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Abstract. In this paper, several parameters of the non-linear Hirota-Satsuma 

coupled KdV system were estimated using a hybrid between the Firefly 

Algorithm (FFA) and the Modified Adomian decomposition method (MADM). 

It turns out that optimal parameters can significantly improve the solutions when 

using a suitably selected fitness function for this problem. The results obtained 

show that the approximate solutions are highly compatible with the exact 

solutions and that the hybrid method FFA_MADM gives higher efficiency and 

accuracy compared to the classic MADM method. 
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1 Introduction 

The Adomian decomposition method (ADM) was introduced in 1980 to solve 

many linear and nonlinear equations effectively and accurately, with easy 

solutions of ordinary or partial differential equations with approximate values 

that converge speedily [1]. Several studies have been proposed to modify the 

regular ADM for initial value problems and boundary value problems [2-3]. An 

error analysis of the Adomian series of non-linear differential equations was 

introduced in [4] and [5] used the ADM to solve coupled systems of non-linear 

physical equations, coupled systems of diffusion-reaction equations and integro-

differential diffusion-reaction equations. In 2017, Nouri suggested an 

improvement of the ADM for the solution of stochastic differential equations 

[6].  

Yan in 2003 proposed extended Jacobian elliptic functions to construct new 

exact solutions from periodic solutions of the Hirota-Satsuma coupled KdV 
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system by using the concept of symbolic computation [7]. Hu and Liu in 2008 

proposed positon, complexiton and negaton solutions for the Hirota-Satsuma 

coupled KdV system, where the approximate complexiton solutions are singular 

and given both graphically and analytically [8]. Khater, et al. in 2017 proposed 

the exact traveling solution of the Hirota-Satsuma coupled KdV system 

depending on the modified simple equation method [9]. Hosseini, et al. in 2012 

proposed an analytic method that efficiently solves ODEs, where the proposed 

method requires only the calculations of the first Adomian polynomial and does 

not need to solve the functional equations in each iteration [10]. Moradweysi, et 

al. in 2018 studied the pull-in instability of doubly clamped nano-switches 

subjected to electrostatic and intermolecular forces and proposed to solve the 

obtained equation by using the modified ADM [11-12]. 

The basic idea of the proposed FFA_MADM is to find the best parameters for 

the non-linear Hirota-Satsuma coupled KdV system by using the firefly 

algorithm (FFA), one of the most popular metaheuristic algorithms, with the 

modified ADM by formulating a fitness function from the modified ADM that 

is minimized by the FFA to attain optimal values for all parameters of the 

nonlinear Hirota-Satsuma coupled KdV system. 

In Section 2 of this paper the mathematical model and related work are 

presented. In Section 3 the basic ideas of the MADM are described. In Section 4 

a brief introduction of FFA is given. Section 5 is devoted to solving a nonlinear 

Hirota-Satsuma coupled KdV system by MADM. Section 6 describes the 

proposed method. Concluding remarks are given in Section 7. 

2 Mathematical Model and Related Works 

The coupled Korteweg-de Vries equation (CKdV) is known as [13]: 

 
𝜕𝑢

𝜕𝑡
= 𝑎 (

𝜕3𝑢

𝜕𝑥3 + 6𝑢
𝜕𝑢

𝜕𝑥
) + 2𝑏𝑣 

𝜕𝑣

𝜕𝑥
 , (1) 

 
𝜕𝑣

𝜕𝑡
= −

𝜕3𝑣

𝜕3𝑥
− 3𝑢

𝜕𝑣

𝜕𝑥 ,
 (2) 

where 𝑎 and 𝑏 are subjective constants. The CKdV condition describes 

connections of two long waves with various scattering relations. It is associated 

in particular with most sorts of long waves with frail scattering [14-15]. By 

utilizing the Hirota technique, the single lone wave arrangement of this 

framework is: 

 𝑢(𝑥, 𝑡) = 2𝜆2sech2(𝜀), 𝑣(𝑥, 𝑡) =
1

2√𝑤
sech(𝜀) , 

𝜀 = 𝜆(𝑥 − 𝜆2𝑡) +
1

2log(𝑤) 
,  𝑤 =

−𝑏

8(4𝑎+1)𝜆4, (3) 
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where 𝑤 is an arbitrary constant depending on the parameter value 𝜆 > 0, 𝑏 ≠ 0 

and a is any parameter such that 4 𝑎 + 1 ≠ 0. 

