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ABSTRACT 

Optimal Filter Design Approaches to Statistical Process Control  

for Autocorrelated Processes. (August 2004) 

Chang-Ho Chin, B.S., Korea University; 

M.S., Texas A&M University 

Co-Chairs of Advisory Committee:   Dr. Daniel W. Apley  
                                               Dr. Yu Ding 

  
 
 
 Statistical Process Control (SPC), and in particular control charting, is widely 

used to achieve and maintain control of various processes in manufacturing. A control 

chart is a graphical display that plots quality characteristics versus the sample number or 

the time line. Interest in effective implementation of control charts for autocorrelated 

processes has increased in recent years. However, because of the complexities involved, 

few systematic design approaches have thus far been developed. 

 Many control charting methods can be viewed as the charting of the output of a 

linear filter applied to the process data. In this dissertation, we generalize the concept of 

linear filters for control charts and propose new control charting schemes, the general 

linear filter (GLF) and the 2nd-order linear filter, based on the generalization. In addition, 

their optimal design methodologies are developed, where the filter parameters are 

optimally selected to minimize the out-of-control Average Run Length (ARL) while 

constraining the in-control ARL to some desired value. The optimal linear filters are 

compared with other methods in terms of ARL performance, and a number of their 
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interesting characteristics are discussed for various types of mean shifts (step, spike, 

sinusoidal) and various ARMA process models (i.i.d., AR(1), ARMA(1,1)). 

 Also, in this work, a new discretization approach for substantially reducing the 

computational time and memory use for the Markov chain method of calculating the 

ARL is proposed. Finally, a gradient-based optimization strategy for searching optimal 

linear filters is illustrated.  
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CHAPTER I 

INTRODUCTION 

  

 The control chart is a primary Statistical Process Control (SPC) tool that 

promotes process stability and quality improvement by means of detecting process shifts 

that require corrective action. As graphical monitors, control charts generally contain a 

centerline at the target value and two other horizontal lines called control limits at the 

plus and minus deviation points from the centerline. If a point plotted on the control 

chart falls outside the control limits, the process is declared not to be in a state of control. 

 

I.1  Generalization of the Concept of Linear Filters1 

  Many common control charts for autocorrelated data are based on linear 

filtering. To explain the linear filtering of control charts, let yt = H(B)xt denote the 

charted statistic, where t is a time index; xt is the original process data; and H(B) = h0 + 

h1B + h2B2 + . . . is a linear filter in impulse response form with B denoting the time-

series backshift operator. Two simple examples of this are a Shewhart individual chart 

and an EWMA chart on xt. For the Shewhart chart, yt = xt, with H(B) = 1 as the identity 

filter. For the EWMA chart with parameter λ, we have yt = (1 − λ)yt-1 + λxt, so that the 

filter is H(B) = (1 − (1 − λ)B)-1λ. More examples are given in Section II.2.  

 Therefore, many control charting methods can be viewed as the charting of the 

output of a linear filter applied to the process data. This concept of linear filters for 
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control charts is generalized in this dissertation, which is one of the main contributions 

of this research. In addition, based on this generalization, new control charting schemes 

are proposed and their optimal design methodologies are developed. 

 

I.2  Overview of Control Chart Design 

 Since the advent of Shewhart charts, many control charts have been developed to 

monitor, control, and improve processes. Steady efforts have also been made to 

optimally design them with respect to statistical criteria. As a result, optimal design 

methodologies have been proposed for simple control charts such as Shewhart charts on 

independent and identical distributed (i.i.d.) observations. Artiles-León, David, and 

Meeks (1996) described a methodology to find the optimal control limits of x  control 

charts with supplementary stopping rules that minimizes the out-of-control Average Run 

Length (ARL) for a fixed in-control ARL. Parkhideh and Parkhideh (1998) developed a 

model to optimally design a flexible zone individual chart based on the desired in-

control and out-of-control ARL values. 

 Tables, plots, and crude heuristics are available for designing more complicated 

charts such as the Exponentially Weighted Moving Average (EWMA) chart,  the 

Autoregressive Moving Average (ARMA) chart (Jiang, Tsui, and Woodall 2000), and 

the Proportional Integral Derivative (PID) chart (Jiang, Wu, Tsung, Nair, and Tsui 2002). 

Crowder (1989) provided the plots of optimal smoothing parameters and control limit 

constants to aid the design of EWMA charts. A table containing a list of optimal 

parameters of EWAM control schemes is offered to facilitate its design in Lucas and 
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Saccucci (1990). Lin and Adams (1996) proposed construction guidelines for the 

combined exponentially weighted moving average-Shewhart (CES) control chart. 

VanBrackle and Reynolds (1997) generated tables to aid in adjusting the control limits 

of EWMA and Cumulative sum (CUSUM) charts in order to provide a reasonable false 

alarm rate in the presence of correlation. Jiang et al. (2000) and Jiang et al. (2002) 

developed informal procedures to determine the appropriate parameter values of the 

ARMA(1,1) chart and the PID chart based on two signal-to-noise ratios. Design 

procedures for EWMA charts with estimated parameters were developed by Jones 

(2002). 

   

I.3  Control Charts in the Presence of Correlation 

Conventional control charts are based on the assumption that the observations are 

independently and identically distributed (i.i.d.) over time. With increasing automation, 

however, inspection rates have increased. Consequently, data are more likely to be 

autocorrelated, which can significantly deteriorate control charting performance. 

Johnson and Bagshaw (1974) and Bagshaw and Johnson (1975) discussed the effect of 

serial correlation on the performance of CUSUM charts, and Harris and Ross (1991) 

investigated the impact of serial correlation on the performance of EWMA and CUSUM 

charts.   

Numerous control chart modifications have been proposed for monitoring 

autocorrelated processes. One approach is to monitor the original autocorrelated data 

using conventional control charts with modified control limits (Johnson and Bagshaw 
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1974; Vasilopoulos and Stamboulis 1978; Zhang 1998). Another common approach is to 

apply conventional control charts with normal control limits to the uncorrelated residuals 

of an appropriate ARMA model (Alwan and Roberts 1988; Runger, Willemain, and 

Prabhu 1995; Lin and Adams 1996; Apley and Shi 1999). In addition, Jiang et al. (2000) 

and Jiang et al. (2002) proposed the ARMA(1,1) chart and the PID chart, respectively, 

for use with  autocorrelated data. 

 In contrast to the aforementioned modifications, few design procedures have 

been developed for autocorrelated data. Although for Exponentially Weighted Moving 

Average (EWMA) charts on i.i.d. data, tables do exist (Lucas and Saccucci 1990) that 

provide the optimal EWMA parameters that minimize the out-of-control ARL under 

some specified constraint on the in-control ARL, no such tables exist for autocorrelated 

data. This is because the optimal EWMA filter parameter depends on many factors, 

including the details of the ARMA process model. The filter design problem is even 

more complex for the ARMA(1,1) chart of Jiang et al. (2000) and the PID chart of Jiang 

et al. (2002) because more filter parameters must be selected. 

 

I.4  Performance Measurement  

  In the design procedure, the ARL, which is defined as the average number of 

samples plotted before the first alarm sounds, is a popular measure used for evaluating 

the performance of control charts. The integral equation method and the Markov chain 

method are widely used to calculate the ARL. Crowder (1987) and VanBrackle and 

Reynolds (1997) used the integral equation method originally developed by Page (1954) 
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to evaluate the performance of EWMA charts and CUSUM charts. Yang and Makis 

(1997) derived integral equations for the ARLs of conventional control charts applied to 

process residuals. Brook and Evans (1972) originally proposed the Markov chain 

method to calculate the ARL of CUSUM schemes; many others used this method to 

evaluate the performance of existing charts such as EWAM charts and CUSUM charts 

(Crosier 1986; Reynolds, Amin, and Arnold 1990; Runger and Prabhu 1996; VanBrackle 

and Reynolds 1997; Jiang 2001). Reynolds (1995) proposed a unified treatment of the 

two methods. 

 Applying the integral equation method and the Markov chain method to a one-

sided CUSUM is illustrated below. For a one-sided CUSUM scheme to detect positive 

shifts, we plot 

},0max{ 1 KXSS ttt −+= − ,                                                                                          (1.1) 

where t is a time index; Xt is a sample statistic at timestep t; and K is the reference value. 

Page (1954) proposed the integral equation to calculate the ARL for this scheme as 

∫ −++−+= )()()()0(1)( sxkdFxLskFLsL ,                                                             (1.2) 

where L(x) is the ARL of the CUSUM chart after it is reset at x and F is the cumulative 

distribution function of the sample statistic. The solution to the integral equation can be 

obtained by the Gauss-Legendre quadrature (Kantorovich and Krylov 1964; Baker 

1977). 
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 The Markov chain method described by Brook and Evans (1972) enables us to 

calculate the ARL for a continuous CUSUM scheme by discretizing its state space into 

Nmc subintervals. The discrete CUSUM has the transition probability matrix in the 

partitioned form 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

10
1)(

T

QIQ
R ,                                                                                                     (1.3)                             

where the submatrix Q contains the transition probabilities for non-absorbing states; I is 

the identity matrix; and 1 is a column vector of ones. Let the Lr be a vector of length Nmc 

whose elements represent the probabilities of a run length r starting from Nmc non-

absorbing states, respectively. Then, 

L1 = (I − Q)1,                                                                                                                 (1.4) 

and 

Lr = QLr-1 = Qr-1L1.                                                                                                        (1.5) 

Let ARL(Nmc) be the ARL for the discrete scheme with Nmc subintervals. Using the 

ARL(Nmc) for several values of Nmc, the extrapolation to the asymptotic ARL is obtained 

by fitting  

ARL(Nmc) = asymptotic ARL + B/Nmc
 2 + C/Nmc

 4,                                                       (1.6)   

by least squares. This approximation (Equation (1.6)) is usually used to improve the 

accuracy of the Markov chain method. 
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I.5  Outline of the Dissertation 

 The purpose of this research is to generalize the concept of linear filters for 

control charts and develop optimal design methodologies for linear filters that have a 

design structure which is flexible enough to include existing control charts as special 

cases. The linear filters are optimally designed with respect to a statistical criterion such 

that the out-of-control ARL is minimized while constraining the in-control ARL to some 

specific value. 

 In Chapter II, control charting schemes based on linear filtering are described in 

some detail. Based on a generalization of this concept, we propose a general control 

charting scheme for autocorrelated data, the general linear filter (GLF). An optimal 

design methodology for the GLF is developed with respect to the aforementioned 

statistical optimization criterion. Optimal GLFs are compared with other methods in 

terms of ARL performance and a number of interesting characteristics are discussed for 

various types of mean shifts and various ARMA process models. 

 Chapter III presents a 2nd-order linear filter as a control charting scheme. It is less 

versatile than the GLF, but is much more efficient to implement and its performance is 

almost as good as the GLF’s in many cases. The performance of 2nd-order linear filters is 

analyzed for various examples and their characteristics are also discussed.  

 Chapter IV develops a new discretization method for the Markov chain method 

which substantially reduces memory use and computational time in implementation. The 

developed approach is compared with conventional approaches in terms of accuracy and 

computational expense. 



 

 
   

8

 Chapter V illustrates a gradient-based optimization strategy. A flowchart is 

presented to show the overall strategy. Section V.2 explains the gradient-based search in 

detail. Section V.3 discusses the selection of the search starting point and its impact on 

the convergence to the optimal linear filters. Finally, Chapter VI concludes this 

dissertation by describing the contributions made here as well as listing some directions 

for future research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
   

9

CHAPTER II 

OPTIMAL DESIGN OF GENERAL LINEAR FILTERS FOR 

STATISTICAL PROCESS CONTROL  

 

II.1  Introduction 

 In spite of the extensive research mentioned in Sections I.2 and I.3, to this date 

no control chart consistently outperforms the others, because the performance of control 

charts is substantially influenced by the original process. In the design procedure, the 

sample size, sampling interval, control limits, and parameters of the control chart can be 

optimally selected according to the underlying process. However, the basic structure of 

the control chart has not been a subject of investigation. In other words, the inherent 

characteristics of the charted statistics generated by the fixed structure of control charts 

have limited improvement in control chart design and performance. 

 Therefore, in this chapter, we propose a control charting scheme, which we call 

the general linear filter (GLF), that is based on generalizing the concept of linear filters.  

As mentioned above, many control charting schemes for both i.i.d. and autocorrelated 

data can be viewed as charting the output of a linear filter applied to the process data.  

