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Abstract. The current study provides a new class of f(a“” -QSO defined on 2D

simplex and classifies it into 18 non-conjugate (isomorphic) classes. This
classification is based on their conjugacy and the remuneration of coordinates.
The current study also examines the limiting points associated with the behavior
of trajectories for four classes defined on 2D simplex.
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1 Introduction

S. Bernstein developed the concept of the quadratic stochastic operator (QSO)
in 1924 [1]. Since then, QSOs have been intensively studied because they
emerge in various models in physics [2,3], biology [1,4,5], economics and
different branches of mathematics, such as graph theory and probability theory
[6-9]. In a biological context, QSOs can be applied in the area of population
genetics. QSOs can describe a generation-by-generation distribution when the
distribution of the original starting generation is provided. We highlight how
these operators can be used to interpret data in population genetics. We can see
how these operators function when analogously looking at a biological
population closed to reproduction with outside members. For that population,
we can assume that each member of this closed biological group has one or

more varying species-specific traits: {1, ...,m}. Let x(®) = (xio), ...,x,(,?)) be a
probability distribution of the species at an initial state and let the heredity
coefficient p;jj be the conditional probability p(k\i,j) that the i*" and j"
members of the species have reproduced successfully to produce a k"
individual. The first generation from this union x = (xil), ...,x,(,}) ) can be
calculated using the total probability

x” =" pk\i, )P, j), k=1Lm

i,j=1
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Given that no difference exists between the i** and j* members in any
generation, the original progenitors i, j are independent, i.e. P(i,j) = P;P;. This
condition suggests that

<1> Oy (® Tm
ZPukxl X! =1,m.

i,j=1

Consequently, the relation x(® — x(1 represents a mapping V, which is known
as the evolution operator. Beginning with the selected initial state x(%), the
population iteratively develops to the first generation set x( = V(x(®) and

then to the subsequent set x® =V (xW) =V (V(x(o))) = V@ (%) through

time. Hence, the discrete dynamical system presents the population system
evolution states as follows:

X, x®=v (X<0))’ x? —y @ (X<0>)’

One of the main issues that underlie this theory is finding the limit points of V
for an arbitrary starting point x(®). Studying the limit points of QSOs is a
complicated task even in 2D simplex and this problem has not yet been solved.
Numerous researchers have presented a specific class of QSOs and have
examined their behavior, e.g. F-QSO [10], Volterra-QSO [11-14], permutated
Volterra-QSO [15,16], #-Volterra QSO [17,18], Quasi-Volterra-QSO [19], non-
Volterra-QSO [20,21], strictly non-Volterra QSO [22], non-Volterra operators,
and others, produced via measurements [23-25]. Nevertheless, collectively,
these classes cannot represent all the QSOs as a set. An attempt was made to
study the behavior of nonlinear operators, which is regarded as the main
problem in nonlinear operators. However, this problem has not been
comprehensively studied because it relies upon a specified cubic matrix,

(Piji)ij k=1 [26].

Recently, Ganikhodzhaev, et al. [27] introduced é"(as) -QSO, which is a new
class of QSOs that depend on a partition of the coupled index sets (which have

couple traits) P, = {(i,j):i<j}cIXI and A, ={(,i):ieN}cIXI. In
the case of 2D simplex (m = 3), P; and A5 have five possible partitions.

n [28,29], the f(s) -QSO related to | & |=2 of P; with a point partition of A,
was investigated (see Section 2). In [30,31] the f(a) -QSO related to | & |=2 of
P; with a trivial partition of Az was studied (see Section 2). The éf(as) -QSO

related to |& [=30of P; with a point partition of A3 was examined by
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Mukhamedov and Jamal [27,32]. Furthermore, £® -QSO and &®-QSO are
related to | £ |=1 of P; with point and trivial partitions of Az, respectively, as

discussed by Alsarayreh, et al. [33]. This indicates that all partitions of P; were
investigated with respect to the point and trivial partitions of A;. Therefore, the
main motivation for this study was to introduce new partitions of Az. The

current study classifies the operators generated by f(as) -QSO with cardinality
|& =2 of Py and |& |=2 of Aj. To demonstrate this in the current report,
Section 2 establishes a number of preliminary definitions. Section 3 presents the
description and classification of {:(as) -QSO0s. Section 4 explains how this study

examined the behavior of V; and V5, obtained from classes G3 and G,
respectively. Section 5 examines the behavior of V,¢ and V,5, obtained from
classes G5 and Gq4, respectively.

2 Preliminary
Several basic concepts need to be operationalized to ensure clarity of terms.

Definition: QSO is a mapping of the simplex
m —_—
sm! ={x = (X, . %,) el ™: in =1, x>0, i =1,m} (1)
i-1
into itself with the form
m
X = Pixx, k=1Lm, )

where V(X)=X"=(X/,"--,X;), and P, is a coefficient of heredity that

satisfies the following conditions:

P20, Ry =Py, 2R =1 3)
k=1

Based on the preceding definition, each QSO V:S™~1 — §™~1 can be uniquely
defined by a cubic matrix P = (Pijk ).m, v, With conditions Eq. (1) and Eq. (2).

For V:S™™1 - §™m~1 we specify the set of fixed points as Fj, (V). Moreover,
for x(© € §™~1 we indicate the set of limiting points as wy (x(©). It must be
remembered that Volterra-QSO is defined by Eq. (2) and condition in Eq. (3),
with the additional assumption
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P =0 if kedi, . @

The biological rule of Condition Vol is well-established: an offspring replicates
the genotype (trait) of its parent(s). Volterra-QSO exhibits the following form:

xL:xk[lJrZakixij, kel, (5)
i=1

where
a; =2P, —1 forizk a;=0,iel a;=-a,and |a,[<1. (6)

Remarkably, this kind of operator has received extensive research attention [11-
13]. The concept of £-Volterra-QSO was first presented in [17] and formulated
as follows.

Let ¢ € I be fixed. Suppose that the genetic heredity coefficient {Pi j,k} satisfies
P =0 if kedi,j} for any ke{l,....0}, i,jel, (7)

R i« >0 forsome (iy, j,), i, =k, j, =K, ke{l/+1,....m}. (8)

ly

Therefore, the QSO specified by Eq. (2), additional condition in Eq. (3), Eq. (7)
and Eq. (8) is called £ -Volterra-QSO.