Raslan [16] proposed the use of the ADM for a Hirota-Satsuma coupled KdV 

equation and a coupled MKdV equation. The local existence and smoothing 

properties for Hirota-Satsuma systems is discussed in [17]. Periodic solutions to 

generalized Hirota-Satsuma coupled systems using trigonometric and 

hyperbolic functions are discussed in [18]. Ismail and Ashi [19] used the 

Petrov-Galerkin method with a product approximation technique to numerically 

solve a Hirota-Satsuma coupled KdV equation. 

Recently, several researchers have employed FFA to solve differential 

equations. Raja [20] applied ANN with other heuristic techniques to solve the 

one-dimensional Bratu equation. Apostolopoulos and Vlachos [21] used FFA 

for solving the economic emission load dispatch problem. Yang [22] has shown 

how to use a recently developed FFA to solve nonlinear design problems. Yang, 

et al. [23-24] used the firefly algorithm (FA) to determine a feasible optimal 

solution for the economic dispatch problem with valve loading effect problems. 

3 The Modified Adomian Decomposition Method (MADM) 

Suppose the general equation can be defined as follows: 

 𝐿𝑢 +  𝑁𝑢 +  𝑅𝑢 =  𝑓 (𝑥) (4) 

where L represents an invertible linear operator, N is a non-linear operator and R 

is the residual linear part. Then:  

 𝐿𝑢 = 𝑓 (𝑥) − 𝑁𝑢 − 𝑅𝑢  

If the initial conditions are used and the inverse operator 𝐿−1 is applied to both 

sides of Equation (4), we find that: 

 𝑢 = 𝑔(𝑥) − 𝐿−1𝑁𝑢 − 𝐿−1𝑅𝑢 (5) 

where 𝐿−1 = ∫ (. )
𝑥

0
𝑑𝑠, and 𝑔(𝑥) are the terms gotten from integrating the 

remaining term, f (x). The ADM expects that the nonlinear administrator 𝑁(𝑢) 

can be disintegrated by an infinite series of polynomial functions given by:  

 𝑁(𝑢) = ∑ 𝐴𝑛(𝑢𝑜, 𝑢1, … . , 𝑢𝑛)∞
𝑛=0   

where 𝐴𝑛 are the Adomian polynomials (ADMP) [1,5]: 

 𝐴𝑛 =
1

𝑛!
 

𝑑𝑛

𝑑𝜆𝑛 [𝑁(∑ 𝜆𝑖𝑢𝑖
∞
𝑖=0 )]

𝜆=0
,   𝑛 = 0,1,2, … (6) 

El-Kalla [4] presented another formula for ADMP. He asserted that the 

Adomian arrangement utilizing this new approach is speedier than utilizing 
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ADMP Eq. (6). The Kalla polynomial in the accompanying structure is 

expressed as follows: 

 𝐴𝑛 = 𝑁(𝑆𝑛) − ∑ 𝐴𝑖(𝑢𝑜, 𝑢1, … . , 𝑢𝑛−1)𝑛−1
𝑖=0  (7) 

where 𝑆𝑛 = 𝑢𝑜 + 𝑢1 + ⋯ + 𝑢𝑛  and  𝐴𝑛   can  be given as 𝐴0 = 𝑁(𝑢𝑜)    

 𝐴1 =
𝑑

𝑑𝑥
(𝑁(𝑢𝑜))𝑢1 +

1

2
 

𝑑2

𝑑𝑥2 (𝑁(𝑢𝑜))𝑢1
2 +

1

6
 

𝑑3

𝑑𝑥3 (𝑁(𝑢𝑜))𝑢1
3 +

1

24

𝑑4

𝑑𝑥4 (𝑁(𝑢𝑜))𝑢1
4 + ⋯   

 𝐴2 =
𝑑

𝑑𝑥
(𝑁(𝑢𝑜))𝑢2 +

1

2
 

𝑑2

𝑑𝑥2 (𝑁(𝑢𝑜))[2𝑢1 𝑢2 + 𝑢2
2] +

1

6
 

𝑑3

𝑑𝑥3 (𝑁(𝑢𝑜)) [3𝑢1
2𝑢2 + 3𝑢1𝑢2

2 + 𝑢2
3] + ⋯  

4 Firefly Algorithm (FFA) 

In recent years, researchers have been very interested in studying swarm 

algorithms, which have been applied for solutions to many complex 

applications. The firefly algorithm, developed by Yang in 2008, is one of the 

most important swarm algorithms and has managed to outperform many other 

algorithms in solving problems efficiently [25-26]. 

