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Abstract. The current study provides a new class of ( )as -QSO defined on 2D 

simplex and classifies it into 18 non-conjugate (isomorphic) classes. This 
classification is based on their conjugacy and the remuneration of coordinates. 
The current study also examines the limiting points associated with the behavior 
of trajectories for four classes defined on 2D simplex. 
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1 Introduction 

S. Bernstein developed the concept of the quadratic stochastic operator (QSO) 
in 1924 [1]. Since then, QSOs have been intensively studied because they 
emerge in various models in physics [2,3], biology [1,4,5], economics and 
different branches of mathematics, such as graph theory and probability theory 
[6-9]. In a biological context, QSOs can be applied in the area of population 
genetics. QSOs can describe a generation-by-generation distribution when the 
distribution of the original starting generation is provided. We highlight how 
these operators can be used to interpret data in population genetics. We can see 
how these operators function when analogously looking at a biological 
population closed to reproduction with outside members. For that population, 
we can assume that each member of this closed biological group has one or 

more varying species-specific traits: 1, … , 𝑚 . Let 𝑥 𝑥 , … , 𝑥  be a 
probability distribution of the species at an initial state and let the heredity 
coefficient 𝑝 ,  be the conditional probability 𝑝 𝑘\𝑖, 𝑗  that the 𝑖  and 𝑗  
members of the species have reproduced successfully to produce a 𝑘   

individual. The first generation from this union 𝑥 𝑥 , … , 𝑥   can be 
calculated using the total probability 
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Given that no difference exists between the 𝑖  and 𝑗  members in any 
generation, the original progenitors 𝑖, 𝑗 are independent, i.e. 𝑃 𝑖, 𝑗 𝑃 𝑃 . This 
condition suggests  that 
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Consequently, the relation 𝑥 → 𝑥  represents a mapping 𝑉, which is known 
as the evolution operator. Beginning with the selected initial state 𝑥 , the 
population iteratively develops to the first generation set 𝑥 𝑉 𝑥  and 

then to the subsequent set  𝑥 𝑉 𝑥 𝑉 𝑉 𝑥 𝑉 𝑥  through 

time. Hence, the discrete dynamical system presents the population system 
evolution states as follows: 

    (0) (1) (0) (2) (2) (0), , ,x x V x x V x    

One of the main issues that underlie this theory is finding the limit points of 𝑉 
for an arbitrary starting point 𝑥 . Studying the limit points of QSOs is a 
complicated task even in 2D simplex and this problem has not yet been solved. 
Numerous researchers have presented a specific class of QSOs and have 
examined their behavior, e.g. F-QSO [10], Volterra-QSO [11-14], permutated 
Volterra-QSO [15,16], ℓ-Volterra QSO [17,18], Quasi-Volterra-QSO [19], non-
Volterra-QSO [20,21], strictly non-Volterra QSO [22], non-Volterra operators, 
and others, produced via measurements [23-25]. Nevertheless, collectively, 
these classes cannot represent all the QSOs as a set. An attempt was made to 
study the behavior of nonlinear operators, which is regarded as the main 
problem in nonlinear operators. However, this problem has not been 
comprehensively studied because it relies upon a specified cubic matrix, 
𝑃 , ,  [26].  

Recently, Ganikhodzhaev, et al. [27] introduced ( )as -QSO, which is a new 

class of QSOs that depend on a partition of the coupled index sets (which have 
couple traits) 𝑃 𝑖, 𝑗 : 𝑖 𝑗 ⊂ 𝐼 𝐼 and Δ 𝑖, 𝑖 : 𝑖 ∈ 𝑁 ⊂ 𝐼 𝐼. In 
the case of 2D simplex 𝑚 3 , 𝑃  and ∆  have five possible partitions. 

In [28,29], the ( )s -QSO related to 1| | 2   of 𝑃  with a point partition of ∆  

was investigated (see Section 2). In [30,31] the ( )a -QSO related to 1| | 2   of 

𝑃  with a trivial partition of  ∆  was studied (see Section 2). The ( )as -QSO 

related to 1| | 3  of 𝑃  with a point partition of  ∆  was examined by 



 Classification and dynamics of class of ( )as -QSO 145 

Mukhamedov and Jamal [27,32]. Furthermore, ( )s -QSO and ( )a -QSO are 

related to 1| | 1   of  𝑃  with point and trivial partitions of ∆ , respectively, as 

discussed by Alsarayreh, et al. [33]. This indicates that all partitions of 𝑃  were 
investigated with respect to the point and trivial partitions of ∆ . Therefore, the 
main motivation for this study was to introduce new partitions of ∆ . The 

current study classifies the operators generated by ( )as -QSO with cardinality 

| | 2i   of  𝑃  and | | 2i   of  ∆ . To demonstrate this in the current report, 

Section 2 establishes a number of preliminary definitions. Section 3 presents the 

description and classification of ( )as -QSOs. Section 4 explains how this study 

examined the behavior of 𝑉  and 𝑉 , obtained from classes 𝐺  and 𝐺 , 
respectively. Section 5 examines the behavior of  𝑉  and 𝑉 , obtained from 
classes 𝐺   and 𝐺 , respectively. 

2 Preliminary 

Several basic concepts need to be operationalized to ensure clarity of terms. 

Definition: QSO is a mapping of the simplex 

 1
1
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into itself with the form  
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    (2) 

where 1( ) ( , , )mV x x x x     , and ,ij kP  is a coefficient of heredity that 

satisfies the following conditions: 

 , , , ,
1

0, , 1.
m

ij k ij k ji k ij k
k

P P P P


    (3) 

Based on the preceding definition, each QSO  𝑉: 𝑆 → 𝑆  can be uniquely 

defined by a cubic matrix 
, , 1( )m

ijk i j kP   with conditions Eq. (1) and Eq. (2). 

For 𝑉: 𝑆 → 𝑆 , we specify the set of fixed points as 𝐹 𝑉 . Moreover, 
for 𝑥 ∈ 𝑆 , we indicate the set of limiting points as 𝜔 𝑥 . It must be 
remembered that Volterra-QSO is defined by Eq. (2) and condition in Eq. (3), 
with the additional assumption 
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 , 0 if { , }.ij kP k i j   (4) 

The biological rule of Condition Vol is well-established: an offspring replicates 
the genotype (trait) of its parent(s). Volterra-QSO exhibits the following form: 

 
1

1 , ,
m

k k ki i
i

x x a x k I


     
 

  (5) 

where  

 ,2 1 for 0, and | | 1.ki ik k ii ki ik kia P i k a i I a a a         (6) 

Remarkably, this kind of operator has received extensive research attention [11-
13]. The concept of ℓ-Volterra-QSO was first presented in [17] and formulated 
as follows.   

Let  ℓ ∈ 𝐼 be fixed. Suppose that the genetic heredity coefficient 𝑃 ,  satisfies 

 , 0 if { , } for any {1, , }, , ,ij kP k i j k i j I       (7) 

 
0 0 , 0 0 0 00 for some ( , ), , , { 1, , }.i j kP i j i k j k k m       (8) 

Therefore, the QSO specified by Eq. (2), additional condition in Eq. (3), Eq. (7) 
and Eq. (8) is called ℓ -Volterra-QSO. 

Remark 1. The following points must be reinforced: 

1. An  ℓ -Volterra-QSO is a Volterra-QSO if and only if ℓ 𝑚.  
2. No periodic trajectory exists for Volterra-QSO [11]. However, such 

trajectories exist for  ℓ -Volterra-QSO [17]. 

