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ABSTRACT

Code Optimization and Analysis for Multiple-input and

Multiple-output Communication Systems. (August 2004)

Guosen Yue, B.S., Nanjing University, P.R. China;

M.S., Nanjing University, P.R. China

Co–Chairs of Advisory Committee: Dr. Xiaodong Wang
Dr. Krishna R. Narayanan

Design and analysis of random-like codes for various multiple-input and multiple-

output communication systems are addressed in this work. Random-like codes have

drawn significant interest because they offer capacity-achieving performance. We

first consider the analysis and design of low-density parity-check (LDPC) codes for

turbo multiuser detection in multipath CDMA channels. We develop techniques for

computing the probability density function (pdf) of the extrinsic messages at the

output of the soft-input soft-output (SISO) multiuser detectors as a function of the

pdf of input extrinsic messages, user spreading codes, channel impulse responses, and

signal-to-noise ratios. Using these techniques, we are able to accurately compute

the thresholds for LDPC codes and design good irregular LDPC codes. We then

apply the tools of density evolution with mixture Gaussian approximations to op-

timize irregular LDPC codes and to compute minimum operational signal-to-noise

ratios for ergodic MIMO OFDM channels. In particular, the optimization is done for

various MIMO OFDM system configurations which include different number of an-

tennas, different channel models and different demodulation schemes. We also study

the coding-spreading tradeoff in LDPC coded CDMA systems employing multiuser

joint decoding. We solve the coding-spreading optimization based on the extrinsic

information SNR evolution curves for the SISO multiuser detectors and the SISO

LDPC decoders. Both single-cell and multi-cell scenarios will be considered. For
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each of these cases, we will characterize the extrinsic information for both finite-size

systems and the so-called large systems where asymptotic performance results must

be evoked. Finally, we consider the design optimization of irregular repeat accumu-

late (IRA) codes for MIMO communication systems employing iterative receivers.

We present the density evolution-based procedure with Gaussian approximation for

optimizing the IRA code ensemble. We adopt an approximation method based on

linear programming to design an IRA code with the extrinsic information transfer

(EXIT) chart matched to that of the soft MIMO demodulator.
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CHAPTER I

INTRODUCTION

A. Background

During the past decade, random-like codes have drawn significant interest because

they offer near capacity performance [1, 2, 3]. The first breakthrough in this area

is the invention of turbo codes [4]. This novel approach to error control coding has

revolutionalized coding theory and techniques. Another important milestone is the

re-discovery of the low-density parity-check (LDPC) codes [5], which were originally

proposed by Gallager [6]. In fact, Gallager’s remarkable paper in 1962 already con-

tains many new concepts of fundamental importance for capacity-approaching coding.

Irregular LDPC codes were introduced in [7], which were shown to asymptotically

achieve the capacity of the binary erasure channel (BEC) under iterative message-

passing decoding. The complete design and performance analysis of irregular LDPC

codes for memoryless channels based on density evolution and Gaussian approxima-

tion were treated recently in [8, 9, 10]. It has been shown in the limit of infinite block

lengths, carefully designed irregular LDPC codes can achieve within 0.0045dB of the

Shannon limit [11].

The ideas behind turbo codes have also spread to impact many aspects of signal

processing and communications. One of significant techniques is iterative processing

for joint demodulation and decoding. An iterative algorithm invokes demodulation

and decoding iteratively to approximate the optimum decision. Soft extrinsic mes-

sages are iteratively exchanged between the demodulator and decoder. This so-called

“turbo principle” [12] has been successfully applied to many detection/decoding prob-

The journal model is IEEE Transactions on Automatic Control.
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lems such as equalization, coded modulation, multiuser detection, joint source and

channel decoding, and turbo-BLAST systems [12, 13, 14, 15]. Iterative processing

is indeed an instance of message-passing. A graph presentation of iterative receiver

with both coding and modulation is elaborated in [16].

The code design for memoryless channels is studied in [7, 9, 11, 17]. However,

these code design methods for memoryless channels no longer provide optimized code

for iterative systems. It is important to consider code design for the iterative system

in order to achieve optimal gain and this is addressed in this dissertation.

More detailed introductions can be found in subsequent chapters.

B. Dissertation Outline

This dissertation presents some topics on code design and analysis for some wireless

communication systems with iterative demodulation and decoding. The dissertation

is organized as follows.

In Chapter II, we consider the analysis and design of low-density parity-check

(LDPC) codes for turbo multiuser detection in multipath CDMA channels. We de-

velop techniques for computing the probability density function (pdf) of the extrinsic

messages at the output of the soft-input soft-output (SISO) multiuser detectors as

a function of the pdf of input extrinsic messages, user spreading codes, channel im-

pulse responses, and signal-to-noise ratios. Of particular interest is the SIC-MMSE

multiuser detector, for which the pdf of the extrinsic messages can be characterized

analytically. For the case of additive white Gaussian noise (AWGN) channels, the

extrinsic messages can be well-approximated as symmetric Gaussian distributed. For

the case of asynchronous multipath fading channels, the extrinsic messages can be

approximated by a mixture of symmetric Gaussian distributions. We show that the
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expectation-maximization (EM) algorithm can be used to compute the parameters of

this mixture. Using these techniques, we are able to accurately compute the thresh-

olds for LDPC codes and design good irregular LDPC codes. Simulation results are

in good agreement with the computed thresholds and the designed irregular LDPC

codes outperform regular ones significantly.

In Chapter III, we consider the performance analysis and design optimization of

LDPC coded multiple-input multiple-output (MIMO) orthogonal frequency-division

multiplexing (OFDM) systems for high data rate wireless transmission. The tools

of density evolution with mixture Gaussian approximations are used to optimize ir-

regular LDPC codes and to compute minimum operational signal-to-noise ratios for

ergodic MIMO OFDM channels. In particular, the optimization is done for vari-

ous MIMO OFDM system configurations which include different number of anten-

nas, different channel models and different demodulation schemes; and the optimized

performance is compared to the corresponding channel capacity. From the LDPC

profiles that already optimized for ergodic channels, we heuristically construct small

block-size irregular LDPC codes for outage MIMO OFDM channels; as shown from

simulation results, the irregular LDPC codes constructed here are helpful to expedite

the convergence of the iterative receivers.

In Chapter IV, we consider the problem of coding-spreading tradeoff in CDMA

systems employing multiuser joint decoding. In particular, we assume the users em-

ploying the capacity-achieving LDPC codes and at the receiver, turbo multiuser detec-

tion is used to implement joint decoding. We solve the coding-spreading optimization

based on the extrinsic information SNR evolution curves for the SISO multiuser de-

tectors and the SISO LDPC decoders. Two types of SISO multiuser detectors are

treated, namely, the SIC-MMSE detector and the SIC-MF detector. Moreover, both

single-cell and multi-cell scenarios are considered. For each of these cases, we are able
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to characterize the extrinsic information SNR analytically, for both finite-size sys-

tems and the so-called large systems where asymptotic performance results must be

evoked. Our analysis indicates that the SIC-MMSE-based system offers a significant

gain in spectral efficiency compared with the SIC-MF counterpart, in both single-cell

and multi-cell scenarios. This is in contrast to the single-user decoding case, where it

has been shown that the MMSE detector offers little advantage over the conventional

matched-filter in terms of capacity in multi-cell scenario. Moreover, the results on

coding-spreading tradeoff for finite-size systems and large-system match very well.

In Chapter V, we consider the design optimization of the random-like ensemble

of irregular repeat accumulate (IRA) codes for MIMO communication systems em-

ploying iterative receivers. We first present the density evolution-based procedure for

optimizing the IRA code ensemble. An approximation method based on linear pro-

gramming is adopted to design an IRA code with the extrinsic information transfer

(EXIT) chart matched to that of the soft MIMO demodulator. We then reveal the

relationship between the IRA codes and the LDPC codes. With a code ensemble

mapping relationship between an IRA code and an LDPC code, an optimal IRA code

can also be obtained by transforming an optimal LDPC code designed for MIMO

systems. The results show that with the MAP receiver, the designed IRA codes can

perform within 1dB from the ergodic capacities of the MIMO systems under con-

sideration. We also treat the short-length IRA code design for block fading MIMO

channels. We adopt design techniques for short-length LDPC codes to improve the

performance of the short-length IRA code and to reduce the error floor.

Finally, Chapter VI contains the conclusions.
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CHAPTER II

LDPC CODE OPTIMIZATION FOR TURBO CDMA SYSTEMS

A. Introduction

Most works on turbo multiuser detection are confined to the use of convolutional

codes or parallel concatenated convolutional codes (PCCC) [18]. Recent results [9,

10] show that carefully designed irregular low-density parity-check (LDPC) codes

can outperform PCCC for long code lengths and provide near-capacity performance

on memoryless channels. It is then natural to attempt to design good LDPC code

ensembles for turbo multiuser detection.

The main idea used in the design of LDPC codes is to employ the technique of

density evolution [19, 10], where the probability density function (pdf) of extrinsic

messages is computed as a function of iteration and the given degree profiles for

the LDPC code, in order to compute the thresholds (in SNR or Eb/No). Then,

an optimization procedure is used to find optimum degree profiles that result in

the least thresholds (or, near capacity performance). It has been shown that for

a small sacrifice in the resulting thresholds, the design procedure can be simplified

by making the assumption that the messages (extrinsic information) at the output

of the check nodes and the bit nodes have a Gaussian distribution [8]. For turbo

multiuser detection, the LDPC codes will be used in conjunction with a soft-input soft-

output (SISO) multiuser detector. In order to extend the afore-mentioned technique

to design good LDPC codes for turbo multiuser receiver, we need a technique to

characterize the pdf of the extrinsic messages at the output of the detector as a

function of the input pdf and channel characteristics. In this chapter, we will primarily

focus on the SISO multiuser detector based on soft interference cancellation (SIC)
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and instantaneous linear MMSE filtering, a technique first proposed in [14]. Other

receivers, i.e., the optimal detector and the matched filter are also discussed. We show

how to characterize the input-output pdf’s of the extrinsic information analytically

for these multiuser detectors and use this to design good LDPC codes.

B. Turbo Multiuser Receiver for LDPC-coded CDMA

We consider an LDPC-coded CDMA system with K users, employing normalized

modulation waveforms s1, s2, · · · , sK , and signaling through their respective multi-

path channels with additive white Gaussian noise. The block diagram of the transmitter-

end of such a system is shown in the upper half of Fig. 1. The binary information

data {dk(m)} for user k are LDPC encoded. The interleaved code bits of the kth user

are BPSK symbol-mapped. Each data symbol bk(i) is then modulated by a spreading

waveform sk,i(t), and transmitted through its multipath channel. Shown in the lower

part of Fig. 1, the overall receiver is an iterative receiver which performs turbo mul-

tiuser detection by passing extrinsic messages on the code bits between a soft-input

soft-output (SISO) multiuser detector and an LDPC decoder. In each turbo itera-

tion, several inner iterations are performed within the LDPC decoder during which

extrinsic messages are passed along the edges in the bipartite graph of the code.

Notation: The variable L is used to refer to extrinsic messages (in log-likelihood

form). The variable f is used to denote the pdf of the extrinsic information L, and

m is used to denote the mean of L. Superscript (p, q) is used to denote quantities

during the pth round of inner decoding within the LDPC decoder and qth stage of

outer iteration between the LDPC decoder and the multiuser detector. For the quan-

tities passed between the multiuser detector and the decoder, only one superscript q,

namely the turbo multiuser detection iteration number is used. A subscript m → L
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...
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 LDPC decoderdeinterleaver

deinterleaver  LDPC decoder

Fig. 1. An LDPC coded CDMA system with iterative receiver.

denotes quantities passed from the multiuser detector to the LDPC decoder, and vice

versa. Similarly, quantities passed between the bit nodes and the check nodes of the

LDPC code are denoted by b → c and b ← c, respectively. The degree of the ith

bit node is denoted by νi and the degree of the ith check node is denoted by ∆i.

Denote by {eb
i,1, e

b
i,2, . . . , eb

i,νi
} the set of edges connected to the ith bit node and by

{ec
i,1, e

c
i,2, . . . , ec

i,∆i
} the set of edges connected to the ith check node. The particular

edge or bit associated with an extrinsic information is denoted as the argument of L.
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The turbo multiuser detection algorithm for LDPC-coded CDMA systems is as

follows:

[0:] Initialization: L0,0
b←c(e

b
i,n) = 0,∀(i, n), and L0

m←L[bk(i)] = 0,∀(i, k).

[1:] Turbo multiuser detection iterations: For q = 1, 2, . . . , Q

[1-a:] SISO multiuser detection: The SISO multiuser detector computes

Lq
m→L[bk(i)] = g

(
{r(t)}, {Lq−1

m←L[bk′(i)]}k′ 6=k

)
, (2.1)

where g(·) denotes the SISO multiuser detector.

[1-b:] LDPC decoding: For k = 1, 2, . . . , K

Iterate between bit node update and check node update: For p = 1, 2, . . . , P

Bit node update: For each of the bit nodes i, and for all edges connected to it,

compute

Lp,q
b→c(e

b
i,j) = Lq

m→L[bk(i)] +

νi∑

n=1,n6=j

Lp−1,q
b←c (eb

i,n). (2.2)

Check node update: For each of the check nodes i, and for all edges connected to

it, compute [20]

Lp,q
b←c(e

c
i,j) = 2 tanh−1

[
∆i∏

n=1,n6=j

tanh

(
Lp,q

b→c(e
c
i,n)

2

)]
. (2.3)

[1-c:] Compute extrinsic messages passed back to the multiuser detector:

Lq
m←L[bk(i)] =

νi∑
n=1

LP,q
b←c(e

b
i,n). (2.4)

[1-d:] Store check to bit messages: For all edges, set

L0,q+1
b←c (eb

i,n) = LP,q
b←c(e

b
i,n). (2.5)
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[2:] Final hard decisions on information and parity bits:

b̂k(i) = sign
{

LQ
m→L[bk(i)] + LQ

m←L[bk(i)]
}

. (2.6)

C. SISO Multiuser Detectors

In this section, we outline three SISO multiuser detectors. For clarity, we first discuss

these detectors in the context of a synchronous CDMA systems, in which the received

(real-valued) signal is given by

r(t) =
K∑

k=1

Ak

M−1∑
i=0

bk(i)sk,i(t) + σn(t), (2.7)

where sk,i(t) is the spreading waveform of the kth user, ith symbol, and M is

the number of the data symbols per user. A sufficient statistic for demodulating

{bk(i), k = 1, · · · , K} is given by

yk(i)
4
=

∫ (i+1)T

iT

sk,i(t)r(t)dt, k = 1, · · · , K. (2.8)

Denote y(i) = [y1(i), · · · , yK(i)]T , then

y(i) = R(i)Ab(i) + σn(i), (2.9)

where [R(i)]k,l
4
=

∫ (i+1)T

iT
sk,i(t)sl,i(t)dt; A

4
= diag(A1, · · · , Ak); b(i) = [b1(i), · · · , bK(i)]T ;

and n(i) ∼ N (0, R(i)) is independent of b(i).

Exact SISO multiuser detector: [14] Denote

B+
k

4
= {(b1, · · · , bk−1, +1, bk+1, · · · , bK) : bj ∈ {+1,−1}} .

Similarly define B−k . We have the following exact expression for the extrinsic messages
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from the multiuser detector

Lq
m→L[bk(i)] = 2Akyk(i)

σ2 +

log

∑
b∈B+

k
{exp[−bT AR(i)Ab/(2σ2)]

∏
j 6=k[1+bj tanh(Ajyj(i)/σ2)][1+bj tanh( 1

2
Lq−1

m←L[bj(i)])]}
∑

b∈B−
k
{exp[−bT AR(i)Ab/(2σ2)]

∏
j 6=k[1+bj tanh(Ajyj(i)/σ2)][1+bj tanh( 1

2
Lq−1

m←L[bj(i)])]} .(2.10)

SIC-MMSE SISO multiuser detector: [14] A low-complexity approximate SISO

multiuser detector was developed in [14] which is based on soft interference cancella-

tion and instantaneous linear MMSE filtering, and is summarized as follows. Denote

ek as the k-th unit vector in IRK . Define

b̃j(i)
4
= tanh

(
1

2
Lq−1

m←L[bj(i)]

)
, j = 1, · · · , K, (2.11)

and V k(i)
4
=

∑

j 6=k

A2
j [1− b̃j(i)

2]eje
T
j + A2

keke
T
k . (2.12)

Denote b̃(i)
4
= [b̃1(i) · · · b̃K(i)]T and b̃k(i)

4
= b̃(i)− b̃k(i)ek. Then we have

Lq
m→L[bk(i)] =

2zk(i)

1− µk(i)
, (2.13)

where zk(i) = Ake
T
k [V k(i) + σ2R(i)−1]−1[R(i)−1y(i)− Ab̃k(i)]. (2.14)

µk(i) = A2
ke

T
k

[
V k(i) + σ2R(i)−1

]−1
ek. (2.15)

SIC-MF SISO multiuser detector: A further simplification on the above SIC-

MMSE detector is to skip the linear MMSE filtering step. In this case, the output

is a scaled version of the matched filter output after ideal interference cancellation,

given by

Lq
m→L[bk(i)] =

2

γk(i)

(
yk(i)−

∑

j 6=k

Aj[R(i)]k,j b̃j(i)

)
, (2.16)

where γk(i) =
[
R(i)V k(i)R(i) + σ2R(i)

]
k,k
− 1. (2.17)
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1. Extension to Asynchronous CDMA with Multipath Fading

The received signal in an asynchronous CDMA system with multipath fading channels

can be written as

r(t) =
K∑

k=1

Ak

M−1∑
i=0

bk(i)

`P∑

l=1

gkl(i)sk,i(t− τkl) + σn(t), (2.18)

where `P is the number of resolvable paths in each user’s channel; gkl(i) and τkl are

respectively the complex gain corresponding to the ith symbol and the delay of the

l-th path of the kth user’s channel. Assume that the multipath spread of any user

signal is limited to at most ∆ symbol intervals, where ∆ is a positive integer. Define

ρ
[j]
(k,l)(k′,l′)(i)

4
=

∫ ∞

−∞
sk,i(t− τkl)sk′,i−j(t− τk′l′)dt, −∆ ≤ j ≤ ∆. (2.19)

The received signal r(t) in (2.18) is first passed through a matched filter, to obtain

zkl(i)
4
=

∫ ∞

−∞
r(t)sk,i(t− τkl)dt

=
∆∑

j=−∆

Ak′bk′(i + j)

`P∑

l′=1

gk′l′(i)ρ
[−j]
(k,l)(k′,l′)(i) + σukl(i), (2.20)

where {ukl(i)} are zero-mean complex Gaussian random sequences with covariance

E{ukl(i)uk′l′(i
′)∗} =

∫ ∞

−∞
sk,i(t− τkl)sk′,i′(t− τk′l′)dt = ρ

[i−i′]
(k,l)(k′,l′)(i). (2.21)
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Define the following quantities

R[j](i)
4
=




ρ
[j]
(1,1)(1,1)(i) · · · ρ

[j]
(1,1)(K,1)(i) · · · ρ

[j]
(1,1)(K,`P )(i)

ρ
[j]
(2,1)(1,1)(i) · · · ρ

[j]
(2,1)(K,1)(i) · · · ρ

[j]
(2,1)(K,`P )(i)

...
...

...
...

...

ρ
[j]
(K,`P )(1,1)(i) · · · ρ

[j]
(K,`P )(K,1)(i) · · · ρ

[j]
(K,`P )(K,`P )(i)




[(K`P×K`P )]

ζ(i)
4
= [z11(i), · · · , z1`P

(i), · · · , zK1(i), · · · , zK`P
(i)]T [(K`P × 1)]

u(i)
4
= [u11(i), · · · , u1`P

(i), · · · , uK1(i), · · · , uK`P
(i)]T [(K`P × 1)]

g
k
(i)

4
= [gk1(i), · · · , gk`P

(i)]T [(`P × 1)]

G(i)
4
= diag

(
g

1
(i), · · · , g

K
(i)

)
[(K`P ×K)]

We can then write (2.20) in the following vector form

ζ(i) =
∆∑

j=−∆

R[−j](i)G(i + j)Ab(i + j) + σu(i), (2.22)

and from (2.21), the covariance matrix of the complex Gaussian vector sequence

{u(i)} is E
{
u(i)u(i + j)H

}
= R[−j](i). Define yk(i)

4
=

∑`
l=1 gkl(i)

∗zkl(i). Then, y(i)
4
=

[y1(i), · · · , yK(i)]T is given by

y(i)
4
= G(i)Hζ(i) =

∆∑
j=−∆

G(i)HR[−j](i)G(i + j)︸ ︷︷ ︸
H[−j](i)

Ab(i + j) + σ G(i)Hu(i)︸ ︷︷ ︸
v(i)

, (2.23)

where v(i) is a sequence of zero-mean complex Gaussian vectors with covariance

matrix

E
{
v(i)v(i + j)H

}
= G(i)HR[−j](i)G(i + j)

4
= H [−j](i). (2.24)

Now define H(i)
4
= [H [1](i) H [0](i) H [−1](i)] (K × 3K matrix), A

4
= diag(A,A,A)

(3K × 3K diagonal matrix) and b(i)
4
= [b(i− 1)T b(i)T b(i + 1)T ]T ( 3K-vector ). We
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can then write y(i) in (2.23) in a matrix form as

y(i) = H(i)Ab(i) + σv(i), (2.25)

where v(i) ∼ Nc

(
0, H [0](i)

)
. Based on (2.25), both the SIC-MMSE and the SIC-MF

SISO multiuser detectors can be similarly applied as in the synchronous and AWGN

case. Specifically, the extrinsic information Lq
m→L[bk(i)] is given by

Lq
m→L[bk(i)] =

4<
(
µk(i)zk(i)

)

νk(i)2
, (2.26)

where as before, zk(i), µk(i) and νk(i) are respectively the output, mean, and variance

of the MMSE or matched filter (after soft interference cancellation).