The GLF is expressed in the general form of linear filters and is flexibly designed to 

measure the underlying process without incurring limitations that are due to the inherent 

characteristics of a fixed structure. Furthermore, we develop a statistical design 

methodology for the selection of optimal filter parameter values. In Section II.2, we 

generalize the linear filtering operation of control charting schemes and propose the 
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general linear filter (GLF). Section II.3 discusses the calculation of the ARL for the GLF 

based on the Markov chain method and the gradient-based numerical optimization 

strategy for optimal design. In Section II.4, a performance comparison between optimal 

general linear filters (OGLF) and other control charts is presented and the interesting 

characteristics of the OGLF are illustrated. Section II.5 presents the chapter summary. 

 

II.2  General Linear Filter (GLF) 

As discussed in Section I.1, the Shewhart individual chart and the EWMA chart 

on i.i.d are based on linear filtering. Residual-based Shewhart and EWMA charts can be 

viewed similarly if xt is assumed to follow an ARMA process model, plus (potentially) 

an additive deterministic mean shift, µt of the form 

                                                            ,
)(
)(

ttt a
B
B

x µ+
Φ
Θ

=                                            (2.1) 

where t is a time index; at is an i.i.d. Gaussian process with mean 0 and variance 2
aσ  

denoted at ~ NID(0, 2
aσ ); Φ(B) = (1 – φ1B – φ2B2 – ⋅⋅⋅ ⋅– φpBp) and Θ(B) = (1 – θ1B – 

θ2B2 – ⋅⋅⋅ ⋅– θqBq) are the AR and MA polynomials of order p and q, respectively. µt = 0 

for the in-control process and µt ≠ 0 for the out-of-control process. The model residuals 

(i.e., the one-step-ahead prediction errors) are generated via the linear filtering operation 

                        ,~
)(
)(

)(
)(

)(
)(

)(
)(

tttttttt a
B
Baa

B
B

B
Bx

B
Be µµµ +=

Θ
Φ

+=⎥
⎦

⎤
⎢
⎣

⎡
+

Φ
Θ

Θ
Φ

=
Θ
Φ

=             (2.2) 
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where tµ~  = Φ(B)/Θ(B)µt is just the filtered version of the deterministic mean shift µt. 

 

 

 

 

Figure 2.1.  Block Diagram Representation of a Linear Filtering Operation. 
 
 
 

 We may view this Φ(B)/Θ(B) in Equation (2.2) as a linear prefilter to the 

Shewhart or EWMA filter, as shown in Figure 2.1 and Table 2.1. Table 2.1 also includes 

the PID chart of Jiang et al. (2002), which reduces to a third-order filter on xt without a 

prefilter. The ARMA(1,1) chart of  Jiang et al. (2000) is a first-order filter on xt with no 

prefilter. 

 With the whitening prefilter, therefore, the dynamic structure of control charts 

can be generally expressed by the following model 

                      yt = H(B)et = h0et + h1et-1 + h2et-2 + ……+hTret-Tr  = ∑
=

−

Tr

j
jtj eh

0
,             (2.3) 

where H(B) is the general linear filter (GLF) in design and Tr is a truncation time large 

enough to approximate hj ≅ 0 for j > Tr. Based on the model in Equation (2.3), we treat 

the design problem of control charts as an optimal filter design problem. The impulse 

response coefficients of the GLF are selected to minimize the out-of-control ARL 

subject to the in-control ARL, equaling some specified value. 
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Table 2.1.  Control Charts Based on Linear Filtering 

Control Chart Charted Statistic Pre-
filter Linear Filter 

Shewhart on  xt   yt = xt  No 1 

EWMA on xt   yt = (1 – λ) yt-1  + λ xt No B)1(1 λ
λ
−−

 

Shewhart on et   yt = et = 
)(
)(

B
B

Θ
Φ xt Yes 1 

EWMA on et   yt = (1 – λ) yt-1  + λ et  Yes B)1(1 λ
λ
−−

 

ARMA(1,1) chart on xt   yt = 
B
B

φ
θθ

−
−

1
0 xt No 

B
B

φ
θθ

−
−

1
0  

PID Chart   yt = (1 – kI) yt-1  – kP(1 – B) yt-1 

                 –kD(1 – B)2 yt-1 + (1 – B) xt 
No 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++−

−−−−
−

32)2(

)1(1
1

BkBkk

Bkkk
B

DDP

DPI
 

 Note: In the PID chart, xt and yt are a disturbance and a PID-based residual, respectively. 
 
 
 
II.3  Optimization Strategy for Filter Design 

 We use a gradient-based numerical optimization strategy, which requires the 

calculation of the ARL and its derivative. The Markov chain approach (Brook and Evans 

1972) is used to compute the ARL, which is denoted ARL0 in the in-control process and 

ARL1 in the out-of-control process. Since the yt in Equation (2.3) does not have the 

Markov property, we approximate yt as a one-dimensional Markov process: 

                                   ),,()( 11,,1 211 −−− −−−
≅ tttyyyttyy sssfssf

ttttt
,                          (2.4) 

where st is a specific state at timestep t and f is the conditional probability distribution 

function of yt given the previous states. The approximation of the Markov property of 

the charted statistic yt increases the discrepancy between the approximated ARL and the 
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actual one. However, the approximated ARL can still be used to compare the 

performance of two different linear filters in the optimization procedure, because it is 

proportionate to the actual ARL. In cases requiring the precise value of the ARL, rather 

than a relative magnitude, the Monte Carlo simulation is used to make up for the 

inaccuracy in the ARL and always guarantee that the final OGLF really does have the 

desired in-control ARL.  

 
 

 

Figure 2.2.  One-dimensional State Space Discretized for the Markov Chain Approach. 
 
 
 
 yt and yt-1 has a joint Gaussian distribution as 
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where tµ̂  = jt

t

j
jh −

−

=
∑ µ~

1

0
 is the mean of yt; vt = ∑

−

=
+

2

0
1

2
t

j
jja hhσ is the covariance of yt and yt-1; 

and ∑
−

=
=

1

0

222
t

j
jat hσσ  is the variance of yt. Then, the conditional distribution of yt with yt-1 

fixed is (Johnson and Wichern 1998) 

                                           ⎟⎟
⎠

⎞
⎜⎜
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σ
σ

σ
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µ .                                   (2.6) 

 Since all of the impulse response coefficients of the GLF can be evenly scaled, 

we set the control limits for yt at ±1 without loss of generality. The in-control region (yt 

inside the ±1 interval) is discretized into N equal subintervals of length δ = 2/N, and the 

out-of-control regions are treated as a single absorbing state. In Figure 2.2, Aj indicates 

the subinterval for state j, and aj = LCL + (j – 1/2)δ  is the midpoint of Aj. For the 

Markov chain approach, the ith row, jth column element (1≤i,j≤N) of the transition 

probability matrix at time t for the nonabsorbing states, denoted ij
tQ , is defined as 

                                         ij
tQ = Pr{yt ∈ Aj | yt-1 = ai} 

                                               = Pr{aj − δ/2 < yt ≤ aj + δ/2 | yt-1 = ai}.                          (2.7) 

 Then, the ARL can be approximated as (Brook and Evans 1972) 

                                        ARL = 0π (I + Q1 + Q1Q2 + Q1Q2Q3 + ⋅⋅⋅)1,                         (2.8)                            
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where 1 denotes a column vector of ones and 0π  denotes the initial state probability 

vector. The elements of 0π  are all zero, except for a single element of one that 

corresponds to the initial value for yt (typically zero). Because Qt approaches a steady 

state value as the mean of residuals settles down to a steady-state value, we have 

Q ≅ Qm ≅ Qm+1 ≅ ⋅⋅⋅ for a sufficiently large m. Thus, Equation (2.8) becomes 

                                                ARL = 1
1

1
∑

−

=

m

p
pb +bm[I – Q]–11,                                         (2.9) 

where bp = ∏ −

=

1

10
i

l lQπ  = bp-1Qp-1 can be calculated recursively for p = 1, 2, . . ., m with 

b1 = 0π . Additional discussion of this truncation for the one-dimensional Markov chain 

case can be found in Lu and Reynolds (1999). The optimization algorithm uses the 

following analytical expression for the derivative of the ARL with respect to the filter 

parameters, which we developed for more effective implementation. Let hj denote the 

(j+1)th filter coefficient. Based on Equation (2.8), it can be shown that 
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b ,                                                             (2.10) 

where cp = [I + Qp+1 + Qp+1Qp+2 +⋅⋅⋅]1 = 1 + Qp+1cp+1 can be calculated recursively for p 

= m, m−1, . . ., 1 with initial condition cm = [I + Q + QQ +⋅⋅⋅]1 = [I – Q]–11.  
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 In the optimal design procedure, the impulse response coefficients of the GLF are 

determined to optimally detect a specified mean shift for the underlying process. The 

preliminary information required to implement the optimization algorithm includes the 

ARMA model for the underlying process, the magnitude and type of the mean shift of 

particular interest, a reasonable initial guess of the optimal general linear filter (OGLF) 

such as the Shewhart chart or the EWMA chart, and the desired in-control ARL. The 

optimization search starts from the user-specified initial guess of the OGLF and 

continues in the direction of the gradient to reduce the out-of-control ARL until it 

reaches an optimal solution. Since the optimization algorithm has numerous filter 

coefficients to search, the utilization of the gradient information improves the 

optimization routine remarkably. 

 

II.4  Discussion and Examples 

II.4.1  Comparison with the PID Chart 

 To compare the GLF with other existing control charts, we consider the spring-

mass-dashpot system in Pandit and Wu (1983). The dynamics of the mechanical system 

can be described by the ARMA(2,1) process (Jiang et al. 2000) 

                                       Xt – 1.4385Xt-1 + .6000Xt-2 = at + .5193at-1,                         (2.11) 

where Xσ̂  = 9.130 and aσ̂  = 2.212. On the assumption that Equation (2.11) is the 

perfect model for the process, the model residuals are i.i.d. A zero-state ARL 

performance comparison of the OGLF with the PID charts, the EWMAST chart (= P 
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chart) of Zhang (1998), and the residual-based Shewhart chart is shown in Table 2.2, 

where the zero-state ARL is the ARL of a process starting from zero. The parameters of 

the PID charts are taken directly from Table 1 of Jiang et al. (2002): these were 

appropriately determined based on the authors’ heuristic algorithm. Some elaborate 

design method might improve the performance of the PID chart by finding a better set of 

parameters, but such a method does not exist. Note that our zero-state ARL values in 

Table 2.2 differ somewhat from the steady-state ARL values shown in Table 1 of Jiang 

et al. (2002). All of the charts under consideration are designed to provide an in-control 

ARL of 370. 

 
 
Table 2.2.  ARLs of the OGLF, the Residual-based Shewhart Chart, and the PID charts 

OGLF 
(LCL,UCL)=(-1,+1) 

 
Shift 
(∆=µ/σX) ARL 

Residual-based 
Shewhart chart 

(L=3.000) 

P 
KP=-.8 

(L=2.596) 

PI 
(KP,KI)=(-.3, 1.8) 

(L=2.978) 

PD 
(KP,KD)=(-.8,.5) 

(L=2.531) 
0 370 

(.68) 
370 
(.74) 

370 
(.73) 

370 
(.73) 

370 
(.72) 

.5 61.26 
(.15) 

200 
(.56) 

141 
(.27) 

351 
(.72) 

118 
(.22) 

1 1.40 
(.01) 

3.56 
(.06) 

44.9 
(.08) 

118 
(.53) 

37.3 
(.06) 

2 1.00 
(.00) 

1.00 
(.00) 

11.6 
(.02) 

1.00 
(.00) 

10.9 
(.01) 

3 1.00 
(.00) 

1.00 
(.00) 

5.44 
(.01) 

1.00 
(.00) 

5.60 
(.00) 

     Note: the simulation standard errors are shown in parentheses. 

  

 The step mean shift is assumed to occur at t = 1. The step mean shift is defined as 

µt = 0 for t < 1 and µt = µ for t ≥ 1, where µt is a process mean at time t. Figure 2.3 shows 

the fault signature for ∆ = .5 and the impulse response coefficients (hj) of the OGLF for 

each mean shift, where the fault signature is defined as the time-varying mean of the 

residuals (Apley and Shi 1999). hj indicates how the past and present residuals, et-j , affect 
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the present statistic yt as shown in Equation (2.3). In this example, the OGLF 

outperforms or performs comparably with the other charts. For shifts ∆ = .5 and 1, the 

OGLFs are oscillating filters around tµ~  = .025 and zero, respectively, which improves 

the ARL performance of the best PID chart significantly. The impulse response of the 

OGLF, which is highly correlated to the fault signature, promotes a larger magnitude of 

the charted statistic yt in Equation (2.3) than those of the Shewhart chart or the PID chart 

for the first several timesteps. This results in the higher detection capability of the OGLF 

and, thereby, causes the huge reduction in the out-of-control ARL.  

