:

Fi(x) =

∅ if x{i+} is infeasible or xi = ui

∆fi

max
j

∆hj

=
f(x{i+})− f(x)

max
j

{
gj(x{i+})− gj(x)

bj − gj(x)

} otherwise.

(7.1)

Using the above sensitivity factors, the procedures of the steepest ascent

rate heuristic can be derived as shown below. The procedure and sensitivity factors

86

are very similar to those of GAG although GAG has more sophisticated sensitivity

factors, ∆fi/ maxj {∆gij/(maxi ∆gij)}. However, the sensitivity factor of GAG is not

suitable if the system is nonseparable.

(x∗, f ∗) = steepest-ascent-rate(l0,u0)

Step 0. Let x = l0.

Step 1. Compute the sensitivity factor Fi(x) by Equation (7.1). If F = ∅, then

x∗ = x and f ∗ = f(x∗). Stop algorithm.

Step 2. x = x{arg maxi{Fi}+}. Go to Step 1.

The following proposition describes an important property for developing tree

and scanning heuristics. The proposition and subsequent proof show that the steepest

ascent rate heuristic improves its solution under a bounded area.

Proposition 1. If an initial point is l0 and an upper limit is u0, such that l0 ¹ u0,

a solution path P of the steepest ascent rate heuristic is a subset of an n-dimensional

integer segment [l0,u0].

Proof. Let P = {l0,x1, . . . ,xk} be a solution path. Since l0 ¹ x1 ¹ · · · ¹ xk by

Step 2 of the steepest ascent rate heuristic, and x1, . . . ,xk ¹ u0 by Equation (7.1),

l0 ¹ x1 ¹ · · · ¹ xk ¹ u0 is satisfied, i.e., {l0,x1, . . . ,xk} ⊂ [l0,u0] as required.

VII.3. Tree Heuristic Method

The main weakness of heuristics employing sensitivity factors is that it is difficult to

design a sensitivity factor which is suitable for all kinds of systems. Nakagawa and

Nakashima [53], and subsequently Kuo et al. [52], tried to overcome this weakness

87

by providing diversity in sensitivity factors. NN searches a number of paths with

different balancing coefficients on the same sensitivity factor equation, i.e., there are

a number of different sensitivity factors. A number of local solutions are obtained by

executing the same algorithm over those sensitivity factors; then, the best one among

them is selected. The solution quality of this method outperforms other existing

heuristics of the same type. However, the solution quality of NN does not work for

large-scale problems because the exploration property of the solution paths is limited

by the sensitivity factor framework.

When heuristics are executed using sensitivity factors, it often appears that

several sensitivity factors are the same as, or close to, the maximum in the same

iteration. These are good candidates for the global optimum as well as the maximum

one. During the process, however, the existing algorithms that use sensitivity factors

ignore the possibility of better solutions by only increasing the redundancy of the

component with the maximum sensitivity factor. The basic idea of the proposed

method, the tree heuristic, is that a sensitivity factor within some criterion that is

less than, or equal to, the maximum one should be used for acquiring a better solution.

The tree heuristic is a divide-and-conquer algorithm which imitates the shape

of living trees as does the branch-and-bound method. A main branch is repeatedly

divided into several subbranches if some criterion is satisfied; otherwise, the main

branch grows continuously without any subbranches. The criterion for branching is

the gap between the sensitivity factor of each component and the maximum sensitivity

factor at the current stage. The final solution is obtained by comparing the local

solutions when every branch terminates.

Figure 11 is a good example for illustrating the procedures of the tree algo-

rithm. The algorithm starts from an initial allocation of l0. Redundancies of elements

88

Ω

S

l0

l1

l2

u0

u1

u2

o0

o2

o1

x1

x2 x3

x4

x5 x6

Figure 11: Graphical Example of a Tree Heuristic

are added continuously until x3 according to the maximum sensitivity factors. Let us

assume l1 meets the branching criterion at point x3. Then, subbranch l1 is divided

from x0 with solution space [l1,u1]. Since the solution space is not overlapped with

the solution space of the main branch ([x4,u0]), by Proposition 1, the algorithm is

efficient. The main branch is continuously increased until the second branching point

x5. The second subbranch is l2 with solution space [l2,u2]. Local optimal solutions,

o0,o1, and o2, are obtained at the terminals of each branch. Finally, o0 is selected as

the final solution, if f(o0) ≥ f(o1) ≥ f(o2).

The detailed procedure for the tree heuristic is described below. There are

two control parameters in the procedure: αtree and βtree. αtree ∈ (0, 1] represents the

degrading rate of the maximum sensitivity factor and βtree is the maximum number

of subbranches at a point. If αtree = 1, the tree heuristic is identical to the steepest

89

ascent rate heuristic because there is no subbranch. Note that, in contrast to the

branch-and-bound method, the branched solution space is not a partition of the

whole solution space. Thus, this algorithm does not guarantee the global optimality

of the obtained solutions.

(x∗, f ∗) = tree-heuristic(l0,u0)

Step 0. Let x = x∗ = l0 and f ∗ = f(x∗).

Step 1. Compute sensitivity factor Fi(x) by Equation (7.1). If F = ∅, go to Step

5.

Step 2. M∗ = maxi{Fi}; I∗ = arg maxi{Fi}; F = F \ FI∗ ; k = βtree.

Step 3a. If k = 0, go to Step 4, else M = maxi{Fi}; I = arg maxi{Fi}; F = F \FI ;

k = k − 1.

Step 3b. If M > αtreeM
∗, then (o, fo) =steepest-ascent-rate(x{I+},uxI

);

If fo > f ∗, then x∗ = o and f ∗ = fo. Go to Step 3a.

Step 4. x = x{I∗+}. Go to Step 1.

Step 5. If f(x) > f ∗, then x∗ = x and f ∗ = f(x∗). Stop algorithm.

Example: A bridge system (n = 5,m = 1, αtree = 0.5, βtree = 2)

A redundancy allocation problem [34], E1, with a bridge structure in Figure 8

is considered to demonstrate the procedures of the tree heuristic. The system reliabil-

ity function f(x) can be formulated by the pivotal decomposition method [31], where

Rj = 1−(1−rj)
xj and Qj = 1−Rj for all j = 1, . . . , 5; r = (0.70, 0.85, 0.75, 0.80, 0.90);

and c> = (2, 3, 2, 3, 1). Since the overall system has a complex structure, the objective

function is also nonlinear and nonseparable.

90

[E1]

max
x

f(x) = R5(1−Q1Q3)(1−Q2Q4) + Q5[1− (1−R1R2)(1−R3R4)]

subject to c>x ≤ 20,

(1, 1, 1, 1, 1) ¹ x ¹ (6, 4, 5, 6, 6), x ∈ Zn
+,

Step 0. x = x∗ = (1, 1, 1, 1, 1). f ∗ = 0.891325.

Step 1. F = {0.2384, 0.0744, 0.2483, 0.0745, 0.0480} 6= ∅.

Step 2. M∗ = 0.2483; I∗ = 3; F = {0.2384, 0.0744, ∅, 0.0745, 0.0480}; k = 2.

Step 3a. M = 0.2383; I = 1; F = F{∅, 0.0744, ∅, 0.0745, 0.0480}; k = 1

Step 3b. Since 0.2383 > 0.5 × 0.2483, (2, 1, 1, 1, 1) → (4, 2, 1, 1, 1) = o and fo =

0.992919.

Since fo > f ∗, then x∗ = (4, 2, 1, 1, 1) and f ∗ = 0.992919.

Step 3a. M = 0.0745; I = 4; F = F{∅, 0.0744, ∅, ∅, 0.0480}

Step 3b. Since 0.0745 < 0.5× 0.2483, go to Step 4.

Step 4. x = (1, 1, 2, 1, 1).

Step 1. F = {0.0557, 0.0578, 0.0483, 0.0636, 0.0334} 6= ∅.

Step 2. M∗ = 0.0636; I∗ = 4; F = {0.0557, 0.0578, 0.0483, ∅, 0.0334}; k = 2.

Step 3. k = 1; M = 0.0578; I = 2; (1, 2, 2, 1, 1) → (3, 2, 2, 1, 1) and fo = 0.993216.

x∗ = (3, 2, 2, 1, 1) and f ∗ = 0.993216.