Remark 1. The following points must be reinforced:

1. An £ -Volterra-QSO is a Volterra-QSO if and only if £ = m.
2. No periodic trajectory exists for Volterra-QSO [11]. However, such
trajectories exist for £ -Volterra-QSO [17].
Following [27], each element Xe S™' is a probability distribution of set
I ={1,...m}. Let X=(X,"--,X,) and Y=(Y,,"-",Y,) be vectors obtained
from S™'. We say that x is equivalent to y if X, =0 <> Yy, =0. We denote
this relation as X ~ Y. Let SUPP(X)={i: X # 0} be a support of X S™"'. We
say that x is singular to y and specify this relation as x Ly if
supp(x) Nsupp(y) =D . Notably, if X,y e€S™", then x Ly if and only if
(X,y) =0, where (-,-) denotes a standard inner product in [] ™. Of further note
is that | & | indicates the cardinality of potential partitions of P, and A,,. If the

cardinal of partition of A,, is the maximum or minimum, it is named the point
partition or trivial partition, respectively. We formulate sets of coupled indexes
as follows:
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P ={G0j:i<jicIxl, A, ={Gi:ieljclIx]

For any specified pair (I, )€ P, WA, we set a vector [P, :(Pij,w"'a P. )

1 1J,m

Evidently, ]P’ij €S™"' because of condition in Eq. (3). In this case, let
E={AY, and & ={B}), be fixed partitions of P, andA,, giving:

N M
ANA =2.8(B,=2.|JA =P,.JB =A,. where N,M < m.
i=1 i=1

Definition: [27] QSO V :S™" — S™" given by Eq. (2) and condition in Eq.
(3) is considered a £®-QSO with respect to partitions & and &,if the
following conditions are satisfied:

1. Let ke{l,...,N} and (i, j),(u,v) € A, then B, ~ P, is considered.

2. Let k#/0,k,le{l,...,N}, (i,j))€ A and (U,V)€ A then B LB, is

considered.
3. Letde{l,...,M} and (i,0),(], j) € By, then B}, ~P; is considered.

4. Let s#h, she{l,..,M} and (U,u)eB,and (V,V)€B,, then
P, LB, is considered.

Example 1. Let &:={{(2,3)},{(1,2),(1,3)}} and & ={{1,1},{(2,2)},
{(3,3)}} be two possible partitions of P, and A, respectively. It is observable
that P, ~P;, P, L(R,,P;) and B, L P,, L P,;. Therefore, based on such
facts, the following values for IP’ij and P,
P, =(a,1-2,0), P =(a,1-a,0), P, =(0,0,1) P, =(1,0,0),
P, =(0,1,0), P, =(0,0,1). Due to Eq. (2), one can calculate the following:

can be considered:

X' = (X)) +2xOy? £ 2ax 7
Vi=dy = (YO +2(1-a)(x)(1-(x))
7' =(2) +2x©z©

Hence, the operator V is considered f(as) -QSO0.
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3 Classification of £® - QSO

This section presents the classification of f(as) -QSOs on 2-dimensional

simplex, i.e. m = 3 and the cardinality of the potential partitions of P; and A is
equal to 2. The potential partitions of P; are listed as follows:

& ={LDLILILIZILIG =3,
& ={(2,31,{(1,2),(1,3)} 1.1 & =2,
& ={13)}{(1,2),(2,3)}}.]1& =2,
& ={L2ELAL3)L 2.3 E =2,
& =1{(1,2),(1,3),(2,3)} & [=1.

The potential partitions of A5 are listed as follows:

& =H{ALDL{2.2)}1.{3.3) 1 6 =3,
g ={(1,1),(2,2),3,3)}.|& =1,

& ={LDL{2.2.6.3}}14 =2,
& =HGILMLD. 2.2 & =2,
& =HZDLAD,G.3)} )& = 2.

Proposition 1. For a class of f(as) -QSO generated from the possible partitions

of P; and A; with cardinality equal to 2, we determine the following:

1. The class of all §(as) -QSOs that correspond to partition &, of P, and
partition & of A; is conjugate to the class of all rf(as) -QSOs that
corresponds to partition &, of P, and partition &; of A, .

2. The class of all f(as) -QSOs that corresponds to the partition &, of P, and
partition &, of A, is conjugate to the class of all & -QSOs that
corresponds to partition &, of P, and partition &, of A,.

Proof.

1. Under the general form of QSO given by Eq. (2) and Eq. (3), the
3
coefficients (Puk)

i, k=1

of operator V of f(as) -QSOs that correspond to
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partiion & =1{{(2,2)},{(1,]),(3,3)}} of A, and partition
& ={{(1,3)},{(1,2),(2,3)} } of P,, satisfying the following conditions:

i Py ~P;and P, LP  ,m=13; ii. B, ~P,; and P; L (P,,P,;),
where B = (P;,» Pj2» Pjjz) - To perform V= aVz™" transformation on
1 2 3)
31 2

3 -
. ! J— v f— T f—
VX = E PhXX;, k=13, such that B =P . .,

operator V, where permutation =( and where

for any
i1

i,j,k =13. Equivalently, B =7P_,

1,2,3. Subsequently, operator V; corresponding to partitions &; of A; and

(in vector form) for any i,j =

&, of P, is presented by applying the permutation 7 for the coefficient of

V that corresponds to partition & of A; and &, of P,. From this, the

following relations are derived:

a. B, ~P; and P, L(F,,P;). By applying the permutation = on
B =P,.P,=P,, and P;=P,, we obtain P,~P, and
B, L (P,,P,;). Therefore, the properties of &, of A, are verified.

b. B, ~P; and P, L(B,,P;). By applying the permutation z on
P, =P,, P;=P,, andP;=P,, we obtain P, ~P; and

P, L(P,,B;). Therefore, the properties of &, of P, are verified.

2. Similarly, the second part of this theorem can be proven by choosing the
1 2 3

> 3 1). This process completes the proof.

following permutation: & = (

The preceding discussion reveals that any rf(as) -QSO obtained from the class

that corresponds with partitions &; of A; and &, of P, or &, of A, and &, of
P, is conjugate to certain gg(as) -QSOs obtained from the class that corresponds
to partitions & of A, and &, of P,. To investigate the operators of class &
-QSO that correspond to partitions &, of P, and & of A;, the coefficient

3
(Pij’k) - in special form is selected, as shown in the Tables 1 and 2.

i,
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Table 1 The possible values of P;;.