 Figure 2.3(a) and (b) show the fault signature and impulse response of the OGLF 

for ∆ = .5. As the timestep moves forward, the fault signature and the impulse response 

coefficients show a positive correlation and a negative correlation by turns. Hence, the 

charted statistic yt in Equation (2.3) comes out to be a large value each time even if the 

sign changes in turn. See the plots (e) and (f) of Figure 2.3, where the OGLF is scaled 

for illustration purpose so that the largest impulse response coefficient is equal to the 

largest mean of the residuals. A similar explanation is given for the OGLF for ∆ = 1. The 

OGLF simply reduces to the Shewhart chart for ∆ = 2 and 3 as shown in Figure 2.3(d). 

 Note the first coefficient of the OGLF increases as the mean shift size increases. 

As the OGLF for ∆ = 1 also takes advantage of the high correlation with the fault 

signature, it tries to detect a mean shift at an earlier stage of occurrence with the larger 

first coefficient than that for ∆ = .5. The OGLFs for ∆ = 2 and 3 have an even larger first 

coefficient, since the first spike of the fault signature is large enough to be detected at the 

first timestep. 
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Figure 2.3.  Spring-mass-dashpot System: (a) Fault Signature for ∆ = .5; (b) Impulse 
Response of the OGLF for ∆ = .5; (c) Impulse Response of the OGLF for ∆ = 1; (d) 
Impulse Response of the OGLF for  ∆ = 2 and 3; (e) OGLF Applied to the Fault 
Signature for ∆ = .5  at t = 3; (f) OGLF Applied to the Fault Signature for ∆ = .5 at t = 
4. 

 
 
 
 

(f) (e) 
t t 

Optimal 
2nd-order  
linear filter 

Fault 
signature 

Optimal
2nd-order  
linear filter 

Fault 
signature 

 
 
 
hj 

(d) (c) 

hj

j j 

 
 
 

tµ~  

(b) (a) 

hj

j t 



 

 
   

20

II.4.2  Performance Improvement over the Optimal EWMA 

 In this section, the residual-based EWMA chart with control limits ±1 is defined 

as 

                                                            yt = (1 − λ)yt-1 + ket,                                        (2.12) 

where 0 < λ ≤ 1 is a constant;  k is an EWMA scaling constant; and the residual et is the 

filtered version of tx  as shown in Equation (2.2). This section compares the performance 

of the optimal EWMA with the OGLF to show how much the charting performance is 

improved by enhancing the design flexibility – the design degree of freedom in the filter 

design. Each impulse response coefficient of the GLF is individually selected, whereas 

the impulse response of the EWMA is determined by only two parameters – λ and k − 

providing one design degree of freedom. In this sense, the GLF is more flexible in 

design than the EWMA. For the 28 examples in Table 2.3, the GLF and the EWMA are 

optimally designed to minimize the out-of-control ARL while constraining the in-control 

ARL to 500. Table 2.3 shows the ARL values obtained based on a simulation with the 

250,000 replications with the simulation standard errors shown in parentheses. 

 For comparison, 28 examples of various processes (i.i.d., AR(1), ARMA(1,1)) 

and mean shifts (step, spike, sinusoidal) are considered. Mean shifts are assumed to 

occur at time t = 1. The step mean shift is defined in Section II.4.1 and the spike mean 

shift is defined as µt = 0 for t < 1, µt = µ for t = 1, and µt = 0 for t ≥ 2. S1, S2, and S3 in 

Table 2.3 indicate the sinusoidal mean shifts with an amplitude of .75σa and a period of 

2, 4, 8 timesteps, respectively. S4 has an amplitude of 1.5 and a period of 8.  
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Table 2.3.  Comparison of the Optimal General Linear Filter (OGLF) and the Optimal 
EWMA 

  Time Series 
Model 

 
Shift  OGLF 

  
Optimal EWMA 

No 
 

θ1 φ1 
 Type Size 

(µ/σa) 
 

ARL1 
 

Reduction 
of ARL1 

by OGLF 
(%) 

 
(1-λ) h ARL1 

1  0 0  Step .5  28.82 
(.03) 

 0  .953 .11672 28.82 
(.03) 

2      1.5  5.45 
(.01) 

 0  .758 .21791 5.45 
(.01) 

3      3  1.86 
(.00) 

 0  .324 .30670 1.86 
(.00) 

4      4  1.21 
(.00) 

 0  .113 .32161 1.21 
(.00) 

               
5  0 .9  Step .5  355.31 

(.57) 
 0  .998 .05271 355.31 

(.57) 
6      1.5  130.64 

(.18) 
 0  .993 .06540 130.64 

(.18) 
7      3  46.91 

(.10) 
 5  .979 .08866 49.43 

(.07) 
8      4  13.72 

(.06) 
 54  .962 .10802 29.78 

(.05) 
               

9  0 .9  Spike .5  495.39 
(.98) 

 8  0 .32360 497.12 
(1.00) 

10      1.5  422.01 
(.98) 

 7  0 .32360 454.46 
(.99) 

11      3  82.72 
(.54) 

 53  0 .32360 177.83 
(.76) 

12      4  6.72 
(.14) 

 77  0 .32360 28.70 
(.32) 

               
13  0 0  Sinusoid S1  15.79 

(.02) 
 87  0 32360 124.20 

(.42) 
14      S2  30.69 

(.04) 
 86  0 .32363 226.61 

(.68) 
15      S3  32.90 

(.04) 
 82  .392 .29861 178.47 

(.57) 
16      S4  10.61 

(.01) 
 59  .384 .29965 26.31 

(.05) 
               

17  -.9 .9  Step .5  447.66 
(.75) 

 0  .998 .05271 447.66 
(.75) 

18      1.5  139.26 
(.54) 

 46  .997 .05565 255.72 
(.39) 

19      2  41.54 
(.36) 

 79  .996 .05838 194.09 
(.28) 

20      3  3.12 
(.03) 

 96  0 .32360 76.23 
(.49) 

               
21  .5 .9  Step .5  205.04 

(.30) 
 0  .996    .05839 205.58 

(.30) 
22      1.5  50.28 

(.07) 
 0  .979    .08874 50.28 

(.07) 
23      3  10.77 

(.03) 
 0  .88    .16616 10.77 

(.03) 
24      4  2.74 

(.01) 
 5  .696    .23735 2.88 

(.01) 
               

25  .5 .9  Spike .5  497.47 
(.99) 

 0  0 .32363 497.61 
(.99) 

26      1.5  461.86 
(.99) 

 2  0 .32360 469.74 
(.99) 

27      3  208.77 
(.80) 

 20  0 .32360 259.67 
(.87) 

28      4  50.75 
(.41) 

 41  0 .32360 86.10 
(.56) 

  



 

 
   

22

 In Table 2.3, the 7 combinations of the processes and the mean shifts generate 7 

different fault signatures, according to which the examples are divided into 7 groups. 

Each group consists of 4 examples with different mean shift sizes.  

 The numerical results for all of the 28 examples in Table 2.3 show that the OGLF 

outperforms or performs comparably with the optimal EWMA in every case. The ARL 

improvement tends to become more substantial as the magnitude of the mean shift 

increases.  For some examples with a large mean shift, the EWMA converges to the 

Shewhart chart with λ = 0 in Equation (2.12) since the Shewhart chart is the most 

effective form of EWMA for detecting large mean shifts. However, the ARL 

performance of the Shewhart chart is also significantly improved by the OGLF. This is 

because the design of the Shewhart chart is determined by the initial magnitude of the 

fault signature only, whereas the GLF is designed to consider the transient dynamics and 

the steady state value as well.  

 The performance of the OGLF for sinusoidal mean shifts is examined by 

amplitude and period. The OGLF detects sinusoidal mean shifts faster with shorter 

periods and/or larger amplitudes. To sum up, the OGLF outperforms the optimal EWMA 

in 17 of the 28 examples, and the reduction in the out-of-control ARL over the optimal 

EWMA reaches 96%. These huge reductions are discussed in detail along with other 

interesting characteristics of the OGLF in the following section. The OGLFs for all of 

the examples are graphically shown in Appendix A. 
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II.4.3  Optimal Filter Characteristics 

 

 

 
 
Figure 2.4.  Example 3: (a) Fault Signature; (b) Impulse Response of the OGLF; (c) 
OGLF Applied to the Fault Signature at t = 1; (d) OGLF Applied to the Fault Signature 
at t = 25. 
 

 

 For the i.i.d. processes with a step mean shift (Examples 1 to 4 in Table 2.3), 

each OGLF looks very similar to an EWMA. Thus, we tries to estimate the parameters λ 
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of MATLAB 6.5. The estimated values of λ are consistent with the optimal values in 

Table 4 of Lucas and Saccucci (1990). For mean shift µt = 3, the estimated λ is .676 with 

scaling constant k = .30670 for control limits ±1. Note that we define the EWMA as 

Equation (2.12). In the notation of Lucas and Saccucci (1990), the EWMA is shown to 

be equivalent to an EWMA with λ = .676 and L = 3.085, which is the optimal 

combination for a mean shift of 3 standard deviations in Table 4 of Lucas and Saccucci 

(1990). Figure 2.4(a) and (b) show the fault signature and impulse response of the OGLF 

for mean shift µt = 3.  The design parameter λ of the EWMA is determined according to 

the magnitude of the mean shift. The larger the magnitude of the mean shift is, the larger 

the λ of the EWMA that is selected with the fixed control limits. Figures 2.4(c) and (d) 

show how the OGLF is applied to the fault signature, where the OGLF is scaled for 

illustration purpose so that the largest impulse response coefficient is equal to the largest 

mean of the residuals. 

 For the AR(1) processes with a step mean shift (Examples 5 to 8 in Table 2.3), 

the mean of the residuals settles down to a small steady state value after an initial single 

spike. The OGLF converges to the optimal EWMA with a small λ for mean shifts µt 

= .5σa and 1.5σa, since an EWMA is adequate for detecting the small initial spike and 

small steady state shift. However, the large mean shifts, such as µt = 3σa and 4σa, cause 

the fault signature to have a large initial spike and a small steady state shift as shown in 

Figure 2.5(a). Hence, the OGLF is optimally designed to be sensitive for detecting both 

large and small shifts and, therefore, outperforms the optimal EWMA.  
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Figure 2.5.  Example 7: (a) Fault Signature; (b) Impulse Response of the OGLF; (c) 
OGLF Applied to the Fault Signature at t = 1; (d) OGLF Applied to the Fault Signature 
at t = 32. 
 
  

 Figure 2.5(b) shows the OGLF for µt = 3σa, which can be viewed as the weighted 

combination of a Shewhart chart and an EWMA. In other words, the h0 and hj for j > 1 in 

Figure 2.5(b) can be approximated as the impulse responses of a Shewhart chart and an 

EWMA with a small λ, respectively. The ARX function is used to estimate the 

parameters of an EWMA taking hj for j > 1 in Figure 2.5(b) as its impulse response, so 
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that the estimated λ = .0227 and k = .04214. Hence, the OGLF for µt = 3 can be 

approximated as 

                                                ttt e
B

ey
9773.1

04214.23306.
−

+= .                                    (2.13) 

 

 

Figure 2.6.  Example 7: Impulse Responses of the OGLF and Its Approximated Linear 
Filter in Equation (2.13). 
 
 

 Figure 2.6 shows the impulse responses of the approximated filter and the OGLF 

on the same plot. Except for the value of h1, they are almost identical. This OGLF 

performs similarly to the combined Shewhart−EWMA scheme proposed by Lucas and 

Saccucci (1990). The Shewhart chart filter component of the OGLF is effective in 

detecting the large initial single spike at start-up and its EWMA filter component 

increases the probability of detection by providing an additional chance to detect the 

small steady state value of the mean shift following the spike with its long tail. The 
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properties of the Shewhart chart and the EWMA are optimally combined into one 

statistic of the OGLF, whereas the combined Shewhart−EWMA scheme considers two 

statistics with respective control limits at the same time.  

 

 

 
Figure 2.7.  Example 24: (a) Fault Signature; (b) Impulse Response of the OGLF; 
(c) OGLF Applied to the Fault Signature at t = 1; (d) OGLF Applied to the Fault 
Signature at t = 32. 
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spike and afterward reaches a moderate steady state value. For other examples with 

similar fault signatures, see Examples 21 to 23. However, in these cases, the OGLF is 

designed to be an EWMA because of the relatively small first spike and moderate steady 

state value of the fault signature.  