FFA has shown effectiveness and good performance in several optimization 

problems. The idea for FFA was inspired by the flashing light behavior of 

fireflies. The flashes are used as a signal system for fireflies to attract other 

fireflies through the characteristics of their flashing [27]. 

Each member of the FFA is classified as a candidate solution within the search 

space of the problem, while the best solutions represent the brightest locations. 

The attractiveness of a firefly is determined by its brightness, which is 

expressed in the objective function of the problem. The greater the distance 

between the firefly and the target location, the higher the brightness ratio [28]. 

At first the fireflies move randomly. During the search they are attracted to new 

locations (candidate solutions).  

The process of attraction between the fireflies is based on the brightness of their 

flashes. The least bright fireflies are attracted to the brightest fireflies [29]. The 

mathematical representation of the FFA is determined by the size of the 

population in the swarm (𝑛𝑓), which is randomly distributed, as well as the 

position vector of each firefly, denoted by 𝑥𝑖 = {𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝐷}, where  𝑖 =
1,2, … , 𝑛𝑓, 𝐷 is the dimensionality of the solutions. The distance in the search 

area between any two fireflies 𝑖 and 𝑗 at positions 𝑥𝑖 and 𝑥𝑗 can be calculated by 

the following equation: 
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Start 

       Create objective function, positions of FFA,   

       Create max iteration, light intensity ,,  

   while (t < Max NO. of iterations). 

       for i=1: n (n is the No. of fireflies)  

           for j=1: n (n is the No. of fireflies) 

                  if move firefly  towards  

                 endif 

                   Evaluate the new solutions in FFA 

                   Update the light intensity equation. 

          end for j 

     end for i 

Update the current best solution 

end while 

Return the current best solution results 

End 

Figure 1 Pseudocode of the FFA. 

 𝑟𝑖𝑗  =  ‖𝑥𝑖 − 𝑥𝑗‖ = √∑ (𝑥𝑖𝐷 − 𝑥𝑗𝐷)
2𝐷𝑖𝑚

𝐷=1 , 𝑖 ≠ 𝑗, and 𝑖, 𝑗 = 1, 2, … 𝑛 (8) 

where 𝐷𝑖𝑚 represents the dimensions of the solutions to the problem. 

The value of the objective function represents the brightness of firefly 𝑖 at 

position 𝑥i, which is calculated by the following equation: 

 𝐼𝑓(𝑥𝑖) = 𝐹(𝑥𝑖) (9) 

The intensity depends on the 𝐼𝑓0 emitted and the distance 𝑟𝑖𝑗 between the 

fireflies. The light intensity 𝐼𝑓(𝑟) can be described by 𝑟𝑖𝑗 as follows [27]: 

 𝐼𝑓(𝑟) = 𝐼𝑓0𝑒−𝛾𝑟𝑚

,  𝑚 ≥ 1 (10) 

where 𝛾 can be taken as a constant. 

Each firefly has a certain attractiveness in the swarm and 𝛽𝑓 varies relative to 

distance 𝑟𝑖𝑗. The main formula for the attractiveness of a firefly is formulated as 

follows [30]: 

 𝛽𝑓(𝑟) = 𝛽𝑓0𝑒−𝛾𝑟𝑚

, 𝑚 ≥ 1 (11) 

where 𝛽𝑓(𝑟) is the attractiveness function at distance 𝑟 and 𝛽𝑓0 is the initial 

attractiveness of the firefly (which can be constant). Firefly positions are 

updated in the swarm depending on their brightness. A less bright firefly 𝑥𝑖 
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moves towards a brighter firefly 𝑥𝑗 because of attraction. The equation of 

movement is defined as follows: 

 𝑥𝑖𝑑
𝑡+1 = 𝑥𝑖𝑑

𝑡 + 𝛽𝑓0𝑒−𝛾𝑟𝑚

(𝑥𝑗𝑑
𝑡 − 𝑥𝑖𝑑

𝑡 ) + 𝛼 𝑡𝜀𝑖𝑑
𝑡  (12) 

where 𝛼𝑡 is a random parameter, 𝛾 is the coefficient, and 𝑖𝑑 = (rand − 0.5), 

where ‘rand’ represents a random number from an uniform distribution in the 

interval [0,1]. The pseudocode for the FFA can be written as in Figure 1 [31]. 