91

Step 3. k = 0; M = 0.0557; I = 1; (2, 1, 2, 1, 1) → (3, 2, 2, 1, 1) and fo = 0.993216.

Step 4. x = (1, 1, 2, 2, 1).

Step 1. F = {0.0271, 0.0072, 0.0288, 0.0073, 0.0057} 6= ∅.

Step 2. M∗ = 0.0288; I∗ = 3; k = 2.

Step 3. k = 1; M = 0.0271; I = 1; (2, 1, 2, 2, 1) → (3, 1, 2, 2, 1) and fo = 0.991361.

Step 4. x = (1, 1, 3, 2, 1).

Step 1. F = {0.0039, ∅, 0.0036, ∅, 0.0021} 6= ∅.

Step 2. M∗ = 0.0039; I∗ = 1; k = 2.

Step 3. k = 1; M = 0.0036; I = 3; (1, 1, 4, 2, 1) → (1, 1, 4, 2, 1) and fo = 0.99178.

Step 3. k = 0; M = 0.0021; I = 5; (1, 1, 3, 2, 2) → (1, 1, 3, 2, 3) and fo = 0.989329.

Step 4. x = (2, 1, 3, 2, 1).

Step 1. F = ∅.

Step 5. Stop algorithm. x∗ = (3, 2, 2, 1, 1) and f ∗ = 0.993216.

VII.4. Scanning Heuristic Method

The scanning heuristic is an iterative improvement method that uses systematically

generated initial points. For all of the above heuristics listed in Table 4, the quality

of the solution critically depends on the initial allocation. The first idea that was

advanced to overcome the effect of the initial point was to use randomly generated

initial points. However, this method is very inefficient because many solution paths

92

with different initial points become merged together during iteration. The main idea

of the scanning heuristic, however, is a proper separation of the solution spaces for

each initial point so that their solution paths rarely meet.

To explain the idea precisely, consider Figure 12. The algorithm starts at the

initial point of l0 and a heuristic - any heuristic can be used for the purpose, but here

we use the steepest ascent rate heuristic above - is executed to obtain an initial local

optimum of o0. Since no point in the n-dimensional integer hypercube [l0,o0] can

have greater reliability than f(o0) by the definition of the increasing function, and

the solution path from l0 to o0 is in [l0,o0] by Proposition 1, we can divide the solution

space into several smaller solution spaces without loss of solution quality. Then, n

new initial points, lo0{i+} for i = 1, . . . , n, are generated for the next phase, l1 and

l2 in this example. Two new local optima, o1 and o2, can be obtained by executing

the heuristic from the initial points l1 and l2. If we assume f(o0) ≥ f(o1) ≥ f(o2),

then the algorithm stops because no improvement has been made in this phase. On

the other hand, if f(o1) ≥ f(o0) ≥ f(o2), then the next phase is executed on [l1,u0]

because the reliability is updated on this phase. The algorithm stops if there is no

improvement between two consecutive phases.

The following procedure and example describe the process of the scanning

heuristic step by step, where ∆ indicates each phase and δscan is the maximum number

of phases. Since the scanning heuristic is slower than other iterative heuristics, the

speed of computation can be adjusted by this control factor.

(x∗, f ∗) = scanning-heuristic(l0,u0)

Step 0. (x∗, f ∗) = steepest-ascent-rate (l0,u0); ∆ = δscan; l = l0.

Step 1. If ∆ = 0, stop algorithm.

93

Ω

S

l0

l1

l2

u0

o0

o2

o1

Figure 12: Graphical Example of a Scanning Heuristic

Step 2. f∆ = f ∗; x∆ = x∗; ∆ = ∆− 1; k = 1.

Step 3. If k > n, go to Step 6.

Step 4. l = lx∆{k+}. If l is infeasible or lk > u0k, then k = k + 1 and go to Step 3.

Step 5. (x, f) = steepest-ascent-rate (l,u0); If f(x) > f ∗, then x∗ = x; f ∗ = f(x∗);

l∆ = l; k = k + 1; go to Step 3.

Step 6. If f∆ < f ∗, then l = l∆; and go to Step 1. Otherwise stop algorithm.

Example: A bridge system E1 (n = 5,m = 1, δscan = 3)

Step 0. x∗ = (2, 1, 3, 2, 1); f ∗ = 0.992096; ∆ = 3; l = (1, 1, 1, 1, 1).

Step 2. f∆ = 0.992096; x∆ = (2, 1, 3, 2, 1); ∆ = 2; k = 1.

Step 3-4. l = (3, 1, 1, 1, 1).

94

Step 5. x = (3, 2, 2, 1, 1); f = 0.993216; f ∗ = f ; x∗ = x; l∆ = (3, 1, 1, 1, 1); k = 2.

Step 3-5. l = (1, 2, 1, 1, 1); x = (3, 2, 2, 1, 1); f = 0.993216; k = 3.

Step 3-5. l = (1, 1, 4, 1, 1); x = (1, 1, 4, 2, 1); f = 0.99178; k = 4.

Step 3-5. l = (1, 1, 1, 3, 1); x = (1, 1, 2, 3, 2); f = 0.979988; k = 5.

Step 3-5. l = (1, 1, 1, 1, 2); x = (1, 2, 3, 1, 3); f = 0.990776; k = 6.

Step 6. Since f∆ = 0.992096 < 0.993216 = f ∗, l = (3, 1, 1, 1, 1).

Step 2. f∆ = 0.993216; x∆ = (3, 2, 2, 1, 1); ∆ = 1; k = 1.

Step 3-5. l = (4, 1, 1, 1, 1); x = (3, 2, 2, 1, 1); f = 0.992919; k = 2.

Step 3-4. l = (3, 3, 1, 1, 1) is infeasible; k = 3.

Step 3-5. l = (3, 1, 3, 1, 1); x = (3, 1, 3, 1, 2); f = 0.969527; k = 4.

Step 3-5. l = (3, 1, 1, 2, 1); x = (3, 1, 2, 2, 1); f = 0.991361; k = 5.

Step 3-5. l = (3, 1, 1, 1, 2); x = (3, 2, 1, 1, 3); f = 0.998772; k = 6.

Step 6. Stop algorithm. x∗ = (3, 2, 2, 1, 1) and f ∗ = 0.993216.

VII.5. Combinations of Heuristic Methods

The heuristics mentioned above are categorized in Table 5 into several groups ac-

cording to their advantages. Since the advantages of each heuristic are different, the

solution quality can be improved by mixing several heuristics. As a matter of fact,

various heuristics can be combined together, e.g., scanning & SHI, NN & JP, ran-

dom generation & tree & KY, and so on. From many possible alternatives, we select

95

Table 5: Iterative Heuristic Classification by Advantage

advantage heuristics

initial allocations scanning, random generation

sensitivity factor design steepest ascent rate, GAG, SHI

solution path diversity NN, tree

fine search from a local solution KI, KY, JP

two combinations which are easy to combine and are expected to produce a better

solution quality.

Scanning and tree heuristics

The methodologies of the tree and the scanning heuristic are different: the tree heuris-

tic increases the diversity of solution paths by using the most likely sensitivity factors

and the scanning heuristic increases the solution quality by applying multiple initial

points. Thus, if the two methods are combined, the main weakness of each heuristic

can be effectively reduced. Since the scanning heuristic has inner routines to find

local solutions from several initial points (here the steepest-ascent-rate) it is very

easy to combine both algorithms by substituting the tree-heuristic, instead of the

steepest-ascent-rate, at Step 0 and Step 5 in the scanning-heuristic.

NN and tree heuristics

The advantages of NN and the tree heuristic are similar, but they can still be com-

bined. The tree heuristic does not depend on the sensitivity factor equation, but on a

gap between sensitivity factors. Thus, the sensitivity factor equation of NN as shown

96

below can be used to perform the tree heuristic:

Fi(x) =

∅ if x{i+} is infeasible or xi = ui

∆fi

[
αNN∆xi + (1− αNN) min

k∈L
∆xk

]
otherwise,

(7.2)

where αNN ∈ {0, 0.1, . . . , 0.9, 1.0, 1/0.9, 1/0.6, 1/0.3} is a balancing coefficient, ∆xi =

minj{1/∆hj}, and L = {i : ∆xi ≥ 1}. To apply this sensitivity factor equation,

change Fi(x) of Equation (7.1) to Equation (7.2) at Step 1 in the steepest-ascent-

rate and the tree-heuristic. The final solution can be obtained by choosing the best

among the local optimal solutions of 14 different balancing coefficients αNN .