 The OGLF for the AR(1) processes with a spike mean shift (Examples 9 to 12) 

shows a high correlation with the fault signature, where the initial positive spike is 

followed by a single negative spike and then settles down to zero. From Equation (2.3) 

which expresses the charted statistic as a linear combination of the filter coefficients and 

the residuals, we can easily see that the high correlation between the impulse response 

coefficient and the residuals contributes to an increase in the magnitude of the charted 

statistic. Therefore, the OGLF is more effective in detecting this kind of fault signature 

than the optimal EWMA. As shown in Figure 2.8(a), the fault signature stays non-zero 

only for the first two timesteps. The optimal EWMA for this kind of fault signature is the 

Shewhart chart, which considers only the most recent observation. By generating a high 

correlation with the fault signature, on the other hand, the OGLF shown in Figure 2.8(b) 

can effectively consider the two non-zero means of the residuals at the same time and, 

therefore, has higher detection capability. (see Figure 2.8(c) and (d)) As the magnitude 

of the mean shift increases, the performance improvement over the optimal EWMA 

becomes more substantial and the reduction in the out-of-control ARL by the OGLF 

reaches as high as 77%. 
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Figure 2.8.  Example 11: (a) Fault Signature; (b) Impulse Response of the OGLF; (c) 
OGLF Applied to the Fault Signature at t = 1; (d) OGLF Applied to the Fault Signature 
at t = 2. 
 

 For the i.i.d. processes with a sinusoidal mean shift, the OGLF significantly 

outperforms the optimal EWMA. As shown in Figure 2.9, the OGLF for these processes 

is also designed to utilize the high correlation with the fault signature to increase the 

detection probability. The shorter the period of the sinusoidal mean shift is, the faster the 

detection by the OGLF. As shown in Figure 2.9, this is because the magnitude of the 
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Figure 2.9.  Example 13: (a) Fault Signature; (b) Impulse Response of the OGLF; 
Example 15: (c) Fault Signature; (d) Impulse Response of the OGLF; Example 15: (e) 
OGLF Applied to the Fault Signature at t = 6; (f) OGLF Applied to the Fault Signature 
at t = 10. 
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charted statistic for the OGLF in Example 13 is maximized every 1 timestep after a 

reasonable amount of time, whereas in Example 15, it is maximized every 4 timesteps. 

Similarly to the example in Section II.4.1, the OGLF for Example 13 shows a positive 

correlation and a negative correlation with the fault signature in turn as the timestep 

moves forward, and the charted statistic comes out to be a large value at each timestep. 

Therefore, the mean shift in Example 13 is detected more quickly. 

  

 

 

Figure 2.10.  Example 18: (a) Fault Signature; (b) Impulse Response of the OGLF; (c) 
OGLF Applied to the Fault Signature at t = 21; (d) OGLF Applied to the Fault 
Signature at t = 35. 
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 Figures 2.10 and 2.11 depict the ARMA(1,1) processes with a step mean shift 

(Examples 17 to 20). The fault signatures shown in Figures 2.10(a) and 2.11(a) are 

analogous to those of the spring-mass-dashpot system discussed in Section II.4.1. 

However, the OGLF is designed differently according to the magnitude of the mean shift. 

For Example 17 with µt = .5σa, the OGLF simply reduces to the optimal EWMA. 

 

 

 

Figure 2.11.  Example 20: (a) Fault Signature; (b) Impulse Response of the OGLF; (c) 
OGLF Applied to the Fault Signature at t = 5; (d) OGLF Applied to the Fault Signature 
at t = 12. 
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Figure 2.12.  Example 28: (a) Fault Signature; (b) Impulse Response of the OGLF; 
(c) OGLF Applied to the Fault Signature at t = 1; (d) OGLF Applied to the Fault 
Signature at t = 5. 
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2.10(b), for Example 18 with µt = 1.5σa, the first half of the OGLF is similar to the fault 

signature and the other half is similar to the OGLF for Example 20. The impulse 

response of the OGLF oscillates around tµ~  = .026 up to timestep 34, as the amplitude 

geometrically increases.  The OGLF is designed to sacrifice the initial several timesteps 

by means of placing very small coefficients on the most recent residuals and, instead, to 

increase the detection probability afterward by generating a high correlation between the 

coefficients and the fault signature. This mechanism is also found in the OGLF for 

Examples 25 to 28 of the ARMA(1,1) processes with a spike mean shift. As shown in 

Figure 2.12, the charted statistic of the OGLF is maximized at timestep 5. 

 

II.5  Chapter Summary 

 We have established above that many control charting schemes can be described 

in terms of linear filtering. Based on the generalization of this concept, we have 

proposed a methodology to optimally design a GLF in accordance with the statistical 

optimization criterion of minimizing the out-of-control ARL while constraining the in-

control ARL to some desired value. The ARL performance of the OGLF has been 

compared with other methods and it repeatedly shows remarkable superiority over the 

others. It always performs at least comparably with the other existing charts, such as the 

Shewhart chart, the EWMA chart, and the PID chart. Since the OGLF includes the other 

existing charts as special cases, it sometimes becomes one of them. Therefore, the 

proposed methodology guarantees the correct choice of control chart as well as the 

optimization of the chosen chart.           
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 The higher detection capability of the OGLF results from its flexible structure 

which, in the design procedure, takes into account the transient dynamics and the steady 

state value of the fault signature. In Examples 7, 8, and 24 with an initial single spike 

and a non-zero steady state value of the fault signature, the GLF is optimally designed to 

possess the properties of the Shewhart chart and the EWMA chart. For examples with 

pronounced transient dynamics in the fault signature, the OGLF shows a high correlation 

with the fault signature. In some examples, such as Examples 18 and 25 to 28, the OGLF 

places small coefficients on the most recent residuals to increase the detection 

probability for the following timesteps. These interesting relationships between the GLF 

and the fault signature are useful for selecting reasonable starting points for the gradient-

based numerical optimization strategy discussed in Section II.3. 

 In the optimization procedure, the Monte Carlo simulation is used to make up for 

the inaccuracy in the ARL that is due to the rough approximation of the Markov property 

of the GLF. It significantly increases the computational expense. Chapter III provides an 

alternative approach to reduce this weakness of the OGLF and enable it to provide 

comparable charting performance in many cases.  
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CHAPTER III 

OPTIMAL DESIGN OF 2ND-ORDER LINEAR FILTERS FOR 

STATISTICAL PROCESS CONTROL 

 
 

III.1  Introduction 

Beyond tables, plots, and simple guidelines to assist control chart design (Lin and 

Adams 1996; VanBrackle and Reynolds 1997; Jiang et al. 2000, Jiang et al. 2002), 

Chapter II generalizes the concept of linear filters for control charting schemes and 

develops a design procedure for the GLF that includes existing charts such as the 

Shewhart chart, the EWMA chart, and the ARMA chart as special cases. It optimally 

designs GLFs for specific mean shifts in the underlying processes by a gradient-based 

optimization strategy, where the approximation of the Markov property of the charted 

statistic results in inaccuracy in the ARL and its derivatives. The Monte Carlo simulation 

is used to make up for this inaccuracy, but it significantly increases the computational 

expense required to implement the design procedure. In some cases, moreover, the 

inaccurate derivative of the ARL debases the optimality of the GLF parameters that were 

selected by the design procedure. This chapter proposes another control charting scheme, 

a 2nd-order linear filter, to remove the computational weakness of the OGLF and 

facilitate the implementation of the linear filter design procedure. The parameters of the 

proposed linear filter are optimally selected with respect to the statistical criterion about 

the ARL mentioned in Chapter II. 
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In Section III.2, our 2nd-order linear filter is introduced with a generalization of 

the linear filtering concept. Section III.3 discusses how to calculate the ARL for the 

chart. Calculation of the transition probability is illustrated in Section III.4. Section III.5 

develops a computationally efficient method for optimizing the filter parameters. Section 

III.6 compares the performance of the optimal 2nd-order linear filter with other methods 

and illustrates some interesting characteristics of the optimal filter for various types of 

mean shifts (step, spike, sinusoidal) and various ARMA process models. Finally, Section 

III.7 presents concluding remarks. 

 

III.2  2nd-order Linear Filter  

 Chapter II generalizes the concept that many common control charts for both i.i.d 

and autocorrelated data are based on linear filtering, which is illustrated with existing 

control charts such as the Shewhart chart and the EWMA chart. In order to facilitate the 

practical implementation of the linear filter design procedure, this chapter, like Jiang et 

al. (2000), generalizes the simple Shewhart and EWMA linear filtering concepts by 

utilizing higher-order linear filters for SPC purposes. The focus of this chapter, however, 

is on optimizing the design of the linear SPC filters. In this chapter, we restrict H(B) to 

an 2nd-order linear filter and assume that a whitening prefilter is used. Therefore, the 

control chart statistic can be written as  
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where k, α1, α2 and β are the parameters of our 2nd-order filter, and A(B) = [1 – α1B – 

α2B2] and M(B) = [1 – βB]  are referred to as the AR and MA polynomials for the 2nd-

order filter. Equation (3.1) can be expressed similarly to Equation (2.3). 
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The 2nd-order filter parameters are selected to directly minimize the out-of-control ARL 

subject to the in-control ARL equaling, some specified value. This control chart strategy 

will sound an alarm if the linear filter output yt falls outside of the specified control 

limits. 

  

III.3  ARL Calculation 

 The objective of this chapter is to find the optimal set of filter parameters, which 

requires that we express the ARL as a function of the filter parameters. To do this, we 

represent the dynamics of the process as a two-dimensional Markov chain as follows 

because the yt in Equation (3.1) does not have the Markov property. Define the vector Vt 

= (yt, zt)T, where zt = α2yt-1 – kβet. Thus, the vector Vt can be written as 
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Note that we can still utilize a two-dimensional state space even if the three ARMA 

parameters are considered, which is of a lesser order than the suggestion of Jiang (2001). 

This Markov chain representation releases the optimization routine from the delays due 

to the use of the Monte Carlo simulation discussed in Chapter II. These two facts result 

in a significant reduction in computational expense.  

Without loss of generality (because of the scalar factor k), we set the control 

limits for yt at ±1. The two-dimensional state-space is discretized into a set of rectangles, 

as shown in Figure 3.1. Although the z-axis technically extends out to ±∞, we may 

truncate this by defining the upper and lower limits (LLz, ULz) such that zt lies between 

the limits with very high probability. Let Nz denote the number of discretized 

subintervals along the z-axis, and let Ny denote the number of discretized subintervals 

along the y-axis between ±1. The two-dimensional in-control region therefore consists of 

N = Nz×Ny nonabsorbing states. Thus, each rectangle between LLz and ULz is δz = (ULz 

− LLz)/Nz wide and δy = 2/Ny high. The out-of-control regions (yt outside the ±1 interval) 

are treated as a single absorbing state. 

 The following procedure for calculating the ARL is a two-dimensional version of 

the Markov chain approach discussed in Brook and Evans (1972) and Lucas and 

Saccucci (1990) (Runger and Prabhu 1996; Jiang et al. 2000; Jiang 2001). The ith row, 
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jth column element (1 ≤ i,j ≤ N) of the transition probability matrix at time t for the 

nonabsorbing states, denoted ij
tQ , is defined as: 

ij
tQ  = Pr{Vt ∈ Rj | Vt-1 = ri } 

       = Pr{rj,y − δy/2 < yt ≤ rj,y + δy/2,   rj,z − δz/2 < zt ≤ rj,z + δz/2 | yt-1 = ri,y, zt-1 = ri,z }  (3.4) 

where Rj is the rectangle for state j; ri is the centroid of Ri; ri,y and ri,z are the YZ 

coordinates of the centroid of state i. A computational example of ij
tQ  is given in Section 

III.4. 

 

 

 

Figure 3.1.  Two-dimensional State Space Discretized for the Markov Chain Approach. 
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 Following the analytical expression in Section II.3, in this chapter, the ARL is 

approximated as  

                                                   ARL = 1
1

1
∑

−

=

m

p
pb +bm[I – Q]–11,                                      (3.5) 

where m is a sufficiently large integer such that Qt approaches a steady state value  

Q ≅ Qm ≅ Qm+1 ≅ ⋅⋅⋅, and bp = ∏ −

=

1

10
p

l lQπ  = bp-1Qp-1 can be calculated recursively for p = 

1, 2, . . ., m, respectively with b1 = 0π .  