Case Py Py, P3s
L (a,8,0) (0,0,1) (0,0,1)
I, (a,0,8) (0,1,00 (0,1,0)
I3 B,2,0) (0,0,1) (0,0,1)
I (B8,0,) (0,1,00 (0,1,0)
Is ©,a,8) (1,0,0) (1,0,0)
Ig 0,8,) (1,000 (1,0,0)
where a,f € [0,1][0,1] such that a + § = 1.

Table 2 The possible values of P;;.

Case PlZ P13 P23
11 (1,0,0) (1,0,0)  (0,0,1)
11, (1,0,0) (1,0,0)  (0,1,0)
e (0,1,0) (0,1,0)  (1,0,0)
" (0,1,0) (0,1,0)  (0,0,1)
1l (0,0,1) 0,0,1)  (1,0,0)
1, (0,0,1) (0,0,1) (0,1,0)

The choices for Cases (I}, I1;), where i,j =1, ..., 6, provide 36 operators. These
operators can be defined accordingly:

(0),(0) 0)(0)

X' =a(x”) +2x"y" +2xz Oy 4 2x 7"

X =a(x™) +2x7y"” +2xz

y' = Bx")
Z’ — (y(ﬂ))2 + (2(0))2 +2y(0)z(0)

(0) (0),(0)

X' =a(x") +2y"z

y’ — ﬂ(x(”))z +2X(ﬂ)y(ﬂ) +2X(ﬂ)z(ﬂ)
2'=(y") +@")

X = a(x”) + 2y

y'=p(x"y’

Z/ — (y(O))2 + (Z(O))Z +2X(0)y(0) + 2X(0)Z(0)
X =a(x”) +2x”"y"” +2x9z¥

y' ="y +(@")

Z' — ﬂ(X(O))z +2y(0)Z(U)

=1y = BX") +2y0z
="y +@"y

X' =a(x")

= y' — ﬂ(x(o))z + 2X(ﬂ)y(0) + 2X(0)Z(”)
Z! — (y(o))z +(Z(ﬂ))2 +2y(ﬂ)z(ﬂ)

X' =a(x”)’

= y’ — ﬂ(X(O))Z +2y(0)z(0)

X = a(X(O’)Z +2X(0>y<0> +ox®7©
— y’ — (y(O))2 + (Z(O))Z +2y(0)z(0)
7= gy’

Z':(y(o))2+(z(0))2+2X(0)y(0)+2x(0)z(0)
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23
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X _a(X(O)) +2y(0) 0)

(y(O)) +(Z(0)) +2X(0)y(0)+2x(0) (0) V]o =

z=ﬂu®)

(0) (0) (0)

X' =a(x™) +2y
y ="+
2= A" +2x"y" +2x"z
X' =AY +2xy"” +2x"z
1: a(X(O))z
(y(o)) +(Z(0)) +2y(0) (0)
X _ﬂ(X(O)) +2y(0) (0)
y :a(X(U)) +2X(0)y(0)
2=y + (@)
X —ﬂ(X(O)) L2y @7
=a(x"Yy

+2x"z

y'=(y") +@")y
7 =a(x”) +2y"z"”

X’ :ﬂ(x(o))z +2y(0)z(0)

7 =a(x?y
X _ﬂ(X(O)) +2y(0) (0)
y' =" +@")

25 °

X' — (y(o))2 + (Z(U))Z +2X(0)y(0)
/ _ a(X(O))z

7 —,B(X(O)) +2y(0> )

(0)

(0)

(0)

+2X

z _(Z(O)) +(y(0)) +2X(0)y(0)+2X(0) (0)

X _ﬂ(X(O)) +2X(0)y(0)+2x(0) 0)

7' =a(x) +2xy? +2x 9z

(0) (0)

()R (0)2 (0),(0) (0),(0)
Y=y ) H(@Z7) +2x7y T +2X727V,

20 °
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26 °
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X' =a(x")’
y' — (y(O))Z + (2(0))2 + 2X(0)y(0) + 2X(0)Z(0)
Z' — ﬂ(x(o))z +2y(0)z(0)
X =a(x)’
(y(())) + (Z(O)) + 2y(0) (0)
Z — ﬂ(x(ﬂ)) + 2X(0)y(0) + 2X(0) (0)

X':ﬂ(Xm))z +2X(0)y(0)+2X(0) (0)

(0)

y':a(x ) +2y(0) o
2=y +@")
X =By

':a(x(ﬂ))z +2X(0)y(0)

(y(O)) +(Z(0)) +2y(ﬂ) (0)
%=ﬂumf
(Z(X(O)) +2y(0) (0)

z _(Z(O)) +(y(0)) +2X(0)y(0)+2x(0) (0)

+ ZX(U) (0)

X —ﬂ(X(O)) +2X(0)y(0)+2X(0) (0)
(y(o)) +(Z(0)) +2y(0) (0)

z =a(x(°>)

X!:ﬂ(X(O))Z
'=(y(0))2+(z(0))2+2X(0)y(0)+2x(0)z(0)
z _a(x(o)) +2y(0) (0)

X ="y’
y/:(y(o))Z+(Z(0))2+2Z(0)y(0)

7' =a(x”) +2xVy? +2x 9z

X’:(y(o))2+(Z(U))2+2X(0)y(0)+2X(0) (0)

y' =a(x"”

2= By

(U) (0)

) +2y
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29

31

33

35"
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X' = (y(O))Z + (Z(O))Z +22(0>y(0>

r_ (0)y2 (0),(0) (0)5(0)

Y =a(X") +2x7yT +2x72 Vo,
Z = f(x"y

X! — (y(O))Z +(Z(0))2 +2Z(0)y(0)

y' =a(x”)’ V,,:

z _ﬁ(x(o)) +2X(0)y(0)+2X(0) (0)

(y(o)) +(Z(0)) +2X(0)y(0)+2x(0) (0)
y =ﬂ(X(°)) Vi,
7z _a(x(o)) +2y(0) (0)
X' = (y(O))Z +(Z(0))2 +2Z(0)y(0)
y ﬁ(x(o)) +2X(0)y(0)+2x(0) (0) V34
7' =a(x”)
X’ =(y(0))2 +(Z(0))2 +22(0)y(0)
y' =By Vi
z _a(x(o)) +2X(0)y(0)+2x(0) (0)
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XK=y +(@")

= , = CX(X(O))2 + 2X(0)y(0) + 2X(0)Z(0)

7 _ﬁ(X(O)) +2y(0) (0)

X =(y") + (@)

— _Ol(X(O)) +2y(0) (0)

Z _ﬂ(X(O)) +2X(0)y(0)+2x(0) (0)
(y(O)) +(Z(0)) +2X(0)y(0)+2X(0) (0)

= y ﬂ(X(O)) +2y(0) (0)

2 =a(x”)

X =(y") +(2")

= y ﬂ(x(o)) +2X(0)y(0)+2x(0) (0)

z za(x(o)) +2y(0)z(0)

X =(y"y +@")

= y ﬂ(x(o)) +2y(0) (0)

z _a(X(O)) +2X(0)y(0)+2x(0) (0)

As can be seen, this class of f(as) -QSOs contains 36 operators. These operators

are too numerous to explore individually.