VII.6. Computational Complexity of Heuristics

Let us consider the computational complexity of several iterative heuristics. To do

this, some notation must be defined. Let Ui be the number of available redundancies

of a component, i.e., Ui = ui−li for i = 1, . . . , n, and U be the maximum number of Ui

for i = 1, . . . , n. To find the maximum or the minimum number in a set which has n

elements, O(log n) operations are needed. Since each sensitivity factor of the steepest

ascent rate heuristic, GAG, and NN require two minimum or maximum numbers from

sets of n and m number of elements, the computational complexity of computing n

sensitivity factors at a point is O(log n+n log m). If a solution path is fixed, the com-

putational complexity of those algorithms does not exceed the length of the solution

path times O(log n + n log m). Since the length of the solution path can not exceed

nU , the computational complexity of those algorithms is O(Un(log n + n log m)). If

U is bounded, then the algorithm has polynomial computational complexity.

In the case of the tree heuristic, there are at most βtree branches at each node

97

of the main solution path. Since no subbranch divides again, at most βtree times nU

solution paths exist in the procedure. Thus, the computational complexity of the tree

heuristic is O(βtreeU
2n2(log n + n log m)) or O(U2n2(log n + n log m)) for a constant

βtree ¿ n, because a local solution can be computed in O(Un(log n + n log m)) if we

use any one of the steepest ascent rate heuristic, GAG, or NN. As for the scanning

heuristic, there are n initial points at each phase. Since the algorithm executes at

most δscan phases, there are at most nδscan solution paths. Thus, the computational

complexity of the scanning heuristic is O(δscanUn2(log n+n log m)) or O(Un2(log n+

n log m)) for a constant δscan ¿ n. Note that only the worst case is considered when

calculating the computational complexity; thus, the actual computation time may be

different from the computed complexity.

Now, let us look at the computational complexity of a combination of heuris-

tics. The combination of the scanning and tree heuristics substitutes the steepest

ascent rate heuristic as the tree heuristic on the basis of the scanning heuristic. Since

there are at most nδscan solution paths in the scanning heuristic and each local solution

for a solution path can be computed in O(βtreeU
2n2(log n + n log m)) using the tree

heuristic, the computational complexity of the algorithm is O(δscanβtreeU
2n3(log n +

n log m)) or O(U2n3(log n+n log m)) for constants, βtree ¿ n and δscan ¿ n. The case

combining the NN and the tree heuristic is more simple. Since there are 14 different

balancing coefficients in the NN and the tree heuristic is applied for each coefficient,

the computational complexity of the algorithm is O(14βtreeU
2n2(log n + n log m)),

i.e., O(U2n2(log n + n log m)) for a constant βtree ¿ n.

All of the above heuristics are polynomial algorithms because their complexity

is bounded by a polynomial. The computational complexity of all heuristics consid-

ered depends on the number of components n, the maximum number of available

redundancies U , and the number of constraints m. In general redundancy allocation

98

problems, since m ¿ n and U ¿ n, the computational complexity of the heuristics

are: O(n2) for the steepest ascent rate, GAG, and NN; O(n3) for the scanning heuris-

tic, the tree heuristic, and the combination of the NN and the tree heuristic; O(n4)

for the combination of the scanning and the tree heuristic.

VII.7. Numerical Experimentation

At the moment, the best heuristics for the general redundancy allocation problem

are KY and JP using a boundary region search. The JP is eliminated from our

experiments because the algorithm is very similar to KY, but KY has shown more

comprehensive results when compared to other heuristics. According to the paper

[46], KY outperforms SHI, KI, and simulated annealing in terms of optimality rate.

Thus, SHI and KI are also excluded from our tests. To find the absolute solution

qualities, the global optimum is obtained by the recently proposed lexicographical

search method (LSM [35]). All algorithms are coded in C/C++ and experiments

are performed on a Pentium IV 2.4GHz PC with 512MB memory after compiling by

GCC 2.95.3.

The absolute solution qualities measure how close the solution of each al-

gorithm is to the optimal solution. The average absolute error (AAE), maximum

absolute error (MAE), and optimality rate (OR) are defined in percentage units as

follows [46]:

AAE =
100

N

N∑
j=1

R∗
j −Rj

R∗
j

,

MAE = 100 max
j

{
R∗

j −Rj

R∗
j

}
,

OR = 100
n{R∗

j = Rj}
N

,

99

. . .

Figure 13: A Series of Bridge Systems

where where n{Θ} denotes the number of experiments satisfying condition Θ; N

denotes the total number of experiments; R∗
j is the optimal system reliability, and

Rj is the system reliability obtained by each algorithm. Since the optimal solution

can not be obtained for large-scale problems, the relative solution qualities, average

relative error (ARE), maximum relative error (MRE), and superior rate (SR) are also

considered. ARE, MRE, and SR can be computed by replacing R∗
j in the calculation

of AAE, MAE, and OR, respectively, with Rj which is the best reliability among all

of the algorithms considered.

Two test problems are designed to compare the GAG, NN, KY, tree heuris-

tic (TR), scanning heuristic (SC), a combination of the scanning and tree heuristic

(SCTR), and a combination of NN and the tree heuristic (NNTR). The first test

problem is a series of bridge systems depicted in Figure 13 with three nonlinear sep-

arable constraints. Each component reliability is randomly generated on the basis

of an uniform distribution on interval [0.80, 0.99], and the coefficients of constraint,

cj, wj, and vj are also generated according to an uniform distribution on intervals

[1, 10], [1, 5], and [1, 10], respectively. The mathematical description of the problem

is as follows:

100

[T1]

max
x

Rs

n∑
i=1

cixi ≤ U [1.5, 2] ·
n∑

i=1

ci,

n∑
i=1

wi

(
xi + exp

(xi

4

))
≤ U [1, 1.5] ·

n∑
i=1

wi(1 + exp(0.25)),

n∑
i=1

vix
3
i ≤ U [5, 6] ·

n∑
i=1

vi,

1 ≤ xi ≤ 5, for i = 1, . . . , n,

where xi is nonnegative integer for i = 1, . . . , n; U [a, b] denotes an uniform distribution

on [a, b]; and the system reliability function is:

Rs = R5(1−Q1Q3)(1−Q2Q4) + Q5[1− (1−R1R2)(1−R3R4)],

where Rj = 1− (1− rj)
xj and Qj = 1−Rj for j = 1, . . . , 5.

The second problem tested is a series of complex systems [46] with three

linear separable constraints. A block diagram of the complex system is described in

Figure 14, and the formulated integer programming problem is expressed below:

[T2]

max
x

Rs =

n/10−1∏

k=0

R̂k

101

1 2

7 8 9

5 6

10

3 4

Figure 14: A Complex System

subject to
n∑

i=1

cixi ≤ U [1.5, 2] ·
n∑

i=1

ci,

n∑
i=1

wixi ≤ U [1.5, 2] ·
n∑

i=1

wi,

n∑
i=1

vixi ≤ U [1.5, 2] ·
n∑

i=1

vi,

1 ≤ xi ≤ 5, for i = 1, . . . , n,

where xi is a nonnegative integer; ri ∈ U [0.85, 0.95], ci ∈ U [1, 5], wi ∈ U [1, 10], and

vi ∈ U [1, 15]; the system reliability function can be obtained by any method in [31]:

R̂k = R5R6[1−Q1(1−R7R8)](1−Q2Q9)[1−Q10(1−R3R4)]

+R5Q6[1−Q1(1−R7R8)][1− (1−R9R10)(1−R2R3R4)]

+Q5R6[1− (1−R1R2)(1−R7R8R9)][1−Q10(1−R3R4)]

+Q5Q6[1− (1−R1R2R3R4)(1−R7R8R9R10)]

where Rj = 1− (1− r10k+j)
x10k+j and Qj = 1−Rj for j = 1, . . . , 10.