 Equation (3.3) implies that given Vt-1, Vt is distributed along a single one-

dimensional distribution line in the two-dimensional state space, as illustrated in Figure 

3.1. In particular, Vt follows the limiting case of a bivariate normal distribution with 

mean DVt-1 + W tµ~  and rank-1 covariance matrix WWT 2
aσ , where tµ~  denotes the mean 

of et. Each ij
tQ  can be calculated as the area under the normal density curve (see Figure 

3.2) for the segment of the distribution line that falls within rectangle Rj (a more detailed 

explanation is given in Section III.4). If the distribution line does not pass through a 

particular rectangle, then the corresponding element of ij
tQ  is exactly zero. Although Qt 

is an N×N matrix, each row will contain approximately 2×max{Ny,Nz} nonzero elements. 

Thus, Qt is a sparse matrix, which helps to decrease the computational expense in 

calculating the ARL. 
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III.4  Calculation of ij
tQ  

 An example of calculating an element of the transition probability matrix and its 

derivative is presented below. The underlying process is assumed to follow the model in 

Equation (2.1) and then, et ~ NID( tµ~ , 2
aσ ) according to Equation (2.2). As mentioned in 

Section III.3, the conditional probability Vt|Vt-1 ~ N2(DVt-1 + W tµ~ , WWT 2
aσ ) derived 

from Equation (3.3) forms a normal distribution line in the two-dimensional state space, 

where zt|Vt-1 ~ N(α1yt-1 + zt-1 + k tµ~ , k2 2
aσ ).  

 

 
 

 
Figure 3.2.  Calculation of ij

tQ . 
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area of the normal density curve for the segment of the distribution line falling within the 

Rj (see Figure 3.2): 
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where k > 0; c
iy  and c

iz  are the coordinates of the centroid of Ri; y~  is the standardized 

version of y; and F is the cumulative distribution function of the standard normal 

distribution.  

 While the discretization depicted in Figure 3.1 is appropriate to approximate the 

ARL, it is not an effective way to calculate the derivative of ij
tQ  in a case where the 

distribution line transects only one column of rectangles. For better numerical accuracy, 

each rectangle in the two-dimensional state space is discretized further into two triangles 

as shown in Figure 3.2. A triangle represents a state and the transition probabilities are 

calculated in the same way as in Equation (3.6). The derivative of ij
tQ  is obtained as 

                                        
q

j
j

q

j
j

q

ij
t y

y
y

yf
Q

γ
φ

γγ ∂

∂
−

∂

∂
=

∂ 2int
2int

1int
1int

~
)~(

~
)~( ,                               (3.7) 

where γq is the qth element of the filter parameter vector γ = [α1 α2 β k]T and f is the 

probability distribution function of the standard normal distribution. Note that 
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calculation of the ij
tQ∂  is on the same order of computational complexity as calculating 

the ij
tQ .  

 

III.5  Optimal Filter Design Strategy  

 We use a gradient-based numerical optimization strategy to determine the 

optimal SPC filter parameter vector γ = [α1 α2 β k]T. In this case, only four filter 

parameters in the optimization procedure of our 2nd-order linear filter need to be tuned, 

whereas the GLF in Chapter II has the entire impulse response coefficients to design. 

This method, therefore, contributes to reducing the computational expense and memory 

use. The user specifies the ARMA process model, the type and magnitude of the mean 

shift of particular interest, and a desired in-control ARL. The optimization algorithm 

then finds the filter parameters that minimize the out-of-control ARL for the specified 

mean shift. The optimization routine is substantially improved if we incorporate gradient 

information. Although this might seem computationally prohibitive, we propose a 

method of calculating the gradient that is on the same order of computational complexity 

as calculating the ARL. This method takes advantage of the sparsity of the transition 

probability matrix Qt  also. 

 As in Section II.3, the derivative of the ARL with respect to the qth element of γ 

denoted by γq is approximated as  
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where m and  bp are defined in Section III.3, and cp = [I + Qp+1 + Qp+1Qp+2 +⋅⋅⋅]1 = 1 + 

Qp+1cp+1, with initial condition cm = [I + Q + QQ +⋅⋅⋅]1 = [I – Q]–11, can be calculated 

recursively for p = 1, 2, . . ., m, respectively.  

 

III.6  Discussion and Examples 

III.6.1  Comparison with the PID Chart 

 A example taken from Pandit and Wu (1983) is considered appropriate for 

comparing our 2nd-order linear filter with existing charts such as the EWMAST chart (= 

P chart) of Zhang (1998) and the PID chart of Jiang et al. (2002). This experimental 

example comes from a spring-mass-dashpot system. Jiang et al. (2000) suggested the 

following ARMA(2,1) process model to fit the first 100 observations: 

                                     Xt – 1.4385Xt-1 + .6000Xt-2 = at + .5193at-1,                             (3.9) 

where Xσ̂  = 9.130 and aσ̂  = 2.212. We assume that Equation (3.9) is the perfect model 

for the process. 

 Table 3.1 compares the zero-state ARLs for our optimal 2nd-order linear filter 

(final ARLs were evaluated based on a Monte Carlo simulation with 250,000 replicates) 

with those for the residual-based Shewhart chart, P (or EWMAST), PI, and PD charts. 

For comparison, we use the PID parameters taken from Table 3.1 of Jiang et al. (2002). 

The OGLF in Table 3.1 is taken from Table 2.2. 
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Table 3.1.  ARLs of the Optimal 2nd-order Linear Filter, the Residual-based Shewhart 
Chart, and the PID charts 

2nd-order Linear Filter 
(LCL,UCL)=(-1,+1) 

 
Shift 
(∆=µ/σX) α1 α2 β k ARL 

OGLF 
(LCL,UCL)

=(-1,+1) 

Residual-based 
Shewhart chart

(L=3.000)  

P 
KP=-.8 

(L=2.596) 

PI 
(KP,KI)=(-.3, 1.8) 

(L=2.978) 

PD 
(KP,KD)=(-.8,.5)

(L=2.531) 
0     370 

(.68) 
370 
(.68) 

370 
(.74) 

370 
(.73) 

370 
(.73) 

370 
(.72) 

.5 .986 0 0 .08428 76.88 
(.10) 

61.26 
(.15) 

200 
(.56) 

141 
(.27) 

351 
(.72) 

118 
(.22) 

1 -.529 0 0 .28545 1.59 
(.03) 

1.40 
(.01) 

3.56 
(.06) 

44.9 
(.08) 

118 
(.53) 

37.3 
(.06) 

2 0 0 0 .33337 1.00 
(.00) 

1.00 
(.00) 

1.00 
(.00) 

11.6 
(.02) 

1.00 
(.00) 

10.9 
(.01) 

3 0 0 0 .33337 1.00 
(.00) 

1.00 
(.00) 

1.00 
(.00) 

5.44 
(.01) 

1.00 
(.00) 

5.60 
(.00) 

 Note: the simulation standard errors are shown in parentheses. 

  

 In Table 3.1, the optimal 2nd-order linear filter reduces to a residual-based 

EWMA chart for ∆ = .5 and a residual-based Shewhart chart for ∆ = 2 and ∆ = 3. It can 

be shown from Equation (3.1) that the EWMA filter is a special case of our 2nd-order 

linear filter. If the parameters of our 2nd-order linear filter are chosen as A(B) = [1 − (1 − 

λ)B], M(B) = 1, and k = λ , the optimal filter is identical to the EWMA filter. In a case 

where A(B) = 1, M(B) = 1, and k = 1, the 2nd-order linear filter becomes the Shewhart 

chart. The EWMAST for ARMA(1,1) processes is also a special case of our 2nd-order 

linear filter when A(B) = (1 – (1 – λ)B)Φ(B), M(B) = Θ(B), and k = λ,  in Equation (3.1). 

Therefore, our 2nd-order linear filter may turn out to be an EWMA chart, a Shewhart 

chart, or an EWMAST chart, as shown in Tables 3.1 and 3.2. We can view the residual-

based EWMA as a first-order linear filter with a whitening prefilter and the resudual-

based Shewhart chart purely as a whitening prefilter, respectively.   

 The optimal 2nd-order linear filter performs best in detecting the mean shifts of ∆ 

= .5 and ∆ = 1. It produces 35% and 96% reductions in the out-of-control ARL 
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compared to the best of the PID charts, respectively. A detailed discussion about the 

huge reduction for a shift ∆ = 1 is presented in Section III.6.3. For this example, the 

optimal 2nd-order linear filter generally outperforms the other charts such as the 

Shewhart chart, EWMAST chart and PID charts. The following section includes more 

examples to demonstrate the substantial advantages of the optimal 2nd-order linear filter. 

 

III.6.2  Performance Improvement over the Optimal EWMA 

 This section illustrates the advantages of the increased complexity that emerges 

when changing from an EWMA to an 2nd-order linear filter. In this section, the residual-

based EWMA chart with control limits ±1 is defined as in Equation (2.12). It is well 

known that the Shewhart has good detection capability for large mean shifts, that the 

EWMA chart works better for small mean shifts than the Shewhart chart, and that the 

Shewhart chart is a special case of the EWMA chart (when λ = 1 and k = 1 in Equation 

(2.12)). Therefore, the selection of the EWMA chart is a reasonable one for comparing 

to the performance of our 2nd-order linear filter over a wide range of mean shifts. We 

consider the examples in Table 3.2 to explain how optimal filters are designed to detect 

the various types of mean shifts occurring at time t = 1 and to compare the ARL 

performance of the optimal EWMA filter and the optimal 2nd-order linear filter. 
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Table 3.2.  Comparison of the Optimal 2nd-order Linear Filter, the Optimal EWMA, and 
the OGLF 

 Time Series 
Model  Shift  OGLF  Optimal EWMA Filter  Optimal 2nd-order linear Filter 
   

No φ1 θ1  
Type 

 
Size 
(µ/σa)  ARL1  

 
(1-λ)

 
h 

 
ARL1  

 
α1 

 
α2 

 
β 

 
k 

 
ARL1

1 0 0 Step .5 28.82
(.03)

.953 .11672 28.82
(.03)

.953 0 0 .11672 28.82
(.03)

2    1.5 5.45
(.01)

.758 .21791 5.45
(.01)

.758 0 0 .21791 5.45
(.01)

3    3 1.86
(.00)

.324 .30670 1.86
(.00)

.324 0 0 .30670 1.86
(.00)

4    4 1.21
(.00)

.113 .32161 1.21
(.00)

.113 0 0 .32161 1.21
(.00)

     

5 .9 0 Step .5 355.31
(.57)

.998 .05271 355.31
(.57)

.998 0 0 .05271 355.31
(.57)

6    1.5 130.64
(.18)

.993 .06540 130.64
(.18)

.993 0 0 .06540 130.64
(.18)

7    3 46.91
(.10)

.979 .08866 49.43
(.07)

.86306 .10471 .78365 .27537 47.26
(.1)

8    4 13.72
(.06)

.962 .10802 29.78
(.05)

.86332 .10469 .84730 .29830 13.72
(.06)

     
9 .9 0 Spike .5 459.39

(.98)
0 .32360 497.12

(1.00)
-.07002 .04620 .86856 .23679 496.83

(1.00)
10    1.5 422.01

(.98)
0 .32360 454.46

(.99)
-.07075 .03686 .87174 .23643 427.08

(.98)
11    3 82.72

(.54)
0 .32360 177.83

(.76)
-.10326 .00122 .84447 .23596 85.12

(.55)
12    4 6.72

(.14)
0 .32360 28.70

(.32)
-.06867 .03518 .87200 .23669 7.12

(.15)
     

13 0 0 Sinusoid S1 15.79
(.02)

0 32360 124.20
(.42)

-.55750 .32225 .32627 .15058 15.79
(.02)

14    S2 30.69
(.04)

0 .32363 226.61
(.68)

-.02589 -.90304 -.24291 .14944 30.69
(.04)

15    S3 32.90
(.04)

.392 .29861 178.47
(.57)

1.1596 -.71570 -1.2077 .08491 43.30
(.08)

16    S4 10.61
(.01)

.384 .29965 26.31
(.05)

1.0236 -.63649 -1.0699 .10683 11.46
(.01)

     

17 .9 -.9 Step .5 447.66
(.75)

.998 .05271 447.66
(.75)

.998 0 0 .05271 447.66
(.75)

18    1.5 139.26
(.54)

.997 .05565 255.72
(.39)

-.92383 .00671 -.03887 .13987 163.10
(.71)

19    2 41.54
(.36)

.996 .05838 194.09
(.28)

-.92383 .00671 -.03887 .13987 43.31
(.37)

20    3 3.12
(.03)

0 .32360 76.23
(.49)

-.86100 -.04540 -.08410 .20510 3.21
(.04)