Thus, two operators V, and V}, are

considered (topologically or linearly) conjugate when a permutation matrix P

such that P~1V,P =V, exists. Let  be a permutation of set I = {1, ...
any vector x, we define mw(x) = (Xp(1), ..,

m}. For
Xp@m)). Verifying if m is a

permutation of set I corresponding to the given permutation matrix P is simple.
When true, then P, = m(x). In this case, two operators V, and V,, are conjugate
if and only if w1V, m =V}, for any permutation 7. Therefore, one may classify
such operators into small classes and examine only the operators within these

classes.

Theorem 1. Let {Vl,-'-,V

36

} be the .ff(as) -QSO presented above. Then, these

operators are divided into 18 non-isomorphic classes:

G = {Vl: Vs}
Gs = {Vs, Vo}
Go = {V15' V23}
Gz = {Vas, V3o }
Gi7 = {V29' V33}

G, = {Vz: V7}
Ge = {Ve, V10}
Gro = {Vie) Vau}
Gia = {Vza: V31}
Gig = {V30, Vas}.

G, = {V4: V12}

Gg = {V14,Vio}
Gy = {V18r sz}
Gy = {Vag, Vas}

Gs = {V,,Vy}
G; = {V13'V20}
G111 = {V17: V21}
Gis = {V27' V35}
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Proof. Evidently, the partitions &, of P,and &, of A, are invariant only under
(0 y(O) 7(0)
x(©0) (0 y(O)
be classified in relation with the remuneration of their coordinates.

Consequently, we must perform the mV/m~! transformation on all the operators.
Starting with V; as the first operator, we obtain the following:

the permutation = ( ) Therefore, the given operators should

vV, (ﬂ'_l(X(O), y, Z(O))) =V, (X(O), 7, y(0>) _
(a(xXV)? +2xVy© 4202, B(x)?,

(y(O))Z + (Z(O))2 + 2y(0)z(0))

Thus,

7Z'V]7Z'_] — (a(x(o))2 + 2X(0) y(O) + 2X(O)Z(O), (y(O))Z + (Z(O))2 + Zy(O)Z(O) , (a _ l)ﬁ(x(o))z)

=V,
We can derive the other classes by following the same procedure. The proof is
completed using this process.

4 Dynamics of classes G3; and Gq

This section explores the dynamics of & -QSO Vis: S* —>S? selected from

G and Gg. Firstly, V3 is rewritten as follows:
X = a(x”) +2y" 2
V, =1y = (1-a) (x?)’ +2x” (1-x) ©)
Z! — (Z(O))Z +(y(0))2

The operator V; can be redrafted as a convex combination V3 = aW; +
(1 — a)W,, where

X = (X +2y©7®
W, =1y =2x" (1-x?) (10)
2= +(y"y

and
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X' = 2y<0>z<0>
W, =1y =2x" - (x?)’ (11)
ZrZ(Z(O))Z +(y(0))2

following regions are introduced and the behavior of {W,™}7, over them

is investigated:

A=x"eS:0<x,y?, ¥ s%},
1

A =x"eSs’ :5< X <1,
1

A ={x"eS’ o< y” <1,

1
A ={x" s 5 < 7% <13

Proposition 2. The following statements hold for W, of V5:

1. The region A, is invariant.
2. Let X”gFiXW,), and x €A, then, W™} goes to AUA.
Accordingly, if X € A, then, {W"}” goes to 4;.
3. Let X €A, then, W™ }”, goesto A.
Proof.
1. Let XI(O) € A . Then, 0< X,y @, 79 < % Evidently, —1< 3x¥ -1 S% can

be verified. By squaring and adding 3y =2, the last inequality
becomes 0<(3X” -1 =3(y” -z")’ <1, and 9(x”) —6x +1

-3(y"” —z)" <1 is obtained. By dividing the previous inequality by three
after adding two to both parts of the inequality, we derive
3 —2x O +1-(y” -2y <1.

Therefore, 2(x”)* +(y” +2'7)’ —=(y” -2'")* <1.

, 1
Then, 2(x"”) +4y"”z"” <1, which implies that X SE. It is observable that
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1 1
y' SEVXI(O). Evidently, 0<(y"”)*,(z'")" < Z is obtained, which implies

that z' SE. Hence, A is an invariant region, i.e. if an initial point Xl(o) is

taken inside this region, then the trajectory will go to a point that is also in
this region.
. . 1 - .

2. The second coordinate of W;is less than 5 at any initial point xio), thereby
indicating that A5 is not an invariant region. Subsequently, suppose that A4,
is an invariant region, which indicates that y' < x" and z’ < x'. However,

X, — (X(O))Z + 2y(0)z(0) < (X(O))Z + (y(O))Z + (Z(O))Z

< X(O)(X(O) + y(O) + Z(O)) — X(O).

XI
Then —g <1, which implies that the first coordinate is a decreasing
X
bounded sequence that converges to zero, thereby contradicting our
assumption. Hence, if X" € A UA,, then n N €l such that the

sequences x™ and y(nkz) tend toward invariant region A, .

3. Suppose that A, is an invariant region; hence, z' = y' + x"and x’,y' < %
Evidently, x" < y’. By using the last inequality and the first coordinate of
Wy, we obtain y' > 2y@z©  That is, z’ < %, which repudiates our
assumption. Hence, region A4, is not invariant.

