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Abstract. In this paper we propose an explicit predictor-corrector finite 

difference scheme to numerically solve one-dimensional conservation laws with 

discontinuous flux function appearing in various physical model problems, such 

as traffic flow and two-phase flow in porous media. The proposed method is 

based on the second-order MacCormack finite difference scheme and the 

solution is obtained by correcting first-order schemes. It is shown that the order 

of convergence is quadratic in the grid spacing for uniform grids when applied to 

problems with discontinuity. To illustrate some properties of the proposed 

scheme, numerical results applied to linear as well as non-linear problems are 

presented. 
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1 Introduction 

This paper is devoted to the construction of explicit finite difference schemes to 

obtain an approximate solution for the following hyperbolic system in 

conservation-law form: 

 𝜕𝑡𝑢 + 𝜕𝑥𝐹(𝑢, 𝛾(𝑥)) = 𝜖𝜕𝑥𝑥𝑢,  (𝑥, 𝑡) ∈ Ω ≔ ℝ × ℝ+,  

 𝑢(𝑥, 0) = 𝑢0(𝑥),  𝑥 ∈ ℝ, (1) 

In Eq. (1), the unknown function 𝑢 = 𝑢(𝑥, 𝑡)  has to be determined; 𝑢0 ∶ ℝ →
ℝ is a prescribed function and 𝜖 is a small non-negative constant. The 

flux 𝐹(𝑢, 𝛾(𝑥)) in Eq. (1) has a possibly discontinuous spatial dependence 

through the coefficient 𝛾(𝑥). Let us suppose that the function 𝛾(𝑥) is a 

piecewise smooth function with possibly a finite number of jump 

discontinuities. We further assume that 𝛾(𝑥) has only one point of 

discontinuity, which  is  located  at 𝑥 = 0 for simplicity. This makes the line 

𝑥 = 0 an interface for our problem.  



 A Predictor-Corrector Scheme for Conservation Equations 323 

 

A typical example of the flux functions that we will particularly consider has 

the following form: 

 𝐹(𝑢, 𝛾(𝑥)) = 𝛾(𝑥)𝑓(𝑢),  𝛾(𝑥) = {
𝛾𝐿 , 𝑥 < 0,
𝛾𝑅 , 𝑥 > 0.

   (2) 

Here, the function 𝑓 is a smooth function and γα for 𝛼 = 𝐿, 𝑅 are two non-zero 

constants. Conservation laws with discontinuous flux function in 𝑥 appear in 

various physical model problems in science and engineering, for example in the 

modeling of two-phase flow in porous media [1], in sedimentation problems [2-

4] and in traffic flow on roads with varying conditions [5,6]. We also note that 

conservation laws with discontinuous flux can be modeled in different forms. 

For instance, the convective flux is in the form 𝐹(𝑢, 𝛾(𝑥)) = 𝛾(𝑥) · 𝑓(𝑢) +
(1 − 𝛾(𝑥)) · 𝑔(𝑢), where 𝑓, 𝑔 are two given functions and 𝛾 is the Heaviside 

step function, see Andreianov, et al. [7] and Izadi [8-10]. Indeed, Eq. (1) is a 

special case of non-linear degenerate parabolic convection-diffusion model 

problems of the type  

 𝜕𝑡𝑢 + 𝜕𝑥𝐹(𝑢, 𝛾(𝑥)) = 𝜕𝑥𝑥𝐴(𝑢), (3) 

where 𝐴 is a given function. In Karlsen, et al. [11] the authors analyzed 

approximate solutions obtained based on an upwind difference method of the 

Engquist-Osher type for this type of problem. For the case of linear flux 

function 𝑓(𝑢) = 𝑢 in Eq. (2) and 𝜖 = 0, an immersed upwind interface method 

was introduced in Wen and Jin [12] to build the interface condition into the 

numerical flux. The Rung-Kutta discontinuous Galerkin method was developed 

in Okhovati and Izadi [13]. For an overview of some recent results devoted to 

problem Eq. (3), we refer the interested reader to Mishra [14] and the references 

therein. We note that if 𝐹(𝑢, 𝛾(𝑥)) is not dependent on 𝑥, then Eq. (1) reduces 

to the classical conservation law, which has a long tradition, see for example 

LeVeque [15]. The main difficulty in devising numerical schemes for classical 

(nonlinear) hyperbolic conservation laws is the presence of discontinuities in the 

solution, even though the initial condition 𝑢0(𝑥) and the flux function 

𝐹(𝑢, 𝛾(𝑥)) are sufficiently smooth. Hence, one has to seek a solution for Eq. 
(1) in the weak sense. A function 𝑢 ∈  𝐿∞(Ω) is called a weak solution of Eq. 