     
21 .9 .5 Step .5 205.04

(.30)
.996 .05839 205.58

(.30)
.996 0 0 .05839 205.58

(.30)
22    1.5 50.28

(.07)
.979 .08874 50.28

(.07)
.979 0 0 .08874 50.28

(.07)
23    3 10.77

(.03)
.88 .16616 10.80

(.03)
.87906 .00020 -.01981 .16390 10.77

(.03)
24    4 2.74

(.01)
.696 .23735 2.88

(.01)
.696 0 0 .23735 2.88

(.01)
              

25 .9 .5 Spike .5 497.47
(.99)

0 .32363 497.61
(.99)

-.23811 -.00106 -.03769 .31718 497.47
(1.00)

26  1.5 461.86
(.99)

0 .32360 469.74
(.99)

-.22153 -.00549 -.16337 .32306 469.23
(.99)

27  3 208.77
(.80)

0 .32360 259.67
(.87)

-.21993 -.00610 -.18477 .32339 259.77
(.88)

28  4 50.75
(.41)

0 .32360 86.10
(.56)

-.23006 -.00353 -.15604 .32273 83.72
(.55)
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In each example, the parameters of the EWMA filter and our 2nd-order linear 

filter are optimized to minimize out-of-control ARL with a constraining in-control ARL 

of 500. The ARL values for control limits ±1 are computed with the Markov chain 

method introduced in Section III.3. The resulting ARL values are consistent with those 

based on a Monte-Carlo simulation with 250,000 runs. The simulation standard errors 

are shown in parentheses. Table 3.2 shows the numerical results of comparisons between 

optimal EWMA filters and optimal 2nd-order linear filters in terms of ARL performance 

under ARMA(1,1) processes. The ARLs for the OGLFs considered in Chapter II are also 

provided in Table 3.2. Mean shifts are assumed to occur at time t = 1. The step, spike, 

and sinusoidal mean shifts are defined as in Chapter II. 

Table 3.2 shows that in the case of a small mean shift of µ = .5σa, the optimal 

EWMA filter performs comparably with the optimal 2nd-order linear filter. However, the 

2nd-order linear filter provides a more substantial advantage over the lower order EWMA 

filter as the magnitude of the mean shift increases. Examples 7 through 8, 9 through 12, 

and 17 through 19 show a gradual increase in the reduction of the out-of-control ARL 

with the optimal 2nd-order linear filter that is not matched by the optimal EWMA filter. 

This percentage of reduction reaches 54% for Example 8 with µ = 4σa, 75% for Example 

12 with µ = 4σa, and 96% for Example 20 with µ = 3σa.  

For Examples 13 to 16 with a sinusoidal mean shift, the performance of both 

charts is influenced by the amplitude and the period of the mean shift. The EWMA chart 

performs very poorly with this kind of mean shift which has a small amplitude and a 

short period, such as in Examples 13, 14, and 15. By contrast, the 2nd-order linear filter 
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outperforms the EWMA filter by a wide margin and, moreover, shows faster detection 

with mean shifts that have shorter periods. This superiority of our 2nd-order linear filter 

over the EWMA filter for the sinusoidal mean shift is further discussed in Section III.6.3. 

Table 3.2 concisely summarizes how consistently the optimal 2nd-order linear filter 

outperforms the optimal EWMA filter.  

 

III.6.3  Optimal Filter Characteristics   

 For the i.i.d. processes with step mean shifts (Examples 1 through 4 in Table 

3.2), our search method ended up with the same parameters for the optimal 2nd-order 

linear filter as those for the optimal EWMA filter. Figure 3.3 shows the fault signature 

and impulse response coefficients (hj) of the optimal 2nd-order linear filter for Example 1. 

hj indicates how the past and present residuals et-j affect the present statistic yt as shown 

in Equation (3.2). 

 

 

Figure 3.3.  Example 1: (a) Fault Signature; (b) Impulse Response of the Optimal 2nd-
order Linear Filter. 
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 For the i.i.d. data, the optimal 2nd-order linear filter is found to perform best in 

the form of an EWMA filter with different λ’s, which are determined based on the 

magnitude of the step mean shifts. For Examples 1 and 2, small λ’s are more effective in 

detecting small mean shifts, since the impulse response coefficients of EWMA filters 

with small λs die out slowly. Conversely, large mean shifts are more rapidly detected by 

EWMA filters with larger λs as in Examples 3 and 4.  A similar discussion is presented 

on the ARMA(1,1) process with φ1 = .9 and θ1 = .5 under a step mean shift (Examples 

21 through 24 in Table 3.2).  

 

 

Figure 3.4.  Example 8: (a) Fault Signature; (b) Impulse Response of the Optimal 2nd-
order Linear Filter. 
 

 

 The AR(1) processes with a step mean shift (Examples 5 through 8 in Table 3.2) 

show a fault signature with a small steady-state magnitude after an initial single spike as 

seen in Figure 3.4(a).  For step mean shifts of .5σa and 1.5σa, the optimal 2nd-order linear 
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filters are identical to the optimal EWMA filters – first-order linear filters. For larger 

mean shifts, the optimal 2nd-order linear filters detect shifts faster than the optimal 

EWMA filters. This difference can be explained in terms of the impulse response 

coefficient. Figure 3.4(b) shows the impulse response coefficients of the optimal 2nd-

order linear filter for Example 8 – AR(1) process with a step mean shift of 4σa. The 

optimal 2nd-order linear filter is closely related to a combined EWMA-Shewhart scheme. 

In this case, the optimal 2nd-order linear filter can be decomposed as  

                                      tt e
BB

Bky ⎥
⎦

⎤
⎢
⎣

⎡
−−

−
= 2

211
1

αα
β  

                                           te
BB
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⎢⎣
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−−
−
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84730.129830.  

                                           te
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⎤
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−
+

+
=

97112.1
03423.

10780.1
26406.         

                                           tt e
B

e
97112.1

03423.26406.
−

+≅ ,                                            (3.10) 

which is a weighted combination of a Shewhart individual chart and a EWMA chart with 

λ = .02888 and k = .03423. This decomposition is graphically illustrated in Figure 3.5, 

where Figures 3.5(a) and (b) show the impulse response coefficients of the first term and 

the second term, respectively. For this case, the optimal filter takes advantage of the 

properties of both the EWMA filter and the Shewhart chart filter. As is well known, the 

Shewhart chart detects a large mean shift faster. Even if the optimal filter fails to detect 

the first large spike with the Shewhart chart filter component, it still has a chance to 
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detect the mean shift by the EWMA filter component that is covering the past 

observations.  

 

 

Figure 3.5.  Decomposition of the Optimal Filter for Example 8: (a) Shewhart Chart 
Filter Component; (b) EWMA Filter Component. 
 
 
 
 

 

Figure 3.6.  Example 12: (a) Fault Signature; (b) Impulse Response of the Optimal 2nd-
order Linear Filter. 
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 Similarly Lucas and Saccucci (1990) proposed a combined Shewhart-EWMA 

control scheme to achieve good performance for both small and large mean shifts 

simultaneously. The advantage of the optimal 2nd-order linear filter over their scheme is 

that it optimally combines the properties of both charts into one statistic, whereas the 

combined Shewhart-EWMA scheme is based on plotting both charts and the control 

limits of each. 

  

 

Figure 3.7.  Example 13: (a) Fault Signature; (b) Impulse Response of the Optimal 2nd-
order Linear Filter. 
 

 

 With the AR(1) processes that have a spike mean shift (Examples 9 to 12 in 

Table 3.2), the advantage of our 2nd-order linear filter becomes more prominent as the 

magnitude of the mean shift increases. For mean shifts of µ = 3σa and 4σa, optimal 2nd-

order linear filters substantially surpass the corresponding optimal EWMA filters. From 

Equation (3.2), and Figure 3.6, we can see that the impulse response coefficients of the 
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optimal 2nd-order linear filter are much more effective in detecting residual mean shifts 

with this kind of spike mean shift than are those of the optimal EWMA filter. The more 

highly the fault signature is correlated with the impulse response coefficients, the larger 

the charted statistic yt is that is generated by Equation (3.2). This advantage of a higher 

order filter is more substantial in Examples 13 through 16 in Table 3.2. 

 

 

Figure 3.8.  Example 15: (a Fault Signature; (b) Impulse Response of the Optimal 2nd-
order Linear Filter. 
 

 

 As shown in Figures 3.6, 3.7, and 3.8, our 2nd-order linear filter is optimized so 

that its impulse response coefficients are highly correlated with the residual means of the 

underlying process when the transient dynamics of the fault signature is pronounced. 

This high correlation between the impulse response coefficient and the residual mean 

contributes to an increase in the magnitude of the charted statistic yt in Equation (3.2).  

This relationship can be easily explained in Example 13 with S1. See Figures 3.7. As the 
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timestep moves forward, the mean residuals and the impulse response coefficients of the 

optimal filter show a positive correlation and a negative correlation by turns. Thus, the 

charted statistic yt in Equation (3.2) comes out to be a large value each time even if the 

sign changes in turn. With this advantage, the optimal 2nd-order linear filter considerably 

improves the out-of-control ARL. Better performance results from the higher order 

structure of the 2nd-order linear filter compared to the EWMA filter. In other words, a 

process with a sinusoid mean shift oscillating around zero is not a situation where lower 

order filters, such as the Shewhart chart and the EWMA chart, can use their advantages 

to the full. There is an 86% reduction in the out-of-control ARL for Example 14. S2 and 

S4 have patterns of impulse response coefficients similar to those of S1 and S3, 

respectively. 

 

 

Figure 3.9.  Example 20: (a) Fault Signature; (b) Impulse Response of the Optimal 2nd-
order Linear Filter. 
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 The advantage resulting from the high correlation is also apparent in Examples 

17 to 20 – ARMA(1,1) processes with the transient dynamics of residual means 

oscillating around zero as shown in Figure 3.9(a). The example from Pandit and Wu 

(1983) in Section III.6.1 has an analogous fault signature. In the examples with mean 

shifts, µ/σX = ∆ = .5 and 1 in Table 3.1, the advantage of the high correlation explains the 

superiority of the optimal 2nd-order linear filter over the other charts. The relationship 

can be used to select reasonable starting points in our gradient-based search. From 

Examples 9 to 16, the optimal filters for Examples 17 to 20 are expected to have impulse 

responses that are highly correlated with the mean of the residuals in order to increase 

the value of the charted statistic yt in Equation (3.2) . Thus, we take A(B) = [1 + .9B] and 

M(B) = [1 + 0B] as the starting point for the search in our optimization strategy, and, in 

fact, it results in a satisfactory reduction in computational expense.  

 

 

Figure 3.10.  Example 22: (a) Fault Signature; (b) Impulse Response of the Optimal 2nd-
order Linear Filter. 
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 For the ARMA(1,1) processes with φ1 = .9 and θ1 =.5 (Examples 21 through 24), 

the optimal 2nd-order linear filter converges to the optimal EWMA filter when step mean 

shifts occur, as shown in Figure 3.10. The 2nd-order linear filter for Example 23 has 

almost the same impulse response as the optimal EWMA chart, regardless of the order. 

In Examples 25 through 28 with spike mean shifts, the optimal EWMA reduces to the 

Shewhart chart. The optimal 2nd-order linear filters are also similar to the Shewhart chart, 

but show the higher correlation with the fault signature than the optimal EWMA.  In 

these examples, the optimal 2nd-order linear filter outperforms only in the case with the 

largest mean shift since the transient dynamics of the fault signature are not pronounced. 

See Figure 3.11. 

 

 

Figure 3.11.  Example 28: (a) Fault Signature; (b) Impulse Response of the Optimal 2nd-
order Linear Filter. 
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III.7  Chapter Summary 

 The design procedure proposed in this chapter fine-tunes our 2nd-order linear 

filter to fulfill the specified optimization criterion for detecting a certain type of mean 

shift in an ARMA process. The result is a more systematic and automatic design 

procedure than existing heuristic algorithms for seeking the maximum performance of 

control charts. This optimization strategy, which is based on a derivative of ARL, 

searches optimal filters effectively and efficiently in terms of computational time and 

optimal convergence. With a Markov chain representation and a small number of filter 

parameters, the 2nd-order linear filter attains superiority over the GLF in terms of 

implementation, and it also performs almost as well as the OGLF in many situations. 

Moreover, the optimal 2nd-order linear filter provides a good starting point for the OGLF 

in cases requiring further fine-tuning of the SPC filter.  