Two series of experiments are performed to obtain absolute performance (OR,

AAE, MAE, and average computation time) and relative performance (SR, ARE,

MRE, and average computation time) according to the problem types and their num-

102

ber of variables. For absolute performance, all testing heuristics and LSM are executed

on problems with a relatively small number of elements (for T1 n = 5, 10, 15, 20, and

25 and for T2 with n = 10 and 20) because the optimal solution is not obtainable

for problems with a large number of elements. For relative performance, all testing

heuristics are applied on T1 and T2 with n = 5, 10, 15, 20, and 25. In each case,

50 randomly generated problems are tested. Tables 3 through 10 list experimental

results for each measure. The solution qualities of several algorithms are controllable

with control parameters. We use the following parameters:

1) NN : αNN ∈ {0, 0.1, . . . , 0.9, 1.0, 1/0.9, 1/0.6, 1/0.3},

2) KY : ∆j = 5× (∆gj(1) + ∆gj(2)) for j = 1, . . . ,m,

3) SC : δscan = 3,

4) TR : αtree = 0.5, βtree = 2,

5) SCTR : δscan = 2, αtree = 0.7, βtree = 2,

6) NNTR : αNN ∈ {0, 0.1, . . . , 0.9, 1.0, 1/0.9, 1/0.6, 1/0.3}, αtree = 0.7, βtree = 2,

where ∆gj(1) and ∆gj(2) denote, respectively, the largest and the 2nd largest ∆gij for

i = 1, . . . , n at constraints j. Since KY improves its solution from an initial local

optimum, a good initial solution is needed for the method. Although Kim and Yum

[46] have used a solution of NN with αNN = 0.5, in our experiments, we select the

best solution of NN with all listed αNN for a better starting point. For a detailed

description of KY, refer to [46].

The results of the experiments can be analyzed in three ways: number of

elements, heuristic methods, and computation time. Firstly, let us examine absolute

performance: OR, AAE, and MAE in Tables 6, 7, and 8. The OR critically depends on

the number of elements and heuristic methods. As the number of elements increases,

103

OR decreases. This is reasonable because the problem is more difficult if the size

of the problem is larger. The GAG has the worst solution quality overall, but it

is more than 10 times faster than the second fastest method (NN). The KY always

outperforms the NN in terms of absolute performance because its initial allocation is

the solution of the NN. Two new proposed heuristics, the SC and TR, are superior

to all existing algorithms (GAG, NN, and KY) in terms of solution quality. The

heuristics that have the best solution quality are the combinations of heuristics, i.e.,

NNTR and SCTR. These combinations have a solution quality that is almost 90%

of the OR, 0.001% of the AAE, and 0.025% of the MAE. The most important point

about these heuristics is that the deviation of MAE is not large; in another words,

they are robust algorithms.

The results for relative performance (of the SR, ARE, and MRE in Tables

10, 11, and 12) are similar to the results for absolute performance. Both the SR

and ARE depend on the number of elements. As the problem size increases, the

SR decreases significantly, the ARE decreases moderately, and the MRE shows no

significant difference. On the other hand, all three measures critically depend on

the heuristic methods. These results indicate that the general performance (SR and

ARE) of the heuristics is related to the number of elements and methods and that

the worst case performance (MRE) depends only on the heuristic methods. For all

relative solution qualities, the SC and TR outperform previously developed algorithms

(GAG, NN, and KY). However, contrary to previous results, the solution quality of

the SCTR outperforms that of the NNTR if the problem size is large enough. When

the problem size is small, the NNTR has a similar or slightly better solution quality,

but the SCTR is much superior as the number of elements increases. It is also clear

that the SCTR is the most robust method in terms of relative performance.

104

Table 6: Experimental Results of OR for Various Heuristics

T n GAG NN KY SC TR SCTR NNTR

5 76 92 94 94 94 100 100

10 32 70 82 84 82 90 100

T1 15 14 68 74 82 80 94 96

20 2 34 40 56 50 78 80

25 2 34 40 54 44 74 74

T2 10 38 54 62 88 88 98 98

20 4 38 46 64 60 92 88

average - 24.0 55.7 62.6 74.6 71.1 89.4 90.9

Table 7: Experimental Results of AAE for Various Heuristics

T n GAG NN KY SC TR SCTR NNTR

5 0.0207 0.0058 0.0021 0.0019 0.0027 0 0

10 0.0641 0.0105 0.0056 0.0031 0.0036 0.0019 0

T1 15 0.1219 0.0116 0.0072 0.0038 0.0048 0.0020 0.0010

20 0.1587 0.0146 0.0125 0.0074 0.0067 0.0022 0.0014

25 0.1956 0.0183 0.0163 0.0112 0.0151 0.0018 0.0033

T2 10 0.0297 0.0108 0.0077 0.0021 0.0006 0.0000 0.0007

20 0.0656 0.0102 0.0092 0.0039 0.0038 0.0003 0.0006

average - 0.0938 0.0117 0.0087 0.0048 0.0053 0.0012 0.0010

It is well known that there is a trade-off between the solution quality and

the computation time of any algorithm. This is true for iterative heuristics used

for redundancy allocation optimization. The GAG has the worst performance and

the shortest computation time, while the SCTR has the best performance and the

longest computation time. In fact, according to Tables 9 and 13, the solution quality

critically depends on the computation time.

105

Table 8: Experimental Results of MAE for Various Heuristics

T n GAG NN KY SC TR SCTR NNTR

5 0.2372 0.1854 0.0570 0.0744 0.1045 0 0

10 0.4423 0.1997 0.1997 0.1089 0.0700 0.0700 0

T1 15 0.7232 0.1271 0.1033 0.0592 0.0716 0.0464 0.0252

20 0.7523 0.1743 0.1743 0.0541 0.0411 0.0240 0.0291

25 0.9670 0.1175 0.1175 0.1252 0.1382 0.0375 0.0652

T2 10 0.2717 0.1154 0.1154 0.0151 0.0177 0.0010 0.0326

20 0.2686 0.0698 0.0698 0.0290 0.0270 0.0082 0.0177

average - 0.5232 0.1413 0.1196 0.0717 0.0672 0.0267 0.0243

Table 9: Experimental Results of the Average Computation Time for Various Heuris-

tics (Absolute)