Following [27], each element 1mx S   is a probability distribution of set

{1,..., }I m . Let 1( , , )mx x x   and 1( , , )my y y   be vectors obtained 

from 1mS  . We say that 𝑥 is equivalent to 𝑦 if 0kx     0ky  . We denote 

this relation as ~ .x y  Let ( ) { : 0}isupp x i x   be a support of 1mx S  . We 

say that 𝑥 is singular to 𝑦 and specify this relation as 𝑥 ⊥ 𝑦 if

( ) ( )supp x supp y  . Notably, if 1, mx y S  , then x y  if and only if

( , ) 0x y  , where ( , )   denotes a standard inner product in m . Of further note 

is that | |i  indicates the cardinality of potential partitions of mP  and m . If the 

cardinal of partition of ∆  is the maximum or minimum, it is named the point 
partition or trivial partition, respectively. We formulate sets of coupled indexes 
as follows: 
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 {( , ) : } , {( , ) : }m mP i j i j I I i i i I I I          

For any specified pair ( , ) m mi j P  , we set a vector  ,1 ,, ,ij ij ij mP P  . 

Evidently, 1m
ij S   because of condition in Eq. (3). In this case, let 

1 1{ }N
i iA   and 2 1{ }M

i iB   be fixed partitions of mP  and m , giving:

i jA A   , i jB B   ,
1

N

i m
i

A P


 , 
1

M

i m
i

B


  , where 𝑁, 𝑀 𝑚. 

Definition: [27] QSO 1 1: m mV S S   given by Eq. (2) and condition in Eq. 

(3) is considered a ( )as -QSO with respect to partitions 1  and 2 if the 

following conditions are satisfied: 

1. Let {1, , }k N   and ( , ),( , ) ki j u v A , then ~ij uv   is considered. 

2. Let  , , {1, , }k k N     , ( , ) ki j A  and ( , )u v A  , then ij uv   is 

considered. 
3. Let {1, , }d M   and ( , ),( , ) di i j j B , then ~ii jj   is considered. 

4. Let s h , , {1, , }s h M   and ( , ) su u B and ( , ) hv v B , then 

uu vv   is considered. 

Example 1. Let : {{(2,3)},{(1, 2), (1,3)}}   and * : {{(1,1)},{(2,2)},   

{(3,3)}} be two possible partitions of 3P  and 3  respectively. It is observable 

that 12 13~ ,P P 23 12 13( , )P P P  and 11 22 33P P P  . Therefore, based on such 

facts, the following values for ij  and ii  can be considered: 

12 ( ,1 ,0),    13 ( ,1 ,0),    23 (0,0,1)  11 (1,0,0),
22 (0,1,0),  22 (0,0,1) . Due to Eq. (2), one can calculate the following: 

 

(0) 2 (0) (0) (0) (0)

(0) 2 (0) (0)

(0) 2 (0) (0)

( ) 2 2

: ( ) 2(1 )( )(1 ( ))

( ) 2

x x x y x z

V y y x x

z z x z




   
     
   

 

Hence, the operator 𝑉 is considered ( )as -QSO.  
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3 Classification of ( )as - QSO 

This section presents the classification of ( )as -QSOs on 2-dimensional 

simplex, i.e. 𝑚 3 and the cardinality of the potential partitions of 𝑃  and Δ  is 
equal to 2. The potential partitions of  𝑃  are listed as follows: 

 1 1: {{(1,2)},{(1,3)},{(2,3)}},| | 3,    

 2 2: {{(2,3)},{(1,2),(1,3)}},| | 2,    

 3 3: {{(1,3)},{(1,2),(2,3)}},| | 2,    

 4 4: {{(1,2)},{(1,3),(2,3)}},| | 2,    

 5 5: {(1,2),(1,3),(2,3)},| | 1.    

The potential partitions of Δ  are listed as follows: 

 1 1: {{(1,1)},{(2,2)},{(3,3)}},| | 3,    

 2 2: {(1,1),(2,2),(3,3)},| | 1,    

 3 3: {{(1,1)},{(2,2),(3,3)}},| | 2,    

 4 4: {{(3,3)},{(1,1),(2,2)}},| | 2,    

 5 5: {{(2,2)},{(1,1),(3,3)}},| | 2.  
 

Proposition 1.  For a class of ( )as -QSO generated from the possible partitions 

of  𝑃  and Δ  with cardinality equal to 2, we determine the following: 

1. The class of all ( )as -QSOs that correspond to partition 3  of 3P  and 

partition 5  of 3  is conjugate to the class of all ( )as -QSOs that 

corresponds to partition 2  of 3P  and partition 3  of 3 . 

2. The class of all ( )as -QSOs that corresponds to the partition 4  of 3P  and 

partition 4  of 3  is conjugate to the class of all ( )as -QSOs that 

corresponds to partition 2  of 3P  and partition 3  of 3 . 

Proof. 

1. Under the general form of QSO given by Eq. (2) and Eq. (3), the 

coefficients  3

, , , 1ij k i j k
P


 of operator 𝑉 of ( )as -QSOs that correspond to 
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partition 5 {{(2,2)},{(1,1), (3,3)}}   of 3  and partition 

3 {{(1,3)},{(1,2),(2,3)}}   of 3P , satisfying the following conditions:  

i. 11 33~   and 22 mm  , 1,3m  ;  ii. 12 23~   and 13 12 23( , )   , 

where ,1 ,2 ,3( , , )ij ij ij ijp p p . To perform 1V V     transformation on 

operator 𝑉, where permutation 𝜋 1 2 3
3 1 2

  and where
3

,
, 1

: k ij k i j
i j

V x P x x






  , 1,3k  , such that , ( ) ( ), ( )ij k i j kP
   , for any 

𝑖, 𝑗, 𝑘 1,3. Equivalently, ( ) ( )ij i j


    (in vector form) for any 𝑖, 𝑗

1,2,3. Subsequently, operator 𝑉  corresponding to partitions 3  of 3  and 

2  of 3P  is presented by applying the permutation   for the coefficient of 

V that corresponds to partition 5  of 3  and 3  of 3P . From this, the 

following relations are derived: 

a. 11 33~   and 22 11 33( , )   . By applying the permutation   on

11 33
   , 22 11

   , and 33 22
   , we obtain 33 22~   and 

11 22 33( , )   . Therefore, the properties of 3  of 3  are verified.  

b. 12 23~   and 13 12 23( , )   . By applying the permutation   on

12 13
   , 13 23

   , and 23 12
   , we obtain 12 13~   and 

23 12 13( , )   . Therefore, the properties of 2  of 3P  are verified.  

2. Similarly, the second part of this theorem can be proven by choosing the 

following permutation: 𝜋 1 2 3
2 3 1

. This process completes the proof. 

The preceding discussion reveals that any ( )as -QSO obtained from the class 

that corresponds with partitions 5  of 3  and 3  of 3P  or 4  of 3  and 4  of 

3P  is conjugate to certain ( )as -QSOs obtained from the class that corresponds 

to partitions 3  of 3  and 2  of 3P . To investigate the operators of class ( )as
-QSO that correspond to partitions 2  of 3P  and 3  of 3 , the coefficient 

 3

, , , 1ij k i j k
P


 in special form is selected, as shown in the Tables 1 and 2. 
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Table 1 The possible values of 𝑃 . 

Case 𝑷𝟏𝟏 𝑷𝟐𝟐 𝑷𝟑𝟑 
𝐼  𝛼, 𝛽, 0  (0,0,1) (0,0,1) 
𝐼  𝛼, 0, 𝛽 (0,1,0) (0,1,0) 
𝐼  𝛽, 𝛼, 0 (0,0,1) (0,0,1) 
𝐼  𝛽, 0, 𝛼  (0,1,0) (0,1,0) 
𝐼  0, 𝛼, 𝛽 (1,0,0) (1,0,0) 
𝐼  0, 𝛽, 𝛼  (1,0,0) (1,0,0) 

where  𝛼, 𝛽 ∈ 0,1 0,1  such that 𝛼 𝛽 1. 