D. Distribution of Multiuser Extrinsic Messages

In this section, we describe how to compute the pdf of the extrinsic LLRs at the

output of the SISO multiuser detector, as a function of the pdf of the input a priori

LLRs.

1. AWGN Channels

SIC-MMSE SISO multiuser detector: We first consider the SIC-MMSE SISO

detector in a synchronous CDMA system. The extrinsic message in this case is given

by (2.13). As discussed in [14], the output zk(i) of the instantaneous linear MMSE

filter is well approximated by a Gaussian distribution. Hence Lq
m→L[bk(i)] has a

Gaussian distribution with mean and variance given respectively by

E{Lq
m→L[bk(i)]} =

(
2

1− µk(i)

)
E {zk(i)} =

2µk(i)bk(i)

1− µk(i)
, (2.27)

Var{Lq
m→L[bk(i)]} =

(
2

1− µk(i)

)2

Var {zk(i)} =
4µk(i)

1− µk(i)
. (2.28)
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Thus the extrinsic message has a Gaussian distribution of the form Lq
m→L[bk(i)] ∼

N (mk(i)bk(i), 2mk(i)), with mk(i)
4
= 2µk(i)

1−µk(i)
. Given R(i), A and σ2, and the a priori

code bit LLR distribution f q−1
m←L. we can compute {mk(i), k = 1, · · · , K} as follows:

For j = 1, 2, . . . , N (number of samples) and for k = 1, 2, . . . , K

• Draw i.i.d. Ω
(j)
k ∼ f q−1

m←L. Let V
(j)
k

4
= diag

{
1 − tanh

(
Ω

(j)
1 /2

)2

, . . . , 1 −
tanh

(
Ω

(j)
k−1/2

)2

, 1, 1− tanh
(
Ω

(j)
k+1/2

)2

, . . . , 1− tanh
(
Ω

(j)
K /2

)2 }
;

• Compute µ
(j)
k

4
= A2eT

k

[
V

(j)
k + σ2R−1

]−1

ek, and m
(j)
k

4
=

2µ
(j)
k

1−µ
(j)
k

.

Finally mk(i) is calculated as mk(i) ∼= 1
N

∑N
j=1 m

(j)
k . Note that the a priori

code bit LLR from the LDPC decoder is typically modelled as mixture symmetric

Gaussian, i.e.,

f q−1
m←L =

L∑

`=1

λ`N (m`, 2m`), (2.29)

where m` and 2m` are respectively the mean and the variance of the `th component.

Here λ` is the fraction of the bit nodes of degree ` and we assume that the output

extrinsic LLR at a node of degree ` is symmetric Gaussian with mean m` [8, 21].

Exact and SIC-MF SISO multiuser detector: For these two detectors, sim-

ulations show that the extrinsic messages are also well approximated by symmetric

Gaussian distributions. The means can be calculated via Monte Carlo as follows:

For j = 1, 2, . . . , N (number of samples)

• For k = 1, · · · , K: Draw i.i.d. bk(i)
(j) ∈ {+1,−1}, nk(i)

(j) ∼ N (0, 1), Ω
(i)
k ∼

f q−1
m←L; Set Lq−1

m←L[bk(i)] = Ω
(i)
k bk(i); Compute yk(i)

(j) according to (2.9).

• For k = 1, · · · , K: Compute the extrinsic information Lq
m→L[bk(i)]

(j) according

to (2.10) for the exact SISO detector, or according to (2.14) for the SIC-MF

SISO detector. Set m
(j)
k = Lq

m→L[bk(i)]
(j)bk(i)

(j).
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Fig. 2. The histograms for the multiuser detectors extrinsic information in a 2-user

synchronous CDMA system, and the symmetric Gaussian approximations by

Monte Carlo simulation.

We now demonstrate the validity of Gaussian assumption through following ex-

ample. Consider estimating the pdf of extrinsic information at the output of the

multiuser detector for a two-user synchronous system with ρjk fixed at 0.5 for j 6= k

when Es/No = −1 dB. The pdf of the input a priori information to the multiuser

detector is f q−1
m←L = 0.05N (0.1, 0.2) + 0.25N (1.0, 2.0) + 0.7N (5.0, 10.0). Fig. 2 shows

the histograms of the extrinsic information at the optimal, SIC-MMSE, MF multiuser

detectors by simulating the channel and the detector. The symmetric Gaussian pdf’s

with same means are also shown in the same figure. It can be seen that the match is

quite close for each detector, indicating that the underlying pdf is well approximated

by the symmetric Gaussian.
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2. Fading Channels

Consider the SIC-MMSE detector in a synchronous CDMA system with fading chan-

nels. Conditioned on the channels α(i) = [α1(i), · · · , αK(i)], the extrinsic mes-

sage from the multiuser detector has a Gaussian distribution, i.e., f q
m→L(α(i)) ∼

N (m(α(i)), 2m(α(i))), with m(α(i))
4
= 4µk(i)

1−µk(i)
. Hence the pdf of the output extrin-

sic message is given by

f q
m→L

4
=

∫
f q

m→L

(
α(i)

)
p
(
α(i)

)
dα(i). (2.30)

In general, the pdf in (2.30) can not be well approximated as Gaussian. However,

we can approximate f q
m→L as a mixture of symmetric Gaussian pdf’s, i.e., f q

m→L
∼=

∑J
j=1 πj N (mj, 2mj). Note that in the limit as J →∞, this can approximate (2.30)

arbitrarily closely. For fixed number of mixtures J , based on the observations Ξ
4
=

{ξt, t = 1, . . . , N}, the parameters θ
4
= {πj,mj, j = 1, · · · , J}, can be estimated using

the expectation-maximization (EM) algorithm as follows.

Denote φ(x; µ, σ2) as the pdf of anN (µ, σ2) random variable. Then the maximum

likelihood (ML) estimate of the parameters θ is given by

θ̂ = arg max
θ:

∑J
j=1 πj=1

log pθ(Ξ)

= arg max
θ:

∑J
j=1 πj=1

N∑
t=1

log
J∑

j=1

πjφ(ξt; mj, 2mj). (2.31)

Direct solution to the above maximization problem is very difficult. The expectation-

maximization (EM) algorithm [22, 23] is an iterative procedure for solving this ML

estimation problem. In the EM algorithm, the observation Ξ is termed as incomplete

data. The algorithm postulates that one has access to complete data X, which is such

that Ξ can be obtained through a many-to-one mapping. Typically the complete data
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is chosen such that the conditional density pθ(X) is easy to obtain and optimize.

Starting from some initial estimate θ(0), the EM algorithm solves the ML estimation

problem (2.31) by the following iterative procedure:

• E-step: Compute Q
(
θ | θ(i)

)
= E

θ(i)

{
log pθ(X) | Ξ}

.

• M-step: Solve θ(i+1) = arg maxθ Q
(
θ | θ(i)

)
.

Define the following hidden data Z = {zt, t = 1, . . . , N}, where zt is a J-

dimensional indicator vector such that zt,j = 1, if ξt ∼ N (mj, 2mj) , and zt,j =

0, otherwise. The complete data is then X
4
= (Ξ,Z). We have

pθ(Ξ, Z) =
N∏

t=1

J∏
j=1

[
πj φ(ξt; mj, 2mj)

]zt,j

,

where φ(x; µ, σ2) = 1√
2πσ2

e−
(x−µ)2

2σ2 , hence

log pθ(Ξ, Z) =
N∑

t=1

J∑
j=1

zt,j log πj +
N∑

t=1

J∑
j=1

zt,j

[
−1

2
log 2mj − (ξt −mj)

2

4mj

]
+ C,

(2.32)

where C is some constant. The E-step can then be calculated as follows:

Q(θ,θ′)
4
= Eθ′

{
log pθ(Ξ,Z) | Ξ}

=
N∑

t=1

J∑
j=1

ẑt,j

[
log πj − 1

2
log 2mj − (ξt −mj)

2

4mj

]
+ C, (2.33)

where ẑt,j
4
= Eθ′ {zt,j | Ξ,θ′} =

φ(ξt; m
′
j, 2m

′
j) π′j∑J

l=1 φ(ξt; m′
l, 2m

′
l) π′l

. (2.34)

And the M-step is calculated as follows.

∂Q(θ,θ′)
∂πj

= 0 ⇒ πj =
1

N

N∑
t=1

ẑt,j, j = 1, · · · , J. (2.35)

∂Q(θ,θ′)
∂mj

= 0 ⇒ mj = −1 +

√
1 +

∑N
t=1 ẑt,jξ2

t∑N
t=1 ẑt,j

, j = 1, · · · , J. (2.36)



18

Finally the EM algorithm for calculating the Gaussian mixture parameters for the

extrinsic messages in fading channels is summarized as follows: Given the detector

extrinsic messages {ξt}, the number of mixture components J , the total number of

EM iterations I, starting from the initial parameters θ(0), for i = 1, . . . , I:

• Let θ′ = θ(i−1) and calculate {ẑt,j, t = 1, . . . , N ; j = 1, . . . , J} according to

(2.34).

• Calculate {πj, j = 1, · · · , J} according to (2.35); and calculate {mj, j = 1, · · · , J}
according to (2.36). Set θ(i) = θ.

The algorithm can be applied to the SISO multiuser detector in fading channels by

letting ξk(i)
4
= bk(i)L

q
m→L[bk(i)], where Lq

m→L[bk(i)] is given by (2.26).

In the above EM algorithm the number of mixture components J is fixed. Note

that when J increases, log pθ(Ξ) increases, or − log pθ(Ξ) decreases. The minimum

description length (MDL) principle can be used to select the optimal number of the

components in a Gaussian mixture [24, 25]. In the MDL criterion, a penalty term

J
2

log N is introduced. And the optimal number of components is given by

ĴMDL = arg min
J

{
− log pθ,J

(Ξ) +
J

2
log N

}
. (2.37)

Hence we can first set an upper bound of the number of mixture components, Jmax.

And for each J ≤ Jmax, we run the above EM algorithm and calculate the corre-

sponding MDL value. Finally, we choose the optimal J with the minimum MDL.

We now demonstrate the efficiency of the mixture Gaussian modeling of the mul-

tiuser detector extrinsic information developed in this section through the following

example. Consider a five-user asynchronous CDMA system in independently Rayleigh

fading channel and an Es/No = 0 dB employing MMSE multiuser detector when the

input LLR distribution is f q−1
m←L = 0.05N (0.1, 0.2)+0.25N (1.0, 2.0)+0.7N (5.0, 10.0).
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Fig. 3. The histogram for the SIC-MMSE multiuser detector extrinsic information in a

5-user asynchronous CDMA system with fading, and the approximations by a

single symmetric Gaussian pdf, and by a mixture of symmetric Gaussian pdf’s

obtained using the EM algorithm.

The histogram of the multiuser detector output extrinsic information obtained using

Monte Carlo simulations is plotted in Fig. 3. The approximation of the pdf using a

mixture of symmetric Gaussian distributions computed via the EM algorithm is also

shown in the figure. Note that the two curves are almost indistinguishable indicating

that the approximation is very accurate. On the other hand, a symmetric Gaussian

pdf which has the same mean as that of the histogram is also shown. It is seen that

such a single symmetric Gaussian approximation of the extrinsic information distri-

bution is quite inaccurate. This confirms that the extrinsic information delivered by

the SIC-MMSE multiuser detector in fading channels cannot be assumed to be Gaus-

sian, whereas a mixture of symmetric Gaussian pdf offers a good approximation. In

this example, the codeword length is N = 20000 for each user. The average number

of mixture components given by the MDL criterion is ĴMDL = 12.
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E. Design of LDPC Codes

1. Computing Threshold

In this section, we first describe how to compute the thresholds for LDPC codes

with the afore-mentioned receiver employing turbo multiuser detection. The main

idea is to treat the extrinsic LLRs as i.i.d random variables and to compute their

pdf at each iteration [8, 7, 10]. In [8], the pdf of the extrinsic LLRs at each bit

or check node was assumed to be Gaussian and symmetric (variance is twice the

mean) and, hence, it is sufficient to track the mean of the extrinsic LLRs. While

this is a good approximation for the single user AWGN channel, this is not a good

approximation for fading channels. Therefore, we will assume that the output of the

multiuser detector and, hence, the input at every bit node is a mixture of symmetric

Gaussian densities. We will show that this assumption allows us to track the pdf’s

of the extrinsic LLRs accurately without having to numerically convolve or evaluate

pdf’s. In computing the pdf’s of the extrinsic LLRs, we will assume that the all-zeros

codeword is transmitted but the coded bits are modulated into ±1 in a random order

which is known to the receiver. Therefore, density evolution can still be performed

assuming the all-zeros codeword as reference even though the overall system is not

geometrically uniform. We next specify the procedure for computing the pdf’s of the

extrinsic messages passed around in the turbo multiuser detection algorithm described

in Section B. Denote ψ(x)
4
= E

{
tanh

[
1
2
N (x, 2x)

]}
.

[0:] Initialization: Set f 0,0
b←c(x) = δ(x), and f 0

m←L(x) = δ(x).

[1:] Turbo multiuser detection iterations: For q = 1, 2, . . . , Q

[1-a:] Compute the pdf of the multiuser detector extrinsic messages: f q
m→L is

computed as a function of Eb/No and f q−1
m←L using the appropriate procedure from
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Section D, to obtain

f q
m→L =

J∑
j=1

πj N (µj, 2µj). (2.38)

[1-b:] Compute the pdf of the LDPC extrinsic messages:

[1-b-i:] Iterate between bit node update and check node update: For p = 1, 2, . . . , P

¦ At a bit node of degree i: The pdf of the extrinsic LLR passed along an edge

connected to a bit node of degree i is denoted by fp,q
b→c,i. From (2.2), we can see

that fp,q
b→c,i is given by

f p,q
b→c,i = f q

m→L ⊗ f p−1,q
b←c

⊗(i−1)
, (2.39)

where ⊗ denotes convolution, (·)⊗i denotes i-fold convolution. We can simplify

this by making the assumption that the output extrinsic from the bit node of

degree i excluding the contribution from the channel is Gaussian. The same

assumption has been made in [8]. That is,

fp,q
b→c,i = f q

m→L ⊗N
(
(i− 1)mp−1,q

b←c , 2(i− 1)mp−1,q
b←c

)

=
J∑

j=1

πjN
(
µj + (i− 1)mp−1,q

b←c , 2[µj + (i− 1)mp−1,q
b←c ]

)
. (2.40)

The pdf of the extrinsic message passed from the bit to check nodes along an

edge is then

fp,q
b→c =

dl,max∑
j=2

λi f p,q
b→c,i

=
J∑

j=1

dl,max∑
i=2

πjλiN
(
µj + (i− 1)mp−1,q

b←c , 2[µj + (i− 1)mp−1,q
b←c ]

)
.(2.41)

¦ At check node of degree j: Assume that the ith check node is of degree j and

that the extrinsic LLR at the output of this check node is Gaussian with mean
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mp,q
b←c,j. To compute mp,q

b←c,j, we take the expectation on both sides of (2.3) and

get

E
{
tanh

(
Lp,q

b←c(e
c
i,r)/2

)}
= E

{[ j∏

k=1,k 6=r

tanh
(
Lp,q

b→c(e
c
i,k)/2

) ]}

=
[
E

{
tanh

(
Lp,q

b→c(e
c
i,k)/2

)}]j−1
, (2.42)

where (2.42) follows from the fact that Lp,q
b→c(e

c
i,k) and Lp,q

b→c(e
c
i,s) are identically

distributed and are independent for k 6= s. Since the distribution of Lp,q
b←c(e

c
i,r)

will be same for all r, we can drop r. Therefore,

mp,q
b←c,j =

∑
j

ρj ψ−1
[( J∑

l=1

dl,max∑
i=2

πl λi ψ(mp,q
b→c,i)

)j−1]
. (2.43)

[1-b-ii:] Message passed back to the multiuser detector: At bit node of degree i, by

taking expectation on both sides of (2.4), we get mq
m←L(i) = imp−1,q

b←c . Since λ̃i of the

nodes have degree i,

f q
m←L =

dl,max∑
i=2

λ̃iN (mq
m←L(i), 2mq

m←L(i)) . (2.44)

The threshold is defined as the minimum Eb/No for which the mean mQ
m←L or

mP,Q
b←c tends to ∞. That is,

(Eb/No)th = min Eb/No : lim
N→∞

lim
Q→∞

mP,Q
b←c →∞. (2.45)

2. Design of LDPC Codes

The procedure for computing the threshold for a given degree profile (λ(x), ρ(x)) can

be used in conjunction with an optimization procedure to design optimal LDPC codes

for the multiuser detection. The idea is to find optimal λ(x) and ρ(x) such that the

threshold is minimized. Note that the rate of the LDPC code is R = 1 −
∫ 1
0 ρ(x) dx∫ 1
0 λ(x) dx

.
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If a rate of Ro is required, the optimization problem can be stated as follows: Find

λ(x) and ρ(x) such that we minimize Eb/No subject to the following constraints (1)

1−
∫ 1
0 ρ(x) dx∫ 1
0 λ(x) dx

= Ro; and (2) mP,Q
b←c →∞ (computed using (2.38) - (2.44)).

A non-linear optimization procedure called differential evolution [9, 26] has been

used to perform this optimization. This technique involves choosing several candi-

dates for λ(x) and ρ(x) and computing thresholds for each pair during the optimiza-

tion. Without the Gaussian mixture assumption for the extrinsic LLR pdf’s, the pdf’s

have to be evaluated numerically within the LDPC decoder and by using Monte Carlo

in the multiuser detector. However, with this assumption only the means of the com-

ponents in the mixture need to be evaluated which is a very significant reduction in

complexity. This is a key advantage of the SIC-MMSE multiuser detection since the

output pdf from the multiuser detector can be computed relatively easily.

F. Results

1. Two-user Synchronous CDMA System with Periodic Spreading Sequences

We first present results for a two-user synchronous CDMA system in AWGN channel.

With periodic spreading sequences, the cross correlation matrix is fixed. Set ρjk = 0.5

for j 6= k. Three different receivers were simulated (i.e., optimal, SIC-MMSE and

matched filter). The theoretical thresholds for a (3, 6) rate 1
2

regular LDPC code, and

the simulation results for a (3, 6) rate 1
2

regular LDPC code of length N = 100, 000

bits are shown in Fig. 4, Fig. 5 and Fig. 6. It is seen that the actual simulation

results are within 0.2dB of the theoretical thresholds for three different detectors,

indicating that the Gaussian assumption and the characterization of the input-output

pdf of the multiuser detector extrinsic information is quite accurate. Optimum degree

profiles were computed for the same channel using algorithms and the technique
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Fig. 4. Thresholds and simulation results for the (3, 6) regular LDPC codes and for the

optimum irregular LDPC codes in a 2-user synchronous system with optimal

receiver.

discussed in Section E. The optimum degree profile for optimal multiuser detector was

λ(x) = 0.255869x+0.144624x2+0.069450x3+0.076102x4+0.028071x5+0.048760x6+

0.013873x8 +0.021780x9 +0.026336x12 +0.015840x13 +0.011756x17 +0.287539x19 and

ρ(x) = 0.721952x7 + 0.278048x8. The resulting threshold is shown in Fig. 4. The

performance of a randomly constructed LDPC code with the afore-mentioned degree

profile of length N = 100000 is also shown in Fig. 4. It is seen that the performance

is about 0.15 dB from the threshold at BER of 10−6.