T n GAG NN KY SC TR SCTR NNTR

5 0 0.0016 0.0029 0 0 0 0.0021

10 0.0006 0.0088 0.0144 0.0081 0.0022 0.0137 0.0318

T1 15 0.0016 0.0308 0.0473 0.0393 0.0150 0.1145 0.1569

20 0.0066 0.0697 0.1156 0.1532 0.0522 0.7353 0.5750

25 0.0093 0.1383 0.2187 0.3956 0.1378 2.8354 1.5395

T2 10 0 0.0032 0.0053 0.0031 0.0016 0.0069 0.0121

20 0.0022 0.0239 0.0345 0.0540 0.0226 0.3206 0.2166

106

Table 10: Experimental Results of SR for Various Heuristics

T n GAG NN KY SC TR SCTR NNTR

10 32 70 82 84 82 90 100

20 2 42 48 60 58 88 92

T1 30 0 26 34 42 38 84 88

40 0 12 18 36 22 76 68

50 0 6 14 40 32 88 48

60 0 6 8 20 14 74 50

10 38 54 62 88 88 98 98

20 4 40 48 66 62 94 90

T2 30 0 18 18 52 28 82 58

40 0 6 8 40 14 82 40

50 0 0 2 30 8 88 16

60 0 2 6 40 8 86 18

average - 6.3 23.5 29.0 49.8 37.8 85.8 63.8

Table 11: Experimental Results of ARE for Various Heuristics

T n GAG NN KY SC TR SCTR NNTR

10 0.0641 0.0105 0.0056 0.0031 0.0036 0.0019 0

20 0.1575 0.0134 0.0113 0.0062 0.0055 0.0010 0.0003

T1 30 0.2772 0.0196 0.0144 0.0073 0.0161 0.0019 0.0016

40 0.3526 0.0327 0.0250 0.0154 0.0252 0.0038 0.0048

50 0.4859 0.0365 0.0321 0.0161 0.0194 0.0008 0.0088

60 0.5880 0.0369 0.0328 0.0212 0.0318 0.0031 0.0098

10 0.0297 0.0108 0.0077 0.0021 0.0006 0.0001 0.0007

20 0.0655 0.0101 0.0092 0.0039 0.0037 0.0002 0.0005

T2 30 0.0793 0.0178 0.0161 0.0037 0.0106 0.0011 0.0026

40 0.1696 0.0282 0.0239 0.0090 0.0169 0.0014 0.0076

50 0.1642 0.0408 0.0319 0.0079 0.0259 0.0006 0.0143

60 0.2603 0.0510 0.0470 0.0090 0.0305 0.0019 0.0139

average - 0.2245 0.0257 0.0214 0.0087 0.0158 0.0015 0.0054

107

Table 12: Experimental Results of MRE for Various Heuristics

T n GAG NN KY SC TR SCTR NNTR

10 0.4423 0.1997 0.1997 0.1089 0.0700 0.0700 0

20 0.7523 0.1743 0.1743 0.0541 0.0411 0.0240 0.0052

T1 30 0.7341 0.1253 0.1253 0.0867 0.1512 0.0312 0.0243

40 1.4340 0.1246 0.1235 0.0798 0.1134 0.0502 0.0518

50 2.2393 0.1723 0.1723 0.1015 0.1269 0.0164 0.0489

60 1.5662 0.1659 0.1659 0.1104 0.1647 0.0488 0.0161

10 0.2717 0.1154 0.1154 0.0510 0.0177 0.0010 0.0326

20 0.2686 0.0698 0.0698 0.0290 0.0270 0.0082 0.0177

T2 30 0.4539 0.0690 0.0690 0.0383 0.0655 0.0117 0.0252

40 0.7988 0.1514 0.1073 0.0550 0.0694 0.0176 0.0549

50 0.5408 0.1853 0.1553 0.0394 0.1278 0.0088 0.0792

60 1.0908 0.1593 0.1593 0.0446 0.1111 0.0265 0.0721

average - 0.8827 0.1427 0.1364 0.0666 0.0905 0.0262 0.0432

Table 13: Experimental Results of the Average Computation Time for Various Heuris-

tics (Relative)

T n GAG NN KY SC TR SCTR NNTR

10 0.0012 0.0081 0.0160 0.0047 0.0025 0.0141 0.0311

20 0.0059 0.0707 0.1121 0.1540 0.0525 0.7367 0.5759

T1 30 0.0146 0.2412 0.3796 0.9258 0.3118 8.8843 3.6104

40 0.0363 0.5552 0.8018 3.1719 0.9529 44.245 11.402

50 0.0690 1.1034 1.5347 8.8815 2.4690 154.75 30.765

60 0.1172 1.8494 2.2130 18.236 4.8822 435.81 62.500

10 0.0006 0.0031 0.0068 0.0040 0.0003 0.0072 0.0123

20 0.0009 0.0255 0.0353 0.0553 0.0212 0.3202 0.2172

T2 30 0.0053 0.0856 0.1191 0.3802 0.1350 4.4813 1.4959

40 0.0129 0.1893 0.2649 1.2212 0.3919 21.171 4.6044

50 0.0228 0.3592 0.4778 3.4736 0.9582 74.291 11.699

60 0.0390 0.5959 0.7662 6.8493 1.8187 178.03 22.564

108

CHAPTER VIII

CASE STUDY: REDUNDANCY ALLOCATION OPTIMIZATION FOR

MEMORY INTEGRATED CIRCUITS

Consider a 1Gb DRAM [13] whose system block diagram appears in Figure 15. The

memory semiconductor integrated circuit (IC) consists of two separate HALFs, and

each HALF contains corresponding peripheral circuits, 8 memory blocks with a mem-

ory size of 128MB, and a number of block redundancies. Each 128MB memory block

contains 32 × 16 memory segments with a memory size 256Kbit, and each memory

segment contains 512 word lines and 512 bit lines. Each block redundancy consists of

four 256Kbit arrays in a row, and each can replace any for adjacent memory segments

in a row in the HALF.

VIII.1. Optimization Problems

The yield and reliability for this IC can be computed as in Table 1. However, since

the architecture of the IC is different than the architecture of the IC in Chapter IV,

some of the yield and reliability formula in Table 1 should be modified. The IC under

consideration has two HALFs which are identical to each other. Thus, the following

modifications are required in Table 1:

YIC =
[
YPC · (YMB)Nmb · YBF

]Nhalf · YBI , (8.1)

YICN =

YPC ·

[∏
i∈I

(
1 +

λi

αi

)−αi

]Nmb

Nhalf

, (8.2)

RIC = (RNC)Nhalf ·
Nwlc∑
nf=0

{[
nf∏
i=1

(Nwlc + 1− i)

Nwlc

]
Pr {Nf = nf}

}
. (8.3)

109

Figure 15: A Block Diagram of a 1Gb DRAM

110

Various types of optimization problems can be defined, for example, yield

maximization, reliability maximization, manufacturing cost minimization, total profit

maximization, and so on. In this chapter, we confine our concerns to a simple redun-

dancy allocation problem which maximizes yield as follows:

[YM]

maximize YIC(n)

subject to AIC(n) ≤ γareaAIC(0),

nwl, nbl ∈ {0, 2, 4, 6, . . . 30},

nbr, nbwl, nbbl ∈ {0, 2, 4, 6, . . . 10},

necc ∈ {0, 1},

where n = (nbr, nwl, nbl, nbwl, nbbl, necc), 0 = (0, 0, 0, 0, 0, 0), γarea is the area increasing

ratio, and AIC(n) is the total area of the IC for fault-tolerant allocation n. Fault-

tolerant schemes increase the AIC(n) as well as the manufacturing yield and reliability

of the IC. Since AIC(n) is a function of the number of redundancies and the existence

of ECC, it can be calculated as follows:

AIC(n) = Nhalf (APC + NmbAMB + nbrABR),

AMB = AMB0 + nwlAWL + nblABL + neccNblNparABL,

ABR = ABR0 + nbwlABWL + nbblABBL + neccNbblNparABBL,

where APC is the area of peripheral circuits per HALF; AMB and AMB0 are the area

of a memory block with and without fault-tolerance, respectively; ABR and ABR0 are

the area of a block redundancy with and without fault-tolerance, respectively; AWL

and ABL are the area of a word line and a bit line in a memory block, respectively;

ABWL and ABBL are the area of a word line and a bit line in a block redundancy,

111

Table 14: Basic Parameters for Calculating Yield and Reliability

Parameter Value Comment

αi 5 clustering factor [2]

γ 0.005 ratio constant for burn-in yield [24]

AIC 287mm2 chip size at introduction (2004) [2]

γm 72.6 % memory area ratio (2004) [2]

µb 216 FIT MIL-HDBK-217 for a 64K DRAM [14]

t0 100000 hours ≈ 11.4155 years

respectively; Nhalf is the number of HALF; nbr is the number of block redundancies;

nwl and nbl are the number of row and column redundancies in a memory block; nbwl

and nbbl are the number of row and column redundancies in a block redundancy; necc

is a binary number which represent the existence of an ECC.

VIII.2. Numerical Experimentation

To solve the redundancy allocation problem of YM numerically, all of the parameters

in the equations should be determined. The values of some of the basic parameters

are summarized in Table 14 with corresponding references. One of the important

parameters is the average number of defects, λ, which can be computed by Equation

(3.10). Since the defect density D0 is a given number, we should know the critical

area for obtaining the λ of each memory failure. In this experiment, we assume these

as follows:

• Ac
PC = Ac

DC = 1 mm2/IC

• Ac
SWL = Ac

SBL = 50 mm2/IC

112

• Ac
DWL = Ac

DBL = Ac
CL = Ac

BF = 10 mm2/IC

• Ac
SC = 300 mm2/IC,

where Ac
Φ denotes the critical area for area Φ. Ac

PC and Ac
DC are typically designed

more loosely than the other critical areas to avoid chip-kill failures on these circuit

areas. Note that the sum of all of the critical areas can exceed the total area of the

IC since the IC has multiple layers. Parameter γm is the ratio of memory area to the

total area of a IC, i.e., γm = (NhalfNmbAMB)/AIC . Other parameters related to the

size can be calculated as follows:

• Nhalf = 2 HALF/IC

• Nmb = 4 MB/HALF

• Nbm = 32 rows× 16 columns/4 arrays = 128 block modules/MB

• Nwl = 32 rows× 512 word lines = 16384 word lines/MB

• Nbl = 16 columns× 512 bit lines = 8192 bit lines/MB

• Ntbw = 137 bits/memory word

• Ncbw = 1 bit/memory word

• Nabw = 128 bits/memory word

• Npar = Ntbw −Nabw = 9 bits/memory word

• Nmw = Nbl/Nabw = 64 memory words/word line

• Nwlc = Nhalf ·Nmb ·Nwl ·Nmw = 8388608 memory words/IC

• Nbwl = 512 word lines/BR

113

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Defect Density D
0
 (faults/ mm2)

Y
ie

ld

With ECC

Without ECC

Figure 16: Comparison of IC Yield Related to the Existence of ECC

• Nbbl = 4 columns× 512 bit lines = 2048 bit lines/BR

According to the ITRS road map, the random defect density, D0, is expected to be

2748 faults/m2 (0.002748 faults/mm2) by 2004. In several series of our experiments,

the defect density, D0, varies from 0.00001 faults/mm2 (0.00287 faults/IC) to 10

faults/mm2 (287 faults/IC) and the area increasing ratio, γarea, varies from 1.01 to

1.09, i.e., an increase from 1 to 9 % of the total IC area without fault-tolerance.