Table 2 The possible values of 𝑃 . 

Case 𝑷𝟏𝟐 𝑷𝟏𝟑 𝑷𝟐𝟑 
𝐼𝐼  (1,0,0) (1,0,0) (0,0,1) 
𝐼𝐼  (1,0,0) (1,0,0) (0,1,0) 
𝐼𝐼  (0,1,0) (0,1,0) (1,0,0) 
𝐼𝐼  (0,1,0) (0,1,0) (0,0,1) 
𝐼𝐼  (0,0,1) (0,0,1) (1,0,0) 
𝐼𝐼  (0,0,1) (0,0,1) (0,1,0) 

The choices for Cases 𝐼 , 𝐼𝐼 , where  𝑖, 𝑗 1, … , 6, provide 36 operators. These 
operators can be defined accordingly: 

(0) 2 (0 ) (0 ) (0) (0 )

(0 ) 2

1

( 0) 2 (0 ) 2 (0) (0 )

( ) 2 2

: ( )

( ) ( ) 2

x x x y x z

V y x

z y z y z





   

 

   







 

(0) 2 (0 ) (0 ) (0 ) (0 )

(0) 2 (0) (0)

2

(0 ) 2 ( 0) 2

( ) 2 2

: ( ) 2

( ) ( )

x x x y x z

V y x y z

z y z





   

  

  







 

(0) 2 (0 ) (0 )

(0) 2 (0 ) (0) (0 ) (0 )

3

(0 ) 2 (0) 2

( ) 2

: ( ) 2 2

( ) ( )

x x y z

V y x x y x z

z y z





  

   

  







 

(0) 2

( 0) 2 (0) (0 ) (0) (0)

4

(0) 2 ( 0) 2 ( 0) ( 0)

( )

: ( ) 2 2

( ) ( ) 2

x x

V y x x y x z

z y z y z





 

   

   







 

(0) 2 (0) (0)

(0) 2

5

( 0) 2 (0 ) 2 (0) (0 ) (0) (0)

( ) 2

: ( )

( ) ( ) 2 2

x x y z

V y x

z y z x y x z





  

 

    







 

(0) 2

(0 ) 2 ( 0) (0 )

6

( 0) 2 (0 ) 2 (0 ) ( 0) ( 0) (0 )

( )

: ( ) 2

( ) ( ) 2 2

x x

V y x y z

z y z x y x z





 

  

    







 

(0) 2 (0 ) (0 ) (0 ) ( 0)

(0) 2 (0 ) 2

7

(0 ) 2 (0 ) (0 )

( ) 2 2

: ( ) ( )

( ) 2

x x x y x z

V y y z

z x y z





   

  

  







 

(0) 2 (0) (0) (0) (0)

( 0) 2 (0) 2 ( 0) (0)

8

(0) 2

( ) 2 2

: ( ) ( ) 2

( )

x x x y x z

V y y z y z

z x





   

   

 







 



 Classification and dynamics of class of ( )as -QSO 151 
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(0) 2

( ) ( ) 2

: ( ) 2 2

( )

x y z z y

V y x x y x z

z x





   

   

 







 

(0) 2 (0) 2

(0) 2 (0) (0) (0) (0)

28

(0) 2 (0) (0)

( ) ( )

: ( ) 2 2

( ) 2

x y z

V y x x y x z

z x y z





  

   

  







 

(0) 2 (0) 2 (0) (0)

(0) 2

29

(0) 2 (0) (0) (0) (0)

( ) ( ) 2

: ( )

( ) 2 2

x y z z y

V y x

z x x y x z





   

 

   







 

(0) 2 (0) 2

(0) 2 (0) (0)

30

(0) 2 (0) (0) (0) (0)

( ) ( )

: ( ) 2

( ) 2 2

x y z

V y x y z

z x x y x z





  

  

   







 

(0) 2 (0) 2 (0) (0) (0) (0)

(0) 2

31

(0) 2 (0) (0)

( ) ( ) 2 2

: ( )

( ) 2

x y z x y x z

V y x

z x y z





    

 

  







(0) 2 (0) 2 (0) (0) (0) (0)

(0) 2 (0) (0)

32

(0) 2

( ) ( ) 2 2

: ( ) 2

( )

x y z x y x z

V y x y z

z x





    

  

 







(0) 2 (0) 2 (0) (0)

(0) 2 (0) (0) (0) (0)

33

(0) 2

( ) ( ) 2

: ( ) 2 2

( )

x y z z y

V y x x y x z

z x





   

   

 







 

(0) 2 (0) 2

(0) 2 (0) (0) (0) (0)

34

(0) 2 (0) (0)

( ) ( )

: ( ) 2 2

( ) 2

x y z

V y x x y x z

z x y z





  

   

  







 

(0) 2 (0) 2 (0) (0)

(0) 2

35

(0) 2 (0) (0) (0) (0)

( ) ( ) 2

: ( )

( ) 2 2

x y z z y

V y x

z x x y x z





   

 

   







 

(0) 2 (0) 2

(0) 2 (0) (0)

36

(0) 2 (0) (0) (0) (0)

( ) ( )

: ( ) 2

( ) 2 2

x y z

V y x y z

z x x y x z





  

  

   







 

As can be seen, this class of ( )as -QSOs contains 36 operators. These operators 

are too numerous to explore individually. Thus, two operators 𝑉  and 𝑉  are 
considered (topologically or linearly) conjugate when a permutation matrix 𝑃 
such that 𝑃 𝑉 𝑃 𝑉  exists. Let 𝜋 be a permutation of set 𝐼 1, … 𝑚 .  For 
any vector 𝑥, we define 𝜋 𝑥 𝑥 , … , 𝑥 . Verifying if 𝜋 is a 
permutation of set 𝐼 corresponding to the given permutation matrix 𝑃 is simple. 
When true, then 𝑃 𝜋 𝑥 . In this case, two operators 𝑉  and 𝑉  are conjugate 
if and only if  𝜋 𝑉 𝜋 𝑉  for any permutation 𝜋. Therefore, one may classify 
such operators into small classes and examine only the operators within these 
classes.  

Theorem 1. Let  1 36, ,V V  be the ( )as -QSO presented above. Then, these 

operators are divided into 18 non-isomorphic classes: 

 𝐺 𝑉 , 𝑉  𝐺 𝑉 , 𝑉 𝐺 𝑉 , 𝑉 𝐺 𝑉 , 𝑉  
𝐺 𝑉 , 𝑉  𝐺 𝑉 , 𝑉 𝐺 𝑉 , 𝑉 𝐺 𝑉 , 𝑉  

𝐺 𝑉 , 𝑉  𝐺 𝑉 , 𝑉 𝐺 𝑉 , 𝑉 𝐺 𝑉 , 𝑉  
𝐺 𝑉 , 𝑉  𝐺 𝑉 , 𝑉 𝐺 𝑉 , 𝑉 𝐺 𝑉 , 𝑉  
𝐺 𝑉 , 𝑉  𝐺 𝑉 , 𝑉 .   
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Proof. Evidently, the partitions 2  of 3P and 3  of 3  are invariant only under 

the permutation 𝜋
𝑥 𝑦 𝑧
𝑥 𝑧 𝑦

. Therefore, the given operators should 

be classified in relation with the remuneration of their coordinates. 
Consequently, we must perform the  𝜋𝑉𝜋  transformation on all the operators. 
Starting with 𝑉  as the first operator, we obtain the following: 

    1 (0) (0) (0) (0) (0) (0)

1 1( , , ) , ,V x y z V x z y     

 
(0) 2 (0) (0) (0) (0) (0) 2( ( ) 2 2 , ( ) ,x x y x z x    

 (0) 2 (0) 2 (0) (0)( ) ( ) 2 )y z y z   

Thus, 

 1 (0) 2 (0) (0) (0) (0) (0) 2 (0) 2 (0) (0) (0) 2

1 ( ) 2 2 , ( ) ( ) 2 , ( 1) ( )V x x y x z y z y z x          

            8.V   

We can derive the other classes by following the same procedure. The proof is 
completed using this process. 