The optimum degree profile for MMSE multiuser detector was λ(x) = 0.244164x1+

0.168476x2 + 0.093799x3 + 0.047910x4 + 0.022387x5 + 0.025506x6 + 0.015051x8 +

0.038143x9 + 0.035043x10 + 0.014559x11 + 0.024455x14 + 0.011258x17 + 0.259249x19

and ρ(x) = 0.775041x7 + 0.224959x8. The performance of the constructed irregular

LDPC code, shown in Fig. 5, is around 0.15 dB from the threshold. The perfor-
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mance fo MMSE receiver is only 0.1dB worse than optimal receiver. The optimum

degree profile for MF detector was λ(x) = 0.259484x + 0.146658x2 + 0.114980x3 +

0.056695x4 + 0.023731x5 + 0.019086x6 + 0.015051x8 + 0.042996x9 + 0.034469x10 +

0.016299x11 + 0.033337x14 + 0.010720x17 + 0.226495x19 and ρ(x) = x7. Shown in

Fig. 6, the simulation result of the randomly constructed LDPC code is about 0.15dB

from the threshold 1.25dB. The results presented here show that the irregular codes

provide about 0.5dB better performance than the regular codes.

a. Achievable Information Rate

The achievable information rate for a two-user synchronous CDMA system with bi-

nary modulation can be computed for a given Es/N0 and ρ12 = ρ as follows. The

equivalent signal space diagram for the two-user system can be obtained by projecting

the received signal on to two basis functions φ1(t) = − ρ√
1−ρ2

s1(t) + 1√
1−ρ2

s2(t) and

φ2(t) = s1(t) [27]. The four points in the two-dimensional signal space correspond-

ing to the transmitted bits (−1,−1), (−1, 1), (1,−1) and (1, 1) can then be shown to

be x0 = [−
√

1− ρ2, −1 − ρ], x1 = [
√

1− ρ2, −1 + ρ], x2 = [−
√

1− ρ2, 1 − ρ],

x3 = [
√

1− ρ2, 1 + ρ]. The sufficient statistic y can be expressed as

y = x + n, x ∈ {x0,x1,x2,x3} (2.46)

with the choice of basis functions given above, n ∼ N (0, σ2I2), where σ2 = N0/(2Es)

and I2 is the 2 × 2 identity matrix. For non-cooperative coding between the two

users, the information rate is maximized by the equiprobable distribution p(x =

xi) = 1/4,∀i. The achievable information rate can be computed using

I2−user = h(y)− h(y|x) (2.47)

=
∑

i

−1

4

∫

R2

p(y|xi) log2(p(y|xi)) dy − log2(2πeσ2) (2.48)
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The integral in (2.48) can be computed numerically after noting that p(y|xi) is

N (xi, σ
2I2).

For ρ12 = 0.5, the required Eb/N0 to achieve 0.5 bits/user/channel use is 0.46 dB.

The threshold for the optimized irregular LDPC code with the optimal receiver (in

Fig. 4) is less than 0.3 dB away corroborating the effectiveness of the proposed design

methodology.

2. Five-user Synchronous System with Aperiodic Spreading Sequence

Next, we present some simulation results for five-user synchronous system using ape-

riodic spreading in AWGN channel. For each user, the spreading code is random

code with processing gain Nc = 10 which varies with symbol i. The randomly chosen

spreading sequences is an accurate model when pseudo-noise sequences span many

symbol periods [28]. With aperiodic random spreading, the cross correlation ma-

trix after matched filter dynamically changes symbol by symbol. The theoretical

thresholds for the (3, 6) rate-1
2

regular LDPC code with maximum number of itera-

tions between the multiuser detector and decoder, P = 30, is shown in Fig. 7 and

Fig. 8 with MMSE and MF receiver, respectively. Both receivers have the perfor-

mance for the regular LDPC code within 0.05 dB from the thresholds. The irregular

LDPC code was designed and the resulting optimum degree profiles of MMSE receiver

with dlmax = 20 was λ(x) = 0.257632x1 + 0.154468x2 + 0.070704x3 + 0.076268x4 +

0.028071x5 + 0.048760x6 + 0.015496x8 + 0.021936x9 + 0.028388x12 + 0.015840x13 +

0.016623x17 + 0.265814x19 and ρ(x) = 0.867663x7 + 0.132337x8. The threshold for

the above degree profile and simulation results for a randomly constructed LDPC

code of length N = 100000 are shown in Fig. 7. It is seen that the simulation results

agree well with the theoretical thresholds, and that the irregular LDPC code is about

0.65 dB better than the (3, 6) regular LDPC code, indicating the usefulness of the
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Fig. 7. Thresholds and simulation results for the (3, 6) regular LDPC codes and for the

optimum irregular LDPC codes in a 5-user synchronous system with MMSE

receiver.

proposed techniques for designing good LDPC codes. The optimum degree profile

for MF detector was λ(x) = 0.291442x1 + 0.146740x2 + 0.017766x3 + 0.050683x4 +

0.066068x5 + 0.044891x7 + 0.015843x8 + 0.052557x9 + 0.019073x11 + 0.022182x12 +

0.016018x16 + 0.013343x17 + 0.243395x19 and ρ(x) = x7. Shown in Fig. 8, the per-

formance is only 0.1 dB from the threshold, and the irregular LDPC codes is 0.5 dB

better than the (3, 6) regular LDPC code.

3. Five-user Asynchronous System in Fading

Finally, we consider a 5-user asynchronous CDMA system in random fading channel

with aperiodic random spreading. Each user’s channel contains four paths, i.e., `P =

4. The relative path power gains are 0,−3,−6 and −9 dB and the relative delay
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Fig. 8. Thresholds and simulation results for the (3, 6) regular LDPC codes and for

the optimum irregular LDPC codes in a 5-user synchronous system with MF

receiver.

is 0, Tc, 2Tc, 3Tc. The theoretical thresholds for a (3, 6) rate-1
2

regular LDPC code

and simulation results for a randomly constructed regular LDPC code of length N =

100, 000 are shown in Fig. 9 for MMSE receiver and in Fig. 10 for MF receiver. It

is seen that the simulated BER performance matched quite well with the thresholds,

indicating that the threshold computation is fairly accurate. Then, we designed

optimal degree profiles with dlmax = 20, and rate-1
2

for both receivers. The resulting

optimal degree profiles for the MMSE receiver were λ(x) = 0.246553x1+0.146658x2+

0.093799x3 + 0.022387x5 + 0.019086x6 + 0.015051x8 + 0.038143x9 + 0.032978x10 +

0.014559x11 + 0.017916x14 + 0.010720x17 + 0.294241x19 and ρ(x) = 0.562658x7 +

0.437342x8. The resulting optimal degree profiles for the MF receiver were λ(x) =

0.281703x1 + 0.146740x2 + 0.041345x3 + 0.050683x4 + 0.066068x5 + 0.045004x7 +
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Fig. 9. Thresholds and simulation results for the (3, 6) regular LDPC codes and for the

optimum irregular LDPC codes in a 5-user asynchronous system with fading

using MMSE receiver.

0.020060x8 + 0.047036x9 + 0.014923x11 + 0.014942x12 + 0.017153x16 + 0.013343x17 +

0.241000x19 and ρ(x) = x7. The simulation results for a randomly constructed LDPC

code with these degree profiles for a length of N = 100, 000 are shown in Fig. 9 and

Fig. 10. At a BER of 10−6, the performance is about 0.2 dB away from the thresholds.

The irregular codes outperform the regular ones by about 0.6 dB for both receivers.

These results show that by using the EM algorithm, we can accurately model the

extrinsic information as a mixture of Gaussian densities and use this to design good

irregular LDPC codes.
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Fig. 10. Thresholds and simulation results for the (3, 6) regular LDPC codes and for

the optimum irregular LDPC codes in a 5-user asynchronous system with

fading using MF receiver.

G. Conclusions

In this chapter, we have shown how to characterize the pdf of the extrinsic information

at the output of the multiuser detector as a function of the pdf of the input extrinsic

information, the Eb/No and cross correlation matrix of spreading codes for CDMA

systems through AWGN channels or multipath fading channels. For synchronous

system in AWGN, we have shown that the pdf can be assumed to be symmetric

Gaussian, whereas for asynchronous system with multipath fading the pdf can be

approximated as a mixture of symmetric Gaussian densities. Then, we have shown

how to compute the thresholds for a given irregular LDPC code degree profile and to

design good irregular LDPC codes. In all cases, the computed thresholds match very

well with simulations and the designed irregular codes significantly outperform regular
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LDPC codes. The differences between computed thresholds and the simulations are

within 0.2dB. From the simulation, the performance of the designed irregular codes are

about 0.6dB closer to the capacity than regular LDPC codes for synchronous system

through AWGN, and 0.45 dB for the asynchronous CDMA system with multipath

fading. Finally, we note that the proposed framework can also be applied to optimize

the turbo equalization systems [29] and turbo BLAST systems [15].
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CHAPTER III

PERFORMANCE ANALYSIS AND DESIGN OPTIMIZATION OF LDPC

CODED MIMO OFDM SYSTEMS

A. Introduction

One of the ambitious design goals of 4G wireless cellular systems is to reliably pro-

vide very high data rate transmission: around 100 Mbps peak rate for downlink and

around 30 Mbps sum rate for uplink transmission. Due to its higher rate requirement,

the downlink transmission is especially considered to be a bottleneck in system de-

sign. In this chapter, we demonstrate the feasibility of downlink transmission in 4G

wireless systems through the physical-layer (PHY) design and optimization of LDPC

coded wireless multiple-input multiple-output (MIMO) orthogonal frequency-division

multiplexing (OFDM) communications. In the considered systems, different users ac-

cess the downlink channels in a time-division multiple accessing (TDMA) manner,

most possibly with certain scheduling scheme [30]. Compared to other alternative

solutions, the MIMO-OFDM-TDMA downlink transmission proposed here attempts

to balance between high rate transmission and low receiver complexity of mobile de-

vices, where the former primarily counts on the LDPC coded MIMO techniques and

the latter is owing to the orthogonal structure of OFDM-TDMA.

A large number of works on the physical-layer study of MIMO techniques has

been done in past decade. Various MIMO schemes could be distinguished by different

design goals, for example the BLAST systems [31] aimed at the highest data-rate, or

the orthogonal space-time block code (STBC) [32] aimed at the full transmit-diversity.

On the other hand, these MIMO schemes could also be categorized according to the

different ways of making use of channel state information (CSI), for example the
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space-time codes [33] that assume no CSI at transmitter side, or the optimal eigen-

beamforming schemes [34] that assume perfect CSI at transmitter. In this work, we

restrict our attention to the schemes that require no CSI at transmitter and aim to

achieve very high data rate. In particular, we focus on an LDPC coded MIMO OFDM

scheme proposed in [35, 36].

In this chapter, for a fixed target data rate (e.g., 100 Mbps), we optimize and com-

pare the performance of the LDPC coded MIMO OFDM systems with different config-

urations. For a fair comparison, we adopt the quantity SNRmin.op(dB)−C−1(R)(dB)

as the performance measure, which measures how many dB’s the minimum oper-

ational SNRmin.op is above the SNR required by the information theoretic channel

capacity C(·) to support a target information rate R. We also remark that in this

chapter the concept of data rate (in the unit of bits/sec) shall be discriminated from

that of information rate (in the unit of bits/sec/Hz), when the bandwidth (in the

unit of Hz) is not specified or fixed. Specifically, we are interested in the following

problems:

• Different number of antennas: We consider MIMO system with N transmitter

antennas and M receiver antennas. As a well known result from information

theory[37, 34], at high SNR’s a narrow-band MIMO system can support m =

min(N, M) times higher information rate than that in single-antenna (M =

N = 1) systems. One may wonder whether in wide-band transmission such

a MIMO system is capable of providing the same data rate with one m-th

bandwidth of that in single-antenna systems?

• Different soft-input-soft-output demodulation schemes: We consider both the

optimal maximum a posteriori (MAP) demodulator with a complexity atO(|Ω|N),

where |Ω| is the constellation size of modulator and N is the number of trans-
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mitter antennas; and the suboptimal linear minimum mean-square-error based

soft interference cancellation (SIC-MMSE) demodulator with a complexity at

O(|Ω|3). What is the performance penalty of applying SIC-MMSE in LDPC

coded MIMO OFDM?

• Different MIMO channel models: We consider both the spatially uncorrelated

MIMO channel model and the spatially correlated model. As a result shown by

information theory [38], the channel capacity can be substantially reduced for

spatially correlated MIMO channels. What is the impact of spatial correlation

on the LDPC code design and optimization?

Many previous works have addressed the different aspects of the above problems, e.g.,

[39, 31, 37, 40, 36]. However, only very lately, the work in [36] studied the LDPC code

design in the MIMO systems under the framework of turbo iterative signal processing

and decoding via the tools of EXIT charts. In this work, for each system configuration

described above, we employ the techniques of density evolution with mixture Gaussian

approximations [11, 7, 10, 29] to design and optimize the irregular LDPC codes, as

well as to compute the SNRmin.op for ergodic MIMO OFDM channels. Furthermore,

from the LDPC profiles that are optimized for the ergodic channels, we heuristically

construct small block-size irregular LDPC codes for outage MIMO OFDM channels.

In the end, quantitative results from both the density evolution analysis/design and

computer simulations give rise to a number of useful observations and conclusions in

the design and optimization of the LDPC MIMO OFDM systems.

The chapter is organized as follows. In Section B, we describe an LDPC coded

MIMO OFDM system, with brief summary of the system model and channel capac-

ity of MIMO OFDM modulation. A turbo iterative receiver is introduced with the

different demodulation schemes. In Section C, we brief the procedures of analyz-
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Fig. 11. Transmitter structure of an LDPC coded MIMO OFDM system.

ing and optimizing the LDPC codes for MIMO OFDM systems. In Sections D, the

performance analysis and LDPC code optimization results for LDPC coded MIMO

OFDM systems with different system configurations are demonstrated and discussed.

Section E contains the conclusions.

B. System Description of LDPC Coded MIMO OFDM

We consider an LDPC coded MIMO OFDM system with K subcarriers, N transmit-

ter antennas and M receiver antennas, signaling through frequency-selective fading

channels. The transmitter structure is illustrated in Figure 11. A block of k bits of

information data is encoded by a rate r = k/n LDPC code. The output n coded

bits are interleaved. The interleaved bits are modulated by QAM constellation Ω

into a block of n/ log2 |Ω| QAM symbols. During each OFDM slot, NK out of the

total n/ log2 |Ω| QAM symbols are transmitted from K OFDM subcarriers and N

transmitter antennas simultaneously. Due to the inherent random structure of LDPC

codes, the NK symbols can be mapped to K subcarriers and N transmitter antennas

in any order. Without loss of generality, we assume (n/ log2 |Ω|) / (NK) = ñ, i.e., the

total block of QAM symbols is transmitted in ñ OFDM slots.

Note that in Figure 11, LDPC could also be replaced by other error-control codes

such as Turbo codes, however the relatively low and scalable decoding complexity and

the freedom for code optimization make LDPC codes a more favorable candidate.
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1. MIMO OFDM Modulation

Consider a quasi-static block fading model for the studied MIMO OFDM modulation,

as in Figure 12. It is assumed that the fading channels remain static during each

OFDM slot but vary independently from one OFDM slot to another. Furthermore,

for practical MIMO OFDM systems with spatial (antenna) correlations, the frequency

domain channel response matrix at the k-th (k = 0, . . . , K − 1) subcarrier and the

p-th (p = 0, . . . , ñ− 1) OFDM slot is given by [41]

H [p, k] =
L−1∑

l=0

R
1/2
l H l[p]S

1/2
l exp(−j2πlk/K) , (3.1)

where Rl = R
1/2
l R

1/2
l and Sl = S

1/2
l S

1/2
l represent the receive and transmit spatial-

correlation matrices, which are determined by the spacing and the angle spread of

MIMO antennas as what will be explained in Section 3; L is the number of resolvable

paths of the frequency-selective fading channels; H l[p] is the matrix with entries

being independent and identically distributed (i.i.d.) circularly symmetric complex

Gaussian distributed as ∼ Nc(0, β
2
l ), and is assumed to be independent for different l

and different p; in addition, the power of H l[p], ∀l is normalized by letting
∑L−1

l=0 β2
l ≡

1.

Assume proper cyclic insertion and sampling, the MIMO OFDM system with

K subcarriers decouples frequency-selective channels into K correlated flat-fading

channels with the following input-output relation

y[p, k] =

√
SNR

N
H [p, k]x[p, k] + z[p, k] , k = 0, . . . , K − 1, p = 0, . . . , ñ− 1,

(3.2)

where H [p, k] ∈ CM×N is the matrix of complex channel frequency responses defined

in (3.1); x[p, k] ∈ ΩN and y[p, k] ∈ CM are respectively the transmitted signals and the
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Fig. 12. A quasi-static block-fading MIMO OFDM channel model. For each OFDM

slot, the fading channel responses remain static but are correlated in different

OFDM subcarriers. For different OFDM slots, the fading channel responses

are independent. [Note that the spatial relation of fading channels associated

with different transmit-receive-antenna-pairs is defined through Rl and Sl in

Eq.(3.1).]

received signals at the k-th subcarrier and the p-th slot; z[p, k] ∈ CM is the additive

noise with i.i.d. entries z[p, k] ∼ Nc(0, I); SNR denotes the average signal-to-noise

ratio at each receiver antenna. Note that in this work, only the fixed/deterministic (in

contrast to variable/adaptive) signal constellation Ω is considered, and its averaged

power is normalized to be one.

With no channel state information (CSI) at the transmitter side, the channel

capacity for the above MIMO OFDM modulation has been studied in [37, 34]. Assume

Gaussian signaling (i.e., Ω → C), for MIMO OFDM channels with infinite fading

channel observations (i.e, ñ →∞), the ergodic capacity is given by

Cerg(SNR)
4
= E

{
1

Kñ

K−1∑

k=0

ñ−1∑
p=0

[
log2 det

(
IM +

SNR

N
H [p, k]HH[p, k]

)]

︸ ︷︷ ︸
I |H(SNR)

}
(3.3)

where H denotes the Hermitian transpose; the expectation is taken over random chan-

nel states H, with H 4
= {H [p, k]}p,k; I|H(SNR) is the instantaneous mutual infor-

mation conditioned on H . For MIMO OFDM channels with finite fading channel
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observations (i.e, ñ ¿∞), the outage capacity/probability is a more sensible measure.

For a target information rate R, the outage probability is given by

Pout(R, SNR) = P (I|H(SNR) < R) . (3.4)

However, in practice, the transmitted signals usually take values from constraint

constellation, i.e., x ∈ ΩN . In this case, following [42], the mutual information is

computed instead as

I|H(SNR) = N log2 |Ω| −
1

Kñ|Ω|N
K−1∑

k=0

ñ−1∑
p=0

|Ω|N−1∑
j=0

E

{
log2

|Ω|N−1∑
i=0

exp
[
−

∥∥√
SNR/N H [p, k]

(
xj − xi

)
+ z

∥∥2
+

∥∥z
∥∥2

] }
,

(3.5)

where the expectation is taken over random noise vector z ∼ Nc(0, I).

2. Iterative Receiver Structure

A serial concatenated turbo iterative receiver is employed (as shown in Figure 13) to

approach the maximum likelihood (ML) receiver performance of joint MIMO OFDM

demodulation and LDPC decoding. The extrinsic information of the LDPC coded

bits is iteratively passed between a soft-input-soft-output demodulator and a soft

belief-propagation LDPC decoder; in each demodulator-decoder iteration, a number

of inner iterations is performed within the soft LDPC decoder during which extrinsic

information is passed along the edges in the bipartite graph.

In the next, we stick to the following notations. All extrinsic information (mes-

sage) is in log-likelihood (LLR) form and the variable L is used to refer to extrinsic

information. The variable f is used to denote the probability density function (pdf)
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LDPC decoder, for an LDPC coded MIMO OFDM system.

of the extrinsic information L, and m is used to denote the mean of L. Superscript

(p, q) is used to denote quantities during the p-th round of inner decoding within

the LDPC decoder and q-th stage of outer iteration between the LDPC decoder and

the MIMO OFDM demodulator. For the quantities passed between the soft MIMO

OFDM demodulator and the soft LDPC decoder, only one superscript q, namely the

iteration number of turbo iterative receiver is used. A subscript D → L denotes

quantities passed from the demodulator to the LDPC decoder, and vice versa does

D ← L.

Demodulation of MIMO OFDM

Assume the perfect CSI at the receiver, it is clear from (3.1) that the demodulation of

the received signals at a particular subcarrier and in a particular slot can be carried

out independently. For notational convenience, in this subsection we temporarily

drop the index [p, k].

As illustrated in Figure 13, at the q-th turbo iteration, the soft MIMO OFDM

demodulator computes extrinsic information of the LDPC code bit bi as

Lq
D→L(bi) = g(y, {Lq−1

D←L(bj)}j) (3.6)
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where y is the received data; {Lq−1
D←L(bj)}j is the extrinsic information computed by

LDPC decoder in the previous turbo iteration, at the first turbo iteration Lq−1
D←L(bj) ≡

0, ∀j; g(·) denotes the demodulation function, which is described below.

At a given subcarrier and time slot, N symbols or correspondingly N log2 |Ω|
LDPC code bits are transmitted from N transmitter antennas. In maximum a poste-

rior (MAP) MIMO OFDM demodulator, Lq
D→L(bi) (i = 1, . . . , N log2 |Ω|) is computed

as

Lq
D→L(bi)

4
= log

P (bi = +1|y)

P (bi = −1|y)
− log

P (bi = +1)

P (bi = −1)︸ ︷︷ ︸
Lq−1

D←L(bi)

= log

∑
x+∈C+

i
P (x = x+|y)∑

x−∈C−i P (x = x−|y)
− Lq−1

D←L(bi)

= log

∑
x+∈C+

i
P (y|x = x+) P (x = x+)∑

x−∈C−i P (y|x = x−) P (x = x−)
− Lq−1

D←L(bi)

= log

∑

x+∈C+
i

exp


−‖y −

√
SNR

N
Hx+‖2 +

N log2 |Ω|∑
j=1

{x+}j · Lq−1
D←L(bj)/2




∑

x−∈C−i

exp


−‖y −

√
SNR

N
Hx−‖2 +

N log2 |Ω|∑
j=1

{x−}j · Lq−1
D←L(bj)/2




−Lq−1
D←L(bi), (3.7)

where C+
i is the set of x for which the i-th LDPC coded bit is “+1”, and C−i is

similarly defined; {x+}j denotes the corresponding j-th binary bit of the symbol x+,

and similarly does {x−}j. The soft MAP demodulator in (3.7) has a complexity

at O(|Ω|N), and can only be used in practice for small constellation size and small

number of transmit antennas.