(1) if for all test functions 𝜑 ∈ 𝐶 0
∞ (Ω̅) we have: 

 ∫ (𝑢𝜕𝑡𝜑 + 𝐺(𝑢, 𝛾(𝑥))𝜕𝑥𝜑)𝑑𝑥𝑑𝑡
 

Ω
= − ∫ 𝑢0(𝑥)𝜑(𝑥, 0)𝑑𝑥,

 

ℝ
 (4) 

where 𝐺(𝑢, 𝛾(𝑥)) = 𝐹(𝑢, 𝛾(𝑥)) − 𝜖𝜕𝑥𝑢. Considering the flux function Eq. (2) 

it is not difficult to see that Eq. (4) is a weak formulation of the following 

problem. Denoting by 𝑔𝛼(𝑢) ∶= 𝛾𝛼  𝑓(𝑢) − 𝜖𝜕𝑥𝑢, 𝛼 = 𝐿, 𝑅, then in the weak 

sense 𝑢 satisfies: 
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𝜕𝑡𝑢 + 𝜕𝑥𝑔𝑅(𝑢) = 0, 𝑥 > 0,    𝑡 > 0, 
𝜕𝑡𝑢 + 𝜕𝑥𝑔𝐿(𝑢) = 0, 𝑥 < 0,    𝑡 > 0, 
𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ ℝ,  (5) 

and at the interface 𝑥 = 0, solution 𝑢 satisfies the Rankine-Hugoniot condition 

for zero-speed discontinuity, that is for almost all 𝑡 > 0: 

 𝑔𝐿(𝑢(0−, 𝑡)) = 𝑔𝑅(𝑢(0+, 𝑡)), (6) 

where 𝑢(0± , 𝑡) = lim
𝑠→0±

𝑢(𝑥 + 𝑠, 𝑡) are called the left and right traces. In 

addition, weak solutions are not uniquely determined by their initial data and an 

additional selection principle, the so-called entropy condition, is needed to 

single out physically meaningful weak solutions. At 𝑥 ≠ 0, the most commonly 

used entropy condition is obtained by a Kružkov type entropy condition [16], 

which is derived from a regularization of the conservation laws. It is well-

known that for a problem Eq. (3) in which the coefficient 𝛾(𝑥) is discontinuous, 

the standard entropy condition (e.g. Kružkov) breaks down and a new entropy 

condition is needed to select a unique solution. Several existence and 

uniqueness results for the entropy solutions of Eq. (1) have been derived both 

from mathematical and physical considerations in a series of papers. In Karlsen, 

et al. [17], as a first step, the existence of a weak solution is proved by passing 

to the limit as 𝜖 ↓ 0 in a suitable sequence {𝑢𝜖}𝜖>0 of smooth approximations 

solving problem Eq. (3) with flux 𝛾(𝑥)𝑓(·) replaced by 𝛾𝜖(𝑥)𝑓(·) and the 

diffusion function 𝐴(·) replaced by 𝐴𝜖(·), where 𝛾𝜖(·) is smooth and 𝐴 𝜖
′  (·)  >

 0. Karlsen, et al. [11] reconstructed approximate solutions with an upwind 

finite difference method and then showed that the limit of a converging 

sequence of difference approximations is a weak solution and satisfies a 

Kružkov type entropy inequality. For related work on other numerical methods 

for Eq. (3), see Andreianov, et al. [7] for a list of relevant references. 

In this paper, we aimed to construct a simple numerical approximation method 

for Eq. (1) when convective flux Eq. (2) is utilized. The main focus was to 

investigate the applicability of the MacCormack scheme for convection-

diffusion problems that have a discontinuous coefficient. In contrast to upwind 

schemes, which are only first-order accurate, in this work we propose the 

second-order MacCormack method, which is an explicit conservative finite 

difference scheme, to treat Eq. (1) numerically. The rest of this paper is 

organized as follows. In Section 1, some useful notations are introduced that 

will be used in the subsequent sections. Then we construct and study first-order 

accurate explicit upwind finite difference algorithms for one-dimensional 

convection-diffusion equations with discontinuous coefficients. This section 

may be seen as an extension of the upwind finite difference scheme proposed in 

Wen and Jin [12] in terms of flux functions. Section 3 is devoted to illustrating 

the explicit two-step MacCormack scheme applied to the model problem Eq. 



 A Predictor-Corrector Scheme for Conservation Equations 325 

 

(1). These schemes are then tested on several linear as well as non-linear 

problems in Section 4. We also justify the second-order accuracy of the 

MacCormack scheme throughout the course of numerical simulation. Finally, 

we draw some conclusions in Section 5. 

2 First-Order Upwind Schemes 

To proceed, we introduce some notations. Throughout this paper, the temporal 

and spatial discretization parameters in the proposed finite difference 

approximations will be denoted by ∆𝑡 and ∆𝑥, respectively, of the numerical 

schemes. Let the spatial domain ℝ be partitioned into uniform mesh elements 

𝐼𝑗 = [𝑥
𝑗−

1

2

, 𝑥
𝑗+

1

2

 ) with grid points 𝑥
𝑗−

1

2

= 𝑗∆𝑥, 𝑗 ∈ ℤ. Here, ∆𝑥 = 𝑥
𝑗+

1

2

− 𝑥
𝑗−

1

2

 is 

the mesh size. We will also set the midpoints of the intervals as 𝑥𝑗 =
1

2
(𝑥

𝑗−
1

2

+

𝑥
𝑗+

1

2

), ∀𝑗 ∈ ℤ. Analogously, the time domain ℝ+ is partitioned into time strips 

𝐼𝑛 = [𝑡𝑛, 𝑡𝑛+1),  where  𝑡𝑛 = 𝑛∆𝑡 for 𝑛 ∈ ℕ ∪ {0}, where ∆𝑡 =  𝑡𝑛+1 − 𝑡𝑛 is the 

uniform time step. On the computational grid (𝑥𝑗, 𝑡𝑛) we use 𝑈 𝑗
𝑛 to denote the 

computed finite difference solution to the exact solution 𝑢(𝑥𝑗, 𝑡𝑛) of Eq. (1). 