4 Dynamics of classes 𝑮𝟑  and 𝑮𝟗  

This section explores the dynamics of ( )as -QSO 2 2
3,15 :V S S  selected from 

𝐺  and 𝐺 . Firstly, 𝑉  is rewritten as follows: 

    
(0) 2 (0) (0)

(0) 2 (0) (0)

3

(0) 2 (0) 2

( ) 2

: 1 ( ) 2 1

( ) ( )

x x y z

V y x x x

z z y





  

    

  







 (9) 

The operator  𝑉   can  be  redrafted  as  a convex combination 𝑉 𝛼𝑊
1 𝛼 𝑊 , where  

  
(0) 2 (0) (0)

(0) (0)
1

(0) 2 (0) 2

( ) 2

: 2 1

( ) ( )

x x y z

W y x x

z z y

  

  

















 (10) 

and 
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(0) (0)

(0) (0) 2

2

(0) 2 (0) 2

2

: 2 ( )

( ) ( )

x y z

W y x x

z z y

 

  

  







 (11) 

The following regions are introduced and the behavior of 
( )

1 1{ }n
nW 
  over them 

is investigated:  

 
(0) 2 (0) (0) (0)

1 1

1
: { : 0 , , },

2
A x S x y z     

 
(0) 2 (0)

2 1

1
: : 1},

2
A x S x     

 
(0) 2 (0)

3 1

1
: { : 1},

2
A x S y     

 (0) 2 (0)

4 1

1
: { : 1}.

2
A x S z     

Proposition 2.   The following statements hold for 𝑊  of 𝑉 : 

1. The region 𝐴  is invariant.  

2. Let 
(0)

1 1( ),x Fix W  and 1 2 ,x A  then, 
( )

1 1{ }n

nW 
  goes to 1 3.A A  

Accordingly, if 1 3 ,x A  then, 
( )

1 1{ }n

nW 
  goes to 𝐴 . 

3. Let 1 4 ,x A  then, 
( )

1 1{ }n

nW 
  goes to 1.A  

Proof. 

1. Let
(0)

1 1x A . Then, (0) (0) (0) 1
0 , ,

2
x y z  . Evidently, (0) 1

1 3 1
2

x     can 

be verified. By squaring and adding (0) (0) 23( )y z  , the last inequality 

becomes (0) 20 (3 1)x   (0) (0) 23( ) 1y z  , and (0) 2 (0)9( ) 6 1x x   
(0) (0) 23( ) 1y z    is obtained. By dividing the previous inequality by three 

after adding two to both parts of the inequality, we derive  
(0) 2 (0) (0) (0) 23( ) 2 1 ( ) 1.x x y z      

Therefore, (0) 2 (0) (0) 2 (0) (0) 22( ) ( ) ( ) 1.x y z y z      

Then, (0) 2 (0) (0)2( ) 4 1x y z  , which implies that 
1

2
x  . It is observable that 
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 (0)
1

1

2
y x   . Evidently, (0) 2 (0) 2 1

0 ( ) , ( )
4

y z   is obtained, which implies 

that 
1

2
z  . Hence, 1A  is an invariant region, i.e. if an initial point (0)

1x  is 

taken inside this region, then the trajectory will go to a point that is also in 
this region. 

2. The second coordinate of 𝑊 is less than  at any initial point 𝑥 , thereby 

indicating that 𝐴  is not an invariant region. Subsequently, suppose that 𝐴  
is an invariant region, which indicates that 𝑦 𝑥  and 𝑧 𝑥 . However,  

 (0) 2 (0) (0) (0 ) 2 (0) 2 (0) 2( ) 2 ( ) ( ) ( )x x y z x y z       

 (0) (0) (0) (0) (0)( ) .x x y z x     

Then 
(0)

1
x

x


 , which implies that the first coordinate is a decreasing 

bounded sequence that converges to zero, thereby contradicting our 

assumption. Hence, if (0)

1 2 3x A A  , then 
1 2
,k kn n  , such that the 

sequences 1
( )kn

x  and 2
( )kn

y tend toward invariant region 𝐴  .  

3. Suppose that 𝐴   is an invariant region; hence, 𝑧 𝑦 𝑥  and 𝑥 , 𝑦 .. 

Evidently, 𝑥 𝑦 . By using the last inequality and the first coordinate of  

𝑊 , we obtain 𝑦 2𝑦 𝑧 . That is, 𝑧 , which repudiates our 

assumption. Hence, region 𝐴  is not invariant. 

Theorem 2. Let 
2 2

1
:W S S  be a ( )as -QSO given by Eq. (10) and 

(0) (0) (0) (0)
1 1( , , ) ( )x x y z Fix W   belongs to simplex 2S  as initial point. In this 

case, the two statements below are valid: 

1. One has 
1 1 3

3 3 3 1
( ) , , ( , , )

4 4 4
Fix W e e



 
 
 

, 

2. One has 
1

(0)

1

3 3 3 1
( ) ( , , ) .

4 4 4
W x



 
 
 

 

Proof. Let 
2 2

1 :W S S  be a ( )as -QSO given by Eq. (10), 
(0)

1 1( )x Fix W  be 
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any beginning point that belongs to 𝑆  and ( )

1 1
{ }n

n
W 

  be a trajectory of 𝑊  that 

starts at  𝑥 . 

1. The set of fixed points of 𝑊  is obtained by finding the solution for the 
following system of equations: 

  

2

2 2

2

2 1

x x yz

y x x

z y z

 

  

 







 (12) 

Depending on the first equation in system Eq. (12), we derive 𝑥 𝑥 2𝑦𝑧. 
Subsequently, the last equation is multiplied by 2 and the new equation is 
substituted  into  the  second equation in system Eq. (12). We obtain 

𝑦 1 4𝑧 0 and find 𝑦 0 or 𝑧 . If 𝑦 0, then 𝑥 0 or 𝑥 1 can 

be easily found; hence, the fixed points are 𝑒 1,0,0  and 𝑒 0,0,1 . If 

𝑧 , then 𝑦 √  and 𝑥  √   can be found by using the first and third 

equation in system Eq. (12). Therefore, the fixed point is √ , √ , . 

2. To investigate the behavior of ( )
1 1{ }n

nW 
 , the following regions are 

introduced: 

 (0) 2 (0) (0) (0)
1 1

1
: { : 0 },

2
B x S z x y       

 (0) 2 (0) (0) (0)
2 1

1
: { : 0 },

2
B x S y z x       

 (0) 2 (0) (0) (0)
3 1

1
: { : 0 },

2
B x S x y z       

 (0) 2 (0) (0) (0)
4 1

1 1 1
: { : 0 , }.