Theorem 2. Let W :S"*—>S” be a &£*-QSO given by Eq. (10) and

X =(x?,y?,2”) ¢ Fix(W,) belongs to simplex S as initial point. In this
case, the two statements below are valid:

3—\/5\/51}

1. Onehas Fix(W,) = {e"ep(T’T’Z)

2. Onehas @, (x")= {(

3-3 3 1}_

PRI

Proof. Let W, : S* — S” be a £™ -QSO given by Eq. (10), X" & Fix(W,) be
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any beginning point that belongs to S? and {W™}” be a trajectory of W, that

starts at x.".

1. The set of fixed points of W; is obtained by finding the solution for the
following system of equations:

X=X +2yz
=<y =2x(1-x) (12)
1=y’ +17°

Depending on the first equation in system Eq. (12), we derive x — x? = 2yz.
Subsequently, the last equation is multiplied by 2 and the new equation is
substituted into the second equation in system Eq. (12). We obtain
y(1—4z):0andﬁndy:00rz:i. If y=0,then x =0 or x =1 can
be easily found; hence, the fixed points are e; = (1,0,0) and e3 = (0,0,1). If

z= i, then y = \/TE and x = # can be found by using the first and third
3—V3 V3 1)

T4 ' a’a

equation in system Eq. (12). Therefore, the fixed point is ( .2

2. To investigate the behavior of {W ™}” . the following regions are

introduced:
1
B ={x"eS*:0<z” <x? <y <§},
1
szwwes%oswmsf“s%“saﬁ

B,:={x"eS*:0<x?<y?”<7® sl},

2
B ::{x(")682:0<z(°>SX(°’sl l<y(")sl}.
o 373 2

Subsequently, the behavior of {Wl(n)} across all the previously
n=1

[o9]

mentioned regions will be explored. After that, the behavior of {Wl(n)}
n=1
will be simple to describe.
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Given that y',x" < %, we can easily conclude x' < y’, thereby indicating that
B, cannot possibly be an invariant region. Subsequently, we intend to verify
whether Bj is or is not an invariant region. Let xfo) € Bs. Then,

Z' — (Z(O))Z +(y(0))2 < (X(O))Z +(y(0))2 +(Z(0))2 < X(O)Z(O) + y(O)Z(O) +(Z(0))2
— Z(O)(X(O) + y(O) + Z(O)) — Z(O)

!
We determine that % < 1, which indicates that z™ is a decreasing bounded

sequence. By this we mean that z("™ converges to a fixed point of zero, thereby
negating our presumption. Thus, region Bj is not invariant. Then, we consider a

new sequence X +2'=2(X")*—2x" +1. The new sequence has a minimum
value of %, which indicates that all coordinates are greater than zero and smaller
than % Hence, if XI(O) eB,UB; UA, then N, Ny Ny el , such that the
sequences x k1) y(ka) and z(™s) return to invariant region Bs. Let x(® < §
We can easily check whether the maximum value of the first coordinate
X' = (XY +2y? 1 =x —y) occurs when Gé) In this case, x(™ < § and

1. . 1
zMW < e Given that all coordinates are equal to one, we conclude that y™ > T
oo

Therefore, if xio) € B4, then n; € N, such that {Wl(n")} returns to B,.

n=1
Hence, B, is an invariant region.

We have proven that if X" € B,,i€{l,...,3}, then the trajectory {W,"}"
goes to invariant region B,. Thus, exploring the behavior of {W,"}”  over
region B, is adequate. Evidently, y(”) < y‘”“’ , 1.e. it is a bounded increasing
sequence. Given that y™+x™ is a bounded decreasing sequence and
x‘”):y‘”)—y(“’+x(“’, we conclude that X™ is a decreasing bounded

3—V3 n) . V3
sequence that converges to 0 Thus, we have y converging to —-.

3-V3 V3 1

Therefore, wy, (xfo)) = {(T'T’Z)}’ which is the desired conclusion.

Let the following regions:
int(Sz) ={x"eS* : x"y"2" >0,

int(Sz) ={x"es*: xyz” =0},
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L={x"eS:x” =0},
L, ={x" eS*:y® =0},
L ={x"eS*:2" =0}
Theorem 3.
Let W, :S* — S* bea & -QSO given by Eq. (11),
x” = (x",y",2') ¢ Fix(W,) U Per, (W,) belongs to simplex S” as initial point.

1

Then, the three statements below are valid:

1. One has Fix(W,) = {e3,(XL, Yy, ZL)} , where

X :__li/z_ 8 53
6 3\3/;+7
3
, _—_13\/E<ﬁ+2{/t_2—24\/ﬁ—53t—88
6 3t2 ?

z :_—12\/7_3\/5\5_“ t’+6\/ﬁ_10,andt:(98+18\/ﬁ).
; s

e,(0,y,1-y),if x¥=0

e, (X ,0,1-x),if y” =0

2. One has Per,(W,) = {

1 . 4 2

where y° :E(l+3\/§)3 —+=
3(1+357)°

| . 2 4

X =?(46+6J§)3 3
3(46+64/57)°

3. One has
(x,y,z) Jif X" eint(S?)

o, (X") =1 (x,0,1-x),(0,y",1-y") ,if X" eint(s”)

e, it x O,y =1
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Proof. Let W, :S* — S’be a £*-QSO given by Eq. (11), x* & Fix(W,)uU
Per,(W,) belongs to S°, and {W,™}”  be a trajectory of W, beginning at x".

1. The set of fixed points of W, is obtained by finding the solution for the
following system of equations:

X=2yz
y=2x-x (13)
1=2"+y’

Based on the first equation in system Eq. (13), we have z = % By using
z =1 — y — x and the second equation in system Eq. (13), we obtain 3x —

14x2 4+ 10x3 — 243X —14x* +10x* =2x* =0 Thus, the roots of the
previous equation are {0, x'}. By compensating for the values of x, namely,
x = 0 and x = x* in the second equation in system Eq. (13), we obtain y =
0 andz=1ory=y" and z = z°. Therefore, the fixed points of W? are
ez and (x°,y°,2").