We will also set 

 µ =
∆𝑡

∆𝑥
,  𝐼(𝑣, 𝑤) = [min{𝑣, 𝑤}, max{𝑣, 𝑤}], µ𝛼 = 𝛾𝛼

∆𝑡

∆𝑥
, 𝛼 = 𝐿, 𝑅. 

The first-order upwind scheme plays an essential role in the development of 

second-order upwind methods. In fact, upwind schemes use concepts from 

characteristic theory to select the direction of spatial differencing. By simply 

ignoring the diffusion term 𝜖𝜕𝑥𝑥𝑢, Eq. (5) can be discretized using a first-order 

upwind scheme for the convective terms 𝛾𝛼  𝑓(𝑢). To this end, let us discretize 

the initial data 𝑢0(𝑥). The initial condition 𝑢0(𝑥) is projected onto the space of 

piecewise constant functions by 

 𝑈 𝑗
0 =

1

∆𝑥
∫ 𝑢0(𝑥)𝑑𝑥

 

𝐼𝑗
 ,  ∀𝑗 ∈ ℤ.   

To proceed, let us have two (two-point) numerical flux functions:  𝐹𝛼 ∶ ℝ2 → ℝ 

for 𝛼 = 𝐿, 𝑅, which are locally Lipschitz continuous and satisfy the consistency 

property 𝐹𝛼(𝑢, 𝑢) = 𝛾𝛼  𝑓(𝑢), 𝛼 = 𝐿, 𝑅. Given 𝑈 𝑗
𝑛 at time level 𝑡𝑛, we calculate 

the discrete 𝑈 𝑗
𝑛+1 via the following three-point numerical scheme:  

 𝑈 𝑗−1
𝑛+1 = 𝑈 𝑗−1

𝑛 − µ(𝐹 𝑗,𝐿
𝑛 − 𝐹 𝑗−1,𝐿

𝑛 ),   𝑗 ≤ 0,  𝑛 ≥ 0,  (7) 

 𝑈 𝑗
𝑛+1 = 𝑈 𝑗

𝑛 − µ(𝐹 𝑗+1,𝑅
𝑛 − 𝐹 𝑗,𝑅

𝑛 ), 𝑗 ≥ 0,  𝑛 ≥ 0,  (8) 

where 𝐹𝑗,𝛼
𝑛 = 𝐹𝛼(𝑈 𝑗−1

𝑛 , 𝑈 𝑗
𝑛), 𝛼 = 𝐿, 𝑅. Note that the coupling of the two finite 

difference schemes Eqs. (7-8) is carried out by evaluating 𝐹0,𝛼
𝑛 = 𝐹𝛼(𝑈 −1

𝑛 , 𝑈 0
𝑛), 
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𝛼 = 𝐿, 𝑅. In order to complete the definition of the presented method, we have 

to specify the numerical flux functions 𝐹𝛼 , 𝛼 = 𝐿, 𝑅. We utilize the standard 

upwind flux away from the interface. This implies that for 𝑗 ≠ 0, the 

computation of 𝐹 𝑗,𝛼
𝑛  is done by  

 𝐹𝛼(𝑈, 𝑉) = {
𝑓𝛼(𝑈), if  �̇� ≥ 0,

 𝑓𝛼(𝑉), if  �̇� < 0,
   �̇� = {

𝑓𝛼(𝑉)−𝑓𝛼(𝑈)

𝑉−𝑈
, if 𝑈 ≠ 𝑉

𝜕𝑢𝑓𝛼(𝑈), if 𝑈 = 𝑉
  (9) 

where we have used 𝑓𝛼(𝑢)  =  𝛾𝛼  𝑓(𝑢) for 𝛼 =  𝐿, 𝑅. In order to define the 

numerical coupling procedure, one needs to specify both fluxes  𝐹0,𝐿
𝑛  and 𝐹0,𝑅

𝑛  

more precisely. For this purpose, depending on the sign of the derivative of 𝑓𝛼, 

the following cases are considered: 

(1) If 𝜕𝑢𝑓𝛼(𝑢) > 0, 𝛼 = 𝐿, 𝑅 for all 𝑢 ∈ 𝐼(𝑈 𝑗
𝑛 , 𝑈 𝑗+1

𝑛 ). In this case we only need 

to determine  𝐹0,𝑅
𝑛 , which takes the form: 

 𝐹0,𝑅
𝑛 = 𝑓𝐿(𝑈 −1

𝑛 ). (10) 

For instance, in the case of linear flux 𝑓𝛼(𝑢) = 𝛾𝛼𝑢 with 𝛾𝛼 > 0, 𝛼 = 𝐿, 𝑅, the 

numerical scheme Eqs. (7-8) can be rewritten as:  

𝑈 𝑗
𝑛+1 = (1 − µ𝐿)𝑈 𝑗

𝑛 + µ𝐿𝑈 𝑗−1
𝑛 ,   if 𝑗 ≤ −1, 

𝑈 𝑗
𝑛+1 = (1 − µ𝐿)𝑈 𝑗

𝑛 + µ𝑅𝑈 𝑗−1
𝑛 , if 𝑗 = 0, 

𝑈 𝑗
𝑛+1 = (1 − µ𝑅)𝑈 𝑗

𝑛 + µ𝑅𝑈 𝑗−1
𝑛 , if 𝑗 ≥ 1. 