3 3 2
B x S z x y        

Subsequently, the behavior of 𝑊  across all the previously 

mentioned regions will be explored. After that, the behavior of  𝑊  

will be simple to describe.  
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Given that 𝑦 , 𝑥 , we can easily conclude 𝑥 𝑦 , thereby indicating that 

𝐵  cannot possibly be an invariant region. Subsequently, we intend to verify 

whether 𝐵  is or is not an invariant region. Let 𝑥 ∈ 𝐵 . Then, 

 (0) 2 (0) 2 (0) 2 (0) 2 (0) 2( ) ( ) ( ) ( ) ( )z z y x y z      (0) (0) (0) (0) (0) 2( )x z y z z    

    (0) (0) (0) (0) (0)( )z x y z z     

We determine that 1, which indicates that 𝑧  is a decreasing bounded 

sequence. By this we mean that  𝑧  converges to a fixed point of zero, thereby 
negating our presumption. Thus, region 𝐵   is not invariant. Then, we consider a 

new sequence (0) 2 (0)2( ) 2 1x z x x     . The new sequence has a minimum 

value of  , which indicates that all coordinates are greater than zero and smaller 

than . Hence, if (0)
1 2 3 1x B B A   , then 

1 2 3
, ,k k kn n n  , such that the 

sequences 𝑥 , 𝑦 , and 𝑧  return to invariant region 𝐵 . Let 𝑥 . 

We can easily check whether the maximum value of the first coordinate 
(0) 2 (0) (0) (0)( ) 2 (1 )x x y x y      occurs when , . In this case, 𝑥   and 

𝑧 . Given that all coordinates are equal to one, we conclude that 𝑦 . 

Therefore, if 𝑥 ∈ 𝐵 , then 𝑛 ∈ ℕ, such that 𝑊   returns to 𝐵 . 

Hence, 𝐵  is an invariant region.  

We have proven that if (0)
1 , {1, ,3}ix B i   , then the trajectory ( )

1 1{ }n
nW 
  

goes to invariant region 4B . Thus, exploring the behavior of ( )
1 1{ }n

nW 
  over 

region 4B  is adequate. Evidently, ( ) ( 1)n ny y  , i.e. it is a bounded increasing 

sequence. Given that ( ) ( )n ny x  is a bounded decreasing sequence and
( ) ( ) ( ) ( )n n n nx y y x   , we conclude that ( )nx  is a decreasing bounded 

sequence that converges to √ . Thus, we have 𝑦  converging to √ . 

Therefore, 𝜔 𝑥 √ , √ , , which is the desired conclusion. 

Let the following regions: 

  2 (0) 2 (0) (0) (0)

1{ : 0}int S x S x y z   ,  

  2 (0) 2 (0) (0) (0)

1{ : 0},int S x S x y z     
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 (0) 2 (0)

1 1{ : 0},L x S x    

 (0) 2 (0)

2 1{ : 0}L x S y   ,  

 (0) 2 (0)

3 1{ : 0}L x S z    

Theorem 3.  

Let 2 2
2 :W S S   be a ( )as -QSO given by Eq. (11), 

( 0) ( 0 ) ( 0 )

1

(0)

2 2 2( , , ) ( ) ( )x x y z Fix W Per W   belongs to simplex 2S  as initial point. 

Then, the three statements below are valid: 

1. One has  2 3( ) , ( , , )Fix W e x y z , where  

 3

3

1 8

56
3

3

x t

t


 


, 

 
3 23 3

3 2

1 3 17 2 24 17 5 88

6

t t t
y

t

    
 , 

 
3 2 3 3

3 2

1 2 3 17 11 , 6 17 10

6

t t t
z

t

    
 , and  98 18 17t   . 

2. One has 
(0)

3

2 2 (0)

3

, (0, ,1 ) , 0
( )

, ( , 0,1 )

 

0,

e y y if x
Per W

e x x if y

 

 

 


 





 

where 
1

3
1

3

1 4 2
(1 3 57)

6 3
3(1 3 57)

y    



 

 
1

3
1

3

1 2 4
(46 6 57)

6 3
3(46 6 57)

x 
   



 

3. One has  

 

 
 

2

(0) 2

1

(0) (0) 2

1 1

(0) (0)

3

( , , ) ,

( ) ( , 0,1 ), (0, ,1 ) ,

, , 1

 

 

w

x y z if x int S

x x x y y if x int S

e if x y
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Proof. Let 2 2

2 :W S S be a ( )as -QSO given by Eq. (11), (0)
1 2( )x Fix W 

2 2( )Per W  belongs to 2S , and ( )

2 1{ }n

nW 
  be a trajectory of 2W beginning at (0)

1x . 

1. The set of fixed points of 𝑊  is obtained by finding the solution for the 
following system of equations: 

 2

2 2

2

2

x yz

y x x

z z y



 

 






 (13) 

Based on the first equation in system Eq. (13), we have 𝑧 . By using 

𝑧 1 𝑦 𝑥 and the second equation in system Eq. (13), we obtain 3𝑥

14𝑥 10𝑥 2𝑥
2 3 43 14 10 2x x x x    0 . Thus, the roots of the 

previous equation are 0, 𝑥∙ . By compensating for the values of 𝑥, namely, 
𝑥 0 and 𝑥 𝑥⦁ in the second equation in system Eq. (13), we obtain 𝑦
0  and 𝑧 1 or 𝑦 𝑦⦁  and 𝑧 𝑧⦁. Therefore, the fixed points of  𝑊  are 
𝑒  and 𝑥⦁, 𝑦⦁, 𝑧⦁ . 

2. To find the 2-periodic points of 𝑊 , we should prove that 𝑊  has no 
specified order of periodic points in set 𝑆 \𝐿 ∪ 𝐿 . Evidently, 𝑦
𝑦 , i.e. the second coordinate of  𝑊  increases along the iteration of 𝑊   

in set 𝑆 \𝐿 . Consider a new sequence 𝑥 𝑦 2𝑥 𝑥
2𝑦 1 𝑥 𝑦 . Whether 𝑥 𝑦  is a decreasing sequence can 
easily be checked, thereby indicating that sequence 𝑥  is decreasing, 
because 𝑥 𝑦 𝑦 . Thus, the first coordinate of  𝑊  decreases 
along the iteration of  𝑊  in set 𝑆 \𝐿 , which indicates that 𝑊  has no 
specified order 2 -periodic points in set 𝑆 \𝐿 ∪ 𝐿 . Therefore, finding the 
2-periodic points of 𝑊   in 𝐿 ∪ 𝐿  is sufficient. To find the 2-periodic 
points, the succeeding system of equations should be solved: 

 

2 2 2

2 2

2 2 2 2

2(2 )( )

4 4

(2 )( )

x x x y z

y yz y z

z x x y z

  

 

  







 (14) 

We start when 𝑥 0. Then, we find the solution for 𝑦 4𝑦 8𝑦 8𝑦
4𝑦 . We obtain the following solution: 𝑦 0 or 𝑦 𝑦∘. If 𝑦 0, then 𝑧 1. 
If 𝑦 𝑦∘, then 𝑧 1 𝑦∘. Therefore, 𝑒  and 0, 𝑦∘, 1 𝑦∘  are 2-periodic 
points. On the other hand, if 𝑦 0, then the solutions for the equation 𝑥
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2 2 𝑥 𝑥 1 𝑥  are 𝑥 0 or 𝑥 𝑥∘. If  𝑥 0, then 𝑧 0; if 𝑥 𝑥∘, 
then 𝑧 1 𝑥∘. Therefore, 𝑒  and 𝑥∘, 0,1 𝑥∘  are 2-periodic points. 

3. To investigate the behavior of  𝑊 , the following regions are introduced:  

  (0) 2 (0) (0) (0)

1 1

1
: { : 0 , , };

2
x int S x y z     

  (0) 2 (0) (0) (0)

2 1

1
: { : 0 }.