On the basis of the above defined parameters, several series of experiments

for the proposed redundancy allocation algorithms, BNB, TREE, and SCAN, are

performed on a Pentium IV 2.4GHz PC with 512MB memory. In each series of

114

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Defect Density D
0
 (faults/ mm2)

Y
ie

ld

 n
wl

=0, n
cl

=0

 n
wl

=2, n
cl

=0

 n
wl

=0, n
cl

=2

 n
wl

= n
cl

=2

 n
wl

= n
cl

=4

 n
wl

=2, n
cl

=0, ECC

Figure 17: Comparison of IC Yield Related to the Various Row and Column Redun-

dancy Policies

115

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Defect Density D
0
 (faults/ mm2)

R
el

ia
bi

lit
y

 n
l
=0, No ECC

 n
l
=8, No ECC

 n
l
=16, No ECC

 n
l
=0, ECC

 n
l
=8, ECC

 n
l
=16, ECC

Figure 18: Comparison of IC Reliability Related to the Various Row and Column

Redundancy Policies

116

experiments, BNB and SCAN always find global optimum, and TREE rarely failed

to find optimal solutions. The reason for the good performance of all of the algorithm

is the small size of YM, and we expect that the results would be different if the

problem size were larger.

The first series of experiments is performed to investigate the effect of the

ECC. Figure 16 shows yield variation related to defect density, D0, where no redun-

dancies are employed. At D0 = 0.001 faults/mm2, the yield of the IC with ECC is

0.8658 and the yield of the IC without ECC is about 0.6470, which is about 21% yield

difference. The gap between these yields decreases as the defect density either gets

close to zero or close to a large number.

The yield also varies depending on the number of redundancies. The cal-

culated yields of the IC are shown in Figure 17 for various fault-tolerant policies.

As the number of redundancies increases, the yield also increases. At D0 = 0.001

faults/mm2, the yield for nl = nwl + ncl = 0 is 0.6470, the yield for nl = 2 is 0.9190,

the yield for nl = 4 is 0.9859, the yield for nl = 8 is 0.9860, and the yield for both

nl = 2 and ECC is 0.193. At D0 = 0.01 faults/mm2, the yield for nl = 0 is 0.0229, the

yield for nl = 2 is 0.3800, the yield for nl = 4 is 0.8580, the yield for nl = 8 is 0.8752,

and the yield for both nl = 2 and ECC is 0.4330. At some point, the yield does

not significantly improve even though more redundancies are added. For example,

the yields for nl = 4 and nl = 8 are similar if the defect density is less than 0.01

faults/mm2. Another important point to emphasize is the effect of ECC is not so

significant if there exist some line redundancy. Compare the Figure 16 to Figure 16.

If the number of line redundancies increase, the effect of ECC decrease even more.

The reason for this phenomenon is that remaining line redundancies repair almost

single cell failures if enough line redundancies are provided.

117

Since the defect-based reliability model in Chapter IV depends on the number

of carry-over single cell failures, the reliability of the IC also relies on the defect

density, D0. Figure 18 shows that the reliability variations for the various fault-

tolerant policies related to defect density. Since the redundancies cover carry-over

single cell failures, enough redundancies significantly improves the reliability. More

dramatic result can be observed by employing ECC. ECC improves the high reliable

range as well as the reliability itself.

The second series of experiments is designed to examine the optimal number

of redundancies and the resulting effects on yield and reliability. Table 15 shows

optimal yield, corresponding reliability, and optimal allocation of decision variable

for various defect densities and constraints with γarea. Figure 19 shows optimal yields

for various γarea related to defect density. In Figure 19 and Tables 15, the condition

‘No FT’ denotes that neither a redundancy and nor ECC are employed; condition

‘ECC only’ indicates that ECC only is employed; and condition γarea indicates optimal

solutions for constraints with γarea. For all of the defect densities under consideration,

optimal yields are obviously better than the yields for conditions No FT, ECC only,

and combination of nwl = nbl = 4 and ECC. For all conditions γarea, the optimal

yields are very similar but only tail shapes are different. However, if the condition

γarea is more tight, the results may differ. Note that ECC occupies a large amount of

area (13.9179 mm2), so ECC can not be employed if γarea is less than 1.0485. This

implies that the optimized number of redundancies can improve yield better than an

ECC. The trend can be observed in Table 15. In that table, the optimal solutions for

γarea = 1.05 do not employ ECC even though there is enough space.

In summary, although both redundancy and ECC affect both yield and relia-

bility, the number of redundancies critically affects yield and ECC critically affects the

reliability of the IC. Thus, both fault-tolerant policies are required to ensure certain

118

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Defect Density D
0
 (faults/ mm2)

Y
ie

ld

No FT

ECC only

 n
wl

= n
cl

=4, ECC

γ
area

=1.02

γ
area

=1.04

γ
area

=1.06

γ
area

=1.08

Figure 19: Comparison of Optimal Yield Related to the Various Conditions

levels of manufacturing yield and reliability in semiconductor products. In addition,

it is also very important to find the optimal number of redundancies to minimize the

area of a chip because yield and reliability are not enhanced significantly if enough

redundancies are provided to the IC.

119

Table 15: Optimal Allocations for the Various Conditions

D0 conditions YIC RIC (nbr, nwl, nbl, nbwl, nbbl, necc)

No FT 0.13153630 0.26358501 (0, 0, 0, 0, 0, 0)

ECC only 0.48838501 0.99892040 (0, 0, 0, 0, 0, 1)

γarea = 1.01 0.98186544 0.97867271 (4, 12, 12, 2, 2, 0)

0.005 γarea = 1.03 0.98186544 0.97867271 (4, 12, 12, 2, 2, 0)

γarea = 1.05 0.98186544 0.97867271 (4, 12, 12, 2, 2, 0)

γarea = 1.07 0.98186544 0.97867271 (4, 12, 12, 2, 2, 0)

γarea = 1.09 0.98186544 0.97867271 (4, 12, 12, 2, 2, 0)

No FT 0.02289943 0.09333350 (0, 0, 0, 0, 0, 0)

ECC only 0.24011778 0.99891993 (0, 0, 0, 0, 0, 1)

γarea = 1.01 0.96734620 0.97867271 (6, 14, 14, 2, 2, 0)

0.01 γarea = 1.03 0.96734620 0.97867271 (6, 14, 14, 2, 2, 0)

γarea = 1.05 0.96734620 0.97867271 (6, 14, 14, 2, 2, 0)

γarea = 1.07 0.96734620 0.99892058 (6, 14, 14, 2, 2, 1)

γarea = 1.09 0.96734620 0.99892058 (6, 14, 14, 2, 2, 1)

No FT 0.00000000 0.00000000 (0, 0, 0, 0, 0, 0)

ECC only 0.00000000 0.00000000 (0, 0, 0, 0, 0, 1)

γarea = 1.01 0.31677388 0.97866823 (6, 16, 14, 2, 8, 0)

0.5 γarea = 1.03 0.36431155 0.97866823 (10, 30, 30, 2, 4, 0)

γarea = 1.05 0.36431155 0.97866823 (10, 30, 30, 2, 4, 0)

γarea = 1.07 0.36431322 0.99891822 (10, 30, 30, 2, 4, 1)

γarea = 1.09 0.36431322 0.99891822 (10, 30, 30, 2, 4, 1)

120

CHAPTER IX

CONCLUDING REMARKS

Nanotechnology is an engineering area that is currently attracting widespread at-

tention. It is anticipated that nanotechnology will revolutionize many industries,

as it is applied to various real-world applications. Nanomanufacturing involves var-

ied disciplines including accurate modeling and optimization. In this dissertation, I

have investigated semiconductor manufacturing, which represents the first realistic

application of nanotechnology to date. Yield and reliability are the most important

measures for manufacturability and productivity. The main goal of this study is to

build integrated mathematical models for yield and reliability and to maximize the

yield and reliability by developing efficient optimization methodologies.