The parameters µ𝛼 , 𝛼 =  𝐿, 𝑅 are called the Courant-Friedrichs-Lewy numbers, 

or CFL numbers. They play a crucial role in determining the stability of the 

numerical scheme. Standard stability analysis dictates that these CFL numbers 

should be chosen such that 0 < µ𝛼 < 1. 

(2) If 𝜕𝑢𝑓𝛼(𝑢) < 0, 𝛼 = 𝐿, 𝑅 for all 𝑢 ∈ 𝐼(𝑈 𝑗
𝑛 , 𝑈 𝑗+1

𝑛 ). In this case it is sufficient 

to take  𝐹0,𝐿
𝑛  as  

 𝐹0,𝐿
𝑛 = 𝑓𝑅(𝑈 0

𝑛). (11) 

Again, utilizing the linear flux 𝑓𝛼(𝑢) = 𝛾𝛼𝑢 with 𝛾𝛼 < 0, 𝛼 = 𝐿, 𝑅 in Eqs. (7-8), 

after rearrangement one gets:  

 𝑈 𝑗
𝑛+1 = (1 + µ𝐿)𝑈 𝑗

𝑛 − µ𝐿𝑈 𝑗+1
𝑛 ,   if 𝑗 ≤ −2, 

𝑈 𝑗
𝑛+1 = (1 + µ𝐿)𝑈 𝑗

𝑛 − µ𝑅𝑈 𝑗+1
𝑛 , if 𝑗 = −1, 

 𝑈 𝑗
𝑛+1 = (1 + µ𝑅)𝑈 𝑗

𝑛 − µ𝑅𝑈 𝑗+1
𝑛 , if 𝑗 ≥ 0. 

In the third case, we consider fluxes that have opposite signs.  
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(3) If 𝜕𝑢𝑓𝐿(𝑢) > 0 and 𝜕𝑢𝑓𝑅(𝑢) < 0 for all 𝑢 ∈  𝐼(𝑈 𝑗
𝑛, 𝑈 𝑗+1

𝑛 ). In this situation, 

no extra requirement like Eq. (10) or Eq. (11) is needed for numerical treatment 

of the interface and the numerical flux defined in Eq. (9) is sufficient for 

computing 𝑈 −1
𝑛+1 and 𝑈 0

𝑛+1. If we consider the linear flux with 𝛾𝐿 > 0 and 

𝛾𝑅 < 0 as in the two former cases, we get:  

 𝑈 𝑗
𝑛+1 = (1 − µ𝐿)𝑈 𝑗

𝑛 + µ𝐿𝑈 𝑗−1
𝑛 , if 𝑗 ≤ −1, 

𝑈 𝑗
𝑛+1 = (1 + µ𝑅)𝑈 𝑗

𝑛 − µ𝑅𝑈 𝑗+1
𝑛 ,  if  𝑗 ≥ 0. 

Now, we can devise a finite difference approximation based on the upwind 

scheme mentioned above for Eq. (1) by discretizing the right-hand term 𝜖𝜕𝑥𝑥𝑢. 

For example, second- and fourth-order central difference approximations to 

𝜕𝑥𝑥𝑢 can be used. Introducing the following centered difference operators 

𝛿𝑥
2𝑈𝑗 = 𝑈𝑗−1 − 2𝑈𝑗 + 𝑈𝑗+1, one can approximate 𝜕𝑥𝑥𝑢 at points (𝑥𝑗, 𝑡𝑛) as 

𝛿2𝑈 𝑗
𝑛

∆𝑥2 , which is obviously a second-order scheme. By means of the forward and 

backward difference operators 

 ∆𝑥
−𝑈𝑗 = 𝑈𝑗 − 𝑈𝑗−1,  ∆𝑥

+𝑈𝑗 = 𝑈𝑗+1 − 𝑈𝑗 , 

we modified the scheme Eqs. (7-8) for Eq. (1) as follows: 

 𝑈 𝑗−1
𝑛+1 = 𝑈 𝑗−1

𝑛 − µ ∆𝑥
− 𝐹𝑗,𝐿

𝑛 + 𝜖𝜆𝛿𝑥
2𝑈 𝑗

𝑛 ,  𝑗 ≤ 0, 𝑛 ≥ 0,  (12) 

 𝑈 𝑗
𝑛+1 = 𝑈 𝑗

𝑛 − µ∆𝑥
+ 𝐹𝑗,𝑅

𝑛 + 𝜖𝜆𝛿𝑥
2𝑈 𝑗

𝑛, 𝑗 ≥ 0, 𝑛 ≥ 0,  (13) 

where we have set 𝜆∆𝑥 =  µ. Note that since the upwind approximation Eqs.(7-

8) is essentially a first-order scheme, the overall order of convergence cannot be 

improved upon, even if higher-order difference methods for other terms 𝜕𝑥𝑥𝑢 

and 𝜕𝑡𝑢 are employed.  