 As shown in the examples, our 2nd-order linear filter is designed to fully utilize 

the design flexibility that originates from its higher order structure to provide maximum 

performance. More specifically, the parameters of the 2nd-order linear filter are optimally 

designed to provide advantageous properties for a given process. In some examples, the 

2nd-order linear filter can be tuned to possess the beneficial properties of two existing 

charts such as the Shewhart chart and the EWMA chart. In a case where the fault 

signature has pronounced transient dynamics, it can utilize the high correlation of the 

filter with the fault signature of the process.  
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CHAPTER IV 

MARKOV CHAIN METHOD BASED ON THE PARALLELOGRAM 

DISCRETIZATION 

 

IV.1  Introduction 

 The integral equation method and the Markov chain method are generally used to 

approximate the ARL of control charts. The former is more accurate than the latter 

(Lucas and Croiser 1982). However, the integral equation method can not be used with 

certain kinds of control problems (Champ and Ridgon 1991). In fact, only the Markov 

chain method is applicable for the optimization procedures proposed in this dissertation. 

Although the Markov chain method is more versatile, it has an important limitation in 

implementation − a memory space problem due to the large state space. Although finer 

discretization results in better approximations, finer discretization also increases the 

dimensions of the transition probability matrix and thereby may cause out-of-memory 

errors as well as high computational expense. Prabhu and Runger (1996) provided some 

useful results to simplify the analysis of a two-dimensional Markov chain. The 

asymptotic formula provided by Brook and Evans (1972) has been used to extrapolate to 

a continuous scheme. An approximation using this formula requires ARL calculations 

for several discrete schemes. Hence, it is not desirable for our optimization procedures 

because the procedures require iterative calculation of ARL.  
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IV.2  Conventional Markov Chain Method 

 The conventional discretization approach uses vertical and horizontal lines to 

partition the two-dimensional state space as shown in Figure 4.1. The control limits of y 

and the region limits of z constitute the two-dimensional in-control region, which is 

partitioned into rectangles of δz = (ULz − LLz)/ Nz wide and δy = 2/Ny high. Therefore, 

the transition probability matrix is of dimensions N×N, where N = (Nz × Ny). Jiang 

(2001) illustrates the conventional discretization approach for the ARMA(1,1) chart on 

i.i.d. data.  

 

 
Figure 4.1.  Conventional Discretization for Two-dimensional State Space. 
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 The shape of the in-control region may be different depending on the charted 

statistic. The Multivariate EWMA (Runger and Prabhu 1996) has a circular in-control 

region, since the charted statistic T2 is in quadratic form. On the other hand, the 

ARMA(1,1) chart of Jiang (2001) and the 2nd-order linear filter in Section III have a 

rectangular in-control region. As noted by Jiang (2001), a rectangular region needs more 

memory space for implementing the Markov chain method than does a circular one. If 

the asymptotic value is not used, moreover, larger Nz and Nz are required in order to 

obtain an approximation accuracy that is competitive with the integral equation method. 

Thus, the huge size of the transition probability matrix often causes out-of-memory error. 

 

IV.3  Motivation Examples 

 

Table 4.1.  Comparison of the ARL Calculations 
 Time 

series 
model 

  
        2nd-order linear filter 

  
ARL0 

 
 
 
No. 
 

  
φ1 

 
θ1 

  
α1 

 
α2 

 
β 

 
k 

 

 
Nmc 

 
Markov chain 
method 

Asymptotic Simulated 

1  0 0  .85 0 0 .18115  41 500.3    499.8 (.99) 
2  0 0  .85 0 .2 .21269  61 499.1    501.7 (.99) 
3  0 0  .85 0 .9 .32215  91 493.0 501.4   500.6 (1.00) 
4  .9 0  .78365 .86306 .10471 .27537  89 483.6 508.8   499.80 (.97) 

 

 

 Table 4.1 shows the in-control ARL calculations of the 2nd-order linear filters for 

4 examples, where the one-dimensional Markov chain method is used for the first 2 

examples and the two-dimensional Markov chain method is used for the other 2. 

Example 4 in Table 4.1 is identical to Example 7 in Table 3.2. Table 4.1 includes the in-



 

 
   

63

control ARL values obtained by the Markov chain method, their asymptotic values, and 

the ARL values based on a Monte Carlo simulation with 250,000 runs. The simulation 

standard errors are shown in parentheses. Nmc is the largest number of subintervals that 

can be used to implement the Markov chain method without causing out-of-memory 

error, where Nmc = Ny = Nz.   

 In Examples 1 and 2, the ARL values obtained by the Markov chain method are 

so reliable that the asymptotic value is not needed. The Nmc values for Examples 3 and 4 

are 91 and 89, which are larger than those in Examples 1 and 2. However, they are not 

large enough to provide a good approximation. Using Equation (1.6), thus, the 

asymptotic values are calculated based on the ARL values for the discrete schemes with 

Nmc = 41, 51, 61, 71, and 81. The asymptotic value for Example 3 is reliable but the 

value for Example 4 shows some discrepancy, which indicates that even the asymptotic 

value can be unreliable in some cases. Runger and Prabhu (1996) and Jiang (2001) also 

discussed the appearance of this discrepancy. The asymptotic value is found to critically 

depend on the Nmc values of the discrete schemes for the approximation in Equation (1.6). 

Instead of Nmc = 41, 51, 61, 71, and 81, the asymptotic value based on Nmc = 21, 25, 29, 

33, and 37 comes out to be 516.0 for Example 3. Therefore, the discrepancy in the 

asymptotic value for Example 4 can be explained in terms of insufficient discretizations 

for the discrete schemes.  

 As noted by Runger and Prabhu (1996), sometimes a quicker analysis is required 

in practical applications even though accuracy may be sacrificed as a result. In 

optimization procedures, however, accuracy and computation expense are both critical. 
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For this reason, the Markov chain method is not adequate for some optimization 

problems because obtaining accurate results may significantly increase the 

computational expense. For Examples 3 and 4, it takes 21.98 minutes and 12.81 minutes, 

respectively, to complete the calculation of the ARL for one discrete scheme with a Nmc, 

respectively. In addition, the results are not as reliable as the simulated ones. Despite 

relatively good accuracy, the asymptotic ARL using the Markov chain method might not 

be appropriate to a particular situation  since it requires implementing the Markov chain 

method for several discrete schemes, thereby increasing the computational expense. In 

the following section, therefore, we propose a new discretization approach in order to 

substantially reduce the memory use and computational expense of the two-dimensional 

Markov chain method.    

 

IV.4  Parallelogram Discretization 

 The number of partitioned subintervals required to provide a good approximation 

is based on the area of the in-control region and the charted statistic. In the case of the 

2nd-order linear filter, the control limits for yt are fixed at ±1 and the limits for zt are 

reasonably selected as discussed in Section III.3. Thus, the in-control region is subject to 

the limits for zt. Interestingly, the Vt given Vt-1 forms a single one-dimensional line with 

the slope of -1/β. As shown in Figure 3.1, the limits for zt are influenced by the slope. In 

other words, the more gradual the slope is, the wider the area of zt that is under the 

distribution line. As the limit interval for zt increases from Example 1 to 4, the desirable 

number of partitioned subintervals also increases.  
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 Considering the relationship between the desirable number of subintervals and 

the slope of the distribution line, the new discretization approach, called the 

Parallelogram Discretization (PD), is proposed. We discretize the state space 

horizontally as in the conventional discretiztion in Figure 4.1, but the vertical line has a 

slope equal to that of the distribution line as shown in Figure 4.2.  

 

Figure 4.2.  Parallelogram Discretization. 

 

 The PD surpasses the conventional discretization approach in computational 

expense, memory use, and accuracy. As discussed in Section III.3, the one-dimensional 

distribution line of the 2nd-order linear filter over the two-dimensional state space results 

in a sparse transition probability matrix. This sparse property is used to reduce the 

memory use with the SPARSE function of MATLAB 6.5, which converts a full matrix 

to sparse form by squeezing out any zero elements. Thus, the computational expense and 
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memory use are proportionate to the number of nonzero elements of Q. The PD 

generates a more sparse transition probability matrix Q. Each row of Q based on the PD 

has only Ny nonzero elements, whereas those based on the conventional discretization in 

Figure 3.1 have approximately 2×max{Ny,Nz} nonzero elements. Furthermore, the 

discretization along the z-axis can be more refined in the PD without increasing the 

number of non-zero elements. This property of the PD remarkably improves the 

accuracy over the conventional discretization approach. In the PD for the 2nd-order linear 

filter, the number of partitioned subintervals along the y-axis is fixed at 41 and the 

number of subintervals along the z-axis is determined to make the width of each 

subinterval δz equal to .01. 

 

IV.5  Performance Improvement over the Conventional Discretization Approach 

 This section compares the PD and the conventional discretization approaches 

applied to the examples in Section IV.2. The Markov chain method is implemented in 

MATLAB 6.5 on a computer with P4 3.2GHz and 512MB RAM. The Ny and Nz for the 

conventional discretization approach are determined to be the largest number of 

subintervals allowed within a limited memory space. The Ny and Nz for the PD are 

chosen as mentioned in Section IV.4. The numerical results are shown in Table 4.2. For 

Examples 3 and 4, the PD improves the accuracy of the Markov chain method over the 

conventional discretization approach. The ARL values are almost the same as the 

simulated ones. The reduction in computational time with the PD is very significant, 

especially for Examples 3 and 4.  
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 The reduction in computational time is even more significant than the reduction 

of the nonzero elements of Q. The reason for this difference is that the conventional 

discretization approach requires additional computational time to identify those 

rectangles corresponding to nonzero transition probabilities and their intersections with 

the distribution line over the state space. Note that Example 4 has a longer computation 

time than Example 3 with a larger size Q, because its setup time is longer due to the 

more complex structure of the filter.  

 
 

Table 4.2.  Comparison of the PD and the Conventional Discretization 
 Parallelogram Discretization Approach  Conventional Discretization Approach  

No.  Ny Nz Size of Q Time* 
(min.) 

ARL  Ny = Nz Size of Q Time* 
(min.) 

ARL 

1  41 23 943 × 943 .01 500.31  41 1681 × 1681       .31 500.3 
2  41 43 1763 × 1763 .03 499.71  61 3721 × 3721     1.36 499.1 
3  41 183 7503 × 7503 .10 499.93  91 8281 × 8281   21.98 493.0 
4  41 181 7421 × 7421 .12 500.32  89 7921 × 7921   12.81 483.6 

        *: Computational Time. 
 

 

VI.6  Chapter Summary 

 This chapter presents a new discretization approach to calculating ARL with the 

Markov chain method. The new approach allows us to refine the state space by fixing 

the number of nonzero transition probabilities and facilitates the computation of 

transition probability, which increases the accuracy of the ARL and significantly reduces 

the computational time and memory use. For all of the examples in Tables 3.2 and 4.2, 

the ARL values calculated by the Markov chain method using this approach are almost 

as accurate as the simulated values, whereas even the asymptotic values are not reliable 
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for some of them.  This approach can be extended to higher state spaces where the 

advantage of this method is expected to be even more prominent.   
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CHAPTER V 

OPTIMIZATION STRATEGY 

 

V.1  Overall Strategy 

 The flowchart in Figure 5.1 represents the optimization strategy used to design 

OGLFs. We use a gradient-based method in order to optimally design the linear filters to 

provide a minimum out-of-control ARL under an in-control ARL constraint. The method 

keeps moving in the direction of the gradient to reduce the out-of-control ARL until it 

reaches an optimal solution. The parameters of the optimal filters are chosen to be 

optimal for detecting a specified mean shift. All of the procedures for designing the 

optimal filters were programmed in MATLAB which searches for the optimal filter for a 

specific mean shift using the initial values of several parameters representing the real 

process, the starting point of the search, the magnitude and type of the mean shift, and 

the number of partitioned subintervals along the axes. 
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Figure 5.1.  Flowchart of the Optimization Strategy. 

Start 

Input: 
ARMA Model for Process 
Magnitude and Type of Mean Shift 
Desired ARL0, denoted ARLd. 
Control Limit 
Ny 
δz 
Initial Guess of Optimal Linear Filter H*, denoted Hini. 

Discretize the state space along y-axis and z-axis. 
Determine the truncation time, m to reach steady state. 

ARL0[Hini]= ARLd ? 

H1 = Hini

i =0 

Calculate ARL0 of Hini, denoted ARL0[Hini].

2 

Calculate ARL0, ∂ARL0, ARL1, and ∂ARL1 of Hi. 

Iteration Index: 
          i = i + 1 

Adjust the Hini to 
provide the ARLd. 
Let Hini’ denote the 
adjusted Hini. 