Due to imperfections in the manufacturing process, semiconductor integrated

circuits intrinsically possess many defects and faults, which lead to the failure of semi-

conductor products and subsequently, to yield loss and degradation of reliability. The

defects or faults can be managed by eliminating the critical defects or by designing

robust systems for dealing with the defects, so-called fault-tolerant design. For these

approaches, accurate defect-based yield and reliability models are essential because

these models will enable us to investigate the failure sources and to estimate yield and

reliability without volume production. There are many yield and reliability models

for semiconductor integrated circuits. However, most models at present consider only

some of the factors that affect yield and reliability. I have developed integrated yield

and reliability models that consider defect types, burn-in effects, and fault-tolerant

schemes with both hierarchical redundancy and error correcting codes, simultane-

ously. These models are expected to estimate yield and reliability more accurately

121

than others, and they can be employed for optimizing the yield and reliability of

memory semiconductor integrated circuits.

Theoretically and practically, increasing the functionality and the complexity

of systems decreases yield and reliability. The most efficient way to improve the

yield and reliability of systems without high additional costs is to add redundancy

onto unreliable components and to optimize the number of redundancies. In general,

yield and reliability optimization problems can be formulated as nonconvex integer

or mixed-integer nonlinear programming problems with coherent properties. In this

study, I have developed a global optimization algorithm using the branch-and-bound

method and two multi-path iterative heuristics, tree and scanning heuristics, which

are very efficient for redundancy allocation problems in terms of both solution quality

and computation time. These methods can also be directly employed to optimize the

yield and reliability of memory semiconductor integrated circuits with fault-tolerant

schemes which were previously investigated.

Using the current research as above, the following research directions should

be considered for future research:

Yield and reliability enhancement of semiconductor products

Yield and reliability can be enhanced further by employing other techniques. Some

good candidate include, 1) conjunction of cost and profit models to the current model,

2) efficient redundant system design, 3) burn-in time and level optimization, and 4)

layout and conductive line optimization. In addition, statistical process control for

monitoring and diagnosing manufacturing variation is a significant defect manage-

ment approach for enhancing yield and reliability in semiconductor products.

122

Development of new optimization algorithms

Since systems at nano and quantum scales employ Quantum Physics, new optimiza-

tion problems are expected in these emerging systems. On the basis of the new

physics, a new paradigm for optimization algorithms may be required to solve newly

emerging problems.

Micro/nano manufacturing and fabrication

There are many candidates for nanofabrication methods, but none of them is domi-

nant so far. Since nanofabrication facilities are very high in cost, setting up volume

production without significant verification of the methods is a great risk. The verifica-

tion of the productivity and manufacturability of newly developed technologies using

models, simulation, and optimization is essential in advance of volume production.

Nano/quantum reliability

Current reliability theory and failure mechanisms may not be directly applicable

to nano-systems and quantum-systems. On the atomic or molecular level, defects,

faults, failures, wear-out, and repair mechanisms may have different physical mean-

ings. Quantum physics and statistics may need to be employed to explain the corre-

lations between current systems and nano/quantum-systems. This may increase the

demand for new paradigms of nano/quantum reliability.

Nanotechnology and semiconductor engineering are relatively new to indus-

trial engineering. In fact, most research on these subjects has been accomplished by

other engineering fields such as chemistry, mechanics, and electronics. I believe the

main role of industrial engineering is to make connections between science, engineer-

ing, economics, and management, and it is a very important job. Since these emerging

engineering fields are multidisciplinary property, there are plenty of research topics in

these new areas which can be most successfully investigated by industrial engineers.

123

REFERENCES

[1] J. R. Heath, P. J. Kuekes, G. S. Snider, and S. Williams, “A defect-tolerant

computer architecture: Opportunities for nanotechnology,” Science, vol. 280,

pp. 1716–1721, 1998.

[2] ITRS, “International technology roadmap for semiconductors: 2002 update,”

International Technology Roadmap for Semiconductors, Tech. Rep., 2002,

http://public.itrs.net.

[3] K. Chakraborty and P. Mazumder, Fault-Tolerance and Reliability Techniques

for High-Density Random-Access Memories. Upper Saddle River, NJ: Prentice

Hall PTR, 2002.

[4] W. Kuo, W. K. Chien, and T. Kim, Reliability, Yield, and Stress Burn-in: A

Unified Approach for Microelectronics Systems Manufacturing and Software De-

velopement. Norwell, MA: Kluwer Academic Publishers, 1998.

[5] J. P. Gyvez and D. K. Pradhan, Integrated Circuit Manufacturability: The Art

of Process and Design Integration. New York: IEEE Press, 1999.

[6] I. Koren and Z. Koren, “Defect tolerance in VLSI circuits: Techniques and yield

analysis,” in Proceedings of the IEEE, 1998, vol. 86, no. 9, pp. 1819–1837.

[7] R. Doering and Y. Nishi, “Limits of integrated-circuit manufacturing,” in Pro-

ceedings of the IEEE, 2001, vol. 89, no. 3, pp. 375–393.

[8] R. W. Keyes, “Fundamental limits of silicon technology,” in Proceedings of the

IEEE, 2001, vol. 89, no. 3, pp. 227–239.

124

[9] M. Quirk and J. Serda, Semiconductor Manufacturing Technology. Upper Saddle

River, NJ: Prentice Hall, 2001.

[10] Military Standard: Definitions of Terms for Reliability and Maintainability.

Washington, DC: Department of Defense, June 1981, no. MIL-STD-721C.

[11] L. R. Harriott, “Limits of lithography,” in Proceedings of the IEEE, 2001, vol. 89,

no. 3, pp. 366–374.

[12] D. A. Buchanan, “Scaling the gate dielectric: materials, integration, and relia-

bility,” IBM Journal of Research and Development, vol. 43, no. 3, pp. 245–264,

1999.

[13] J.-H. Yoo, K.-C. Kim, K.-C. Lee, and K.-H. Kyung, “A 32-Bank 1 Gb self-

strobing synchronous DRAM with 1 Gbyte/s bandwidth,” IEEE Journal of

Solid-State Circuits, vol. 31, no. 11, pp. 1635–1644, 1996.

[14] J. Bowles, “A survey of reliability-prediction procedures for microelecric devices,”

IEEE Transactions on Reliability, vol. 41, no. 1, pp. 2–12, 1992.

[15] H. H. Huston and C. P. Clarke, “Reliability defect detection and screening during

processing-theory and implementation,” in Proceedings International Reliability

Physics Symposium, 1992, pp. 268–275.

[16] C. H. Stapper, “Modeling of defects in integrated circuit photolithographic pat-

terns,” IBM Journal of Research and Development, vol. 28, no. 4, pp. 461–475,

1984.

[17] B. T. Murphy, “Cost-size optima of monolithic integrated circuits,” in Proceed-

ings of the IEEE, 1964, vol. 52, pp. 1537–1545.

125

[18] R. B. Seeds, “Yield and cost analysis of bipolar LSI,” in 1967 IEEE International

Conference on Electron Devices Manufacturing, 1967, p. 12.

[19] C. H. Stapper, “Defect density distribution for LSI yield calculations,” IEEE

Transactions on Electron Devices, vol. ED-20, pp. 655–657, 1973.

[20] T. S. Barnett, “Yield-reliability modeling for integrated circuits: Theory and

experimental verification,” Ph.D. dissertation, Auburn University, AL, 2002.