3 Second-Order Schemes 

The upwind approximation algorithms described in the last section are at most 

first-order accurate methods. These yield poor accuracy in regions where we 

have discontinuities or the exact solution is non-smooth. To overcome these 

problems, we utilize the idea of MacCormack [18] to formally upgrade the 

upwind scheme Eqs. (12-13) to second-order accuracy. This new scheme is 

obtained by correcting the first-order schemes; see Izadi [19], Kulmart and 

Pochai [20] for recent applications of the MacCormack schemes. 

The standard algorithm based on the original MacCormack scheme consists of a 

two-stage procedure known as the predictor-corrector method. In fact, this 

method is a predictor-corrector version of the Lax-Wendroff scheme and is 

much easier to apply due to its Jacobian-free property. This explicit scheme can 
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be presented for a single (classical) conservation law of the form 𝜕𝑡𝑢 +
𝜕𝑥𝐻(𝑢) = 𝜖𝜕𝑥𝑥𝑢 as follows: 

 𝑈 𝑗
∗ = 𝑈 𝑗

𝑛 − µ∆𝑥
+𝐻𝑗

𝑛 + 𝜖𝜆𝛿𝑥
2𝑈 𝑗

𝑛,  (Predictor step) (14) 

 𝑈 𝑗
∗∗ = 𝑈 𝑗

𝑛 − µ∆𝑥
−𝐻𝑗

𝑛,∗ + 𝜖𝜆𝛿𝑥
2𝑈 𝑗

∗. (Corrector step) (15) 

Here, 𝐻𝑗
𝑛  and 𝐻𝑗

𝑛,∗ are denoted by the flux 𝐻 evaluated at 𝑈 𝑗
𝑛 and 

𝑈 𝑗
∗  respectively. Hence, the solution at the next time level becomes: 

 𝑈 𝑗
𝑛+1 =

1

2
(𝑈 𝑗

∗ + 𝑈 𝑗
∗∗). (16) 

It should be stressed that the first-order spatial derivatives in Eqs. (14-15) are 

discretized with opposite one-sided finite differences in the corresponding 

predictor and corrector stages. The forward differencing operator is used in the 

predictor step and the backward differencing operator is used in the corrector 

step. However, applying these operators in these stages may be interchanged 

depending on the flux 𝐻, as we see in the case of our model problem. In order to 

write the MacCormack scheme in a conservative form and suitable for Eq. (1), 

we take the numerical fluxes 𝐻𝛼 as 

 𝐻𝛼(𝑢, 𝑣) =
1

2
(𝑓𝛼(𝑢) + 𝑓𝛼(𝑣)),   𝛼 = 𝐿, 𝑅  (17) 

Moreover, the average of 𝑢 and 𝑣 is defined as 𝐴(𝑢, 𝑣) =
1

2
(𝑢 + 𝑣). In fact, by 

putting Eq. (14) into Eq. (15) followed by inserting the obtained result into Eq. 

(16) it can be written as conservative. Obtaining the predicted numerical values 

𝑈 𝑗
∗ in the first stage by upwind scheme Eqs. (12-13), the corrected numerical 

values 𝑈 𝑗
𝑛+1 at the next time level are given by: 

 𝑈 𝑗−1
𝑛+1 = 𝑈 𝑗−1

𝑛 − µ∆𝑥
±𝐻𝑗,𝐿

𝑛,∗ + 𝜖𝜆𝛿𝑥
2𝐴 𝑗

𝑛,∗,  𝑗 ≤ 0,  𝑛 ≥ 0  (18) 

 𝑈 𝑗
𝑛+1 = 𝑈 𝑗

𝑛 − µ∆𝑥
±𝐻𝑗,𝑅

𝑛,∗ + 𝜖𝜆𝛿𝑥
2𝐴 𝑗

𝑛,∗,  𝑗 ≥ 0,  𝑛 ≥ 0,  (19) 

where    𝐻𝑗,𝛼
𝑛,∗ = 𝐻𝛼(𝑈 𝑗−1

𝑛 , 𝑈 𝑗
∗), 𝐴 𝑗

𝑛,∗ = 𝐴( 𝑈 𝑗
𝑛, 𝑈 𝑗

∗), 𝛼 = 𝐿, 𝑅, and ∆𝑥
± denotes 

either the forward or backward difference operator. As mentioned before, if for 

computing 𝑈 𝑗
∗ in the range 𝑗 ≤ 0 (𝑗 ≥ 0) one uses ∆𝑥

− (∆𝑥
+), which completely 

depends on 𝑓𝛼, then in Eqs. (18-19) we need to utilize a different one-sided 

operation that has the opposite sign. Utilizing the forward as well as the 

backward differences for space derivatives in calculating the average value of 

the time derivative in Eq. (16) is the main reason for the second-order accuracy. 