2
x int S x z y       

Evidently, (0) (0) 2 (0)2 ( )y x x x     and (0) (0) (0) 2 (0) 22 ( ) ( )x y z y z z     , 

which indicates that ( ) ( )n nx z  and ( ) ( )n nx y . To prove that 1  is an invariant 

region, assume that 𝑦  by using the first coordinate of 𝑊 . Then we have
(0) (0)2x y z  , which implies that x z  . This relation is a contradiction 

because x z  . Thus, 𝑦 . Now, suppose that 𝑧 . By using the first 

coordinate in 2W , we obtain x y  , which is also a contradiction. Therefore, 

1  is an invariant region. Moreover, if (0)

1 1x   , then kn  , such that ( )

2
knW  

returns to invariant region 1 . Let us complete proving that 2  is an invariant 

region. If we assume that y z  , this indicates that 
(0) 2 (0) 2 (0) 2( ) ( ) 2( )z z y z    , i.e. <1. Therefore, ( )nz  is a decreasing 

bounded sequence. That is, ( )nz  converges to the fixed point of zero. Moreover, 
( )ny  is an increasing bounded sequence. Thus, ( )ny  converges to zero. Whether 
( )ny  converges to zero if ( )nx  converges to zero can be checked. The result 

implies that the limiting point for 2W  is empty, which is a contradiction. Thus, 

kn  , such that ( )knz  returns to invariant region z y  , which proves that 2  

is an invariant region. Moreover, if (0)

1 1x   , then kn  , such that ( )

2 1{ }kn

nW 
  

returns to invariant region ℓ . 

Accordingly, the behavior of  ( )

2 1{ }n

nW 
  can be described. As discussed in the 

proof of the second part of this theorem, we determine that the first and second 
coordinates, namely, 𝑥  and 𝑦  are decreasing and increasing sequences, 

respectively. Thus, 𝑥  and ( )ny  converge to a certain fixed point. The first and 

second coordinates of 𝑊  converge; thus, the third coordinate also converges. 
Between the two fixed points, the properties mentioned above of 𝑊  are only 
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satisfied by point 𝑥⦁, 𝑦⦁, 𝑧⦁ . Therefore, the limiting point is

2

(0)

1( ) ( , , ),W x x y z   (0) 2

1x int S  . 

To explore the behavior of ( )
2 1{ }n

nW 
  when  (0) 2

1x int S , consider three cases, 

i.e. when (0) (0)0, 0x y  , and (0) 0z  . If (0) 0x  , then (1) (0) (0)((0, , ))V y z  

( ,0,1 )x x   and (2) (0) (0)((0, , )) (0, ,1 )V y z y y   . By applying this process to 

the next iteration, we determine that (2 1) (0) (0)((0, , ))nV y z   (2 1) (2 1)( , 0,1 )n nx x   

and (2 ) (0) (0) (2 ) (2 )((0, , )) (0, ,1 )n n nV y z y y  . That is, the behavior of ( )

2 1{ }n

nW 
  in 

this case will be on the xz-plane if n is an odd iteration and on the yz-plane if n  

is an even iteration. When the preceding process is performed when (0) 0y  , 

we find that (2 1) (0) (0) (2 1) (2 1)(( , 0, )) (0, ,1 )n n nV x z y y     and
(2 ) (0) (0) (2 ) (2 )(( , 0, )) ( , 0,1 )n n nV x z x x  . That is, the behavior of ( )

2 1{ }n

nW 
  in this 

case will be on the yz-plane if  n is an odd iteration and on the xz-plane if n is an 
even iteration. Through the same process, we determine that 

(2 1) (0) (0) (2 1) (2 1)(( , 0, )) (0, ,1 )n n nV x z y y     and (2 ) (0) (0) (2 )(( , 0, )) ( , 0,n nV x z x  
(2 )1 )nx  when (0) 0z  . This indicates that kn  , such that the behavior of 

( )

2 1{ }n

nW 
  in the case of (0) 0z   will be on the yz-plane if n is an odd iteration 

and on the xz-plane if n is an even iteration. Therefore, studying the two cases 

when (0) 0x   and (0) 0y   is sufficient. Starting with (0) 0x  , consider the 

following function: 

 (2) (0) (0) (0) 2 (0) 3 (0) 4( ) 4 8( ) 8( ) 4( )y y y y y y      (15) 

where (0) (0,1)y  . Now, ( ) (0,1) { }Fix y    can be shown. Through simple 

calculations, 
1 1

(0, ] [ ,1)
2 2

  
 
 

 can be found. Thus, we conclude that 
1

[ ,1)
2

 is 

sufficient to study the dynamics of   at interval (0,1).  

To investigate the behavior of v, the interval 
1

[ ,1)
2

 is divided into three 

intervals as follows: 
1

1
[ , ]
2

I y   ,
2

1 1
[ , 2 1]

2 2
I y    , and

3

1 1
[ 2 1,1)
2 2

I    . Evidently, (0) (0)( ( ))y y    when (0)

1y I  and 
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(0) (0)( ( ))y y    when (0)

2y I . Therefore, two cases should be discussed 

separately. 

a. For any n , (2 2) (0) (2 ) (0) (0)
1( ) ( )n ny y y I      can be easily shown. 

Thus,  (2 ) (0)n y   is an increasing bounded sequence. Furthermore, 

(2 ) (0)( )n y  converges to a fixed point of (2) . y is also a fixed point of 
(2)  and is the only possible point of the convergence trajectory. Hence, 

sequence ( 2 )ny  converges to y .  

b. Similarly, (2 2) (0) (2 ) (0) (0)
2( ) ( )n ny y y I     . Thus, (2 )n  is a decreasing 

bounded sequence. Furthermore, (2 ) (0)( )n y  converges to a fixed point of 
(2) . y  is also a fixed point of (2)  and it is the only possible point of the 

convergence trajectory. Hence, sequence ( 2 )ny converges to y .  

To explore the behavior of   when (0)

3y I , the following claim is required: 

Claim: Let ( 0)

3y I . Then, kn  , such that ( )
1 2

kn I I   . 

Proof. Let (0)

3y I . Suppose that the interval 3I is an invariant interval, which 

indicates that ( )

3

ny I for any n . Evidently, ( 1) (0) ( ) (0)( ) ( )n ny y   , which 

results in ( )n being a decreasing bounded sequence and converging to a fixed 
point  . However, 3( )Fix I    , which is a contradiction. Hence, kn  , 

such that ( )

1 2
kn I I   . 

In accordance with this claim, ( 2 )ny will go to 1 2I I after several iterations. 

Thus, sequence (2 ) (2 )(0, , )n ny z converges to (0, ,1 )y y  whenever (0) 0x  .  

Let (0) 0y  and consider the following function: 

 (2) (0) (0) (0) 2 (0) 3 (0) 4( ) 4 10( ) 8( ) 2( ) ,x x x x x x      (16) 

where (0) (0,1)x  . When we do this, ( ) (0,1) { }Fix x   can be easily shown. 

Through simple calculations, we determine 𝜗 0,1 √2 ⊆ 1 √2, 1   

and conclude that 1 √2, 1  is sufficient to study the dynamics of 𝜗 on (0,1). 
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To investigate the behavior of 𝜗, the invariant interval 1 √2, 1  is divided 

into three intervals as follows: 
1

1
[1 2, ]

2
I x  , 

2

1
[ , ]

2
I x , and 

3

1
[ ,1)
2

I  . 