[21] T. Kim and W. Kuo, “Modeling manufacturing yield and reliability,” IEEE

Transactions on Semiconductor Manufacturing, vol. 12, no. 4, pp. 485–492, 1999.

[22] F. Kuper, J. Van der Pol, E. Ooms, T. Johnson, and R. Wijburg, “Relation

between yield and reliability of integrated circuits: Experimental results and

application to continuous early failure rate reduction programs,” in Proceedings

International Reliability Physics Symposium, 1996, pp. 17–21.

[23] J. Van der Pol, F. Kuper, and E. Ooms, “Relation between yield and reliability

of integrated circuits and application to failure rate assesment and reduction in

the one digit fit and ppm reliability era,” Microelectronics and Reliability, vol. 36,

pp. 1603–1610, 1996.

[24] T. S. Barnett and A. D. Singh, “Extending integrated-circuit yield-models to

estimate early-life reliability,” IEEE Transactions on Reliability, vol. 52, no. 3,

pp. 296–300, 2003.

[25] TOSHIBA Semiconductor Reliability Handbook, Toshiba Co., Irvine, CA, 2001.

[26] S. Kikuda, H. Miyamoto, S. Mori, M. Niiro, and M. Yamada, “Optimized re-

dundancy selection based on failure-related yield model for 64-Mb DRAM and

126

beyond,” IEEE Journal of Solid-State Circuits, vol. 26, no. 11, pp. 1550–1555,

1991.

[27] C. H. Stapper, J. A. Fifield, H. L. Kalter, and W. A. Klassen, “High-reliability

fault-tolerant 16-Mbit memory chip,” IEEE Transactions on Reliability, vol. 42,

no. 4, pp. 596–603, 1993.

[28] C. H. Stapper and H. Lee, “Synergistic fault-tolerance for memory chips,” IEEE

Transactions on Computers, vol. 41, no. 9, pp. 1078–1087, 1992.

[29] C. H. Stapper, A. N. McLaren, and M. Dreckmann, “Yield model for produc-

tivity optimization of VLSI memory chips with redundancy and partially good

product,” IBM Journal of Research and Development, vol. 24, no. 3, pp. 398–409,

1980.

[30] C. H. Stapper, “Improved yield models for fault-tolerant memory chips,” IEEE

Transactions on Computers, vol. 42, no. 7, pp. 872–881, 1993.

[31] W. Kuo and M. J. Zuo, Optimal Reliability Modeling: Principles and Applica-

tions. Hoboken, NJ: John Wiley & Sons, 2002.

[32] R. E. Barlow and F. Proschan, Mathematical Theory of Reliability. Philadelphia,

PA: SIAM, 1996.

[33] M. S. Chern, “On the computational complexity of reliability redundancy alloca-

tion in a series system,” Operations Research Letters, vol. 11, no. 5, pp. 309–315,

1992.

[34] W. Kuo, V. R. Prasad, F. A. Tillman, and C. L. Hwang, Optimal Reliability

Design: Fundamentals and Applications. Cambridge: Cambridge University

Press, 2001.

127

[35] V. R. Prasad and W. Kuo, “Reliability optimization of coherent system,” IEEE

Transactions on Reliability, vol. 49, no. 3, pp. 323–330, 2000.

[36] W. Kuo and V. R. Prasad, “An annotated overview of system reliability opti-

mization,” IEEE Transactions on Reliability, vol. 49, no. 2, pp. 176–191, 2000.

[37] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization.

New York: John Wiley & Sons, 1988.

[38] K. B. Misra and U. Sharma, “An efficient algorithm to solve integer-programming

problems arising in system reliability design,” IEEE Transactions on Reliability,

vol. 40, no. 1, pp. 81–91, 1991.

[39] Y. Nakagawa, K. Nakashima, and Y. Hattri, “Optimal reliability allocation by

branch-and-bound technique,” IEEE Transactions on Reliability, vol. 27, no. 1,

pp. 31–38, 1978.

[40] E. L. Johnson, G. L. Nemhauser, and M. W. P. Savelsbergh, “Progress in lin-

ear programming-based algorithms for integer programming: An exposition,”

INFORMS Journal on Computing, vol. 12, no. 1, pp. 2–23, 2000.

[41] E. K. Lee and J. E. Mitchell, “Integer programming: Branch and bound meth-

ods,” in Encyclopedia of Optimization, C. A. Floudas and P. M. Pardalos, Eds.

Dordrecht: Kluwer Academic Publishers, 2001, vol. 2, pp. 509–519.

[42] X. L. Sun, K. I. M. McKinnon, and D. Li, “A convexification method for a class

of global optimization problems with applications to reliability optimization,”

Journal of Global Optimization, vol. 21, pp. 185–199, 2001.

[43] M. Tawarmalani and N. V. Sahinidis, “Global optimization of

mixed integer nonlinear programs: A theoretical and computational

128

study,” 2003, submitted to Mathematical Programming, available at

http://web.ics.purdue.edu/ mtawarma/.

[44] H. Tuy and L. T. Luc, “A new approach to optimization under monotonic con-

straint,” Journal of Global Optimization, vol. 18, pp. 1–15, 2000.

[45] K. Gopal, K. K. Aggarwal, and J. S. Gupta, “An improved algorithm for re-

laibility optimization,” IEEE Transactions on Reliability, vol. 29, pp. 325–328,

1978.

[46] J. H. Kim and B. J. Yum, “A heuristic method for solving redundancy optimiza-

tion problems in complex systems,” IEEE Transactions on Reliability, vol. 42,

no. 4, pp. 572–578, 1993.

[47] D. W. Coit and A. Smith, “Adaptive penalty methods for genetic optimization of

constrained combinatorial problems,” INFORMS Journal on Computing, vol. 8,

no. 2, pp. 173–182, 1996.

[48] ——, “Penalty guided genetic search for reliability design optimization,” Com-

puters and Industrial Engineering, vol. 30, no. 4, pp. 895–904, 1996.

[49] ——, “Solving the redundancy allocation problem using a combined neural net-

work/genetic algorithm approach,” Computers and Operations Research, vol. 23,

no. 6, pp. 515–526, 1996.

[50] Y. Nakagawa and S. Miyazaki, “Surrogate constraints algorithm for reliabilty

optimization problem with two constraints,” IEEE Transactions on Reliability,

vol. R-30, no. 2, pp. 175–180, 1981.

[51] K. K. Aggarwal, “Redundancy optimization in general systems,” IEEE Trans-

actions on Reliability, vol. R-25, pp. 330–332, 1976.

129

[52] W. Kuo, C. L. Hwang, and F. A. Tillman, “A note on heuristic methods in

optimal system reliability,” IEEE Transactions on Reliability, vol. R-27, pp. 320–

324, 1978.

[53] Y. Nakagawa and K. Nakashima, “A heuristic method for determining optimal

reliability allocation,” IEEE Transactions on Reliability, vol. R-26, no. 3, pp.

156–161, 1977.

[54] T. Kohda and K. Inoue, “A reliability optimization method for complex systems

with the criterion of local optimality,” IEEE Transactions on Reliability, vol.

R-31, pp. 109–111, 1982.

[55] D. H. Shi, “A new heuristic algorithm for constrained redundancy-optimization

in complex systems,” IEEE Transactions on Reliability, vol. 36, no. 5, pp. 621–

623, 1987.

[56] L. Jianping, “A bound heuristic algorithm for solving reliability redundancy

optimization,” Microelectronics and Reliability, vol. 36, no. 3, pp. 335–339, 1996.

130

VITA

Chunghun Ha received the B.S. degree in electronics engineering from Yonsei Univer-

sity, Seoul, Korea, in 1993, and the M.S. degree in industrial engineering from Texas

A&M University in 2000. He received his Ph.D. degree in industrial engineering from

Texas A&M University in 2004. Previously, he was a researcher at the Samsung

Advanced Institute of Technology (SAIT). His research interests include reliability

optimization, non-convex programming, integer and mixed-integer programming, re-

liability and yield analysis, modeling, and optimization in integrated circuits and

micro/nano systems, and defect- and fault- tolerant architecture for the nanocom-

puter.

E-MAIL: chriver58@yahoo.com,

ADDRESS: Woosung APT 11-1203, Daechi-1-dong, Kangnam-Gu, Seoul, Korea