As an illustration, consider the linear flux functions 𝑓𝛼(𝑢) = 𝛾𝛼𝑢 for 𝛼 = 𝐿, 𝑅 

with 𝛾𝐿 > 0, 𝛾𝑅 < 0. Thus, the numerical schemes Eqs. (18-19) become:  

 𝑈 𝑗
𝑛+1 = 𝑈 𝑗

𝑛 − µ𝐿∆𝑥
+𝑈 𝑗

∗ + 𝜖𝜆𝛿𝑥
2𝐴 𝑗

𝑛,∗, 
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 𝑈 𝑗
∗ = 𝑈 𝑗

𝑛 − µ𝐿∆𝑥
−𝑈 𝑗

𝑛 + 𝜖𝜆𝛿𝑥
2𝑈 𝑗

𝑛, 

if 𝑗 ≤ −1 and take the following form if  𝑗 ≥ 0 

 𝑈 𝑗
𝑛+1 = 𝑈 𝑗

𝑛 − µ𝑅∆𝑥
−𝑈 𝑗

∗ + 𝜖𝜆𝛿𝑥
2𝐴 𝑗

𝑛,∗, 

 𝑈 𝑗
∗ = 𝑈 𝑗

𝑛 − µ𝑅∆𝑥
+𝑈 𝑗

𝑛 + 𝜖𝜆𝛿𝑥
2𝑈 𝑗

𝑛. 

4 Numerical Tests 

We now investigate the performance of the MacCormack scheme applied to 

problem Eq. (1). We consider spatial domain [−1,1] by dividing it into N 

subintervals with 𝑁 = 2𝑠, 𝑠 = 4,5,··· ,10. The time interval [0, T] is partitioned 

into 𝑛𝑡 =  ⌈
𝑇

∆𝑡
 ⌉ small time-steps. To check the accuracy of the presented 

methods, the relative 𝐿1, 𝐿2 and 𝐿∞ error norms between the exact solution 𝑢𝑒 

and the numerical solution 𝑢ℎ are given by the following definitions: 𝐸(ℎ, 𝑝) =
 ∥𝑢ℎ(𝑇1)−𝑢𝑒(𝑇2)∥𝑝

∥𝑢𝑒(𝑇2)∥𝑝
 , 𝑝 = 1,2, ∞. Here, 0 < 𝑇1, 𝑇2 ≤ 𝑇. Note that for non-linear 

flux, the values of 𝑇1 and 𝑇2 may not be exactly equal, but |𝑇1  − 𝑇2| < ∆𝑡. The 

rate of convergence is calculated using the formula log2
 𝐸(ℎ,𝑝)

𝐸(
ℎ

2
,𝑝)

  for 𝑝 = 1,2, ∞. 

4.1   Linear case  

In a linear case, we consider the linear flux 𝑓𝛼(𝑢) = 𝛾𝛼𝑢. Using the Fourier 

method, we can show that applying the MacCormack scheme to 𝜕𝑡𝑢 +

𝜕𝑥𝑓𝛼(𝑢) = 𝜖𝜕𝑥𝑥𝑢 is stable under the CFL condition (
|𝛾𝛼|

∆𝑥
+ 

2𝜖

(∆𝑥)2) ∆𝑡 ≤ 1, see 

[21]. By setting 𝛾max = max{|𝛾𝐿|, |𝛾𝑅|} to ensure stability, time step ∆𝑡 is 

chosen as ∆𝑡 =  𝐶𝑐fl ·
(∆𝑥)2

∆𝑥 𝛾𝑚𝑎𝑥+ 2𝜖
, where ∆𝑥 =

 2

𝑁
. Here  𝐶𝑐fl  is an appropriate 

safety factor to keep the CFL below the stability limit. In this case, the final 

time 𝑇 = 0.5  is used for the computations. We also set  𝐶𝑐fl = 0.025.  

Example 4.1 We first consider the model problem Eq. (1) with 𝛾𝐿 = 0.02 and 

𝛾𝑅 = −0.04 and take 𝑢0(𝑥) with discontinuities at  ±
1

4
,  ± 

3

4
 defined as  

 𝑢(𝑥, 0)  = 1,  for  |𝑥| ≤  
1

4
 , 

 𝑢(𝑥, 0)  =
1

2
,  for  

1

4
< |𝑥| ≤

3

4
 , 

 𝑢(𝑥, 0)  = 0,  otherwise. 
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(a) 

 
(b) 

Figure 1 (a) Numerical and exact solutions and (b) the corresponding absolute 

errors of Example 4.1 at times 𝑡 = 4∆𝑡, 13∆𝑡, 22∆𝑡, . . . ,85∆𝑡, 94∆𝑡.  

First, for a fixed 𝑁 = 80, visualizing the numerical solutions together with the 

exact solutions at times 𝑡 = 4∆𝑡, 13∆𝑡, 22∆𝑡, . . . ,85∆𝑡, 94∆𝑡 in Figure 1(a). 

Moreover, the corresponding absolute errors are depicted in Figure 1(b). In all 

plots we have used 𝜖 = 0.001. 



 A Predictor-Corrector Scheme for Conservation Equations 331 

 

 
Figure 2 Relative 𝐿1, 𝐿2 and 𝐿∞ errors evaluated at time 𝑡 =  𝑇 for different 𝑁. 