We next describe a suboptimal soft demodulator, which is based on the linear

minimum-mean-square-error soft-interference-cancellation (SIC-MMSE) techniques [14]
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and has a relatively low complexity at O(|Ω|3).
Based on the a priori LLR of the code bits provided by the LDPC decoder,

{Lq−1
D←L(bi)}, we first form soft estimates of the symbol transmitted from the j-th

(j = 1, 2, . . . , N) antenna as

x̃j
4
=

∑

x̂∈Ω

x̂P (xj = x̂) =
∑

x̂∈Ω

x̂

log2 |Ω|∏
j=1

[
1 + exp

(−{x̂}j · Lq−1
D←L(bj)

)]−1
(3.8)

Denote

x̃j
4
= [x̃1, . . . , x̃j−1, 0, x̃j+1, . . . , x̃N−1]

T . (3.9)

We then perform a soft interference cancellation yj to obtain

ỹj

4
= y −Hx̃j = H (x− x̃j) + n. (3.10)

Next an instantaneous linear MMSE filter is applied to ỹj, to obtain

zj = wH

j ỹj, (3.11)

where the filter wj ∈ CM is chosen to minimize the mean-square error between the

transmit symbol xj and the filter output zj, i.e.,

wj = arg min
w∈CM

E
{|xj −wH ỹj|2

}

=

√
N

SNR

(
H∆jH

H +
N

SNR
I

)−1

He (3.12)

where ∆j
4
= cov {xj − x̃j}

= diag
{
1− |x̃1|2, . . . , 1− |x̃j−1|2, 1, 1− |x̃j+1|2, . . . , 1− |x̃N |2

}
;

(3.13)

and e denotes a M -sized vector with all-zero entries, except for the j-th entry being

1. The detailed derivation of (3.12) is further referred to [14].



43

As in [14], we approximate the soft instantaneous MMSE filter output zj in (3.11)

as Gaussian distributed, i.e.,

p(zj | xj) ∼ Nc

(
µjxj, η

2
j

)
. (3.14)

Conditioned on xj, the mean and variance of zj are given respectively by

µj
4
= E{zj x∗j} = eTHH

(
H∆jH

H +
N

SNR
I

)−1

He, (3.15)

η2
j

4
= var{zj} = E{|zj|2} − µ2

j = µj − µ2
j . (3.16)

The extrinsic information Lq
D→L(bi) delivered by the SIC-MMSE demodulator is cal-

culated as

Lq
D→L(bi)

4
= log

P (bi = +1|zj)

P (bi = −1|zj)
− log

P (bi = +1)

P (bi = −1)︸ ︷︷ ︸
Lq−1

D←L(bi)

= log

∑
x+∈S+

i,j
P (xj = x+|zj)∑

x−∈S−i,j P (xj = x−|zj)
− Lq−1

D←L(bi)

= log

∑
x+∈S+

i,j
P (zj|xj = x+) P (xj = x+)

∑
x−∈S−i,j P (zj|xj = x−) P (xj = x−)

− Lq−1
D←L(bi)

= log

∑
x+∈S+

i,j
exp

(
−‖zj − µjx

+‖2/η2
j +

∑log2 |Ω|
k=1 {x+

j }k · Lq−1
D←L(bk)/2

)

∑
x+

j ∈S−i,j exp
(
−‖zj − µjx−‖2/η2

j +
∑log2 |Ω|

k=1 {x−j }k · Lq−1
D←L(bk)/2

)

−Lq−1
D←L(bi), (3.17)

where S+
i,j is the set of all possible values of xi for which the i-th LDPC coded bit

is “+1”, and S−i,j is similarly defined; {x+
j }k denotes the corresponding k-th binary

bit of the symbol x+
j , and similarly does {x−j }k. Note that, SIC-MMSE demodulator

extracts the extrinsic LLR of code bit bi from zj, the scalar output of the LMMSE

filter in (3.11), whereas MAP demodulator collects the extrinsic LLR from y, the M -

size vector of the received signals. The complexity of soft SIC-MMSE demodulator
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hence is significantly lower than that of soft MAP demodulator, especially when N

and |Ω| are large.

Decoding of LDPC codes

The message-passing (also known as belief-propagation) decoding algorithm is used

to decode the LDPC codes [10]. The detailed decoding algorithm is described in the

turbo multiuser detection in Chapter II.

C. Analysis and Optimization of LDPC Coded MIMO OFDM

We analyze and optimize the LDPC coded MIMO OFDM systems via the techniques

of density evolution with mixture Gaussian approximations [43]. The principal idea

of density evolution [11, 7, 10] is to treat the extrinsic information that is passed in

the iterative process as random variables. Then, by estimating the pdf of the random

variables as a function of SNR and iteration number, we can compute the probability

of error at every iteration. When the length of the codewords n → ∞, the extrinsic

information passed along the edges connected to every check node and variable node

can be assumed to be independent variables. This makes it possible to compute the

pdf’s relatively easily. The minimum SNR for which the probability of error tends

to zero is called the minimum operational SNR, denoted by SNRmin.op. The detail

procedures of LDPC code optimization using density evolution with mixture Gaussian

approximation are similar to that in Chapter II for turbo multiuser detection. Here

we omit them for the sake of conciseness.
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D. Numerical Results

In this section, we present numerical results for the design and optimization of LDPC

coded MIMO OFDM systems. For each transmit-receive-antenna pair, DoCoMo’s

physical fading channel model, exponentially distributed frequency-selective fading

with 88.8ns maximum delay spread, is adopted. OFDM modulation is used with

subcarrier spacing 131.836 kHz and cyclic prefix interval of 1.54 µs; as a parameter

to be discussed, the number of subcarriers K is specified next. It is clear that the to-

tal bandwidth is approximately K times of the subcarrier spacing, and the multipath

resolution of the frequency-selective fading channel is the inverse of total bandwidth.

For instance, with K = 1024 there are 12 resolvable paths in DoCoMo’s channel

model, but with K = 512 the number of resolvable paths is reduced to 6. The mod-

ulator uses the QPSK constellation with Gray mapping; for the considered MIMO

systems with large number of antennas, the capacity (both ergodic and outage) dif-

ference between QPSK signaling and Gaussian signaling is small (e.g., ∼ 0.2dB at 4

bits/Hz/sec when N = M = 4). All the LDPC codes designed and optimized below

have rate 1/2 and appropriate code lengths. For clarity, the rate loss due to cyclic

prefix is not counted in this chapter.

All the regular LDPC codes are (s = 3, t = 6) codes taken from [5]. All the

irregular LDPC codes are obtained from the design procedure proposed in this chap-

ter. For example, the optimized degree profile for the spatially uncorrelated 2 × 2

MIMO OFDM systems employing the MAP demodulator is λ(x) = 0.269052x +

0.135031x2 + 0.024564x4 + 0.028685x5 + 0.075819x6 + 0.033661x7 + 0.024360x8 +

0.020951x9 + 0.018975x10 + 0.014373x12 + 0.035585x13 + 0.015569x14 + 0.013611x16 +

0.289765x19 and ρ(x) = 0.307710x7 + 0.692290x8, and that for the spatially un-

correlated 2 × 2 MIMO OFDM systems employing the SIC-MMSE demodulator is
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λ(x) = 0.294388x+0.100255x2+0.056131x3+0.042069x4+0.032675x5+0.065028x7+

0.030813x8 + 0.027357x9 + 0.025533x10 + 0.029996x11 + 0.014911x15 + 0.020255x17 +

0.013650x18 + 0.246939x19 and ρ(x) = 0.738497x7 + 0.261503x8.

In Sections 1-3, the performance of the LDPC codes in ergodic MIMO OFDM

channels is demonstrated by bit-error-rate (BER) versus SNR (see Eq.(3.2)); in Sec-

tion 4, the performance in outage MIMO OFDM channels is demonstrated by frame-

error-rate (FER) versus SNR.

1. Different Number of Antennas

If only single-transmit-receive-antenna is used, a cellular system designed for 100

Mbps peak rate downlink transmission requires very broad spectrum, as well as broad-

band transceiver circuitry; either of which could be costly for commercial applications.

MIMO techniques provide a promising means to ameliorate this issue. For example,

to achieve a fixed data rate of 100 Mbps, traditional single-antenna system requires

100 MHz bandwidth (assume QPSK modulation and coding rate 1/2), whereas a

4-transmit-4-receive-antenna system could potentially transmit the same 100 Mbps

data rate using only 25MHz bandwidth. We note that the information rate in the

single-antenna system is 1 bit/Hz/sec, whereas in the 4×4 MIMO system it increases

to 4 bits/Hz/sec (higher information rate implies a more efficient use of spectral

resource).

In our study, it is assumed that the number of receive antennas is the same as the

number of transmit antennas, i.e., N = M . We consider 1×1, 2×2 and 4×4 MIMO

OFDM systems. Without spatial correlation, Rl = Sl = I in (3.1), (the systems with

spatial correlation will be discussed in Section 3). The design and optimization results

are shown in Figures 14-16. In these figures, the ergodic channel capacity computed

from (3.3) and (3.5) is denoted by “Capacity”. First, we focus on the performance
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of iterative receiver employing soft MAP demodulator, i.e., the curves denoted by

“MAP+regLDPC –D.E.”, “MAP+regLDPC –Simu”, “MAP+irrLDPC –D.E.” and

“MAP+irrLDPC –Simu”, where suffix “D.E.” denotes the results from density evo-

lution analysis and “Simu” denotes that from computer simulations. In order to

achieve ergodic channel capacity, large block-size LDPC codes (n = 880640) are used

to capture large number of fading channel realizations (ñ = 430). It is seen that

by applying MIMO techniques, the information rate is increased to N bits/Hz/sec,

while the ergodic capacity (the “Capacity” curve) is also slightly improved. Moreover,

by employing the optimized irregular LDPC codes and the turbo iterative receiver

employing the MAP demodulator, the operational SNRmin.op of LDPC coded MIMO

OFDM systems is within 1 dB from the information theoretic ergodic capacity. It is

also seen that the performance calculated by density evolution analysis (the “D.E.”

curves) is in match with that obtained from simulations (the “Simu” curves). At last,

we observe that the performance gap between the regular and the irregular LDPC

codes tends to be smaller for systems with larger number of antennas.

2. Different Demodulation Schemes

The performance when employing sub-optimal SIC-MMSE demodulator is demon-

strated in Figures 14-16, by the curves “SIC+regLDPC –D.E.”, “SIC+regLDPC –

Simu”, “SIC+irrLDPC –D.E.” and “SIC+irrLDPC –Simu”. Compared to the MAP

demodulator based performance (as in Section 1), the use of the SIC-MMSE de-

modulator brings less than 1dB performance loss for 1×1, 2×2 and 4×4 systems.

Therefore, in spatially uncorrelated ergodic MIMO OFDM channels, SIC-MMSE de-

modulator appears to be a promising choice in practical implementation, for its good

performance and relatively low-complexity. (Note that the similar conclusion is not

verified yet for systems with even larger number of antennas, e.g., N = M = 8, as
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Fig. 14. Performance computed by density evolution analysis and computer simula-

tions for ergodic 1×1 MIMO OFDM channels with no spatial correlation.

the computational complexity of the design procedure for MAP based systems soon

becomes unmanageable.)

3. Spatial Correlation

In this subsection, we discuss the performance of MIMO OFDM systems with spatial

(antenna) correlation. Following [41], we assume uniform linear antenna placement

at both the transmitter and the receiver. The antenna correlation matrices Rl and

Sl are given by

[Sl]m,n = exp
[−j2π(n−m)dT cos(θ̄T,l)− (2π(n−m)dT sin(θ̄T,l)σθT,l

)2/2
]
,

(3.18)

[Rl]m,n = exp
[−j2π(n−m)dR cos(θ̄R,l)− (2π(n−m)dR sin(θ̄R,l)σθR,l

)2/2
]
,

(3.19)
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Fig. 15. Performance computed by density evolution analysis and computer simula-

tions for ergodic 2×2 MIMO OFDM channels with no spatial correlation.

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Large size LDPC code (n=880,640), 4x4 Uncorrelated MIMO−OFDM

SNR (dB)

B
it 

E
rr

or
 R

at
e 

(B
E

R
)

Capacity
MAP+reg_LDPC − D.E.
MAP+reg_LDPC − Simu
SIC+reg_LDPC − D.E.
SIC+reg_LDPC − Simu
MAP+irr_LDPC − D.E.
MAP+irr_LDPC − Simu
SIC+irr_LDPC − D.E.
SIC+irr_LDPC − Simu

Fig. 16. Performance computed by density evolution analysis and computer simula-

tions for ergodic 4×4 MIMO OFDM channels with no spatial correlation.
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where [A]m,n denotes the (m,n)-th entry of matrix A; dT denotes the transmitter

antenna spacing normalized by carrier wavelength; θ̄T,l denotes the mean angle of

departure for each scatterer cluster at the transmitter; σθT,l
denotes the root-mean-

square (RMS) of angle of departure at the transmitter; dR, θ̄R,l and σθR,l
denote the

corresponding variables at the receiver side. In our experiments, we consider an urban

micro-cell scenario [44] and for simplicity assume that all L paths follow the same

spatial parameters as θ̄T,l = 53, θ̄R,l = 18, σθT,l
= 8, σθR,l

= 2; we also let dT = 4.0

and dR = 0.5 to reflect the situations that the antennas at base station are easier to

be sparsely placed than the antennas at mobile devices. It is worth to note that some

parameters (e.g., σθR,l
= 2) here are intentionally set to be worse than typical scenarios

in order to highlight the effect of spatial correlation. Going through the same design

and optimization procedure, we obtain the analysis and design results in Figures 17-

18. (The issue of antenna correlation does not exist for 1×1 systems.) Compared to

spatially uncorrelated systems, antenna correlation causes channel capacity loss for

the systems considered here. Nevertheless, the optimized irregular LDPC codes along

with the MAP demodulator based iterative receiver can yield a performance within

1dB from the capacity of correlated channels. This demonstrates again the generality

and efficacy of the methods of density evolution with mixture Gaussians in optimizing

LDPC OFDM MIMO systems. However, compared to the corresponding result in

spatially uncorrelated channels (4×4 systems in particular) the performance of the

SIC-MMSE based receivers is degraded. We conjecture that the correlation matrices

Rl and Sl lead to a larger matrix conditional number of H l than it in uncorrelated

MIMO channels, and therefore the matrix operations (e.g., matrix inverse) in the

SIC-MMSE are more subject to numerical instability. (It is possible that some signal

processing techniques be used to alleviate this issue; further discussion is out of the

scope of this chapter.)
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Fig. 17. Performance computed by density evolution analysis and computer simula-

tions for ergodic 2×2 MIMO OFDM systems with spatial correlation.

4. Small Block-size LDPC Coded MIMO OFDM

So far, we have focused on the design and optimization of the LDPC MIMO OFDM

systems aiming to achieve the ergodic capacity. In doing so, large block-size LDPC

codes were employed for the following reasons. (1) In order to achieve the ergodic

channel capacity, the LDPC code word must be long enough to experience a very large

number of fading channel realizations. (2) The results of the density evolution analysis

are based on the assumption that extrinsic messages connected to each check node and

variable node are independent, which holds valid when LDPC code block-size is very

large. (3) In the procedure of the density evolution analysis and design, optimized

degree profiles, λ(x) and ρ(x), are first obtained, from which irregular LDPC codes

are then randomly constructed; according to the theorem of concentration around

ensemble average and the theorem of convergence to cycle-free ensemble average [9],

such randomly constructed LDPC codes are guaranteed to have vanishing probability
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Fig. 18. Performance computed by density evolution analysis and computer simula-

tions for ergodic 4×4 MIMO OFDM systems with spatial correlation.

of error above the SNRmin.op threshold (correspond to the optimized λ(x) and ρ(x)),

when its code block-size is very large. In reality, however, the price paid for achieving

the ergodic channel capacity (or error-free communications) by employing very large

block-size codes is large decoding delay. Usually, if small amount of fading outage is

tolerable, it is a more common practice to employ a small block-size LDPC code, which

spans a small number of fading channel states. The sensible performance measure

accordingly is outage capacity (see Eq.(3.4)). Unlike that for the ergodic channels,

a systematic way of designing small block-size LDPC codes to achieve the outage

channels is so far unknown to the best of our knowledge; instead, a heuristic design

approach which claims no theoretical optimality is adopted here. The design begins

with the degree profiles that have been optimized above for the ergodic channels (i.e.,

ñ → ∞). Based on these degree profiles, a small block-size LDPC code is randomly

constructed by trial-and-error; more specifically, we drop the constructed LDPC codes
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with small girth in the bipartite graph, which to some extent leads to error-floor in

FER performance. (It is also possible to construct small block-size LDPC codes by

other methods, e.g., the method of bit-filling [45].)

The heuristically constructed small block-size LDPC codes (n = 2048) are simu-

lated in outage MIMO OFDM channels (ñ = 1). In Figures 19-21, the performance of

regular and irregular LDPC codes when employed in systems with different number of

antennas and different types of demodulator is presented. Similar to the conclusions

we drew above in ergodic channels, the proposed LDPC coded MIMO OFDM systems

can achieve both information rate increase and performance improvement when using

multiple antennas; the MAP demodulator based iterative receiver can perform within

1.5dB from the outage capacity; and the low-complexity SIC-MMSE demodulator

based receiver incurs additional small performance loss (< 1dB). In addition, in order

to demonstrate the process of receiver convergence, we present the results in Figures

19-21 in another form in Figure 22, namely the required SNR (dB) to achieve a FER

of 10−2 versus the number of turbo receiver iteration. In a spatially uncorrelated 4×4

MIMO OFDM system, for both the MAP and the SIC-MMSE demodulator based

receivers, we see that although the performance difference between regular and irreg-

ular LDPC codes after receiver convergence (the curve “Iter #6”) is negligible, the

irregular LDPC codes help to speed up the receiver convergence. Around 0.5dB gain

is achieved after the first receiver iteration for both the MAP and the SIC-MMSE

demodulator based receiver. This observation suggests another benefit of optimizing

LDPC codes, that is to help reduce the number of receiver iterations and consequently

the receiver complexity in the outage MIMO OFDM channels.
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Fig. 19. Performance for outage 1×1 MIMO OFDM channels with no spatial correla-

tion.

5. A Mismatch Study

In the above, the performance of the optimized LDPC coded MIMO OFDM is demon-

strated, with LDPC codes being optimized for specific MIMO channels. As suggested

by one reviewer, it is perhaps in the readers’ interest to exhibit the reward of the

channel-specific LDPC code design, by comparing the performance of the MIMO-

channel-optimized irregular LDPC codes with that of the AWGN-channel-optimized

irregular LDPC codes in MIMO OFDM channels. The results are shown in Table I.

In general, the channel-specific design gain increases for systems with larger num-

ber of antennas. In addition, in outage channels, a good AWGN-optimized irregular

LDPC code also exhibits the faster convergence of turbo iterative receiver than the

non-optimized regular LDPC codes.
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Fig. 20. Performance for outage 2×2 MIMO OFDM channels with no spatial correla-

tion.
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spatial correlation, the performance is plotted as the required SNR (dB) to

achieve the FER of 10−2 versus the number of turbo receiver iteration. Note

that flatter curves indicate faster receiver convergence.
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E. Conclusions

In this chapter, we have considered the performance analysis and design optimization

of LDPC coded MIMO OFDM systems for high data-rate wireless transmission. The

tools of density evolution with mixture Gaussian approximations have been used to

optimize irregular LDPC codes and to compute minimum operational signal-to-noise

ratios for ergodic MIMO OFDM channels. Furthermore, based on the LDPC profiles

that were already optimized for ergodic channels, we also heuristically constructed

small block-size irregular LDPC codes for outage MIMO OFDM channels. Several

main conclusions are as follows.

1. Based on the optimized irregular LDPC codes, a turbo iterative receiver that

consists of a soft maximum a posteriori (MAP) demodulator and a belief-

propagation LDPC decoder can perform within 1 dB above the ergodic channel

capacity for various system configurations under consideration.

2. Likewise, based on the heuristically constructed small block-size irregular LDPC

codes, a turbo iterative receiver based on MAP demodulator can perform within

1.5 dB above the outage channel capacity.

3. Compared to the receiver employing the MAP demodulator, the receiver em-

ploying a low-complexity linear minimum mean-square-error soft-interference-

cancellation (SIC-MMSE) demodulator has limited performance loss (less than

1 dB) in spatially uncorrelated channels, but suffer extra performance loss in

spatially correlated channels.