2. To find the 2-periodic points of W,, we should prove that W, has no
specified order of periodic points in set S?\L; U L,. Evidently, y(™+1 >
y™, i.e. the second coordinate of W, increases along the iteration of W,
in set S?\L,. Consider a new sequence x' +y' = 2x(® — (x(o))2 +
2y@ (1 — x(© — () Whether x' +y' is a decreasing sequence can
easily be checked, thereby indicating that sequence x™ is decreasing,
because x™ = y™ + y(™)_ Thus, the first coordinate of W, decreases
along the iteration of W, in set S?\L;, which indicates that W, has no
specified order 2 -periodic points in set S?\L; U L,. Therefore, finding the
2-periodic points of W, in L; UL, is sufficient. To find the 2-periodic
points, the succeeding system of equations should be solved:

X=202x- X}y’ +17%)
y=4yz-4y’z’ (14)
1=2x=xX )y’ +17°)°
We start when x = 0. Then, we find the solution for y = 4y — 8y2 + 8y3 —
4y*. We obtain the following solution: y = 0 or y = y°. If y = 0, then z = 1.

If y=y°, then z=1—y°. Therefore, e; and (0,y°,1 —y°) are 2-periodic
points. On the other hand, if y = 0, then the solutions for the equation x =
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22-x—x*)(1—x)?arex=0orx =x°. If x =0, then z = 0; if x = x°,
then z = 1 — x°. Therefore, e; and (x°, 0,1 — x°) are 2-periodic points.

3. To investigate the behavior of W,, the following regions are introduced:

. 1
(=" e |nt(82):0< X,y 2@ g;};

1

2 1

0, ={x" e int(Sz):0< X <z2@ <y@ g%},

Evidently, y'=2x"-(x") >x” and x'=2y"z" <(y") +Z") =7,

which indicates that X <z"™ and x"™ <y™. To prove that ¢, is an invariant

1
region, assume that y' > % by using the first coordinate of W,. Then we have
x'=2y?z"”, which implies that X'>z'. This relation is a contradiction
because X' <z'. Thus, y™ < % Now, suppose that z' > % By using the first
coordinate in W, , we obtain X" >y which is also a contradiction. Therefore,
l

returns to invariant region ¢, . Let us complete proving that ¢

, is an invariant region. Moreover, if X"’ € ¢ , then n_e[ , such that W,"™’

, 1s an invariant

region. If we  assume  that y'<z', this indicates that
=2 +(y”) <2z, ie.
(n)

!

z . .
m<1. Therefore, z™ is a decreasing

converges to the fixed point of zero. Moreover,
()

bounded sequence. That is, z

y™ is an increasing bounded sequence. Thus, y" converges to zero. Whether

y™ converges to zero if X™ converges to zero can be checked. The result
implies that the limiting point for W, is empty, which is a contradiction. Thus,
n, €0, such that z™ returns to invariant region Z' <'Yy", which proves that ¢,
is an invariant region. Moreover, if x'” e ¢, then n, €] , such that {W, """

returns to invariant region .

Accordingly, the behavior of {W,"”}” can be described. As discussed in the
proof of the second part of this theorem, we determine that the first and second
coordinates, namely, x(™ and y™ are decreasing and increasing sequences,
respectively. Thus, x™ and y™ converge to a certain fixed point. The first and

second coordinates of W, converge; thus, the third coordinate also converges.
Between the two fixed points, the properties mentioned above of W, are only
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satisfied by point (x°,y°,z"). Therefore, the limiting point is
@, (X")=(x,y,2), vx” e int(Sz).

To explore the behavior of {W."}*  when X" € int(Sz) , consider three cases,

ie. when X =0,y =0, and z” =0. If X =0, then V((0,y”,z))
=(X,0,1-X")andV ?((0,y"”,z”)) = (0,y',1-y’) . By applying this process to
the next iteration, we determine that V *"((0, y'”,z”)) = (x®"",0,1—x“"")
andV " ((0,y"",2'")) = (0,y"”",1—y®"). That is, the behavior of {W,"}”  in
this case will be on the xz-plane if n is an odd iteration and on the yz-plane if n
is an even iteration. When the preceding process is performed when y” =0,
we find that VD (x,0,2)) = 0,y 1-y©T) and
Ve (x™,0,2)) = (x*",0,1-x“"). That is, the behavior of {W,"}* in this

case will be on the yz-plane if n is an odd iteration and on the xz-plane if n is an
even iteration. Through the same process, we determine that

V(2n+l)((x(0) O Z(O))) :(O y(2n+1) 1_y(2l‘|+1)) and V(2n)((x(0) 0 Z(O))) :(X(ZI‘I) 0
1-x°") when z' =0. This indicates thatn,_e[] , such that the behavior of

(W, ™3~ in the case of 2'” =0 will be on the yz-plane if n is an odd iteration
and on the xz-plane if n is an even iteration. Therefore, studying the two cases
when X =0 and y” =0 is sufficient. Starting with X' =0, consider the
following function:

Y =v(y ™) =4y —8(y"Y +8(y") ~4(y")’ (15)

where y'” € (0,1). Now, Fix(¥)"(0,1)={y’} can be shown. Through simple
1 1

calculations, v((O,E]j c [E,l) can be found. Thus, we conclude that [%, 1) is

sufficient to study the dynamics of V at interval (0,1).

To investigate the behavior of v, the interval [E’l) is divided into three

intervals as  follows: I, :[%,y°] > 1 :[yo,%+% \/5—1], and
L -+l 2 Evidentl ©) >y wh © d
R _[2+ 5 2 —1,1). Evidently, v(v(y')) =Yy when y"” el an

1
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v(r(y”) <y” when y© el,. Therefore, two cases should be discussed
separately.
a. For any neld , v?™(y*)>v®(y")wy? ¢ I, can be easily shown.

2 0 . . .
Thus, V' ”)(y( )) is an increasing bounded sequence. Furthermore,

v (y®) converges to a fixed point of v y’is also a fixed point of

v® and is the only possible point of the convergence trajectory. Hence,

(2n)

sequence Y™ converges to y°.

b. Similarly,<v(2n+2)(y(°)) < V(Zn)(y(O))> vy® el,. Thus, v" is a decreasing

0)

bounded sequence. Furthermore, v*" (y"”) converges to a fixed point of

v, y~ is also a fixed point of v® and it is the only possible point of the

(2n)

. 0
convergence trajectory. Hence, sequence Yy " converges to Yy°.

To explore the behavior of v when y* € I, the following claim is required:

Claim: Lety” e I,. Then, n_e[ , such that v eI, U1, .

Proof. Let y e I,. Suppose that the interval l,is an invariant interval, which
indicates that y™ e I, for anyn e . Evidently,v"" (y”) <v™(y"”), which

results in v being a decreasing bounded sequence and converging to a fixed
point v. However, Fix(v)N 1, =, which is a contradiction. Hence,n, €l ,

such that v e 1, U I,.