H1 =  Hini’ 

A

N 

Y 
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Figure 5.1.  Continued. 
 

1 

ARL1[Ci(s*)’] < ARL1[Hi-1] 

Adjust the Ci(s) to provide the ARLd. 
Calculate the ARL1 of the adjusted Ci(s) denoted Ci(s)’. 

s* =  arg min {ARL1[Ci(s)’]} 
              s 

Determine the step lengths of search, ξs = 1, 2, …, 6. 

Calculate the new estimate of H* for each ξs, denoted Ci(s). 
Ci(s) = Hi + ξi(s) × gi 

 

Determine the direction of search, gi. 

  H* = Hi-1 

  ARL0[H*] = ARL0[Hi-1] 
  ARL1[H*] = ARL1[Hi-1] 

End 

H*, ARL0[H*], ARL1[H*]

Hi+1 = Ci(s*)’ 

A 

Y 

N 
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V.2  Gradient-based Search 

 The optimization criterion for the GLFs and the 2nd-order linear filters is to 

minimize the ARL1 while constraining the ARL0 to some specific value (i.e., 500). To 

describe the gradient-based search, let Hi be the current estimate of a minimizer of ARL1 

at Iteration i, and let gi be the search direction at point Hi. As shown in Equation 5.1, at 

Iteration i, 6 step lengths denoted ξi(s) are used to calculate new estimates denoted Ci(s), 

where s = 1, 2, …,6.     

                                                       Ci(s) = Hi + ξi(s) × gi                                              (5.1) 

For s = 1, 2, …6, the Ci(s) is adjusted in the direction of ∂ARL0 to provide the desired 

ARL (see Figure 5.2).  Let Ci(s)′ denote the adjusted Ci(s). The ARL1 of the Ci(s)′ is 

calculated next. Then, the Ci(s)′ with the minimum ARL1 is assigned to the new estimate 

of the optimal linear filter H*, denoted by Hi+1 at Iteration i. 

                                                             Hi+1 = Ci(s*)′,                                                   (5.2) 

where ARL1[Ci(s)′]  denotes the ARL1 of the Ci(s)′ and 
s

s minarg* = {ARL1[Ci(s)′]}. 

As shown in Figure 5.2, the search direction gi is defined as the orthogonal 

projection of ∂ARL1 onto the space perpendicular to the ∂ARL0. Thus, the gi is obtained 

as 

                                        02
0

01
1 ARL

ARL
ARLARLARLgi ∂

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂•∂
+−∂= .                              (5.3) 
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The gradient information substantially improves the optimization routine, especially for 

GLFs which must design all of the impulse response coefficients.  

 

 

 
Figure 5.2.  Gradient-based Search. 

 

 

 
V.3  Selecting Starting Points of Search 

  Since finding the global optimum is essential when using a search strategy in 

practice, avoiding being trapped in a local optimum is critical. Local search is based only 

on the information within a small area, and, therefore, when using local search methods, 

we cannot be convinced, without additional assumptions, that a chosen best solution is 

the global optimum. Random search is a good way out of the local optimum dilemma, 

but it sometimes leads to infeasibility due to the large search space required. Ideal search 

methods should have the merits of both types of searches in order to facilitate solid 

optimization. The issue of a local optimum is also very important in our gradient method 

∂ARL0 

−∂ARL1 

gi ARLd 

∂ARL0 

Ci(s) = Hi + ξi(s) × gi 

Hi 
Ci(s*)′ 
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where our results vary according to the starting point of the search. Because the power of 

random search results from using random starting points, we begin our search from 

several reasonable points in each example. 

 As the starting point of a search, we make reasonable guesses as to the optimal 

linear filter. These guesses are intuitively selected based on the transient dynamics and 

the steady state value of the mean shift that are of interest. For the GLF, it could be one 

of the following: 1) the Shewhart chart filter, 2) the optimal EWMA filter, 3) the optimal 

2nd-order linear filter, 4) the fault signature, and 5) the flipped fault signature. As a 

starting point, the flipped fault signature is defined as 

                                                    
⎩
⎨
⎧

≤≤
<≤

= −

rjq
qj

h jqini
j 0

0~µ
  ,                                         (5.4) 

where q = min{20, t*}; t* is the largest t for tµ~  > ε; ε is a fixed positive constant 

sufficiently small; r is the window length of the GLF; 0 < t ≤ 20; and ini
jh  is the (j+1)th 

impulse response coefficient of the initial guess of the optimal linear filter H(B) for the 

underlying process of the mean shift that is of interest. As the starting points of the GLF 

in Example 1 with ∆ = .5 in Table 3.1, the optimal 2nd-order linear filter (= the optimal 

EWMA filter), the fault signature, and the flipped fault signature shown in Figure 5.3 

were used. The search starting from only the fault signature converges to the best GLF. 

Table 5.1 lists the starting point converging to the OGLF for each example considered in 

Sections II.4.1 and II.4.2. The starting points for the 2nd-order linear filters are similarly 

selected. 
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Figure 5.3.  Starting Points of the Optimization Search for Example 1 in Table 3.1: (a) 
Optimal 2nd-order Linear Filter; (b) Fault Signature; (c) Flipped Fault Signature.  
 
 
 
 

Table5.1.  Starting Points Converging to the OGLF 
No. Best Starting Point  No. Best Starting Point 
1 Optimal EWMA  17 EWMA 
2 Optimal EWMA  18 Fault Signature 
3 Optimal EWMA  19 Fault Signature 
4 Optimal EWMA  20 Fault Signature 
     
5 Optimal EWMA  21 2nd-order linear filter 
6 Optimal EWMA  22 EWMA 
7 Optimal 2nd-order linear filter  23 2nd-order linear filter 
8 Optimal 2nd-order linear filter  24 Fault Signature 
     
9 Fault Signature  25 Flipped Fault Signature 
10 Fault Signature  26 Flipped Fault Signature 
11 Optimal 2nd-order linear filter  27 Flipped Fault Signature 
12 Optimal 2nd-order linear filter  28 Flipped Fault Signature 
     
13 Optimal 2nd-order linear filter  1* Fault Signature 
14 Optimal 2nd-order linear filter  2* Fault Signature 
15 Shewhart  3* Shewhart 
16 Fault Signature  4* Shewhart 

                *: Examples of Table 2.2 in Section II.4.1. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

 

VI.1  Conclusions 

 In this dissertation, control charting schemes are generalized in terms of linear 

filtering and two linear filters are proposed as new control charting schemes. The 

optimal design methodologies for these filters are developed based on the Markov chain 

method. A new discretization approach for the Markov chain method and a gradient-

based optimization strategy enable the implementation of optimal design methodologies 

in two-dimensional space by reducing the computational expense and memory use. This 

research forms a general basis for more powerful and broad control charting methods.  

 The ARL performance of the optimized linear filters − the OGLF and the optimal 

2nd-order linear filter − is compared with that of the residual-based Shewhart chart, the 

PID chart, and the optimal EWMA. The optimal linear filters significantly outperform 

the existing control charts in situations where their lower order model structures are an 

obstacle to optimization. Especially with large mean shifts, the improvement is 

remarkable. No one chart consistently outperforms the others. However, the significance 

of optimal linear filters is based on their structural flexibility which allows the derivation 

of a linear filter that outperforms, or performs comparably to, existing control charts 

such as the residual-based Shewhart chart, EWMA chart, and PID charts. Because of the 

relationship between the impulse response coefficients and the residual means that is 

mentioned in Section II.4.3 and III.6.3, the flexibility of the filter structure plays a key 
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role in determining its performance. Additional flexibility from a higher order filter 

guarantees better detection capability for more kinds of mean shifts. In other words, in 

this capacity, the optimal linear filters are superior to the Shewhart chart, EWMA chart, 

and the ARMA(1,1) chart for ARMA(1,1) processes of Jiang et al. (2000). Our optimal 

filter design procedures are programmed in MATLAB. The programs search for an 

optimal linear filter beginning with the initial guesses of the optimal linear filter. Neither 

a heuristic algorithm nor a reference table is needed to find the optimal filter. 

   

VI.2  Future Work 

 This research has considered various types of mean shifts (step, spike, sinusoidal) 

and various ARMA processes. Optimal linear filters perform well for several 

combinations of mean shifts and processes. However, this research is restricted to 

processes with one type of mean shift at a time. In reality, several types of mean 

shifts may happen within one process at the same time. Optimal filter designs for 

such processes should be investigated in the future. 

 This research is restricted to detecting deterministic mean shifts. It can be 

extended to optimization over a distribution of mean shift magnitude.  

 The search of the gradient-based optimization strategy starts from an intuitively 

selected initial guess of the optimal linear filter. The starting point significantly 

influences the computational time and the optimality of the resulting linear 

filters. In many examples, the fault signature turns out to be a good starting point, 

showing a high correlation with the optimal linear filter. However, selecting 
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reasonable initial guesses for the optimal linear filters based on preliminary 

information about the underlying process should be an area for future study. 

More work is also needed on methods for avoiding being trapped in local optima.  

 In this research, the ARMA model for the underlying process is assumed to exist 

and be known. In practice, the parameters of the ARMA model are unknown and 

are estimated. Sensitivity analysis, the relaxation of the assumption, and robust 

design methodologies are all areas that should be studied further.  

 In all of the examples considered in this research, the PD provides results that are 

almost as accurate as those from Monte Carlo simulation. However, the accuracy 

of the Markov chain method based on the PD still depends on the number of 

partitioned subintervals. Thus, there is still a memory limitation with this 

method. In order to resolve the memory space problem that is due to the fine 

discretization, a design methodology using the integral equation method is under 

investigation. In addition, if the mathematical expression for the relationship 

between the discrepancy of the ARL and the parameters of the control chart can 

be identified, the optimization routine will be remarkably improved and also free 

of out-of-memory error.  

 The OGLF performs best, but it is less practical because of its high 

computational expense. Thus, the 2nd-order linear filter is developed to simplify 

the optimization procedure. However, there is still much room for improvement 

in this method in terms of computation and performance. Extensions to higher-
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order linear filters and the consequent computational expense problem need 

further investigation. 
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APPENDIX A 
 

OPTIMAL GENERAL LINEAR FILTERS IN TABLE 2.3 

 

This appendix graphically shows the OGLFs for the 28 examples in TABLE 2.3. 

 
 

 

 
 
 

 Ex 4 

hj

j 

Ex 3 

hj 

j 

Ex 2 Ex 1 

hj

j 

hj 

j 



 

 
   

84

 
 

 
 

 
 

Ex 10 Ex 9 

hj

j 

hj 

j 

Ex 8 Ex 7 

hj

j 

hj 

j 

Ex 6 Ex 5 

hj

j 

hj 

j 



 

 
   

85

 
 

 
 

 
 

Ex 16 Ex 15 

hj

j 

hj 

j 

Ex 14 Ex 13 

hj

j 

hj 

j 

Ex 12 Ex 11 

hj

j 

hj 

j 



 

 
   

86

 
 

 
 

 
 

Ex 22 Ex 21 

hj

j 

hj 

j 

Ex 20 Ex 19 

hj

j 

hj 

j 

Ex 18 Ex 17 

hj

j 

hj 

j 



 

 
   

87

 
 

 
 

 
 
 
 

Ex 28 Ex 27 

hj

j 

hj 

j 

Ex 26 Ex 25 

hj

j 

hj 

j 

Ex 24 Ex 23 

hj

j 

hj 

j 



 

 
   

88

VITA 
 

CHANG-HO CHIN 
 

Permanent Address 
Sangdae Hanbo APT 105-1105,  
Sangdae 2 Dong, Jinju, Kyung-Nam, Rep. of Korea 
660-764 
 

Education 
 Ph.D. in Industrial Engineering, Texas A&M University, College Station, Texas, 
August 2004 

 M.S. in Industrial Engineering, Texas A&M University, College Station, Texas, 
December 1999 

 B.S. in Industrial Engineering, Korea University, Seoul, Rep. of Korea, August 
1996 

 
Professional Experience 

Research Assistant 
 Team leader of the project “Characterizing and Diagnosing Manufacturing 
Variation with In-process Measurement Data”, sponsored by Higher Education 
Coordinating Board, TX. (September 2002 − August 2004) 

 
 Team leader of the project “Defect Detection and Prevention in Printed Circuit 
Board Assembly Via Information Integration”, sponsored by Solectron, Austin, 
TX. (January 2000 – August 2002) 

 
 Team leader of the project “Statistical Process Control for Low-Volume 
Composite Manufacturing”, sponsored by Bell Helicopter Textron Inc., Dallas, 
TX. (June 1999 – February 2000) 

 
 