4. In ergodic MIMO OFDM channels, the optimization gain of the irregular LDPC

codes over the regular LDPC codes tends to be smaller for systems with larger

number of antennas. In outage MIMO OFDM channels, both the regular and
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irregular LDPC codes perform close to each other after receiver converges, how-

ever the irregular LDPC codes are helpful to expedite the convergence of itera-

tive receiver.
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Table I. A mismatch study to demonstrate the reward of channel-matching irregu-

lar LDPC design. The performance is obtained through simulations in the

spatial-uncorrelated MIMO OFDM channels. LDPC.I denotes the irregu-

lar LDPC codes optimized for the corresponding MIMO OFDM channels;

LDPC.II denotes the irregular LDPC codes originally designed for AWGN

channels. The performance (SNR) of the short block LDPC coded MIMO

OFDM is measured at FER of 10−2.

Large Block Irregular LDPC Small Block Irregular LDPC
SNR (dB) LDPC.I LDPC.II Design Gain LDPC.I LDPC.II Design Gain

(LDPC.II - I) (LDPC.II - I)
MAP (1× 1) 2.57 2.57 0.00 7.08 7.08 0.00
MAP (2× 2) 2.56 2.61 0.05 5.57 5.72 0.15
MAP (4× 4) 2.46 2.65 0.19 4.48 4.81 0.33
SIC (1× 1) 2.52 2.52 0.00 7.06 7.06 0.00
SIC (2× 2) 2.75 2.92 0.17 6.32 6.44 0.12
SIC (4× 4) 2.82 3.17 0.35 5.33 5.70 0.37
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CHAPTER IV

CODING-SPREADING TRADEOFF IN LDPC-CODED CDMA WITH TURBO

MULTIUSER DETECTION

A. Introduction

Based on the notion of Shannon bandwidth introduced by Massey [46], general def-

initions of spreading and coding are given in [47] to distinguish these operations for

signaling with bandwidth redundancy. In [47], the operation of spreading is defined

as any bandwidth redundancy scheme which increases the Fourier bandwidth while

preserving the Shannon bandwidth, if this bandwidth redundancy mapping can be ex-

pressed as a unitary linear mapping; the coding is a signal set mapping, after which

the Shannon bandwidth of the signal set remains equal to the Fourier bandwidth.

These definitions are shown to lead to a separation result: every bandwidth redun-

dancy scheme can be considered as a concatenation of coding followed by spreading

[46, 48]. Coding and spreading are two aspects of signaling, and contribute differently

to the performance of CDMA systems. Then it is natural to ask what portions of

a given bandwidth expansion should be allocated to coding and spreading respec-

tively in order to achieve maximum spectral efficiency. This tradeoff problem has

been considered in [49] for single-user detection. An information theoretic treatment

of this problem for multiuser detection is found in [50, 28]. In [28], it is shown that

the MMSE receiver achieves the same optimum spectral efficiency as the single-user

matched filter for low Eb/N0. When Eb/N0 is greater than 2.5dB, the efficiency gain

for the MMSE receiver increases with Eb/N0 over the single-user matched filter. A

coding-spreading tradeoff study on linear multiuser detection in [47] gives the same

conclusion in single-cell systems but finds that in the multi-cell scenario, the linear
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MMSE receiver offers little advantage over the conventional matched-filter receiver in

terms of capacity; and it is speculated there that by joint decoding as in [14], such a

conclusion may no longer hold. In this chapter, we treat the coding-spreading tradeoff

problem for CDMA systems employing joint decoding in the form of turbo multiuser

detection [51, 52, 53, 14].

Unlike the turbo multiuser detectors discussed in this chapter, the front-end fil-

ters in [47] are assumed to be executed only once before sending the soft or hard out-

puts to the per-user channel decoders. The channel decoders are assumed to achieve

the residual capacities of the resulting single-user channels. For systems employing

turbo multiuser detection, such an ideal decoding assumption will not facilitate a

coding-spreading analysis due to the indispensable role of soft decoding dynamics in

the turbo decoding process. Here we assume that the users employ capacity-achieving

LDPC codes [8, 10, 9]. By using the density evolution technique for analyzing the

turbo decoding process [54], we can obtain the maximum spectral efficiency by search-

ing the tangent point between the extrinsic information SNR evolution curves of the

SISO detectors and that of the LDPC decoders when increasing the system load.

Since the LDPC codes offer near-capacity performance, we expect the results based

on such a system reflect that of a system employing ideal joint decoding.

The performance of CDMA systems with multiuser receivers depends on the

specific choice of spreading sequences used. To reap the benefits of multiuser detection

(MUD) in CDMA systems, it is important to obtain fundamental understanding

of system design independent of the fine system structure. To this end, one can

resort to large-system analysis, with both the number of users K and the processing

gain N going to infinity while keeping their ratio α = K
N

fixed. Built on some

recent results on random matrix theory, large-system analysis of CDMA systems

with random spreading and linear multiuser detection has recently garnered much
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attention [55, 56, 57]. The large-system asymptotic performance analysis of turbo

multiuser detection was considered in [58]. Another contribution of this chapter is

analysis of coding-spreading tradeoff for turbo multiuser detection based on large-

system analysis for both single-cell and multi-cell scenarios.

The rest of this chapter is organized as follows. In Section B, we describe the

single-cell and multi-cell systems under consideration with turbo multiuser receivers.

Section C presents the large-system asymptotic performance analysis for turbo mul-

tiuser detectors. Section D describes our approach to the coding-spreading tradeoff

analysis using density evolution techniques. Simulation results are provided in Sec-

tion E. Section F contains the conclusions.

B. System Descriptions

1. Turbo Receivers in Single-cell Systems

We consider an LDPC-coded K-user synchronous CDMA system with spreading gain

N , powers A2
1, A

2
2 · · · , A2

K , spreading sequences s1, s2, · · · , sK , and signaling through

their respective channels with additive white Gaussian noise. The block diagram of

the transmitter-end of such a system is shown in the upper half of Fig. 1. The binary

information data {dk(m)} for User k are LDPC encoded. The interleaved code bits of

the kth user are BPSK symbol-mapped to {bk(i)}. Shown in the lower part of Fig. 1,

the overall receiver is an iterative receiver which performs turbo multiuser detection

by passing extrinsic messages on the code bits between a soft-input soft-output (SISO)

multiuser detector and an LDPC decoder.

The received discrete-time signal sequence is given by

r(i) = S(i)Ab(i) + σν(i), i = 1, · · · ,M, (4.1)
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where S(i) = [s1(i), · · · , sK(i)] is an N×K matrix whose columns are user spreading

sequences corresponding to symbol i, A
4
= diag (A1, · · · , AK), b(i) = [b1(i), · · · , bK(i)]T ,

and ν(i) = [ν1(i), · · · , νN(i)]T is a white noise vector, νl(i)
iid∼ N (0, 1), M is the total

number of symbols transmitted by each user.

A sufficient statistic for demodulating the ith code bits of the K users is given

by the K-vector y(i) whose kth component is the output of a filter matched to

sk(i) in the ith code bit interval, i.e., yk(i)
4
= sk(i)

T r(i), k = 1, · · · , K. Denote

y(i) = [y1(i), · · · , yK(i)]T , then

y(i) = S(i)T r(i) = R(i)Ab(i) + σn(i), (4.2)

where R(i)
4
= S(i)T S(i), n(i) ∼ N

(
0,R(i)

)
.

SIC-MMSE SISO multiuser detector: A low-complexity approximate SISO

multiuser detector was developed in [14] which is based on soft interference cancella-

tion and instantaneous linear MMSE filtering, and is summarized as follows. Denote

ek as the kth unit vector in IRK . Denote L
(q−1)
m←L[bk(i)] as the extrinsic log-likelihood ra-

tio (LLR) of the kth user’s ith code bit sent from the LDPC decoder to the multiuser

detector, during the (q − 1)th turbo iteration. Define

b̃j(i)
4
= tanh

(
1

2
Lq−1

m←L[bj(i)]

)
, j = 1, · · · , K, (4.3)

and V k(i)
4
=

∑

j 6=k

A2
j [1− b̃j(i)

2]eje
T
j + A2

keke
T
k . (4.4)

Denote b̃(i)
4
= [b̃1(i) · · · b̃K(i)]T and b̃k(i)

4
= b̃(i) − b̃k(i)ek. Then the extrinsic LLR

of bk(i) sent from the multiuser detector to the LDPC decoder during the qth turbo
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iteration is given by

Lq
m→L[bk(i)] =

2zk(i)

1− µk(i)
, (4.5)

with zk(i) = Ake
T
k [V k(i) + σ2R(i)−1]−1[R(i)−1y(i)−Ab̃k(i)], (4.6)

µk(i) = A2
ke

T
k

[
V k(i) + σ2R(i)−1

]−1
ek. (4.7)

SIC-MF SISO multiuser detector: A further simplification on the above SIC-

MMSE detector is to replace the linear MMSE filtering step after the soft interference

cancellation, by a simple matched filtering step. In this case, we have

Lq
m→L[bk(i)] =

2

ν2
k(i)

(
yk(i)−

∑

j 6=k

Aj[R(i)]k,j b̃j(i)

)
, (4.8)

with ν2
k(i) =

[
R(i)V k(i)R(i) + σ2R(i)

]
k,k
− 1.

Note that computationally the SIC-MF method is simpler since it avoids the matrix

inversion in the SIC-MMSE method.

2. Turbo Receivers in Multi-cell Systems

Now we consider a multi-cell wireless system, in which the base station receives the

sum of the in-cell signals and the interference from neighboring cells. Here we treat a

typical hexagonal cell structure and consider the interference only from the first tier

of the six nearest neighboring cells. We assume that all cells have the same number

of users K. Let k = 1, · · · , K, indicate in-cell users, and k = K +1, · · · , 7K, indicate
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out-cell users. With the subscript (·)o denoting out-cell users, we define

Ao
4
= diag {[AK+1, · · · , A7K ]} [6K × 6K],

bo(i)
4
= [bK+1(i), · · · , b7K(i)]T [6K × 1],

So(i)
4
= [sK+1(i), · · · , s7K(i)] [N × 6K],

and Ro(i)
4
= S(i)T So(i) [K × 6K].

The matched-filter outputs for the in-cell users are then given by

y(i) = R(i)Ab(i) + Ro(i)Aobo(i) + σn(i). (4.9)

SIC-MMSE SISO multiuser detector: Similar to the single-cell case, we form

the soft estimates of all code bits of all in-cell users, {b̃j(i)}K
j=1, based on the a

priori LLR
{
Lq−1

m←L[bj(i)]
}K

j=1
provided by the channel decoder from the previous

stage according to (4.3). Then we perform soft cancellation only for interference from

in-cell users to obtain

yk(i)
4
= y(i)−R(i)Ab̃k(i) = R(i)A[b(i)− b̃k(i)] + Ro(i)Aobo(i) + σn(i),

k = 1, · · · , K. (4.10)

Then the instantaneous linear MMSE filter wk(i) applied to yk(i) is given by

wk(i) =
[
R(i)V k(i)R(i) + Ro(i)AoAoRo(i)

T + σ2R(i)
]−1

R(i)Aek; (4.11)

and the filter output is given by

zk(i) = wk(i)
T yk(i)

= Ake
T
k [V k(i) + Σ(i) + σ2R(i)−1]−1[R(i)−1y(i)−Ab̃k(i)], (4.12)

with Σ(i) = R(i)−1Ro(i)AoAoRo(i)
T R(i)−1.
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Following the same derivation as in [14], the extrinsic LLR from the SIC-MMSE

detector to the LDPC decoder is

Lq
m→L[bk(i)] =

2zk(i)

1− µk(i)
, (4.13)

with µk(i) = A2
ke

T
k

[
V k(i) + Σ(i) + σ2R(i)−1

]−1
ek. (4.14)

SIC-MF SISO multiuser detector: In this case, after the soft cancellation of

in-cell interference, match-filtering is applied to the residual signal in (4.10). We have

Lq
m→L[bk(i)] =

2

ν2
k(i)

(
yk(i)−

∑

j 6=k

Aj[R(i)]k,j b̃j(i)

)
, (4.15)

with ν2
k(i) =

[
R(i)V k(i)R(i) + Ro(i)A

2
oRo(i)

T + σ2R(i)
]

kk
− 1.

C. Large-system Asymptotic Performance Analysis

Next, we consider the asymptotic analysis where both the number of users K and the

processing gain N going to infinity while keeping the ratio α = K
N

fixed. A capacity

analysis of large CDMA networks with linear multiuser receivers is provided in [57].

A fundamental result, the Tse-Hanly equation, is obtained, given by

γ1 =
P1

σ2 + αEP [I(P, P1, γ1)]
, with I(P, P1, γ1) =

PP1

P1 + Pγ1

, (4.16)

where P1 and γ1 are the power and the output SNR of the linear MMSE receiver for

User 1, respectively, P denotes the power of interference from other users, and EP [·]
denotes the expectation with respect to the empirical distribution of the received

powers of the interferers. The solution to (4.16) is the asymptotic output SNR of the

linear MMSE multiuser receiver in large CDMA systems.
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1. Single-cell Systems

Consider the signal after soft interference cancellation,

rk(i) = r(i)−
∑

j 6=k

Aj b̃j(i)sj(i)

= Akbk(i)sk(i) +
∑

j 6=k

Aj

(
bj(i)− b̃j(i)

)
sj(i) + σν(i). (4.17)

Note that in rk(i), the desired user’s power is A2
k, and the jth interferer’s power

is A2
jE

{(
bj(i)− b̃j(i)

)2
}

= A2
j

(
1− b̃j(i)

2
)

. Therefore, as far as the second-order

moment is concerned, the soft-cancellation effectively adjusts the powers of the in-

terfering signals. That is, we can equivalently write (equivalent in the second-order

moment)

rk(i) = Akbk(i)sk(i) +
∑

j 6=k

(
Aj

√
1− b̃j(i)2

)
bj(i)sj(i) + σν(i). (4.18)

When the MMSE filter is applied to rk(i), we can make use of the result in [57] to

get the asymptotic SNR for the SIC-MMSE detector.

Assume that A1 = · · · = AK
4
= A. Then in (4.16) P1 = A2 and the power of the

interference becomes

Pj = A2
(
1− b̃j(i)

2
)

= A2

[
1− tanh2

(
λj

2

)]
. (4.19)

For regular LDPC codes, the output extrinsic λj from LDPC decoder to the multiuser

detector is approximated as symmetric Gaussian distributed, i.e., λj ∼ N (mj, 2mj)

[8]. The mean, mj, can be evaluated by using the density evolution method given

the pdf of the extrinsic LLR from the multiuser detector. Obviously, λj has same

symmetric Gaussian distribution with mean m assuming equal power among all users.
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The power of interference can then be written as

P = A2

[
1− tanh2

(
λ

2

)]
, (4.20)

where λ ∼ N (m, 2m). Substituting P and P1 into (4.16), we obtain that the asymp-

totic SNR, γ, is the unique positive solution to the following fixed point equation

γ =
1

σ2

A2
+ αEλ

{
1− tanh2(λ

2
)

1 + γ
[
1− tanh2(λ

2
)
]
} . (4.21)

Define

f(γ)
4
= γ

(
σ2

A2
+ αEλ

{
1− tanh2(λ

2
)

1 + γ
[
1− tanh2(λ

2
)
]
})

− 1

= γ

(
σ2

A2
+ αEλ

{
1

cosh2(λ
2
) + γ

})
− 1. (4.22)

The derivative of f(γ) is then given by

f ′(γ) =
σ2

A2
+ αEλ

{
1

cosh2(λ
2
) + γ

}
+ αγEλ

{
−1(

cosh2(λ
2
) + γ

)2

}
. (4.23)

Then starting from an arbitrary γ(0), γ can be solved using the following Newton

iterations:

γ(n) = γ(n−1) − µ
f

(
γ(n−1)

)

f ′ (γ(n−1))
, n = 1, 2, · · · . (4.24)

On the other hand, the asymptotic output SNR of the conventional matched-filter

is given by [57]

γ1 =
P1

σ2 + αEP [P ]
. (4.25)

Using the same equivalent model (4.18) for the post soft-cancellation signals, and

(4.20), we obtain the asymptotic SNR for the SIC-MF receiver described in Section B,
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given by

γ =
1

σ2

A2
+ αEλ

{
1− tanh2

(
λ

2

)} . (4.26)

Hence, given the mean m of the input code bit extrinsic messages λ ∼ N (m, 2m),

the asymptotic SNR of both the SIC-MMSE receiver and that of the SIC-MF receiver

can be solved numerically based on (4.21) and (4.26), respectively.

2. Multi-cell Systems

Based on the model of the multi-cell wireless system described in Section 2, we next

derive the asymptotic SNR for both the SIC-MMSE and the SIC-MF receivers in

the multi-cell scenario. Again, for the post soft-cancellation signals, we consider

an equivalent system which contains 7K users with the signal amplitudes
{

Ãk

}7K

k=1
.

Define Ã1 = A1, Ãk = Ak

√
1− b̃k(i)2, for k = 2, · · · , K, and Ãk = Ak, for k =

K + 1, · · · , 7K. Assume A1 = · · · = AK
4
= A, AK+1 = · · · = A7K

4
= A/

√
12. Our

receiver performs SIC-MMSE for in-cell interference and it performs linear MMSE

for out-cell interference. Therefore, there are two types of interference: the in-cell

interference in the form of (4.20), and the out-cell interference with power A2

12
. Assume

that all cells have the same number of users, then using (4.16), we have

EP [I(P, P1, γ)] =
1

7
Eλ

{
A4

[
1− tanh2

(
λ
2

)]

A2 + γA2
[
1− tanh2

(
λ
2

)]
}

+
6

7

A4

12

A2 + γ A2

12

. (4.27)

The asymptotic SNR for multi-cell system is then given by

γ =
P1

σ2 + 7αEP [I (P, P1, γ)]

=
1

σ2

A2
+ α

(
Eλ

{
1− tanh2(λ

2
)

1 + γ
[
1− tanh2(λ

2
)
]
}

+
1
2

1 + γ
12

) . (4.28)
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The unique solution γ to (4.28) can be found again using the Newton iterative method.

For the SIC-MF receiver, we have

EP [P ] =
A2

7
Eλ

{
1− tanh2

(
λ

2

)}
+

6

7

A2

12
. (4.29)

Substituting (4.29) to (4.25), we obtain the asymptotic SNR for the SIC-MF receiver

in the multi-cell scenario, given by

γ =
P1

σ2 + 7αEP [P ]
=

1

σ2

A2
+ α

(
Eλ

{
1− tanh2

(
λ

2

)}
+

1

2

) . (4.30)

D. Coding-spreading Tradeoff Analysis

In [47], the theoretical analysis of coding-spreading efficiency for linear multiuser

detection is based on the assumption of ideal decoding. In this chapter, since we

consider the tradeoff problem for turbo multiuser detection, the ideal decoding does

not facilitate the coding-spreading analysis. Thus we assume users employ LDPC

codes because the LDPC code offers near-capacity performance and at the same

time, admits an analytical framework on its performance analysis based on the density

evolution technique.

1. Density Evolution

We first evaluate iterative turbo multiuser detection using density evolution with

Gaussian approximation for the extrinsic messages. Consider a turbo receiver in Fig.

1. The receiver can be viewed as a nonlinear dynamic feedback system. The extrinsic

information messages {λi} are iteratively passed between the SISO multiuser detector

and the SISO channel decoders. When the interleaver is very large and random, the

extrinsic information messages are independent and identically distributed. In [8], it
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is shown that the pdf of the extrinsic messages at the output of each check and bit

node can be approximated as Gaussian and symmetric (i.e., the variance is twice the

mean). We now demonstrate the validity of Gaussian assumption for bit node through

the following example. Consider estimating the pdf for the extrinsic information

at the output of the LDPC decoder for a five-user synchronous rate-1
2

(3,6) LDPC

coded CDMA system with random spreading and the processing gain N = 10 when

Eb/No=1.75 dB. The receiver employs the SIC-MMSE multiuser detector. Fig. 23

shows the histograms of the extrinsic information at the LDPC decoder output at

different iteration stages by simulating the channel, the detector and LDPC decoder.

The symmetric Gaussian pdf’s with the corresponding means are also shown in the

same figure. It is seen there is a little mismatch between the exact pdf and the

Gaussian approximation at the first iteration. As the iteration goes on, when the

probability of error becomes smaller and smaller, the match between the exact pdf

and the Gaussian approximation gets quite close.

The extrinsic message of the SIC-MMSE multiuser detector is given by (4.5).

As discussed in [14], the output zk(i) of the instantaneous linear MMSE filter is

well approximated by a Gaussian distribution. Hence Lq
m→L[bk(i)] has a Gaussian

distribution with mean and variance given respectively by

E{Lq
m→L[bk(i)]} =

(
2

1− µk(i)

)
E {zk(i)} =

2µk(i)bk(i)

1− µk(i)
, (4.31)

Var{Lq
m→L[bk(i)]} =

(
2

1− µk(i)

)2

Var {zk(i)} =
4µk(i)

1− µk(i)
. (4.32)

Thus the extrinsic Lq
m→L[bk(i)] message has a Gaussian distribution of the form

Lq
m→L[bk(i)] ∼ N

(
mk(i)bk(i), 2mk(i)

)
, with mk(i)

4
=

2µk(i)

1− µk(i)
. (4.33)

Hence the extrinsic messages passed from the SISO multiuser detector to the LDPC
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Fig. 23. The histograms for the extrinsic information of LDPC decoder in a 5-user

synchronous CDMA system with the SIC-MMSE receiver, and the symmetric

Gaussian approximations.

decoder are also symmetric Gaussian variable of the form N (2SNR, 4SNR).