In accordance with this claim, y“"will go to |, U |, after several iterations.
Thus, sequence (0,y"”",z") converges to (0,y ,1—y") whenever x” =0.
Let y” =0 and consider the following function:

X =9(x") = 4x” —10(x”)* +8(x")’ —2(x)*, (16)
where x'” € (0,1) . When we do this, Fix($)(0,1) = {x } can be easily shown.

Through simple calculations, we determine 9 ([0,1 - %\/f] cJ1- %\/Z 1)
and conclude that [1 — %\/7, 1) is sufficient to study the dynamics of ¥ on (0,1).
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To investigate the behavior of ¥, the invariant interval [1 — %\/7, 1) is divided

1

. . 1 . .1 1
into three intervals as follows: | :[1_5\/5’)( 1, 1, =[x ,5],and I :[E,l).

Thus, we have two separate cases:

a. Letx”el, then 9(x")el,and, 97x"el,. J"?x")<
9°"(x'”) whenever x'” e I, can be easily checked. Therefore, 9" is a
decreasing bounded sequence that converges to a fixed point of 3. X is a

fixed point of $? and the only possible point of the convergence
trajectory. Hence, 9 converges to X°.

b. Similarly, letx” el,, then $(x“yel and 3% (x") e 1.

G (x> 9 (x”) whenever  x e, can be easily checked.

Therefore, 9" is an increasing bounded sequence that converges to a

(2) (2)

fixed point of . x Is a fixed point of 9* and the only possible point of

the convergence trajectory. Hence, 3" converges to X°.

To explore the behavior of 3, when x* e 1, the following claim is required:

Claim: Let x'” e I, . Then,n,_ e[l , such that ™ el U,.

Proof. Let x'” e I,. Suppose that interval |, is invariant, which indicates that
x" el, for anynel . Bvidently, 9™ (x'”)<3™(x”), which results in
sequence 9" being decreasingly bounded and converging to a fixed point of
9 . However, Fix(9)n 1, = &, which is contradiction. Hence,n, €lJ , such
that 9™ e 1, U,.

In accordance with the claim, x"

will go to I U1, after several iterations.
Thus, sequence (x“",0,z°")converges to (X ,0,1—x)whenevery® =0.

Alternatively, if x'” = 0, then

(03 yoal_yo) nlf n =2k

(x.0,1-x7) ,if n=2k+1 an

v<“>(w2>={

If y =0, then
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0,y ,1-y) ,if n=2k+1

(x°,0,1—x°) ,if n=2k (1%

v<">(vv2>={

From the preceding demonstrations, we observe that if x” =0 and n is even,
then the behavior of {W,™}” occurs in (0,y ,1-Y"), which is equal to the
behavior of {W,"}*  when y” =0 and n is an odd iteration. If y*” =0 and
n is an even iteration, then the behavior of {W,"}”  occurs in (X ,0,1-X),
which is equal to the behavior of W, when X =0 and n is an odd iteration.
Therefore, the limiting point of W, consists of (x,0,1-=x") and (0,y",1-y")
whenever X" eint(Sz). If X =1, then the behavior of W, reaches
fixed point e, after three iterations; if y'” =1, then the behavior of {W,™}*
reaches fixed point e3 after one iteration. Therefore, the limiting point in this

case includes e3, which is the desired conclusion.

(n)

Subsequently, the behavior of operator {V "}~ selected from class G, is

explored:
X =(1-a)(x”) +2y 2"
V. =1y =a(x”)* +2x" (1 - x‘o)) (19)
Zl — (Z(O))Z +(y(0))2

The operator V_  can be redrafted as a convex combination

V, = (1—0‘)W| +aW,, where W, and W, are equal to the operators given by
Eq. (10) and Eq. (11), respectively.

Corollary 1. Let W be a ¢&®-QSO given by Eq. (10) and let

) _
.=

two statements below are valid:

x© = (x”,y",2) ¢ Fix(W,) belong to simplex S’ as initial point. Then, the

2 47

1. One has Fix(VVl)={ 1,e3,(ﬂ 3 1 }
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3-V3 431
2. Onehas o (xV)= ,— —-)
L () =1C p R
Let W,:S*—>S> be a &®-QSO given by Eq. (11) and let
X =(x,y?,2) ¢ Fix(W,) belong to simplex S’ as initial point. Then,

the following statements hold true:

1. One has Fix(Wz):{eS,(xr, y.2)}.

where, X" =—\/_—

3\/—+
- a7 - 2417 -5t —ss
Y =% e
C—1230 3T - R+ 6417 - 10
T e t=(98+1817).
t and

eSa(anoal_yo) alf X(O):O
2. One has Per,(W,) !
e,,(x,0,1-x) ,if y”=

. 2
where, Y ——(1+3\/ )3——+—,
3(1+3+/57)
4
:—(46+6x/_)3 R
3(46+6\/7)3
3. One has
(x,y,2) i xf‘”eint(Sz)
cowl(xl“”): (X,0,1-x),(0,y ,1-y),if x” gint(Sz)
e, Sif xO,y” =1
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5 Dynamics of classes G13 and G4

In this section, we study the dynamics of V4 ,5:S 2 - 52 selected from G,, and
G13. To start, V,¢ is rewritten as follows:

X' =" +(@") +2x" (1 - x(”’)
Vm - y' :a(X(ﬂ))z +2y(0)z(m (20)
2'=(1-a)(x")

The operator V,¢ can be redrafted as a convex combination V,q = aW; +
(1 — a)W,, where

X' =y +(2") +2x (1— X‘O))

W=y = () +2y'z" @1

Z’=0

and
X =y ") + (7)Y +2x (1 - x“’))

W, =qy'=2y"z" (22)
7 = (X(O))z

Theorem 4. Let W; be a &®-QSO given by Eq. (20) and

X =(x",y”, 29 ¢ Fix(W ) U Per,(W,) belongs to simplex S? as initial point.