It can be seen from Figure 1(a) that the numerical results are in good agreement 

with the analytical results. However, some inefficiencies are observed in the 

vicinity of discontinuities. For this example we also investigated the behavior of 

relative errors with respect to 𝑁 in three different norms, 𝐿1, 𝐿2 and 𝐿∞, as 

shown in Figure 2. These results were evaluated at time 𝑡 = 𝑇. In the Table 1 

we report the corresponding convergence rates for different 𝑁. As expected, the 

best results were obtained in the 𝐿1 norm. Finally, we investigated the impact of 

different values of viscosity ϵ on the MacCormack scheme. We took 𝜖 =
0.1,0.01,0.001,0.0001 and 𝜖 = 0. The numerical solutions at time  𝑡 = 𝑇 for 

these values of viscosity and for the number of spatial grid points 𝑁 = 80 are 

presented in Figure 3. As expected, the approximate solutions for different ϵ  

continuously tend to the  solution  corresponding to 𝜖 = 0. Note that when 

selecting 𝜖 less than 0.00001, almost the same number of time-steps 𝑛𝑡 ≈
32  were obtained and therefore distinguishing between different solutions may 

be difficult. 

Table 1 Relative 𝐿1, 𝐿2 and 𝐿∞ convergence rates evaluated at time 𝑡 =  𝑇 for 

different 𝑁. 

N L1-order L2-order L∞-order 

16 - - - 

32 0.32 0.04 -0.31 

64 1.68 1.45 1.00 

128 2.12 2.15 2.01 

256 2.03 2.02 2.00 

512 2.16 2.27 2.59 

1024 1.99 1.93 1.56 
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Figure 3 Numerical solutions for Example 4.1 evaluated at time 𝑡 =  𝑇 with 

𝜖 = 0.1,0.01,0.001,0.0001 and 𝜖 = 0. 

Example 4.2 In this example, we again consider a linear case using wave 

speeds 𝑎𝐿 = 0.04 and 𝑎𝑅 = 0.07 with the same signs and a continuous initial 

data, 𝑢0(𝑥) = sin7(3π𝑥). In this case, in view of the flux coupling condition, 

the exact solution for 𝜖 = 0 is obtained by following the characteristics lines. 

Having positive wave speeds, it becomes  

 𝑢(𝑥, 𝑡)  = 𝑢0(𝑥 − 𝛾𝐿𝑡),  𝑥 <  0, 

 𝑢(𝑥, 𝑡)  =
𝛾𝐿

𝛾𝑅
𝑢0 (

𝛾𝐿

𝛾𝑅
𝑥 − 𝛾𝐿𝑡),  0 < 𝑥 < 𝛾𝑅𝑡, 

 𝑢(𝑥, 𝑡)  = 𝑢0(𝑥 − 𝛾𝑅𝑡),  𝑥 > 𝛾𝑅𝑡. 

In the second experiment, we take 𝑁 = 256 and 𝜖 = 0. A snapshot of the 

numerical solution at the final time instant 𝑡 = 𝑇 is displayed in Figure 4. The 

exact solution is shown by the solid line. A comparison of the results obtained 

by the presented scheme, i.e. the MacCormack method, and those obtained by 

upwind difference approximation scheme Eqs. (7-8) is shown in Figure 4. 

Referring to Figure 4, it can obviously be seen that the MacCormack scheme 

outperformed the upwind method, especially near the corners. 

In Table 1 we report the convergence rates of both methods in the relative 𝐿1, 𝐿2 

and 𝐿∞ norms. In the last column of Table 1, we also report the CPU times in 

seconds (sec) needed by the upwind and MacCormack schemes using 𝑁 =
256,512,1024. As expected, the time required by the MacCormack method was 

about two-fold compared to the upwind scheme. 
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Figure 4 Numerical and exact solutions for Example 4.2 at times 𝑡 =  𝑇 for 

𝑁 =  256. 

The results shown in Table 1 indicate that achieving first-order accuracy is 

possible with the upwind method while the corresponding order is two with the 

MacCormack scheme, especially when the number of cells is increased. 

Therefore, applying these methods for problems with discontinuities in an 

appropriate way can also lead to the same order of accuracy for continuous 

problems. 

Table 2 Relative  𝐿1, 𝐿2 and 𝐿∞ Convergence Rates for Example 4.2 Evaluated 

at Time 𝑡 = 𝑇 

N 

L1-order L2-order L∞-order CPU time (sec) 

Upwind 
Mac-

Cormack 
Upwind 

Mac-

Cormack 
Upwind 

Mac-

Cormack 
Upwind 

Mac-

Cormack 

16 - - - - - - - - 

32 0.53 0.79 0.59 0.73 0.43 0.59   

64 0.79 1.62 0.83 1.60 0.68 1.34   

128 0.89 1.88 0.85 1.86 0.80 1.79   

256 0.94 1.98 0.91 1.97 0.88 1.96 0.0028 0.0069 

512 0.97 2.00 0.95 2.00 0.94 1.99 0.0118 0.0261 

1024 0.98 1.99 0.98 2.00 0.97 2.00 0.0506 0.1247 

4.2    Nonlinear case 

To further demonstrate the accuracy of the proposed predictor-corrector 

scheme, we consider Eq. (1) with non-linear flux. We take 𝑓(𝑢) =
𝑢2

2
, which is 

known as the Burgers flux. For nonlinear problems, obtaining a simple stability 

criterion with the MacCormack scheme applied to them is not an easy task. In 

particular, stability analysis of the viscous Burgers equations does not lead to an 