5 Application of MADM to the Coupled Hirota-Satsuma System 

This section is devoted to the analytical solution of Hirota-Satsuma Eq. (1) and 

Eq. (2). For this purpose, MADM was used in order to obtain the solution. 

Let the standard form of Equations Eq. (1-2) in an operator be: 

 𝐿𝑡𝑢 − 𝑎 𝐿𝑥𝑥𝑥𝑢 − 6𝑎𝑢𝐿𝑥𝑢 − 2𝑏 𝑣 𝐿𝑥𝑣 = 0, (13) 

 𝐿𝑡𝑣 + 𝐿𝑥𝑥𝑥𝑣 + 3 𝑢𝐿𝑥𝑣 = 0, (14) 

 𝑢(𝑥, 0) = 𝑔1(𝑥) 

𝑣(𝑥, 0) = 𝑔2(𝑥) 

where the notations 𝐿𝑡 =
𝜕

𝜕𝑡
, 𝐿𝑥 =

𝜕

𝜕𝑥
 and 𝐿𝑥𝑥𝑥 =

𝜕3

𝜕𝑥3  symbolize the linear 

differential operator. 

Let 𝐿𝑡
−1 be the inverse of operator 𝐿𝑡. It can conveniently be taken as an integral 

with respect to 𝑡 from 0 to 𝑡. 

Define 𝐿𝑡
−1 = ∫ ( . )𝑑𝑡

𝑡

0
  . Then system Eqs. (8-9) becomes:  

 𝑢(𝑥, 𝑡) = 𝑔1(𝑥) + 𝐿𝑡
−1[𝑎 𝐿𝑥𝑥𝑥𝑢 + 6𝑎∅1(𝑢) + 2𝑏∅2(𝑣)], (15) 

 𝑣(𝑥, 𝑡) = 𝑔2(𝑥) −  𝐿𝑡
−1[ 𝐿𝑥𝑥𝑥𝑣 + 3∅3(𝑢, 𝑣)], (16) 

where: 

 ∅1(𝑢) =  𝑢 𝑢𝑥,  ∅2(𝑣) = 𝑣𝑣𝑥 ,  ∅3(𝑢, 𝑣) = 𝑢𝑣𝑥 

MADM assumes an infinite series for the unknown functions 𝑢(𝑥, 𝑡) and 

𝑣(𝑥, 𝑡) in the form 

 𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡)∞
𝑛=0 , 𝑣(𝑥, 𝑡) = ∑ 𝑣𝑛(𝑥, 𝑡)∞

𝑛=0 , (17) 

We can write ∅1  , ∅2, and  ∅3 by an infinite series of Adomian polynomials in 

the form  

 ∅1(𝑢) = ∑ 𝐴𝑛
∞
𝑛=0 ,  ∅2(𝑣) = ∑ 𝐵𝑛

∞
𝑛=0 ,  ∅3(𝑢, 𝑣) = ∑ 𝐶𝑛

∞
𝑛=0   (18) 
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where 𝐴𝑛, 𝐵𝑛, and 𝐶𝑛 are the appropriate ADMP. That is, when  𝐴𝑛, 𝐵𝑛, and 𝐶𝑛 

are the appropriate Adomian polynomials, the general form of the formulas is: 

 𝐴𝑛(𝑢𝑜 , 𝑢1 , … , 𝑢𝑛) =
1

𝑛!
 

𝑑𝑛

𝑑𝛾𝑛  [∅1 (∑ 𝛾𝑘  𝑢𝑘
∞
𝑘=𝑜 )] 𝛾=0  , 𝑛 ≥ 0 (19) 

 𝐵𝑛(𝑣𝑜 , 𝑣1 , … , 𝑣𝑛) =
1

𝑛!
 

𝑑𝑛

𝑑𝛾𝑛  [∅2 (∑ 𝛾𝑘  𝑣𝑘
∞
𝑘=𝑜 )] 𝛾=0   , 𝑛 ≥ 0 (20) 

 𝐶𝑛(𝑢𝑜 , 𝑢1 , … , 𝑢𝑛 , 𝑣𝑜 , 𝑣1 , … , 𝑣𝑛) =
1

𝑛!
 