Then, the three statements below are valid:

1. One has Fix(W,) = {[ﬁ—l,i—ﬁ,ol}

2 22 2

Vs l,ﬂ,o)},

2. One has Per2(Wl):{el’e2’(7_2 4

3@, (") ={e.e

Proof. Let W :S* — S’be a &™-QSO given by Eq. (22), x* & Fix(W,) U
Per,(\W,) belongs to S°, and W™} be a trajectory of W; beginning from

point xio).
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1. The set of fixed points of W, is obtained by finding the solution to the set
of equations below:

x=y +z°+2x(1-x)
y=Xx +2yz (23)
z=0

By substituting the second and third equations Eq. (22) to the first

equation, then the first equation in system Eq. (22) becomes x* — 2x2 + x,

thenx =0, x =1, and x = s_ S V5 —% is verified as the only solution

2 22
that satisfies system Eq. (22). Hence, the fixed point is only (g —13_

V5
2.0).
2. Let xP=(1,00). Then, V®(y° 2% =(0,1,0) and
V@ (x0,y°, 2% = (1,0,0), which indicates the presence of 2-periodic
points. To find all the points, the following system of equations should be

solved:
Xx=2x>—x*
y=>1-(1-y)*) (24)
z=0

From the first equation in system Eq. (23), x € {O,l,? - %} then y €
2 2
{1,0, @} Therefore, Per,(W;) = {e;, e,, <§ - %,@, 0>}
3. Let x\” ¢ Fix(W,)UPer,(W,). L, is an invariant line under W . Thus, the
behavior of {W,™}” is explored over this line. LetX” €L,. Then, W,
becomes:

X' =(y")? +2x¥ (1 - x“’))

y'=(x") 25)
=0

In this case, the first coordinate of W; exhibits the form x' = (p(x(o)) =
(1= x(©)2 4 2x©@ (1 — x())_ Clearly, the function ¢ decreases on [0,1] and
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function @@ is increasing on [0,1]. From the previous two steps, Fix(¢) N

[0,1] = {g - %} and ix(p?)N[0,1] = {O,g - %, 1}, which indicates that

intervals [0'§_%] and [g—%,l] are invariant under the function ((pz).

Evidently, ¢® (x©) < x© for any x® € [Og —%] and @@ (x(©@) > x(©
V5

for any x(© € [g—%,l]_ If x© g [0’7

[g - %, 1], then ® . = {1} . In another way,

1 .
_5]’ then ® . ={0}; if x© ¢

(9 (x"),1- ¢ (x"),0) Jif =2k

(2k) (0) (2k) (0) . (26)
(0™ (@(x "), 1=p™ (9(x")),0) ,if n=2k+1

v<”><w1>={

Therefore, the limiting point is w,,, (xfo)) ={es, e}

Theorem 5. Let W, be a &®-QSO given by Eq. (21) and

X =(x,y?,2'") e Fix(W,) U Per,(W,) belong to simplex S? as initial

point. Then, the two statements below are valid:

1. One has Fix(WW,) = @. Moreover ,
V5- 2 2
Per,(W) = {ey,e5, (52,0, (V5 - 3) (v5 + 1) )1,

2. One has wy, (X§0)) = {e1, €3}

Proof. Let W,:S? - S be a £*-QSO given by Eq. (21), x{” ¢ Fix(W,) U

co I . .
Per,(W,) belong to S?, and {Wz(n)}nzl = (:_r)! be a trajectory of W, starting
at xio).

1. The set of fixed points of W, is obtained by finding the solution for the
equation set below:

x=Yy’+2° +2x(1-X)
y=2yz @7)

z=x

The system provided by Eq. (26) has no solution on [0,1]. Therefore, the
set of fixed points is @. The second coordinate of W, increases if z(™ > %
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and decreases if z(™ S% . In both cases, W, has no specified order of
periodic points in set W,\L, , because the second coordinate of W,
increases or decreases along the iteration of W,\L,. Therefore, finding the
2-periodic points of W,\L, over L, is sufficient. To find the 2-periodic
points of W,, the following system of equations should be solved:
x=x"+2x"(1-x%)
y=0 (28)
z=(1-(1-2)")

The solution for the first equation in system Eq. (27) is easy to find. Therefore,
_ 2 2
the periodic points of W, are e;, e5, and (%, 0,116 (\/E - 3) (\/E + 1) )

2. Let x!” ¢ Fix(W,)uU Per,(W,) and y =0. The first coordinate of W,

can be rewritten as X' =(1-x")" +2x”(1-x") because the second

coordinate is invariant over L,. The first coordinate is equal to the first
coordinate of W;, which was proven in the previous theorem. Hence, we
derive

(97(x”),0,1-9™ (x)) Jif n=2k

2k 0 2k 0 f (29)
(0™ (X", 0,19 (@(x")) ,if n=2k+1

VO W,) = {
Therefore, we determine that wy, (xl(o)) = {e;,e3}. Let y© ¢ L, and x™ <
%, which indicates that z(™ < % and yields y™*) < y(™ 1f x(V > %, then the

third coordinate z(™ is also smaller than %, which indicates that y™*1) < y (™),

(n+1)
In the two previous cases, we conclude that ny < 1, thereby making y ™1

is a decreasing bounded sequence that converges to zero, which indicates that
studying the dynamics of W, over L, was sufficient. Therefore,

a)Wz(X](O)) ={e,,e,} for any initial point X in S,.

Subsequently, we explore the behavior of {VZ(Sn)} , which is selected from
n=1

class Gg.
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X' = (y(O))2 + (y(O))2 +2x© (1 _ X(O))
Vo =1y =a(x”)? (30)
' =(1-a)(x") +2y©z

We rewrite V,5 as a convex combinationV,s = aW; + (1 — a)W,, where

x'=(y(°’)2+(y‘°))2+2x(°)(1—x‘°))
W, =1y = (x)? 31)
7' = 2y(°’z(°)

and

X =(yO) +(y0) +2x0 (1-x)
W,:={y'=0 (32
2= (XY 42y ©7©

Corollary 2 Let W, :S*> —S? given by Eq. (30) be a £“-QSO and
X = (x,y©, 29 ¢ Fix(W,)uU Per,(W,) belong to simplex S* as initial
point. Then, the statements below are valid:

1. One has Fix(W;) = @. Moreover ,
PerZ(Wl) = {elr er (\/3_1 ,i (\/g - 3)2(\/5 + 1)2, 0)}

2 16

2. One has wy, (xio)) ={e;, e}

Let W,:S* —»S? given by Eq. (31) be a &£®-QSO. Then, the three

statements below are valid:
1. Onehas Fix(W,) = {(@—g,o,g—%}
2. One has Per,(W,) = {ey, e3}

3. One has wy, (xio)) ={e;, €5}
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