Consider the input and the output extrinsic messages of the multiuser detector

and the channel decoder at each iteration as shown in Fig. 24, where SNR1in, SNR1out

denote the input and the output SNRs of the multiuser detector, and SNR2in, SNR2out

denote the input and the output SNRs of the LDPC decoder. We have the relationship

SNR2in = SNR1out and SNR1in = SNR2out. Starting with SNR1in = 0, the multiuser

detector produces a nonzero SNR2out for the output extrinsic information. For a

certain value of Es/N0, the output of the detector SNR1out is the function of the input

SNR1in and Es/N0, i.e., SNR1out = Γ1(SNR1in, Es/N0). The output of the decoder

SNR2out is the function of the input SNR2in, so we have SNR2out = Γ2 (SNR2in) =

Γ2 (Γ1(SNR1in, Es/N0)).

We can test the convergence by tracking the evolution of the extrinsic informa-
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Fig. 24. Dynamic system analysis of turbo multiuser detection.

tion’s SNR for both the detector and the decoder. We plot the SNR characteristic

curves of output SNR of detector versus its input SNR, and the input SNR of the de-

coder versus its output SNR. Given the extrinsic message SNR of the LDPC decoder

SNR1in, we have λ ∼ N (2SNR1in, 4SNR1in). The function Γ1 can then be evaluated

using Monte Carlo method for finite-size systems and using (4.16) and (4.25) for large

systems. The decoder function Γ2 is evaluated by using the density evolution method

in [8], which computes the output distribution given the input distribution of the

extrinsic information from the multiuser detector, i.e., λ ∼ N (2SNR2in, 4SNR2in).

As afore mentioned, the SNRs of the input and output of Γ1 and Γ2 are equal to half

of the mean of the extrinsic information, i.e., SNR = E{λ}/2. An example is plotted

in Fig. 25. A (3,6) regular LDPC code with 1
2

code rate is used. The upper curve

corresponds to the input-output function Γ1 for the SIC-MMSE multiuser detector,

and the lower curve corresponds to Γ−1
2 for the LDPC decoder. Fig. 25 graphically

shows the progress of the turbo iterations. The improvement on the SNR of the ex-

trinsic information follows a staircase path reflecting at right angles between the SNR

characteristic curves of Γ1 and Γ−1
2 . The SNR improvement steps are large when two

characteristic curves are far apart, and small when they are close. There is a narrow

iterative decoding tunnel between the curves. We can see that after five iterations,
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Fig. 25. SNR characteristic curves of turbo multiuser detection.

the steps pass through the tunnel successfully. This means SNR of λ goes to infinity

and the bit-error-rate (BER) goes to zero.

The SNR characteristic curve of the multiuser detector, i.e., the function Γ1,

is determined by Es/N0. The initial displacement of the Γ1 curve for SNR1in = 0

depends on the value of Es/N0, as well as the whole SNR progress curve. Therefore,

it will decide the distance between the Γ1 and the Γ−1
2 curves. When Es/N0 increases,

the Γ1 curve moves away from the Γ−1
2 curve. When Es/N0 decreases, the Γ1 curve

moves close to the Γ−1
2 curve, and the tunnel becomes narrower. If at a certain value

of Es/N0, the two curves become tangent to each other at some point, the iterative

decoding tunnel is closed at the tangent point and the extrinsic SNR improvement

path can not pass the point. That means the receiver can not achieve zero-error

decoding. Such an Es/N0 value represents the threshold of the receiver.
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2. Coding-spreading Tradeoff

First, we introduce the separation of coding-spreading factors. Assume each user

sends information at rate of R bits/second. The transmission bandwidth available is

W . The bandwidth expansion factor is then defined as

Ω =
2W

R
. (4.34)

Based on Proposition 1 in [47], we can separate the bandwidth expansion into a coding

component with code rate ν bits/symbol and a spreading component with spreading

factor N . We have

Es

N0

= N
Ec

N0

, and
Eb

N0

= Ω
Ec

N0

, (4.35)

where Ec is the energy per chip. Then we have

Ω =
N

ν
, and

Es

N0

= ν
Eb

N0

. (4.36)

Hence Γ1 is a function of ν Eb

N0
or N

Ω
Eb

N0
.

Now, we investigate the problem of the coding-spreading tradeoff optimization.

For given values of Ω and Eb/N0, the spreading factor N and Es/N0 are determined

by the code rate ν. For a certain code rate ν, we use the largest number of users Km

that can transmit their bits reliably on the channel as a measurement of the system

performance. Clearly Km is a function of Ω and ν. We define the ratio of Km and Ω

as the total spectral efficiency of the system in bits/chip at a code rate ν, given by

κ(Ω, ν) =
Km(Ω, ν)

Ω
. (4.37)

Thus, the coding-spreading tradeoff is to find the optimized code rate ν which has
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the maximum spectral efficiency, i.e.,

ν∗ = arg max
ν

κ (Ω, ν) . (4.38)

In a practical system, Km can be determined by fixing system performance with

an information BER threshold. It is useful to draw a conclusion about the coding-

spreading tradeoff based on the ideal coding. In this chapter, we pick the capacity-

achieving LDPC codes to analyze the coding-spreading tradeoff.

By the analysis of the density evolution of the extrinsic information above, we can

solve the tradeoff problem for turbo multiuser detection along the following line. First,

fix a total bandwidth expansion Ω and Eb/N0. For a given code rate ν, we can get the

extrinsic information SNR characteristic curve for the LDPC decoder Γ−1
2 . Es/N0 is

fixed as νEb/N0 and the spreading gain N = Ων. Thus, with a certain number of users

K contained in the cell, we can obtain the SNR characteristic curve for the detector

function Γ1. By investigating the existence of iterative decoding tunnel, we know if

the system can support this number of users. Then for each possible user number K,

we can obtain the extrinsic information SNR characteristic of the multiuser detector.

The largest value of K can be found by the corresponding SNR curve of Γ1 that does

not intersect with the decoder curve of function Γ−1
2 . An example is shown in Fig. 26.

The total expansion factor is set to 64 and Eb/N0 = 2dB. The function Γ−1
2 curve in

the plot is for the rate-1
2

(3, 6) regular LDPC code. Six extrinsic information SNR

characteristic curves with different number of users, K = 16, · · · , 21, are shown in

the same plot. We find the multiuser detector SNR curve with the maximum number

user without touching the decoder curve is K = 19. Because the number of user of

K is discrete, and a real code is used, the curve corresponding to K = 20 is the one

which just touches the curve of decoder. Hence, Km(64, 0.5) = 20 for this case. Then

the spectral efficiency can be computed by (4.37). We can choose different regular
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Fig. 26. Extrinsic SNR evolution curves for the SISO detector and decoder of finite-size

systems.

LDPC codes to form a set of codes with different code rates. Then we can obtain the

spectral efficiency for each code rate. The optimal code rate can then be obtained

from (4.38).

3. Tradeoff Analysis in Large Systems

In large systems, K, N → ∞. So instead of searching the largest K as in finite-size

systems, we look for the largest value of α = K
N

that can be supported by the system.

No specific fixed bandwidth expansion Ω is required for large systems. The spectral

efficiency is then defined as

κ(ν)
4
= αm(ν)ν. (4.39)

We can find the αm(ν) by analyzing the SNR evolution curves of the the multiuser

detector and decoder. For a give code rate ν, the extrinsic information SNR evo-
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lution curve of function Γ−1
2 is obtained in the same way as before. The curve

of function Γ1 can be obtained from the equations of the output extrinsic SNR γ

derived in Section C. As afore mentioned, the extrinsic information λ is approxi-

mated as symmetric Gaussian distributed with the mean equal to twice of SNR, i.e.,

λ ∼ N (2SNR, 4SNR). Thus, the large-system output SNR of the detector SNR1out is

the solution of γ, the input SNR for the detector SNR1in is half mean of the input λ,

i.e., λ ∼ N (2SNR1in, 4SNR1in). The value of Es/N0 is determined by the code rate ν

and Eb/N0, which translates into A2/σ2 in the expressions of the asymptotic output

SNR γ. We can plot the large-system multiuser detector SNR evolution curves with

different values of α. By investigating the iterative detection tunnel, we can find the

largest value of α which the system can support. The spectral efficiency can then be

computed by (4.39).

E. Results

1. Single-cell Systems

We first present the results in the single-cell scenario. The value of the bandwidth

expansion factor Ω is set to 64. For the regular LDPC code, the rate can be computed

as

R = 1− dv

dc

, (4.40)

where dv and dc are degrees of variable nodes and check nodes, respectively. The

regular (dv, dc) LDPC codes with different code rate can be built as follows: fix

dv = 3, choose dc = 4, 5, 6, 7, · · · . Then we get a set of regular LDPC codes with rate

equals to 0.25, 0.4, 0.5, 0.57, · · · . The entire code rate ν is the product of LDPC code

rate and number of bits per symbol in modulation mapping. For BPSK case, ν = R.
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Fig. 27 shows the spectral efficiency results for finite-size systems. The curves

of κ(Ω, ν) over code rate ν with Eb/N0 = 2dB and 3dB for both turbo receivers are

plotted. In the finite system, we use aperiodic random spreading, i.e., the spreading

sequence varies from symbol to symbol. We can see the SIC-MMSE receiver has high

spectral efficiency at the code rate interval between ν = 0.4 to 0.6, while the SIC-MF

receiver favors a large range of code rate ν smaller than 0.5. For Eb/N0 = 3dB,

the maximum spectral efficiency (κ∗) for the SIC-MF receiver equals 22/64 ≈ 0.34

bits/chip at code rate ν∗ = 0.4. The maximum spectral efficiency for the SIC-MMSE

receiver is 34/64 ≈ 0.53 bits/chip at code rate ν∗ = 0.5. For Eb/N0 = 2dB, κ∗ =

14/64 ≈ 0.22 bits/chip at code rate ν∗ = 0.4 for the SIC-MF, and κ∗ = 22/64 ≈ 0.34

bits/chip at code rate ν∗ = 0.4 for the SIC-MMSE receiver. It is obvious that the

maximum spectral efficiency of the SIC-MMSE receiver is much higher than that of

the SIC-MF receiver, which is different from the result for the single-user LMMSE

receiver in [47]. Comparing the performance at other code rates, we find that the

SIC-MMSE receiver has a significant gain in spectral efficiency at the optimal code

rate, while the SIC-MF receiver only sees a marginal gain in spectral efficiency at the

optimal code rate.

The asymptotic spectral efficiency results in large systems are shown in Fig. 28

and Fig. 29. When Eb/N0 = 3dB, the maximum spectral efficiency κ∗ = 0.52 bits/chip

at the code rate ν∗ = 0.5 for the SIC-MMSE receiver, and κ∗ = 0.31 bits/chip at

ν∗ = 0.4 for the SIC-MF receiver. When Eb/N0 = 2dB, κ∗ = 0.32 bits/chip at the

code rate ν∗ = 0.4 for the SIC-MMSE receiver, and κ∗ = 0.19 bits/chip at ν∗ = 0.4 for

the SIC-MF receiver. We can see that the spectral efficiency results of large systems

match very well with those of finite-size systems. Thus, we get the same conclusions

of the spectral efficiency as in finite systems. The spectral efficiency results of some

high Eb/N0 values are shown in Fig. 29. The gap between the SIC-MMSE receiver
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Fig. 27. Spectral efficiency of finite-size systems in the single-cell scenario; Ω = 64.

and the SIC-MF receiver is enlarged. The optimal code rate for the SIC-MMSE

receiver remains at the middle range of the code rate when Eb/N0=6dB. When Eb/N0

increases to 12dB or 18dB, the optimal code rate shifts to the range of higher code

rate, i.e., (0.6, 0.85). The optimal code rate for the SIC-MF receiver exists in the

range of low coding rates. This means that the SIC-MMSE receiver favors spreading

while the SIC-MF receiver favors coding. The maximum spectral efficiencies for the

SIC-MMSE receiver are 0.88, 1.15 and 1.23 bits/chip, for Eb/N0 =6dB, 12dB and

18dB, respectively. And the corresponding maximum special efficiencies for the SIC-

MF receiver are 0.50, 0.63 and 0.66 bits/chip. The optimum spectral efficiencies for

the LMMSE receiver with single-user decoding presented in [47] are around 0.72,

1.0 and 1.1 bits/chip, respectively. Hence, the SIC-MMSE multiuser detection with

joint-decoding offers better optimum spectral efficiency than the LMMSE multiuser

detection with single-user decoding.
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Fig. 28. Spectral efficiency of large systems in the single-cell scenario.
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Hence, we can see in the single-cell system, the turbo multiuser receiver with the

SIC-MMSE detector has significant gain in spectral efficiency over the corresponding

receiver employing the SIC-MF detector when both perform at the optimal code rate.

It also offers higher optimum spectral efficiency than the linear multiuser detector.

2. Multi-cell Systems

Recall that in the multi-cell scenario, the turbo multiuser receiver only performs soft

interference cancellation for the in-cell users. Fig. 30 shows the spectral efficiency

curves of turbo multiuser detectors in finite-size systems. For Eb/N0 = 3dB, the

maximum spectral efficiency (κ∗) for the SIC-MF receiver equals to 11/64 ≈ 0.17

bits/chip at code rate ν∗ = 0.4. The maximum spectral efficiency for the SIC-MMSE

receiver is 13/64 ≈ 0.20 bits/chip at the optimal code rate ν∗ = 0.4. For Eb/N0 =

2dB, κ∗ = 6/64 ≈ 0.09 bits/chip at the optimal code rate ν∗ = 0.4 for the SIC-

MF receiver, and κ∗ = 8/64 ≈ 0.125 bits/chip at code rate ν∗ = 0.4 for the SIC-

MMSE receiver. The SIC-MF spectral efficiency is down by a factor of 1/2 when

compared with single-cell results. And the gap between the spectral efficiency curves

of the SIC-MMSE and the SIC-MF receivers is reduced. The optimal code rate with

the maximum spectral efficiency κ∗ is located at the middle code rate range, i.e.,

ν∗ = 0.4 for both receivers. Though not as significant as in the single-cell scenario,

the SIC-MMSE receiver still outperforms the SIC-MF receiver when both operate

at the optimal code rate. The multi-cell asymptotic spectral efficiency results in

large systems are shown in Fig. 31. The results are consistent with those for finite-

size systems. The spectral efficiency results of some high Eb/N0 values are shown

in Fig. 32. The optimum spectral efficiencies of the SIC-MMSE receiver are 0.38,

0.50 and 0.53 bits/chip for Eb/N0 =6dB, 12dB and 18dB, respectively, which are

much better than the results of the SIC-MF receiver: 0.28, 0.36 and 0.36 bits/chip.
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Fig. 30. Spectral efficiency of finite-size systems in the multi-cell scenario; Ω = 64.

Comparing with the results of the LMMSE receiver with single-user decoding, 0.40,

0.48 and 0.50 bits/chip for Eb/N0 =6dB, 12dB and 18dB, we find that the SIC-MMSE

multiuser detector with joint-decoding has close results on optimum spectral efficiency

with the LMMSE detector with single-user decoding in the multi-cell scenario.

3. Higher Order Constellations

Finally, we examine the coding-spreading tradeoff in systems with the QPSK and

8-PSK modulations. With QPSK modulation in large systems, it is shown in the

Appendix A that

κQPSK(ν) = 2κBPSK(
ν

2
). (4.41)

This relationship is also demonstrated by the simulation results of finite-size systems.

Fig. 33 shows that the spectral efficiency results of the large systems match very well

with the finite-size systems. Thus, we can use the results obtained previously for
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BPSK to present the results of QPSK, which are shown in Fig. 34 and Fig. 35. The

optimal spectral efficiency of QPSK modulation is twice that of BPSK modulation in

both single-cell and multi-cell scenarios.

The spectral efficiency curves of 8-PSK modulation are plotted in Fig. 36 for

single-cell scenario and in Fig 37 for multi-cell scenario for large systems. Obviously,

with higher order constellations the gap between the SIC-MMSE and the SIC-MF

receivers is widened in both single-cell and multi-cell systems.

F. Conclusions

In this chapter, we have treated the coding-spreading tradeoff problem for turbo

multiuser detection in synchronous CDMA system over AWGN channels by inves-

tigating the extrinsic SNR evolution dynamics of the SISO multiuser detectors and

the LDPC channel decoders. Two types of SISO detectors, the SIC-MMSE detec-

tor and the SIC-MF detector, are considered. The spectral efficiency curves of the

SIC-MMSE and the SIC-MF receiver for different code rate are obtained for both fi-

nite and large systems, in both single-cell and multi-cell scenarios. Numerical results

demonstrate that in single-cell systems, the SIC-MMSE receiver offers a significant

gain in spectral efficiency over the SIC-MF receiver. The results also show that the

SIC-MMSE receiver outperforms the LMMSE receiver on the maximum spectral effi-

ciency. In multi-cell systems, though the spectral efficiency gap between two receivers

is reduced, the SIC-MMSE receiver still provides attendant gains over the SIC-MF

receiver when both operate at the optimal code rates.
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CHAPTER V

DESIGN OF IRREGULAR REPEAT ACCUMULATE CODES FOR MIMO

SYSTEMS WITH ITERATIVE RECEIVER

A. Introduction

During the past decade, random-like codes have drawn significant interest because

they offer capacity-achieving performance. One of the important milestones is the

re-discovery of the low-density parity-check (LDPC) codes [5], which were originally

proposed by Gallager [6, 59]. The irregular LDPC codes were introduced in [7], which

were shown to asymptotically achieve the capacity of the binary erasure channel

(BEC) under iterative message-passing decoding. The complete design and perfor-

mance analysis of irregular LDPC codes for memoryless channels based on density

evolution and Gaussian approximation were treated recently in [8, 9]. It has been

shown that carefully designed irregular LDPC codes can outperform parallel concate-

nated convolutional codes (PCCC) for long code lengths and provide performance

within a fractional of a decibel from the AWGN channel capacity.

The repeat-accumulate (RA) code is another type of random-like code first pro-

posed in [60] as turbo-like codes. It is a special case of both PCCC and serial con-

catenated convolutional codes (SCCC) with performance slightly inferior to the fully-

fledged turbo codes [61]. The irregular repeat-accumulate (IRA) code first introduced

in [62] is a systematic RA code with irregular repeat profiles. The Gaussian density

evolution technique for LDPC code design is applied to the IRA code optimization

in [62], and it is shown that the optimized IRA codes outperform turbo codes under

different code lengths. Several design methods for IRA codes in memoryless channels

are discussed and compared in [63]. The IRA codes offer performance close to that of
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the irregular LDPC does. Compared with the LDPC codes, the IRA codes are more

attractive from the implementation point of view, because the encoders are extremely

simple and the decoding complexity is the same as that of the LDPC codes.

Communication by employing multiple transmit and receive antennas has become

a promising solution for the next-generation high-speed wireless systems [31, 37, 34].

On the other hand, the turbo processing principle is a powerful paradigm for en-

hancing the system performance and has been successfully applied to many detection

and decoding problems [12]. In this chapter, we consider the code design problem

for IRA-coded MIMO systems employing iterative (turbo) receivers. Recently, the

optimization of LDPC codes have been addressed in the context of turbo equalization

[29] and turbo multiuser detection [43]. Here different from [29, 43] and following [64],

we employ the EXIT chart technique to characterize the soft MIMO demodulator,

based on which the IRA code optimization is carried out using density evolution.

We also analyze the inherent relationship between the IRA code and the LDPC code

ensembles based on their Tanner graph representations [65]. We show that such a

relationship can be exploited to transform an optimized LDPC code into an opti-

mized IRA code. It can also be used to design short-length IRA codes in block fading

MIMO channels.

The remainder of this chapter is organized as follows. In Section B, we describe

an IRA-coded MIMO system employing a turbo receiver. Two soft-input soft-output

MIMO demodulation algorithms are discussed. In Section C, we discuss the density

evolution analysis for IRA codes and the optimization of IRA codes for turbo MIMO

systems. In Section D, we describe the mapping relationship between the IRA codes

and the LDPC codes, and the transformation of an optimal LDPC code for MIMO

system into the corresponding optimal IRA code. In Section E, we provide numerical

results, and discuss the design of short-length IRA codes for block-fading channels.
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Section F contains the conclusions.

B. System Descriptions

1. IRA Coded MIMO System

We consider an IRA coded MIMO system with nT transmit antennas and nR receive

antennas, signaling through independent fading channels. The transmitter structure

is illustrated in the upper portion of Fig. 38. A block of K information bits are

encoded by a rate R = K/N IRA code. The N coded bits {bi} are interleaved and

modulated using the MPSK constellation into a block of N/Mc symbols {ck}, where

Mc is the constellation size. The MPSK symbols are demultiplexed to nT streams and

then transmitted by nT transmit antennas simultaneously. After proper sampling, the

received signal at the m-th receive antenna during the t-th time slot is given by

ym(t) =

√
ρ

nT

nT∑
n=1

hmn(t)c(t−1)nT +n + vm(t), m = 1, · · · , nR, t = 1, 2, · · · , (5.1)

where hmn(t) is the complex fading gain of the channel from the n-th transmit antenna

to the m-th receive antenna during the t-th time slot; vm(t) ∼ Nc(0, 1) is the complex

additive white Gaussian noise and ρ is the total received signal-to-noise ratio.