Thus, we have two separate cases: 

a. Let (0)

1x I , then (0)

2( )x I  and, ( 2 ) ( 0 )

1( )x I  . (2 2) (0)( )n x    
(2 ) (0)( )n x  whenever (0)

1x I can be easily checked. Therefore, ( 2 )n is a 

decreasing bounded sequence that converges to a fixed point of (2) . x  is a 

fixed point of (2)  and the only possible point of the convergence 

trajectory. Hence, (2) converges to x .  

b. Similarly, let (0)

2x I , then (0)

1( )x I  and ( 2 ) ( 0 )

2( )x I  . 
(2 2) (0) (2 ) (0)( ) ( )n nx x   whenever (0)

2x I  can be easily checked. 

Therefore, ( 2 )n is an increasing bounded sequence that converges to a 

fixed point of (2) . x  I s a fixed point of (2)  and the only possible point of 

the convergence trajectory. Hence, ( 2 )n converges to x .  

To explore the behavior of  , when (0)

3x I , the following claim is required: 

Claim: Let (0)

3x I  . Then, kn  , such that ( )

1 2
kn I I   . 

Proof. Let (0)

3x I . Suppose that interval 3I  is invariant, which indicates that 
( )

3

nx I  for any n . Evidently, ( 1) (0) ( ) (0)( ) ( )n nx x   , which results in 

sequence ( )n  being decreasingly bounded and converging to a fixed point of 
 . However, 3)(Fix I    , which is contradiction. Hence, kn  , such 

that ( )

1 2
kn I I   . 

In accordance with the claim, ( )nx  will go to 1 2I I  after several iterations. 

Thus, sequence (2 ) (2 )( , 0, )n nx z converges to ( , 0,1 )x x  whenever (0) 0y  . 

Alternatively, if (0) 0x  , then  

  
( )

2

(0, ,1 ) , 2
( )

, 0,1 2 1

  

 ,
n

y y if n k
V W

x x if n k

 

 

 


  





 (17) 

If (0) 0y  , then  
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( )

2

  (0, ,1 ) , 2 1
( )

, 0,1 , 2 
n

y y if n k
V W

x x if n k

 

 

  


 





 (18) 

From the preceding demonstrations, we observe that if (0) 0x   and n  is even, 

then the behavior of ( )

2 1{ }n

nW 
  occurs in (0, ,1 )y y  , which is equal to the 

behavior of ( )
2 1{ }n

nW 
  when (0) 0y   and n  is an odd iteration. If (0) 0y   and 

n  is an even iteration, then the behavior of ( )

2 1{ }n

nW 
  occurs in ( , 0,1 )x x  , 

which is equal to the behavior of 2W  when (0) 0x   and n  is an odd iteration. 

Therefore, the limiting point of 2W  consists of ( , 0,1 )x x   and (0, ,1 )y y   

whenever  (0) 2x int S . If (0) 1x  , then the behavior of ( )

2 1{ }n

nW 
  reaches 

fixed point 3e  after three iterations; if (0) 1y  , then the behavior of ( )

2 1{ }n

nW 


reaches fixed point 𝑒  after one iteration. Therefore, the limiting point in this 
case includes  𝑒 , which is the desired conclusion. 

Subsequently, the behavior of operator ( )

15 1{ }n

nV 
  selected from class 9G  is 

explored: 

 

 
 

(0) 2 (0) (0)

(0) 2 (0) (0)

15

(0) 2 (0) 2

1 ( ) 2

: ( ) 2 1

( ) ( )

x x y z

V y x x x

z z y





   

   

  







 (19) 

The operator 
15V  can be redrafted as a convex combination 

 15 1 21V W W    , where  
1W  and 

2W  are equal to the operators given by 

Eq. (10) and Eq. (11), respectively. 

Corollary 1. Let 1W  be a ( )as -QSO given by Eq. (10) and let 

(0 ) (0) (0) (0)

1 1( , , ) ( )x x y z Fix W   belong to simplex 2S  as initial point. Then, the 

two statements below are valid: 

1. One has 1 1 3

3 3 3 1
( ) , , ( , , )

4 4 4
Fix W e e
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2. One has 
1

(0)

1

3 3 3 1
( ) ( , , ) .

4 4 4
w x



 
 
 

 

Let 2 2

2 :W S S  be a ( )as -QSO given by Eq. (11) and let 

(0) (0) (0) (0)
1 2( , , ) ( )x x y z Fix W   belong to simplex 2S  as initial point. Then, 

the following statements hold true: 

1. One has  2 3( ) , ( , , ) .Fix W e x y z  

where, 3

3

1 8

56 3
3

x t
t


 


, 

 

3 23 3

3 2

1 3 17 2 24 17 5 88

6

t t t
y

t

    


,  

 

3 2 3 3

3 2

1 2 3 17 11 6 17 10

6

t t t
z

t

    


 and 
 98 18 17 .t  

 
 

2. One has 

(0)

3

2 2

(0)

3

, (0, ,1 ) , 0

( )

, ( ,0,1 )

 

, 0

e y y if x

Per W

e x x if y

 

 

 

 







} 

 where, 
1

3
1

3

1 4 2
(1 3 57)

6 3
3(1 3 57)

y    



,  

 
1

3
1

3

1 2 4
(46 6 57)

6 3
3(46 6 57)

x 
   



. 

3. One has  

 

 
 

2

(0 ) 2

1

(0 ) (0 ) 2

1 1

(0) (0)

3

( , , ) ,

( ) ( , 0,1 ),

 

(0, ,1 ) ,

, , 1

w

x y z if x int S

x x x y y if x int S

e if x y
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5 Dynamics of classes 𝑮𝟏𝟑  and 𝑮𝟏𝟒 

In this section, we study the dynamics of  𝑉 , : 𝑆 → 𝑆  selected from 𝐺  and 
𝐺 . To start, 𝑉  is rewritten as follows: 

 

 

 

(0) 2 (0) 2 (0) (0)

(0) 2 (0) (0 )

26

(0) 2

( ) ( ) 2 1

: ( ) 2

1 ( )

x y z x x

V y x y z

z x





    

  

  







 (20) 

The  operator  𝑉   can be redrafted as a convex combination 𝑉 𝛼𝑊
1 𝛼 𝑊 , where  

 

 (0) 2 (0) 2 (0) (0)

(0) 2 (0) (0)

1

( ) ( ) 2 1

: ( ) 2

0

x y z x x

W y x y z

z

    

  

 







 (21) 

and 

 

 (0) 2 (0) 2 (0) (0)

(0) (0)

2

(0) 2

( ) ( ) 2 1

: 2

( )

x y z x x

W y y z

z x

    

 

 







 (22) 

Theorem 4. Let 𝑊  be a ( )as -QSO given by Eq. (20) and 
(0) (0) (0)

1 1 2 1

(0)( , , ( ) ( ))x x y Fix W Per Wz   belongs to simplex 𝑆  as initial point. 

Then, the three statements below are valid: 

1. One has 
1

5 1 3 5
( ) , , 0

2 2 2 2
Fix W   

   
  
   

 

2. One has 
2

2 1 1 2

5 1 ( 1 5)
( ) , , ( , , 0)

2 2 4
Per W e e

 
 
 
 
 

, 

3.   
1

(0)

1 1 3( ) ,W x e e  . 

Proof. Let 2 2

1 :W S S be a ( )as -QSO given by Eq. (22), (0)

1 1( )x Fix W   

2 1( )Per W  belongs to 2S , and ( )

1 1{ }n

nW 
  be a trajectory of 𝑊  beginning from 

point 𝑥 . 
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1. The set of fixed points of 𝑊  is obtained by finding the solution to the set 
of equations below: 

 

 2 2

2

2 1

2

0

x y z x x

y x yz

z

   

 









 (23) 

By substituting the second and third equations Eq. (22) to the first 
equation, then the first equation in system Eq. (22) becomes 𝑥 2𝑥 𝑥, 

then 𝑥 0, 𝑥 1, and 𝑥 √ . √  is verified as the only solution 

that satisfies system Eq. (22). Hence,  the fixed point is only √ ,
√ , 0 . 