𝑑𝑛

𝑑𝛾𝑛 [∅3(∑ 𝛾𝑘  𝑢𝑘
∞
𝑘=𝑜 ,

∑ 𝛾𝑘  𝑣𝑘
∞
𝑘=𝑜 )] 𝛾=0,  

𝑛 ≥ 0 (21) 

For example, the first polynomials using Eq. (14) and Eq. (16) are computed as 

follows: 

 𝐴𝑜 = 𝑢𝑜  
𝜕𝑢𝑜

𝜕𝑥
  

 𝐴1 = 𝑢𝑜  
𝜕𝑢1

𝜕𝑥
+  𝑢1

𝜕𝑢𝑜

𝜕𝑥
+ 𝑢1

𝜕𝑢1

𝜕𝑥
  

 𝐴2 = 𝑢𝑜  
𝜕𝑢2

𝜕𝑥
+  𝑢2

𝜕𝑢𝑜

𝜕𝑥
+ 𝑢2

𝜕𝑢1

𝜕𝑥
+ 𝑢1

𝜕𝑢2

𝜕𝑥
+ 𝑢2

𝜕𝑢2

𝜕𝑥
  

 𝐴3 = 𝑢3  
𝜕𝑢𝑜

𝜕𝑥
+  𝑢𝑜

𝜕𝑢3

𝜕𝑥
+ 𝑢3

𝜕𝑢1

𝜕𝑥
+ 𝑢1

𝜕𝑢3

𝜕𝑥
+ ⋯  

 𝐴4 = 𝑢4  
𝜕𝑢𝑜

𝜕𝑥
+  𝑢𝑜

𝜕𝑢4

𝜕𝑥
+ ⋯  

 ⋮  

 𝐵𝑜 = 𝑣𝑜  
𝜕𝑣𝑜

𝜕𝑥
  

 𝐵1 = 𝑣𝑜  
𝜕𝑣1

𝜕𝑥
+  𝑣1

𝜕𝑣𝑜

𝜕𝑥
+ 𝑣1

𝜕𝑣1

𝜕𝑥
  

 𝐵2 = 𝑣𝑜  
𝜕𝑣2

𝜕𝑥
+ 𝑣2

𝜕𝑣𝑜

𝜕𝑥
+ 𝑣2

𝜕𝑣1

𝜕𝑥
+ 𝑣1

𝜕𝑣2

𝜕𝑥
+ 𝑣2

𝜕𝑣2

𝜕𝑥
  

 𝐵3 = 𝑣3  
𝜕𝑣𝑜

𝜕𝑥
+ 𝑣𝑜

𝜕𝑣3

𝜕𝑥
+ 𝑣3

𝜕𝑣1

𝜕𝑥
+ 𝑣1

𝜕𝑣3

𝜕𝑥
+ ⋯  

 ⋮  

 𝐶𝑜 = 𝑢𝑜  
𝜕𝑣𝑜

𝜕𝑥
  

 𝐶1 = 𝑢𝑜  
𝜕𝑣1

𝜕𝑥
+ 𝑢1

𝜕𝑣𝑜

𝜕𝑥
+ 𝑢1

𝜕𝑣1

𝜕𝑥
  

 𝐶2 = 𝑢𝑜  
𝜕𝑣2

𝜕𝑥
+  𝑢2

𝜕𝑣𝑜

𝜕𝑥
+ 𝑢2

𝜕𝑣1

𝜕𝑥
+ 𝑢1

𝜕𝑣2

𝜕𝑥
+ 𝑢2

𝜕𝑣2

𝜕𝑥
 , 

 𝐶3 = 𝑢3  
𝜕𝑣𝑜

𝜕𝑥
+ 𝑢𝑜

𝜕𝑣3

𝜕𝑥
+ 𝑢3

𝜕𝑣1

𝜕𝑥
+ 𝑢1

𝜕𝑣3

𝜕𝑥
+ ⋯  



346 Ahmed F. Qasim, et al. 

and so on. The nonlinear systems Eqs. (15-16) are constructed as follows: 