Denote y(t)
4
= [y1(t), · · · , ynR

(t)]T , x(t)
4
=

[
c(t−1)nT +1, · · · , ctnT

]T
, and v(t)

4
=

[v1(t), · · · , vnR
(t)]T , and H(t) as an nR × nT matrix with hmn(t) being the (m,n)-th

entry. Then (5.1) can be written in a vector form as

y(t) =

√
ρ

nT

H(t)x(t) + v(t). (5.2)

With no channel state information (CSI) at the transmitter side but perfect CSI at

the receiver side, assuming Gaussian signaling, the ergodic capacity for such MIMO
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channel is given by [34]

C(ρ) = E
{

log2 det
(
InR

+
ρ

nT

HHH
)

︸ ︷︷ ︸
I(ρ, H)

}
, (5.3)

where I (ρ, H) is the instantaneous mutual information conditioned on the channel

H . When the transmitted symbols belong to a certain constellation, i.e., x ∈ ΩnT ,

the mutual information is computed instead as

I (ρ,H) = nT log2 |Ω|

− 1

|Ω|nT

|Ω|nT−1∑
j=0

E
{

log2

|Ω|nT−1∑
i=0

exp
[
−

∥∥∥
√

ρ

nT

H(xj − xi) + v
∥∥∥

2

+ ‖v‖2
]}

,

(5.4)

where the expectation is taken over the distribution of v ∼ Nc (0, InR
). For MIMO

systems in quasi-static block fading channels, for a given outage probability Pout, the
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outage capacity C (ρ, Pout) is determined from the following equation:

P
(I(ρ, H) ≤ C

)
= Pout. (5.5)

2. IRA Encoding and Decoding

The schematic diagram of an IRA encoder is shown in the upper portion of Fig. 38.

A block of information bits {dk} are encoded by an irregular repeat code with dk

repeated rk times, where {rk : 2 ≤ rk ≤ D} are the repetition degrees of {dk}, D

is the maximum repetition degree. The repeated bits are interleaved to obtain {uj},
and then encoded by an accumulator, given by

xm+1 = xm +
a−1∑
i=0

uam+i, m = 0, · · · ,M − 1, (5.6)

where xm represents parity nodes with initial setting x0 = 0; a is the grouping factor.

The length of the parity bits is M = n/a, where n =
∑K

k=1 rk. The final coded bits

{bi}N
i=1 are the collection of the information bits {dk}K

k=1 and the parity bits {xm}N−K
m=1 .

Similar to LDPC codes, we can represent the IRA codes by a Tanner graph

[65], shown in Fig. 39. The IRA code ensemble is formed by all graphs of the form

of Fig. 39. Note that n =
∑K

k=1 rk is the total number of edges connecting the

information bit nodes and the check nodes. Define λi as the proportion of the edges

connected to the information bit nodes with degree i, i = 2, · · · , D, which satisfies
∑D

i=2 λi = 1. The rate of the codes is then given by

R =
K

K + M
=

n
∑

i λi/i

n
∑

i λi/i +
∑

i λin/a
=

a
∑D

i=2 λi/i

1 + a
∑D

i=2 λi/i
. (5.7)

We use a polynomial to represent the repetition profile of an IRA code ensemble, i.e.,

λ(x) =
D∑

i=2

λix
i−1. (5.8)
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Fig. 39. Tanner graph and decoding of an IRA code.

With the Tanner graph representation, we can use the belief-propagation (BP)

message-passing decoding algorithm which is similar to the LDPC decoding algorithm

to decode the IRA code [66].

3. Turbo MIMO Receivers

A turbo MIMO receiver is employed for iterative joint MIMO detection and IRA

decoding, as shown in the lower portion of Fig. 38. The extrinsic information of the

IRA coded bits is iteratively passed between a soft MIMO detector and a soft belief-

propagation IRA decoder. In each outer detection-decoding iteration, a number of

inner iterations are performed within the soft IRA decoder during which the extrinsic

information is passed along the edges in the Tanner graph of the IRA codes.

Two types of soft MIMO detectors are described next with the following no-
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tations. All extrinsic information is in the log-likelihood-ratio (LLR) form and the

variable L is used to refer to the extrinsic information. Superscript (q) is used to

denote the q-th outer iteration. A subscript M → I denotes the message passed from

the MIMO detector to the IRA decoder, and vice versa. For notational convenience,

henceforth we drop the time index t.

MAP MIMO Detector

Assume perfect channel state information at the receiver. At the q-th turbo iteration,

the soft MIMO detector computes the extrinsic information for the IRA coded bit bi

as

Lq
M→I(bi) = Γ

(
y,

{
Lq−1

M←I(bi)
})

, (5.9)

where y is the received data;
{
Lq−1

M←I(bi)
}

is the extrinsic information computed by

the IRA decoder in the previous stage. At the the first iteration, let Lq−1
M←I(bi) = 0,∀i;

Γ(·) denotes the MIMO detector function.

At a given time slot, nT MPSK symbols corresponding to McnT IRA code bits

are transmitted from the nT transmit antennas. Denote

B+
k

4
= {(b1, · · · , bk−1, +1, bk+1, · · · , bMcnT

) : bj ∈ {+1,−1}, j 6= k} . (5.10)

Similarly define B−k . With MPSK modulation, B+
k is mapped to C+

k and B−k to C−k .

Thus, the extrinsic output from the maximum a posteriori (MAP) MIMO detector is
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given by

Lq
M→I(bk) = log

P (bk = +1|y)

P (bk = −1|y)
− log

P (bk = +1)

P (bk = −1)

= log

∑
x+∈C+

k
P (y|x = x+)P (x = x+)

∑
x−∈C−k P (y|x = x−)P (x = x−)

− log
P (bk = +1)

P (bk = −1)

= log

∑
x+∈C+

k
exp

[
−

∥∥∥y −
√

ρ
nT

Hx+
∥∥∥

2]∏
j 6=k,bj∈B+ P [bj]

∑
x−∈C−k exp

[
−

∥∥∥y −
√

ρ
nT

Hx−
∥∥∥

2] ∏
j 6=k,bj∈B− P [bj]

,(5.11)

with P (bj)
4
= P (b = bj) =

exp
(
bjL

q−1
D←I(bj)

)

1 + exp
(
bjL

q−1
D←I(bj)

) . (5.12)

SIC-MMSE MIMO Detector

We now describe a suboptimal soft MIMO detector based on soft interference can-

cellation and linear MMSE filtering, originally proposed for multiuser detection in

[14].

Based on the a priori LLR of the code bits provided by the IRA decoder in the

(q − 1)-th stage, {Lq−1
M←I(bk)}, we first form the soft estimates of the MPSK symbol

transmitted from the m-th antenna, given by

x̃m =
∑
xq∈Ω

xqP (xm = xq) =
∑
xq∈Ω

xq

log2 |Ω|∏
j=1

P ({xq}j), (5.13)

where {xq}j denotes the j-th bit of the symbol xq in constellation set Ω. Denote

x̃k
4
= [x̃1, · · · , x̃k−1, 0, x̃k+1, · · · , x̃nT

]T . Define

zk
4
=

√
ρ

nT

eT
k HH

( ρ

nT

HV kH
H + InR

)−1(
y −

√
ρ

nT

Hx̃k

)
, (5.14)

µk
4
= eT

k HH
(
HV kH

H +
nT

ρ
InR

)−1

Hek, (5.15)

where

V k
4
= diag

{
1− |x̃1|2, · · · , 1− |x̃k−1|2, 1, 1− |x̃k+1|2, · · · , 1− |x̃nT

|2} ,
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and ek denotes an nR× 1 vector with all-zero entries, except for the k-th entry being

1. Then the extrinsic information Lq
D→L delivered by the SIC-MMSE MIMO detector

is computed by

Lq
M→L(bi) = log

∑

(xq)i=+1,xq∈Ω

exp
{
− ‖zk − µkxq‖2

µk − µ2
k

} ∏

j 6=i

P
(
b = (xq)j

)

∑

(xq)i=−1,xq∈Ω

exp
{
− ‖zk − µkxq‖2

µk − µ2
k

} ∏

j 6=i

P
(
b = (xq)j

) , (5.16)

where (xq)i denote the bit in the symbol xq corresponding to the bit bi.

C. Optimization of IRA Codes via Density Evolution

1. Density Evolution for IRA Decoding

The details of density evolution for LDPC codes can be found in [9, 10]. In this section,

following the same procedure, we formulate the density evolution for IRA decoding

based on the belief-propagation decoding algorithm. Assuming the codeword length

is infinite, the key of density evolution is to track the pdf of the extrinsic messages

passing between the bit nodes and the check nodes in every iteration. Since there are

no cycles in the Tanner graph when N →∞, the extrinsic messages can be modelled

as independent random variables.

Let uc→i,j denote the extrinsic message output from a check node passed along

the jth edge to an information bit node and vi→c,j denote the extrinsic message output

from an information node passed along the jth edge to a check node. Similarly define

uc→p,j and vp→c,j. Denote ui and up as the messages from the channel observation to

the information node and parity node, respectively. As shown in Fig. 39, based on

the sum-product algorithm [10], we can obtain the extrinsic message updated from
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the `-th stage to the (` + 1)-th stage in the IRA decoder, given by

tanh
u`+1

c→i,k

2
=

a∏

j=1,j 6=k

tanh
v`

i→c,j

2

2∏
j=1

tanh
v`

p→c,j

2
, (5.17)

tanh
u`+1

c→p,k

2
=

a∏
j=1

tanh
v`

i→c,j

2

2∏

j=1,j 6=k

tanh
v`

p→c,j

2
, (5.18)

v`+1
i→c,k =

∑

j=1,j 6=k

u`+1
p→i,j + ui, (5.19)

v`+1
p→c,k =

2∑

j=1,j 6=k

u`+1
p→c,j + up. (5.20)

Let f `
i→c(x) and f `

p→c(x) denote the pdf of extrinsic messages passed from an informa-

tion bit node to a check node, i.e., v`
i→c, and from a parity bit node to a check node,

i.e., v`
p→c, respectively, during the `-th iteration. Similarly define f `

c→i(x) and f `
c→p(x).

From (5.19) and (5.20), we can see that the pdf of the output extrinsic message at an

information or parity node is the convolution of the pdf’s of the outgoing message.

For (5.17) and (5.18), we can define function γ(x) =
(
sgn(x), log tanh |x

2
|) to trans-

form multiplication to summation. Denote F(f(x)) as the output pdf of function

γ(x) when input x ∼ f(x). Similarly, F−1(f(y)) is denoted as the output pdf of

function γ−1(y) when input y ∼ f(y). Then, the pdf’s of the messages passed in the

decoder at the (` + 1)-th iteration can be computed by

f `+1
c→i(x) = F−1

(
F (

f `
i→c(x)

)⊗(a−1) ⊗F (
f `

p→c(x)
)⊗2

)
, (5.21)

f `+1
c→p(x) = F−1

(
F (

f `
i→c(x)

)⊗a ⊗F (
f `

p→c(x)
))

, (5.22)

f `+1
i→c(x) =

D∑
i=2

λif
`+1
c→i(x)⊗(i−1) ⊗ fu(x), (5.23)

f `+1
p→c(x) = f `+1

c→p(x)⊗ fu(x), (5.24)

where ⊗ denotes convolution, ⊗i denotes i-fold convolution, fu(x) is the pdf of the
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channel observation messages.

We now apply the Gaussian approximation to the pdf of the extrinsic message

as described in [8]. Denote mu, m̃u, mu0 as the means of the extrinsic messages from

the check node to the information node, from the check node to the parity node, and

from the channel, respectively. Define φ(x) = 1−E
[
tanh

(
u
2

)]
, where u ∼ N (x, 2x),

and φ(0) = 1. Thus,

m`+1
u = φ−1

(
1−

[
1−

D∑
i=2

λiφ
(
(i− 1)m`

u + mu0

) ]a−1

·
[
1− φ

(
m̃`

u + mu0

) ]2)
,

(5.25)

m̃`+1
u = φ−1

(
1−

[
1−

D∑
i=2

λiφ
(
(i− 1)m`

u + mu0

) ]a

·
[
1− φ

(
m̃`

u + mu0

) ])
.(5.26)

Next, define r` 4
=

∑D
i=2 λiφ

(
(i− 1)m`

u + mu0

)
and r̃` 4

= φ
(
m̃`

u + mu0

)
. Then, substi-

tute r and r̃ into (5.25) and (5.26), we obtain

r`+1 =
D∑

i=2

λiφ
(
mu0 + (i− 1)φ−1

(
1− (1− r`)a−1(1− r̃`)2

))
, (5.27)

r̃`+1 = φ
(
mu0 + φ−1

(
1− (1− r`)a−1(1− r̃`)2

))
. (5.28)

For error-free decoding, mu must grow to infinity, i.e., m`+1
u > m`

u for any `. Equiva-

lently, we have r`+1 < r`. Define

h (s, r, r̃) =

d1∑
i=2

λihi (s, r, r̃) , (5.29)

with hi (s, r, r̃)
4
= φ

(
s + (i− 1)φ−1

(
1− (1− r)a−1

(
1− r̃)2

)) )
, (5.30)

and h̃ (s, r, r̃)
4
= φ

(
s + φ−1 (1− (1− r)a (1− r̃)))

)
. (5.31)

Therefore, we obtain the IRA code ensemble optimization method for AWGN channel
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as

maximize
{λi}, a

a

D∑
i=2

λi/i, s.t. r < h (mu0 , r, r̃(r)) and
D∑

i=2

λi = 1, (5.32)

where r̃(r) denotes the solution of

r̃ = h̃ (mu0 , r, r̃) , (5.33)

with a given r. Note that the function φ(x) is monotonically decreasing. Then, given

s, for all r ∈ [0, 1], the function h̃ (s, r, r̃) is monotonically increasing with r̃. Since

h̃(s, r, 0) ≥ 0 and h̃(s, r, 1) ≤ 1, (5.33) has a unique solution in [0, 1].

2. IRA Code Optimization for MIMO

In this section, we present the density evolution-based IRA code optimization for

MIMO systems with turbo receivers following [64]. First, let GM(x, ρ) denote the

EXIT transfer function of a MIMO detector and GI(x) denote the EXIT transfer

function of an IRA decoder. GM(x, ρ) is the average mutual information between the

extrinsic messages output from the MIMO detector and the IRA coded bits when

the prior information input to the MIMO detector is symmetric Gaussian distributed

and corresponding to an average mutual information x with a given channel SNR ρ.

Similarly, GI(x) is the output mutual information from the decoder when the input

mutual information is x. An EXIT chart contains two curves: GM(x, ρ) and G−1
I (x).

The output of the MIMO detector is the input of the IRA decoder. Hence, starting

with x = 0, we can draw a stairway between the two curves showing the evolution

of the mutual information with iterations. When G−1
I (x) = 1, it indicates error-free

decoding. We have the following two properties of EXIT chart.

Convergence Property [67]: The turbo receiver evolutes to the error-free decoding

state if and only if G−1
I (x) lies below GM(x, ρ) for 0 ≤ x < 1. This means no crossover
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exists between the two curves and there is an iteration tunnel which ensures GI(x) to

approach 1.

Area Property [68]: For an erasure channel, the area A under the curve GI(x) is equal

to the rate of the outer code, i.e., A =
∫ 1

0
GI(x)dx = R. This property holds only for

the erasure channel. Nevertheless it is almost true in most practical situations. Or

at least, it is true that the code rate is monotonically increasing with the area A.

With these two properties, we can form the IRA code design rule for MIMO

channels. Given a MIMO channel with a certain SNR and a MIMO detector, an

IRA code is optimal if the EXIT transfer function of the decoder satisfies G−1
I (x) =

GM(x, ρ) with the desired code rate. Then, the optimized IRA code with the minimum

SNR is our solution. Therefore, the IRA code optimization problem becomes finding

the degree profile and the grouping factor of an IRA code with a target code rate such

that the EXIT transfer function GI(x) for the IRA decoder has the same or similar

shape as that of the MIMO detector GM(x, ρmin). Define

J(x)
4
= 1−

∫ ∞

−∞

e−((y−x)2/4x)

2
√

πx
log2(1 + e−y)dy, (5.34)

γ(λ̃, x, x̃)
4
= R

D∑
i=2

λ̃iJ(ix) + (1−R)J(2x̃). (5.35)

The function J(x) denotes the average mutual information between the coded bits and

the extrinsic messages which are symmetric Gaussian distributed with pdf N (x, 2x).

Therefore, J−1(x) denotes the mean of the extrinsic messages corresponding to an

equivalent mutual information of x. The function γ(λ̃, x, x̃) represents the output

mutual information of the IRA decoder when the extrinsic messages from the check

to information bit are symmetric Gaussian distributed with mean x and variance 2x,

the check to parity bit extrinsic messages are also symmetric Gaussian with mean x̃

and variance 2x̃, and λ̃i is the fraction of information bit nodes with degree-i in the
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IRA code.

In order to design an IRA code with a desired EXIT transfer function G−1
I (x) =

GM(x, ρ), we first get G samples of the EXIT function of the MIMO detector where

the input and output sequences are denoted as u = [u1, · · · , uG] and v = [v1, · · · , vG],

respectively. That is, when the mean of input extrinsic LLRs of the IRA decoder from

the channel is J−1(vi), the output extrinsic information is ui. Hence, the IRA code

optimization problem for turbo MIMO channels can be summarized as follows:

maximize
{λi}, a

a

D∑
i=2

λi/i, (5.36)

s.t. r > h (mk, r, r̃(mk, r)) , with φ(γ−1(λ̃, uk)) < r ≤ φ(mk), k = 1, 2, · · · , G,

where mk = J−1(vk).

The above nonlinear optimization problem can be solved by differential evolution

[9]. We now simplify it to a linear optimization problem by making some approxi-

mations. The difficulty in optimizing (5.36) is that λ(x) appears in the bound of r.

To compute γ−1(λ̃, uk), a pessimistic way of approximating (5.35) is to assume all

information bit nodes have degree 2, i.e.,

γ(λ̃, x, x̃) ≈ RJ(2x) + (1−R)J(2x̃). (5.37)

We find that this approximation is effective in obtaining good IRA codes.

The second approximation is to assume the output of the IRA decoder at the

information node is a Gaussian distributed with mean
∑D

i=2 iλ̃ix. That is,

γ(λ̃, x, x̃) ≈ RJ
(
x

D∑
i=2

λ̃ii
)

+ (1−R)J(2x̃). (5.38)
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Note that we have
∑D

i=2 iλ̃i = 1−R
R

a. Thus,

γ(λ̃, x, x̃) ≈ RJ

(
1−R

R
ax

)
+ (1−R)J(2x̃). (5.39)

We further approximate x ≈ x̃ by assuming the means of output extrinsic messages

from the check nodes to the information nodes and to the parity nodes are same.

Thus, given uk, we can obtain

m̄k ≈ γ−1(λ̃, uk), where uk = γ(λ̃, m̄k) ≈ RJ

(
1−R

R
am̄k

)
+ (1−R)J(2m̄k).

(5.40)

With (5.40), the optimization problem (5.36) becomes a linear one and can be eas-

ily solved using any linear programming package. The procedure of the IRA code

optimization can be summarized as follows.

Algorithm 1 [IRA code optimization for turbo MIMO]. Given ρ, compute the out-

put extrinsic information from the soft MIMO detector, i.e., vk = GM(uk, ρ), k =

1, · · · , G, by Monte Carlo simulation. Define c
4
=

[
1
2
, · · · , 1

D

]T
and λ

4
= [λ2, · · · , λD].

Set amin and amax.

• For a = amin, · · · , amax

– Draw samples rj, rj ∈ ∪
k

(
φ(m̄k), φ(mk)

]
, j = 1, 2, · · · , Q, where m̄k =

γ−1(λ̃, uk) according to (5.40), mk = J−1(vk). Compute hi(mk, rj, r̃j) ac-

cording to (5.30), i = 2, · · · , D, where r̃j is the solution to r̃j = h̃(mk, rj, r̃j)

given by (5.31).

– Define b
4
= [r1, · · · , rQ]T and form a matrix A by [A]j,i = hi(mk, rj, r̃j).

– Solve the following optimization problem via linear programming

max
λ

cT λ s.t. Aλ− b ≤ 0. (5.41)
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– Compute the IRA code rate R according to (5.7).

• Find the maximal code rate, R∗, and the corresponding {λ, a}.

If R∗ reaches the target rate, the corresponding {λ, a} is the optimized profile for the

turbo MIMO system. Otherwise, increase ρ and repeat the above procedures.

D. IRA-LDPC Mapping and Optimization

In this section, we propose another design method for IRA-coded MIMO systems.

First, we discuss the relationship between the IRA and LDPC code ensembles. The

optimization of the IRA code or the LDPC code is based on the density evolution

which manipulates ensemble pdf of extrinsic messages passing along edges. Therefore,

the design procedure is not related to the specific structure of the codes. The IRA

code can be viewed as a specific class of LDPC codes. Hence, we can directly apply

the LDPC design procedure to the turbo MIMO systems. The optimized IRA code

profile can be obtained from the optimized LDPC code profile through IRA-LDPC

mapping.