2. Let 𝑥 1,0,0 . Then, 𝑉 𝑥 , 𝑦 , 𝑧 0,1,0   and 
𝑉 𝑥 , 𝑦 , 𝑧 1,0,0 , which indicates the presence of 2-periodic 
points. To find all the points, the following system of equations should be 
solved: 

 

2 4

2 2

2

(1 (1 ) )

0

x x x

y y

z

  
   
 

 (24) 

From  the  first equation in system Eq. (23), 𝑥 ∈ 0,1, √  then 𝑦 ∈

1,0, √
. Therefore, 𝑃𝑒𝑟 𝑊 𝑒 , 𝑒 , √ , √ , 0 . 

3. Let (0)

1 1 2 1( ) ( )x Fix W Per W  . 3L  is an invariant line under 1W . Thus, the 

behavior of  ( )

1 1{ }n

nW 
  is explored over this line. Let (0)

1 3x L . Then, 1W  

becomes:  

 

 (0) 2 (0) (0)

(0) 2

( ) 2 1

( )

0

x y x x

y x

z

   

 

 







 (25) 

In this case, the first coordinate of 𝑊  exhibits the form 𝑥 𝜑 𝑥
1 𝑥 2𝑥 1 𝑥 . Clearly, the function 𝜑 decreases on 0,1  and 
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function 𝜑  is increasing on 0,1 . From the previous two steps, 𝐹𝑖𝑥 𝜑 ∩

0,1 √  and 𝑖𝑥 𝜑 ∩ 0,1 0, √ , 1 , which indicates that 

intervals 0, √  and √ , 1  are invariant under the function 𝜑 . 

Evidently, 𝜑 𝑥 𝑥  for any 𝑥 ∈ 0, √  and 𝜑 𝑥 𝑥   

for any 𝑥 ∈ √ , 1 . If 𝑥 ∈ 0, √ , then ( 2 ) {0}


  ; if 𝑥 ∈

√ , 1 , then  ( 2 ) 1


  . In another way,  

 
 
 

(2 ) (0) (2 ) (0)

( )

1 (2 ) (0) (2 ) (0)

( ),1 ( ), 0 , 2
( )

( ( )

  

),1 ( ( )), 0 , 2 1 

k k

n

k k

x x if n k
V W

x x if n k

 

   

 


  





 (26) 

Therefore, the limiting point is 𝜔 𝑥 𝑒 , 𝑒 . 

Theorem 5. Let 𝑊  be a ( )as -QSO given by Eq. (21) and 
(0) (0) (0) (0 )

1 2 2 2( , , ) ( ) ( )x x y z Fix W Per W    belong to simplex 𝑆  as initial 

point. Then, the two statements below are valid: 

1. One has 𝐹𝑖𝑥 𝑊 ∅. Moreover , 

𝑃𝑒𝑟 𝑊 𝑒 , 𝑒 , √ , 0, √5 3 √5 1 . 

2. One has 𝜔 𝑥 𝑒 , 𝑒  

Proof. Let 𝑊 : 𝑆 → 𝑆  be a ( )as -QSO given by Eq. (21), (0)
1 2( )x Fix W   

𝑃𝑒𝑟 𝑊  belong to 𝑆 , and 𝑊
!

! !
 be a trajectory of 𝑊  starting 

at  𝑥 . 

1. The set of fixed points of 𝑊  is obtained by finding the solution for the 
equation set below: 

 

 2 2

2

2 1

2

x y z x x

y yz

z x

   











 (27) 

The system provided by Eq. (26) has no solution on 0,1 . Therefore, the 

set of fixed points is ∅. The second coordinate of 𝑊   increases if 𝑧  
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and decreases if 𝑧  . In both cases, 𝑊  has no specified order of 

periodic points in set 𝑊 \𝐿  , because the second coordinate of 𝑊  
increases or decreases along the iteration of  𝑊 \𝐿 . Therefore, finding the 
2-periodic points of 𝑊 \𝐿  over 𝐿  is sufficient. To find the 2-periodic 
points of 𝑊 , the following system of equations should be solved: 

 

4 2 2

2 2

2 (1 )

0

(1 (1 ) )

x x x x

y

z z

  



  







 (28) 

The solution for the first equation in system Eq. (27) is easy to find. Therefore, 

the periodic points of 𝑊  are 𝑒 , 𝑒 , and √ , 0, √5 3 √5 1 . 

2. Let (0)
1 2 2 2( ) ( )x Fix W Per W   and (0) 0y  . The first coordinate of 𝑊   

can be rewritten as (0) 2 (0) (0)(1 ) 2 (1 )x x x x      because the second 

coordinate is invariant over 𝐿 . The first coordinate is equal to the first 
coordinate of 𝑊 , which was proven in the previous theorem. Hence, we 
derive 

 
 
 

(2 ) (0) (2 ) (0)

( )

2 (2 ) (0) (2 ) (0)

( ), 0,1 ( ) , 2
( )

( ( )), 0,1 ( (

 

)) 2 , 1

 k k

n

k k

x x if n k
V W

x x if n k

 

   

 


  





 (29) 

Therefore, we determine that 𝜔 𝑥 𝑒 , 𝑒 . Let  𝑦 ∉ 𝐿  and 𝑥

, which indicates that 𝑧  and yields 𝑦 𝑦 . If 𝑥 , then the 

third coordinate 𝑧  is also smaller than , which indicates that 𝑦 𝑦 . 

In the two previous cases, we conclude that 1, thereby making 𝑦  

is  a decreasing bounded sequence that converges to zero, which indicates that 
studying the dynamics of 𝑊  over 𝐿  was sufficient. Therefore, 

 
2

(0)
1 1 3( ) ,W x e e   for any initial point (0)

1x  in  𝑆 . 

Subsequently, we explore the behavior of 𝑉 , which is selected from 

class 𝐺 . 
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(0) 2 (0) 2 (0) (0)

(0) 2
25

(0) 2 (0) (0)

( ) ( ) 2 1

: ( )

1 ( ) 2

x y y x x

V y x

z x y z




     
  
    

 (30) 

We rewrite 𝑉   as a convex combination𝑉 𝛼𝑊 1 𝛼 𝑊 , where 

 

 (0) 2 (0) 2 (0) (0)

(0) 2
1

(0) (0)

( ) ( ) 2 1

: ( )

2

x y y x x

W y x

z y z

     
  
  

 (31) 

and  

 

 (0) 2 (0) 2 (0) (0)

2
(0) 2 (0) (0)

( ) ( ) 2 1

: 0

( ) 2

x y y x x

W y

z x y z

     
  
   

 (32) 

Corollary 2 Let 2 2
1 :W S S  given by Eq. (30) be a ( )as -QSO and 

(0) (0) (0) (0)
1 ( , , )x x y z  2 2 2( ) ( )Fix W Per W   belong to simplex 2S  as initial 

point. Then, the statements below are valid: 

1. One has 𝐹𝑖𝑥 𝑊 ∅. Moreover , 

𝑃𝑒𝑟 𝑊 𝑒 , 𝑒 , √ , √5 3 √5 1 , 0 . 

2. One has 𝜔 𝑥 𝑒 , 𝑒  

Let 2 2
2 :W S S  given by Eq. (31) be a ( )as -QSO. Then, the three 

statements below are valid: 

1. One has  𝐹𝑖𝑥 𝑊 √ , 0, √  

2. One has  𝑃𝑒𝑟 𝑊 𝑒 , 𝑒  

3. One has 𝜔 𝑥 𝑒 , 𝑒   
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