 𝑢𝑜(𝑥, 𝑡) = 𝑔1(𝑥), 𝑣𝑜(𝑥, 𝑡) = 𝑔2(𝑥), 

 𝑢𝑛+1(𝑥, 𝑡) =  𝐿𝑡
−1[𝑎 𝐿𝑥𝑥𝑥𝑢𝑛 + 6𝑎 𝐴𝑛 + 2𝑏 𝐵𝑛];     𝑛 ≥ 1 (22) 

 𝑣𝑛+1(𝑥, 𝑡) =  −𝐿𝑡
−1[ 𝐿𝑥𝑥𝑥𝑣𝑛 + 3 𝐶𝑛];      𝑛 ≥ 1 (23) 

where the functions 𝑔1(𝑥) and 𝑔2(𝑥) are the initial condition. We construct the 

solution  𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) as follows: 

 𝑙𝑖𝑚
𝑛→∞

𝜓𝑛 =  𝑢(𝑥, 𝑡),  𝑙𝑖𝑚
𝑛→∞

 𝜑𝑛 =  𝑣(𝑥, 𝑡) 

where: 

 𝜓𝑛(𝑥, 𝑡) = ∑ 𝑢𝑘(𝑥, 𝑡)𝑛
𝑘=0 ,  𝜑𝑛(𝑥, 𝑡) =  ∑ 𝑣𝑘(𝑥, 𝑡)𝑛

𝑘=0 , (24) 

and the recurrence relation is given as in Eqs. (22-23). 

To examine the performance of MADM for solving Eqs. (1-2), we set the initial 

condition [16]: 

 𝑢𝑜(𝑥, 𝑡) = 2𝜆2 sech2 (𝜆𝑥 +
1

2𝑙𝑛(𝑤)
), 𝑣𝑜(𝑥, 𝑡) =

1

2

(𝜆𝑥+
1

2𝑙𝑛(𝑤)
) 

√𝑤
 

where 𝑤 is an arbitrary constant depending on parameter value 𝜆 > 0 , 𝑏 ≠ 0 

and 𝑎 is any parameter such that 4 𝑎 + 1 ≠ 0. Now, the reclusive relation can 

be written as follows:  

 𝑢1(𝑥, 𝑡) = −
1

2

sinh(
1   

2
  

2𝜆𝑙𝑛(𝑤)𝑥+1

𝑙𝑛(𝑤)
)   (32 𝑎 𝜆4  𝑤+𝑏)𝜆𝑡 

cosh(
1

2
  

2𝜆𝑙𝑛(𝑤) 𝑥+1 

𝑙𝑛 (𝑤) 
)

3
 𝑤 

 

 𝑣1(𝑥, 𝑡) =
1

2
  

sinh (
1   

2
  

2𝜆 𝑙𝑛(𝑤)𝑥+1

𝑙𝑛(𝑤)
) 𝜆3  𝑡   

𝑐𝑜𝑠ℎ (
1

2
  

2𝜆𝑙𝑛(𝑤) 𝑥+1 

𝑙𝑛(𝑤) 
)

2
 √𝑤 

  

 𝑢(𝑥, 𝑡) = 𝑢𝑜(𝑥, 𝑡) + 𝑢1(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡) + ⋯ 

=
1

12

1

𝑤2𝑐𝑜𝑠ℎ( 
1

2
 
2𝜆𝑙𝑛(𝑤) 𝑥+1 

𝑙𝑛(𝑤) 
)

7
 
(𝜆 (24 𝜆 cosh (

1

2

1

𝑙𝑛 (𝑤) 
(2 𝜆

𝑙𝑛 (𝑤) 𝑥 + 1)
5

 ) 𝑤2 −  192 sinh (
1

2
 
2𝜆𝑙𝑛(𝑤)  𝑥+1 

𝑙𝑛(𝑤) 
) 𝑡

cosh (
1

2
 
2𝜆𝑙𝑛(𝑤) 𝑥+1 

𝑙𝑛(𝑤) 
)

4
𝑤2𝑎 𝜆4 − 6 sinh (

1

2
 
2𝜆𝑙𝑛(𝑤) 𝑥+1 

𝑙𝑛(𝑤) 
)   𝑡

cosh (
1

2
 
2𝜆𝑙𝑛(𝑤) 𝑥+1 

𝑙𝑛(𝑤) 
)

4
𝑤𝑏 + 24 𝜆3 𝑡2

cosh (
1

2
 
2𝜆𝑙𝑛 (𝑤) 𝑥+1 

𝑙𝑛 (𝑤) 
)