We can decode IRA using two different schemes. One is message-passing decoding

algorithm which is the same as that for the LDPC codes. The other is turbo-like

decoding algorithm employed with BCJR decoding for accumulator. It was shown

in [69] that the message-passing decoder is identical to the BCJR algorithm for the

1/(1 + D) inner code. Therefore, the trellis in IRA code can be simply treated as a

special implementation of the mapped LDPC code. Then, the mapping between an

IRA code ensemble and an LDPC code ensemble is fairly straightforward. As shown

in the Tanner graph of an IRA code in Fig. 39, the check nodes are the same as the

check nodes in an LDPC code with degree a+2. The parity nodes of an IRA code can

be viewed as degree-2 variable nodes in an LDPC code. The information bit nodes of
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an IRA code are also viewed as LDPC variable nodes with the same degree as they

are in an IRA code. Thus, we can build a mapping relationship between the IRA

code profile and the corresponding LDPC profile as follows.

Denote (λL, ρL) as the profile of the mapped LDPC code ensemble. Define dr as

the concentrated degree of the check node in an LDPC code. The edge profile of the

check nodes of the mapped LDPC code is ρL
dr

= ρL
a+2 = 1. The node profile of the

IRA code is given by

λ̃i =
λi/i∑D

j=2 λj/j
, i = 2, · · · , D. (5.42)

Thus, the node profile of the mapped LDPC code is given by

λ̃L
2 =

λ̃2 + 1/R− 1

1/R
and λ̃L

i =
λ̃i

1/R
, i = 3, · · · , D (5.43)

Therefore, the profile of the corresponding LDPC code from the edge perspective is

given by

λL
i =

λ̃L
i i∑D

i=2 λ̃L
j j

, i = 2, · · · , D. (5.44)

The reverse mapping from the IRA code profile to the LDPC code profile is finally

given by

a = dr − 2, (5.45)

λ̃2 =
λ̃L

2 − (1−R)

R
, λ̃i =

λ̃L
i

R
, i = 3, · · · , D, (5.46)

λi =
λ̃ii∑D

j=2 λ̃jj
, i = 2, · · · , D. (5.47)

Using above mapping, we can first apply the LDPC code design procedures devel-

oped in [29, 43] to LDPC-coded turbo MIMO systems, and then map the optimized

LDPC code ensemble profile to the corresponding IRA code profile using (5.45)–
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(5.47). Here another constraint should be specified when designing the corresponding

LDPC code. As shown in Fig. 39, we have M/N = 1 − R. Thus, the portion of the

degree 2 nodes in the LDPC code cannot be less than 1 − R, otherwise we can not

get an IRA code from the LDPC profile. Hence,

λ̃L
2 ≥ 1−R =

1/dr∑D
j=2 λL

j /j
=⇒ λL

2 ≥
2

dr

. (5.48)

Define

γ(λ̃L, x)
4
=

D∑
i=2

λ̃L
i J(ix). (5.49)

Thus, the recursion of r` for an LDPC code can be expressed as follows [8]

r` = h(s, r`−1) with h(s, r) =
D∑

i=2

λL
i hi(s, r), (5.50)

where hi(s, r) = φ
(
s + (i− 1)φ−1(1− (1− r)dr−1

)
. (5.51)

When designing LDPC codes for AWGN channels, the optimization problem can

be stated as follows: for a given ρ(x) and mu0 ,

maximize
{λi}

D∑
i=2

λL
i /i s.t. r > h(mu0 , r), 0 < r ≤ φ (mu0) . (5.52)

Note here ρ(x) = xdr−1 = xa+1. The constraints for the IRA-induced LDPC code

optimization for MIMO system are then

r > h(mk, r), φ(γ−1(λ̃L, vk)) < r ≤ φ(J−1(uk)), k = 1, · · · , G, (5.53)

and λL
2 ≥

2

dr

. (5.54)

Similar to (5.37), we can approximate (5.49) by γ(λ̃L, r) ≈ J(2r). Then, we can solve

the optimization problem using linear programming.

Now, we validate the above IRA code design method through LDPC mapping
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by the following example. We consider designing an IRA code for AWGN channels.

The repetition profile obtained from IRA code optimization is λ(x) = 0.694938x +

0.102280x2 + 0.001864x3 + 0.143135x4 + 0.056941x5 + 0.034554x6 + 0.007591x7 +

0.190411x18 + 0.393731x19. The group factor a = 7 and the rate is 0.5002. We

evaluate the asymptotic thresholds by simulation with information block length 105.

The bit-error-rate (BER) is less than 10−5 when Eb/N0 ≥ 0.5dB, only 0.3dB dB from

the capacity. Next we obtain the optimized IRA profiles from design LDPC profiles,

given by λ(x) = 0.139238x2 + 0.141527x3 + 0.118489x4 + 0.133268x5 + 0.410668x6 +

0.340540x7 + 0.765814x17 + 0.173816x18 + 0.273896x19, and a = 7. The rate of IRA

code is 0.5001. The simulation results show that the BER reaches to 10−5 when

Eb/N0 ≥ 0.55dB, 0.35dB away from the capacity. It is fairly good with maximum

repetition degree of 20 for an IRA code.

E. Numerical Results

In this section, we present numerical results of the design and optimization of IRA

codes for turbo MIMO systems. The fading matrix H varies at each time slot and

changes independently from one slot to the next. The modulator uses the QPSK

constellation with Gray mapping. All the IRA codes designed here have target rate

of 1
2
.

1. EXIT Charts of MIMO Detectors

First, we illustrate the EXIT curves G(x, ρ) for the two soft MIMO detectors described

in Section B. We consider two different MIMO configurations, namely, 2×2 and 4×4.

Set ρ = 2dB and potential coding rate R = 0.5. We evenly choose some values ui

from [0, 1) as the input mutual information of the MIMO detectors and obtain mean
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of the extrinsic log-likelihood-ratio (LLR) by mi = J−1(ui). We then draw samples

of LLRs, xn ∼ N (mi, 2mi), and calculate the output LLRs from MIMO detectors

by Monte Carlo simulation. We compute the output mutual information vi by the

distribution of output LLRs from the detector.

Figure 40 shows the EXIT curves for the MAP detector and the SIC-MMSE

detector. We can see that with the same antenna settings, the output extrinsic

mutual information from the SIC-MMSE detector, with no a priori information input,

is slightly smaller than that of the MAP detector. This initial offset determines the

performance of the detector. The EXIT curves merge when the input Iin = 1. This is

easy to understand because at Iin = 1, all the interference bits are perfectly detected,

thus the SIC-MMSE detector and the MAP detector offer the same performance when

the channel SNR is the same. It is also seen that the extrinsic mutual information

output in the 4 × 4 system with the same detector is worse than that of the 2 × 2

case when the input EXIT values are small, i.e., Iin < 0.3. With stronger extrinsic

information input, the 4× 4 system provides better extrinsic output.

2. IRA Code Optimization Results

We next present the IRA code optimization results following the design procedure de-

scribed in Section 2. The maximum repetition degree D = 30. With the approxima-

tions in (5.38) and (5.39), we use linear programming to obtain the best profiles of the

IRA code ensemble. As a sample result, for the 2×2 case, with the MAP detector, we

obtain R = 0.5050, a = 7, λ(x) = 0.082818x1+0.147731x2+0.000331x3+0.001790x4+

0.083303x5 + 0.039609x6 + 0.093325x7 + 0.054323x8 + 0.004153x9 + 0.054851x26 +

0.096975x27 + 0.147768x28 + 0.192974x29; and with the SIC-MMSE detector, we ob-

tain R = 0.5001, a = 7, λ(x) = 0.091158x1 +0.133820x2 +0.086313x5 +0.024131x6 +

0.096559x7 + 0.044099x8 + 0.000727x9 + 0.082999x27 + 0.207612x28 + 0.232583x29.
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Fig. 40. EXIT curves for soft MIMO detectors.

Figure 41 shows the EXIT curves of the MAP detector of the optimized IRA code

for this MIMO channel, and of the optimized IRA code for the AWGN channel. It can

be seen that the EXIT curve of the designed IRA code matches very well with that of

the detector, indicating the usefulness of the IRA code design techniques discussed in

Section C. The EXIT chart of the optimized IRA code for AWGN channel is parallel

to the horizontal axis in the transition range. The rate is 0.4771 which is lower than

that of the MIMO optimized IRA code. Hence, the AWGN optimized code is not

efficient for ergodic MIMO channels. And simulations indicate that if the AWGN

optimized IRA code is used in the tubo MIMO system, the 4 × 4 MIMO system

will have a worse performance than the 2× 2 system because it has a smaller initial

extrinsic output. An actual trajectory of the demodulation and decoding for 2 × 2
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Fig. 41. EXIT charts for 2× 2 MAP MIMO detector and IRA decoder.

MIMO system with MAP detector is also illustrated in Fig. 41. It is seen that an

iterative tunnel exists between the EXIT curves of detector for ρ = 2.2dB and IRA

decoding to ensure the decoding output evolve to 1. The decoder output is a little

off the EXIT curve because of the approximation in the density evolution of IRA

decoding.

We next evaluate the threshold for the MIMO-optimized IRA code. The infor-

mation block length is 105. The final results are shown in Fig. 42. The required

SNRs to achieve the constrained capacities [c.f. Eq. (5.4)] with QPSK constellation

of the 2× 2 and 4× 4 ergodic MIMO channels with rate-1
2

code are 1.5dB and 1.6dB,

respectively. The SNR thresholds to achieve zero-error decoding for the optimized

IRA code with the MAP detector are 1.8dB for both 2 × 2 and 4 × 4 systems. The
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Fig. 42. BER performance of the optimized IRA codes using density evolution in er-

godic MIMO channels.

simulation results show that for the 2 × 2 system with the MAP detector, the BER

approach 10−5 when ρ > 2.1dB, only 0.5dB from the capacity. For the 4× 4 system

with the MAP detector, the simulated performance is 0.6dB from the capacity and

0.3dB off the designed threshold. The SIC-MMSE detector performs around 0.3dB

worse than the MAP detector in each antenna setting.

3. IRA Code Optimization with LDPC Mapping

First, we design LDPC codes with additional constraint (5.48) for turbo MIMO chan-

nels. Then, we obtain the IRA code profiles from the optimized LDPC code using the

mapping given by (5.45)–(5.47). The numerical results are illustrated in Fig. 43. For

the 2× 2 system, the optimized LDPC with the MAP detector has the threshold at
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Fig. 43. BER performance of the optimized IRA codes using LDPC mapping in ergodic

MIMO channels.

1.9dB, 0.3dB from the capacity; the simulated BER is below 10−5 when ρ > 2.20dB.

For the 4 × 4 MIMO system, the threshold of the optimized LDPC with the MAP

detector is 2.0dB; the simulated BER is below 10−5 when ρ > 2.20dB. Comparing

with Fig. 42, the performance of optimized IRA code using the LDPC mapping is

only slightly worse than that obtained by direct design.

4. IRA in Block Fading MIMO

Finally, we consider the IRA coded system in block fading MIMO channels. The

channel gain matrix H remains constant in one block and changes independently from

one block to the next. Still we assume the transmitter does not know the channel but

the receiver has perfect knowledge of the channel. We assume each codeword fully
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occupies one static fading block. Based on the optimal IRA profiles, we implement

a finite-size IRA code with information block length K ≈ 1024 for the block fading

case. The S-random interleaver is adopted after the repetition in the IRA encoder.

The performance is evaluated in terms of block or frame error rate (FER). Six turbo

iterations are implemented in the receiver.

Figure 44 shows the FER curves for the 2× 2 system at different iterations. The

outage capacity curve is also plotted for comparison. It is seen that with the MAP

MIMO detector, the FER performance is less than 2dB from the outage capacity

curve. The SIC-MMSE detector performs 1.5dB worse than the MAP detector. We

also find that the error floor occurs to the SIC-MMSE detector at 10−3 FER. Figure 45

shows the FER performance for the 4×4 system, as well as the outage capacity curve.

The turbo receiver with the MAP detector performs only 1.5dB from the outage

capacity. And with the SIC-MMSE detector, the performance is only 0.6dB worse

than that of the MAP detector. The error floor occurs again to the MAP receiver at

10−3 FER.

Improving Short-length IRA Codes

From the above results, we find the designed IRA codes perform well even with short-

length and in block fading channel. However, the error floor unpredictably occurs

due to the difficulty in controlling the S-random interleaver structure. We need to

lower the error floor since it degrades the performance dramatically. The mapping

between the IRA code and the LDPC code opens some ways to solve the problem.

As discussed in Section D , in the IRA code, the information bit nodes and the parity

nodes are equivalent to the variable nodes of the LDPC code. It is known that the

degree-2 nodes have very poor FER performance for short-size LDPC code though

it is important for the irregular LDPC code to achieve the capacity with the infinite
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Fig. 44. FER performance of the short-length IRA codes in block fading 2× 2 MIMO

channels.

code length [9]. One solution is to deterministically arrange the edges of the degree-2

nodes adjacent to each other to ensure no cycles within degree-2 nodes. The parity

nodes in an IRA code are viewed as degree-2 variable node in the LDPC code. From

the Tanner graph in Fig. 39, we can see that the parity nodes are exactly arranged

in this deterministic way. This can be another important advantage of the IRA code.

However, the information nodes also contain some degree-2 nodes in the optimized

profiles. Thus, in the whole code, the degree-2 nodes are not in a good design feature

for short-length code. This is one reason that causes error floor. Due to the explicit

encoder structure of the IRA code, we can easily find a solution by putting all the

degree-2 nodes to the parity bits to give more protection on the information nodes

with high degrees. This feature is hard to find in an LDPC code. Based on this, we

design the IRA code for MIMO systems with additional constraint that information

bit nodes contain no degree-2 node, i.e., λ2 = 0. The resulting optimized IRA code
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Fig. 45. FER performance of the short-length IRA codes in block fading 4× 4 MIMO

channels.

may not be the best IRA for long-length IRA code in the BER sense, but it offers a

better FER performance for short-length code. We consider an example of the 4× 4

system with the MAP detector. Figure 46 shows the FER curves of the IRA code

implemented from the optimized profile without degree-2 information node, as well

as the previous code without eliminating the degree-2 information nodes. We can see

that the final FER curve of the new code is 0.4 dB closer to the outage capacity and

has a lower error floor.

In short-length LDPC code design, eliminating cycle 4 is another important

issue [70]. By eliminating the cycle 4 with all information nodes and parity nodes, we

expect to have better performance and lower error floor for short-length IRA code.

We consider a special IRA code with repetition profile as λ3 = 1 and a = 3. Thus,

it does not contain degree-2 information nodes. This special IRA code is shown to

have good performance in the infinite code-length case with BER below 10−5 when
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Fig. 46. FER performance of optimized no-degree-2 IRA code for block fading MIMO

(4× 4).

ρ ≥ 2.35dB. We implement it with K = 1024 and eliminate all the cycle 4. We

also eliminate small cycles (cycle 6 and up) involved with parity nodes as much as

possible. The results are shown in Fig. 47. The FER performance form the final

iteration is 0.6 dB better than the optimized IRA code with degree-2 information

node and containing many cycle 4. It is now within 1 dB from the outage capacity.

Hence the IRA-LDPC mapping relationship not only provides an alternative way

to design IRA code, but also reveals venues to build good short-length IRA codes.

F. Conclusions

In this chapter, we have considered the design of optimal IRA codes for MIMO systems

employing turbo receivers. Two design approaches are discussed. One is based on

the density evolution technique and the EXIT chart characteristic of the soft MIMO
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no cycle 4.

detector and that of the IRA decoder. Another approach is based on mapping an

optimized LDPC code for turbo MIMO systems to a corresponding IRA code under

certain constraints. Two types of soft MIMO detectors are treated, namely, the MAP

detector and the low-complexity SIC-MMSE detector. The resulting thresholds from

simulations are within 1dB from the ergodic capacities of the MIMO systems under

consideration. The design of short-length IRA codes for block fading MIMO channel

is also considered which is based on the existing design methods for short-length

LDPC codes. Compared with the LDPC codes, the IRA codes are extremely simple

to encode and offer comparable performance. Hence, IRA code is a promising coding

scheme for the next-generation wireless systems.
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CHAPTER VI

CONCLUSIONS

In this dissertation, we have presented code optimization and analysis for several wire-

less communication systems with iterative joint decoding and demodulation, namely,

LDPC code optimization for turbo CDMA systems, performance analysis and design

optimization of LDPC coded MIMO-OFDM systems, coding-spreading tradeoff in

LDPC coded CDMA with turbo multiuser detection, and design of irregular repeat

accumulate codes for MIMO systems with iterative receiver. Provided by these code

design methods, the optimized LDPC or IRA codes with large block size performs

only several tenth decibel to information theoretical bound with MAP demodulators

or ML detectors. Both LDPC codes and RA codes are promising coding schemes

for the fourth generation (4G) wireless communication systems. Compared with the

LDPC codes, IRA codes are extremely simple to encode and offer comparable perfor-

mance. The frameworks of code optimization presented in this dissertation can also

be applied to other wireless communication systems with iterative receivers.
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APPENDIX A

PROOF OF (4.41)

Consider QPSK modulation with Gray mapping. Each symbol ck ∈ {cq}3
q=0 can be

represented by two binary bit [b
(0)
k , b

(1)
k ], where b

(l)
k ∈ {+1,−1}, by following mapping

rules:

(1, 1) ←→ c0 =
1 + j√

2
,

(−1, 1) ←→ c1 =
−1 + j√

2
,

(−1,−1) ←→ c3 =
−1− j√

2
,

(1,−1) ←→ c2 =
1− j√

2
.

Based on the extrinsic LLRs of code bits λ
(l)
k , l = 0, 1, it is easy to show

P (b
(l)
k = b) =

exp(bλ
(l)
k )

1 + exp(bλ
(l)
k )

, b ∈ {+1,−1}. (A.1)

Then a soft estimate of ck is given by

c̃k =
3∑

q=0

cqP (b
(1)
k )P (b

(0)
k ). (A.2)

The power from the interferers is then given by

Pk = A2
k(1− ‖c̃k‖2) = A2

k

[
1− 0.5 tanh2

(
b
(l)
k λ

(0)
k

2

)
− 0.5 tanh2

(
b
(l)
k λ

(1)
k

2

)]
. (A.3)

Here, b
(0)
k λ

(0)
k , b

(1)
k λ

(1)
k have the same distribution, N (m, 2m) and m = 2SNRin. As-

suming equal power, we have

P = A2

[
1− tanh2(

λ

2
)

]
, (A.4)



129

where λ is the extrinsic LLR of LDPC coded bits assuming all zero sequence trans-

mitted. Thus, we have exactly the same asymptotic results as (4.21) for BPSK mod-

ulation. When using BPSK modulation, all the variables are real. Thus, the noise

variance σ2 = N0

2
. While using QPSK modulation, all the variables are complex,

σ2 = N0. Thus, with the same Eb/N0, we have the same σ2. Therefore, we obtain

the same results of γ as in BPSK modulated system with same Eb/N0.

After output SNR γ is obtained, we generate complex samples zk = ck + nk,

nk ∼ NC

(
0, 1

γ

)
, representing estimated QPSK symbols given by the soft multiuser

detectors. Without loss of generality, assume all ck = c0. Then the a posteriori LLRs

of code bits are given by

λ′(0)
k = log

P (zk|ck = c0) + P (zk|ck = c2)

P (zk|ck = c1) + P (zk|ck = c3)
; (A.5)

λ′(1)
k = log

P (zk|ck = c0) + P (zk|ck = c1)

P (zk|ck = c2) + P (zk|ck = c3)
; (A.6)

where P (zk|ck = cp) = 1
π/γ

e−γ‖zk−cp‖2 , p = 0, 1, 2, 3. Then we have

λ′(0)
k = log

eγ(zkc∗0+z∗kc0) + eγ(zkc∗2+z∗kc2)

eγ(zkc∗1+z∗kc1) + eγ(zkc∗3+z∗kc3)
= log

e
γ
(

1√
2
z∗k+ 1√

2
zk

)

e
−γ

(
1√
2
z∗k+ 1√

2
zk

) = γ · 4√
2
<{zk},(A.7)

λ′(1)
k = log

eγ(zkc∗0+z∗kc0) + eγ(zkc∗1+z∗kc1)

eγ(zkc∗2+z∗kc2) + eγ(zkc∗3+z∗kc3)
= log

e
γ
(

j√
2
z∗k− j√

2
zk

)

e
−γ

(
j√
2
z∗k− j√

2
zk

) = γ · 4√
2
={zk}.(A.8)

Apparently, λ′(0)
k , λ′(1)

k have the same symmetric Gaussian pdf. Assume λ′(0)
k , λ′(1)

k are

independent. Hence, λ′(0)
k , λ′(1)

k are i.i.d., denoted by λ′. Then the output SNR for

the binary extrinsic message is

SNRout =
1

2
E [λ′] = γ. (A.9)
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Thus, we have the same output SNR for the coded bits with QPSK as that of BPSK

modulation which leads same results of αm(ν). We have spectral efficiency

κ(ν) = αm(ν)ν. (A.10)

Since the code rate ν bits/symbol with QPSK modulation are twice of the one with

BPSK modulation, the final result of the spectral efficiency is then doubled, i.e.,

κQPSK(ν) = 2κBPSK

(ν

2

)
. (A.11)

Same results can be obtained for the SIC-MF detector.
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