334 Okhovati & Izadi 

exact and simple expression. Following Hoffmann [21], we also consider the 

following stability requirements for 𝜕𝑡𝑢 + 𝜕𝑥𝑓𝛼(𝑢) = 𝜖𝜕𝑥𝑥𝑢, which are mainly 

obtained by numerical experimentations:  

 (|𝛾𝛼𝑢|
∆𝑡

∆𝑥
+ 2𝜖

∆𝑡

(∆𝑥)2) ≤ 1,  or  ∆𝑡 ≤ {
∆𝑥

|𝛾𝛼𝑢|
,

(∆𝑥)2

2𝜖
}. 

Note that the stability condition will change during the computations. Thus, the 

time and space step sizes must be automatically adapted at each time level. For 

this purpose, time step ∆𝑡 should be chosen such that 

 ∆𝑡 =  𝐶𝑐fl.
(∆𝑥)2

𝑠𝑢𝑝𝑗|𝛾𝛼𝑈𝑗
𝑛|∆𝑥+2𝜖

. 

In the computations below, we use  𝐶𝑐fl = 0.1 and the final time is 𝑇 = 0.75. 

 
Figure 5 Numerical solutions for Example 4.3 after 1,5,10, . . . ,110,115 time 

levels with 𝜖 = 0.01. 

 
Figure 6 Absolute errors for Example 4.3 after 1,2,4, . . . ,56,58 time levels with 

𝜖 = 0. 
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Figure 7 Relative 𝐿1, 𝐿2 and 𝐿∞-errors evaluated at time 𝑡 = ⌊

𝑇

2
⌋ for different 𝑁. 

Example 4.3 We first solve the non-linear model problem Eq. (1) with 𝛾𝐿 =
0.1 and 𝛾𝑅 = 0.4 and the initial data for this problem is 𝑢(𝑥, 0) = sin(𝜋𝑥). 

For this problem, the viscosity is taken to be 𝜖 = 0.01 and 𝑁 = 40. The 

numerical solutions after 1,5,10, . . . ,110,115, time steps are visualized in 

Figure 5. When 𝜖 = 0, one can compute the exact solution of Eq. (1) with 

Burgers fluxes. Given the (smooth) initial data, the exact solution is obtained by 

the method of characteristics. Of course, these solutions are valid prior to the 

collision of the characteristics and after the appearance of shocks the solution 

achieved by this method may be considered invalid. It is not difficult to show 

that for the flux functions 𝑓𝛼(𝑢) = 𝛾𝛼
𝑢2

2
 for 𝛼 = 𝐿, 𝑅, the breaking times (of 

characteristics) are determined by 

 𝑇𝛼 = min
𝑥∈ℝ

|−
1

𝛾𝛼𝑢0(𝑥)
|,  𝛼 = 𝐿, 𝑅. 

For our example these times are evaluated as 𝑇𝐿 =
10 

𝜋
≈ 3.18 and 𝑇𝑅 =

10

4𝜋
≈

0.80. For the coupling of two hyperbolic conservation laws, we calculate the 

absolute errors at various time levels as in Figure 5; the results can be seen in 

Figure 6. As is clear from this plot, some loss in efficiency will appear as time 

evolves towards the shock propagation time, 𝑡 = 𝑇𝑅. However, in the smooth 

regions and even near the interface 𝑥 = 0 the errors are negligible compared to 

the shock region. 

The exact knowledge of the solution allows us to draw precise conclusions 

about the accuracy and the order of the proposed method. Analogue to linear 

cases, we also justified the theoretical order of convergence of the MacCormack 

scheme by numerical results. We computed the 𝐿1, 𝐿2 and 𝐿∞ errors for 
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different values of 𝑁 shown in Figure 7. The corresponding orders of 

convergence were also obtained through a grid-refinement study of the 

MacCormack scheme, as shown in the Table 3. Note that these results were 

computed at time 𝑡 = ⌊
𝑇

2
⌋. 

Table 3 Relative 𝐿1, 𝐿2 and 𝐿∞ convergence rates evaluated at time 𝑡 = ⌊
𝑇

2
⌋ for 

different 𝑁. 

N L1-order L2-order L∞-order 

16 - - - 

32 1.94 1.88 1.90 

64 1.99 1.95 1.84 

128 2.00 1.95 1.88 

256 2.00 1.91 1.00 

512 2.00 1.84 1.00 

1024 2.00 1.76 1.00 

5   Conclusions 

In this paper, a class of finite-difference schemes for convection-diffusion 

problems with discontinuous coefficient arising from the modeling of many 

real-world phenomena was described; the convective numerical flux is the 

upwind flux in these calculations. The original MacCormack scheme was 

modified based on the upwind methods to treat these problems numerically. 

First- and second-order upwind methods were compared using explicit code in 

both linear and non-linear model problems. One can easily confirm that the 

MacCormack method simulates the shock, which in the non-linear Example 4.3 

corresponds to 𝜖 = 0, better than the first-order accurate schemes. 
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