5
𝑤𝑎𝑏 − 36 𝜆3 𝑡2
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cosh (
1

2
 
2𝜆𝑙𝑛(𝑤) 𝑥+1 

𝑙𝑛(𝑤) 
)

3
𝑤𝑎𝑏 + 18 𝜆2 𝑡3

sinh (
1

2
 
2𝜆𝑙𝑛(𝑤) 𝑥+1 

𝑙𝑛(𝑤) 
) 𝑎𝑏2  (25) 

 𝑣(𝑥, 𝑡) = 𝑣𝑜(𝑥, 𝑡) + 𝑣1(𝑥, 𝑡) + 𝑣2(𝑥, 𝑡) … 

=
1

8
 

1

𝑤
3
2cosh( 

1

2
 
2 𝜆𝑙𝑛(𝑤) 𝑥+1 

𝑙𝑛(𝑤) 
)

6
 
(4 cosh (

1

2

1

𝑙𝑛(𝑤) 
(2𝜆 𝑙𝑛 (𝑤)𝑥 +

1)
5

 ) 𝑤 +

4𝜆3 sinh (
1

2
 
2𝜆𝑙𝑛(𝑤)  𝑥+1 

𝑙𝑛(𝑤) 
) 𝑡 (

1

2
 

1

(𝑙𝑛(𝑤)) (2 𝜆𝑙𝑛(𝑤) 𝑥+1 
)

4
−

64 𝜆9 𝑡3sinh (
1

2
 
2 𝜆𝑙𝑛(𝑤) 𝑥+1 

𝑙𝑛(𝑤) 
) 𝑎𝑤cosh (

1

2
 

1

(𝑙𝑛(𝑤) )
 (2 𝜆

𝑙𝑛 (𝑤) 𝑥 + 1))2 (26) 

6 Firefly Proposed Method (FFA_MADM) 

The idea of the proposed FFA_MADM method is based on finding the best and 

optimal parameters for nonlinear Hirota-Satsuma systems using FFA combined 

with MADM. The results of MADM solution series Eqs. (25-26) are used to 

formulate the objective or fitness function in the FFA using: 

 𝑈(𝑎, 𝑏, 𝜆) = 𝑀𝑆𝐸 (∑ ∑ (𝑢(𝑥𝑖, 𝑡𝑗) − �̂�(𝑥𝑖, 𝑡𝑗))
2

𝑚
𝑗=1

𝑛
𝑖=1 ) (27) 

 𝑉(𝑎, 𝑏, 𝜆) = 𝑀𝑆𝐸 (∑ ∑ (𝑣(𝑥𝑖, 𝑡𝑗) − 𝑣(𝑥𝑖, 𝑡𝑗))
2

𝑚
𝑗=1

𝑛
𝑖=1 ) (28) 

 𝐹 = min
1

2
|𝑈(𝑎, 𝑏, 𝜆) + 𝑉(𝑎, 𝑏, 𝜆)| (29) 

where 𝐹 represents the fitness function (𝑀𝑆𝐸) solved by using FFA, 𝑛 and  𝑚 

represent the total number of steps used in the solution domain of 𝑥 and 𝑡 

respectively, 𝑢 and 𝑣 are the solutions of nonlinear Hirota-Satsuma systems 

Eqs. (25-26), �̂� and 𝑣 are the exact solutions for these systems. Consequently, 

the best values for systems Eqs. (25-26) are obtained from the following 

parameter values: 

 𝑎 =  −2.7286. 

 𝑏 =  4.4061. 

 𝜆 =  −0.0086. 

The proposed method supposes an elementary  standard model structure where 

some of the parameters are unknown. The objective of this method is to find the 

optimal parameters (𝑎, 𝑏, 𝜆) for nonlinear Hirota-Satsuma coupled KdV systems 
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to minimize the differences between the model output vector and the real 

response vector. 

The default settings for the FFA parameters listed in Table 1 were used by the 

Matlab® R2016a software. 

Table 1 Parameter Values for FFA 

Parameter Name Values 

Swarm size 30 

Max no. of iterations 500 

Max stall generations 50 

Initial population range [-10, 10] 

Number of decision variables 3 

Light absorptioncCoefficient 1 

Attraction coefficient 2 

Mutation coefficient 0.2 

We note that the proposed FFA_MADM algorithm outperformed the numerical 

method both at t=0.5 and t=1 as can be seen in comparison of absolute errors 

using 𝑢2, see Table 2. 

Table 2 Comparison of Absolute Errors Using 𝑢2 for Various Values of 𝑡 and 𝑥 in 

Hirota-Satsuma System between FFA_MADM and MADM 

 FFA_MADM MADM FFA_MADM MADM 

x t = 0.5 t = 1 

0 8.2799e-24 8.1547e-6 4.3946e-23 3.3335e-5 

0.1 7.9989e-24 1.3822e-5 4.2685e-23 8.4115e-5 

0.2 7.7207e-24 2.0346e-5 4.1426e-23 1.4248e-4 

0.3 7.4454e-24 2.7423e-5 4.0170e-23 2.0566e-4 

0.4 7.1730e-24 3.4660e-5 3.8915e-23 2.7011e-4 

0.5 6.9035e-24 4.1623e-5 3.7662e-23 3.3203e-4 

0.6 6.6368e-24 4.7890e-5 3.6412e-23 3.8778e-4 

0.7 6.3730e-24 5.3102e-5 3.5163e-23 4.3428e-4 

0.8 6.1122e-24 5.6994e-5 3.3917e-23 4.6928e-4 

0.9 5.8542e-24 5.9407e-5 3.2673e-23 4.9149e-4 

1 5.5991e-24 6.0302e-5 3.1431e-23 5.0058e-4 

MSE 4.8576e-47 1.8077e-9 1.4348e-45 1.1866e-7 

Figure 2 depicts the absolute error of the Hirota-Satsuma system by U equation 

at t=0.5 and t=1. 
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(a) (b) 

Figure 2 Absolute error of the Hirota-Satsuma system by: (a) U equation when 

t = 0.5, (b) U equation when t = 1. 

The proposed FFA_MADM algorithm also outperformed the numerical method 

at both t=0.5 and t=1 as shown in comparison of absolute errors using v2, see 

Table 3. 

Table 3 Comparison of Absolute Errors Using 𝑣2 for Various Values of 𝑡 and 

𝑥 in Hirota-Satsuma System between FFA_MADM and MADM 

 FFA_MADM MADM FFA_MADM MADM 

 x  t = 0.5 t = 1 

0    2.1884e-24 1.9191e-5    5.6782e-24 1.5662e-4 

0.1    2.0998e-24 2.1578e-5    5.4934e-24 1.7534e-4 

0.2    2.0127e-24 2.2771e-5    5.3101e-24 10844e-4 

0.3    1.9273e-24 2.2785e-5    5.1284e-24 1.8411e-4 

0.4    1.8434e-24 2.1718e-5    4.9482e-24 1.7508e-4 

0.5    1.7611e-24 1.9730e-5    4.7695e-24 1.5870e-4 

0.6    1.6804e-24 1.7026e-5    4.5923e-24 1.3660e-4 

0.7    1.6012e-24 1.3831e-5    4.4167e-24 1.1061e-4 

0.8    1.5237e-24 1.0369e-5    4.2426e-24 8.2539e-5 

0.9    1.4478e-24 6.8489e-6    4.0701e-24 5.4042e-5 

1    1.3734e-24 3.4455e-6    3.8991e-24 2.6544e-5 

MSE 3.1958e-48 3.0727e-10    2.3137e-47 2.0034e-8 
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(a) (b) 

Figure 3 The absolute error of the Hirota-Satsuma system by: (a) V equation 

when t = 1, (b) V equation when t = 1. 

7 Conclusion 

In this paper, nonlinear Hirota-Satsuma coupled KdV systems were solved 

using MADM combined with FFA. The basic idea for the proposed hybrid 

method is to find the optimal parameters for nonlinear Hirota-Satsuma coupled 

KdV systems (𝑎, 𝑏, 𝜆) as they are widely applied to solve other nonlinear 

systems. Compared to MADM, FFA_MADM ensures that the optimal 

parameters will be appropriately selected even if the system has multiple values 

and gives more accurate results than MADM. The tables and figures in this 

paper indicate that the approximate solutions obtained by FFA_MADM were in 

great agreement with the exact solutions. The calculations in this paper were 

performed using the MAPLE 13 and the Matlab® R2016a software. 
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