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SIMPLE METHOD TO CALCULATE THE OSCILLATING
LIFT ON A CIRCULAR CYLINDER

IN POTENTIAL FLOt,l

HariJono DJojodihardjo*)

R I N G K A S A N

Suatu model aliz,an potensial sederhana
diwaikut untuk nenghitung gaga mr.gkat yarry
berosilasi padn sili4dez. Lingkarot, Padn da-
earnAa, gaya angkat yang berosilasi ini dise-
babkqt kaxena adanya uortex gutg diLepaskqt
oleh silinder dati titik pemisahan. Kekuaton
uorter dan LintasanrnJa dihitung dengor meng-
ganakan syaz,at balu'sa gaAa pada uortes dnn
bidntg uorter ycng menwnbuhkannga harus sona
dengut nol. Vortea ini terputus dari sillnder
pada uaktu kekuatovrya mencqai naksirrum, dan
rsoytes yang Lain nulai, di.Lepaekan pada siei.
silind,ez, yang Lain.

Hasil perhitungan menntjukkan harga gaya
angkat maksirnum gartg mendekati, hatga yutg di-
peroleh aeeoxa eksperimentil. Denikian pula,
untuk ali.rm. subkz.itis, diperoleh hasi,L per,-
hitungot bilangut. Sty,ouhal yutg mendekati ha*
ga Amg diperoleh secata eksperLmen.

A B S T R A C T

A sirnpLe potential flou modeL is pz,esent-
ed to calculate the oseillating Lift on a
eiv,anlar cylinder. In essenee, the time de-
pmd.ent Lift aeting on a cylinder is due to
the presence of a Dorteu ehed off the se-
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paration point on the eylinder,. (he uortea
strength otd its trqjeetory is predieted em-
pLoying the con&Lti.on of zero foz,ee on the
uoz,tes and its feeding Dortex sheet. The voy,-
ter breaks daay from the eylinder qnd is eon-
ueeted by the fluid after the uorteu stz,ength
v,eaehes a manimwn uaLue, and another uoz,tex, is
shed at the other side of the eylinder.

2seillatin4 Lift aith the right oz,der of
nagnitude of atniLable erpez,imental results
u)as predieted. For suberiticaL flou, good
agreement is obtained betaeen the predicted
Stz,ouhal number and that found erperimentally.
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LIST OF SYI'{BOL

radlus of the cylinder

l1f t  coef f lc ient

drag coeffl-cient

drag force

/-t

l l f t  force

Reynolds number

Strouhal nr:mber

time

free stream veloclty

von Kannanrs vortex velocity

velocity

velocity of point vortFx at zo

x component of Vo

y component of Vo

'complex potential

vlu
longltudinal coordinate

lateral coordlnate
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x + l y

vortex strength

angular posltion of point vortex

dimenslonless vortex strength

ratio between lateral to longitudinal
distances of von Karman vortices

dlstance between zo and z1 expressed
ln unlts of a

angular posltlon of separation polnt

I. Introriuetion

The oscil latlng l lft acting on a cirgular cyllnder has
been a subject of continued interest, especlally in the l ight
of increased effort to rmderstand and overcome wlnd excited
vlbration in the field of industrlal aerodynamlcs. several
experlmental investigations were perforured by nany lnvestl-
gators,  anong others Roshko (4r5) ,  Fung (3) ,  and Blshop and
Hassan (2). Recently, Alexander (f) has proposed a sinple
theory to calculate the oscil latlng l ift acting on a circular
cylinder. Ttre present artlcle presents an analytLcal rnodel
somewhat sinllar to that introduced by Alexander, but lntro-
duces addltional condLtions based on pirysical consideratlons.
Alexander has preassumed the vortex trajectory, and also
assumed that the vortex shed off the cylinder breaks away from
the cylinder or joins the vortex street at the lnstant when
the lift force on the cyllnder attained its na:<imrn value, and
hence suddenly the force on the cyllnder due to the vortex
vanishes. In the present theory, the above agsumptlons are
removed, and lnstead, the vortex trajectory is computed em-
ploying the conditlon of zero force on the vortex and its
feeding vortex sheet. The vortex breaks away from the eylin-
der and ls convected by the fluid after its strength reaches a
maximum value.

Ihe present nodel ls capabJ-e of predictlng the oscll lat-
lng l ift within the right order of nagnitude of avallable
experinental results. However, tb some extent, most experl.-
mental results are affected by three dinensional. effects.

n. Analytical Model

Consider the flow around a clrcular eylinder, and assume
that init ially a sirnple vortex ls shed off at one of the sepa-
ration points on the cylinder, anil then convected downstrearn.
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In thls process, the vortex grows ln strength. The feedlng
points - or separation polnts - wl1l- be defined from exPerl-
mental evidence, or they uray be arbltrarily deflned and verl-
f ied later. It ls assr:ned that as soon as the vortex attains
its maxlmum strength, then lt stoPs growing ln strength and
breaks away from lts feedlng vortex sheet and starts to be
convected downstream at von Karmanfs velocity and at constant
strength. At the same tlme, another vortex ls shed off on the
other separatlon polnt. Thls assunption is based on the prem-
lse that the vortex cannot decrease ln strength, or unroll,
and if such tendency seems to occur, the vortex wlLl break
away from its feedlng vortex sheet and another vortex of oppo-
site sense ls generated. The lnit lal path of the vortex shed
off the cyJ"lnder is governed by the condltlon of zero force
on the vortex and lts feedlng vortex sheet. The strength of
the vortex at any instant ls governed by the conditlon that
the veloclty at the separatlon polnt should always be equal to
ze to .

a. Gouetning equations:

Figure I i l lustrates the analytlcal modeL of the fl-ow
about a cylinder at subcrltlcal Reynolds number. At some
l-nstant after shedding, the vortex shed assumes a posltlon
zo and strength f. The complex potential at any positlont
z = x * iy for this situation ls glven by:

I

i

I

I '

w(z) = -u(z

where all symbols
The veloclty f ield
en bv:

(1 )+ffr".*, -#'"

f
2r

(z  -  zs) ,{ - z.>

are defined ln the tt l ist of synbols",
at any polnt z(x,y) l-n the flow ls giv-

dw
$ = - -

oz

^ 2  i F=u( l  _-)*h
z -

^ 2
t 4 . 4 o \

1 - - t' z - z ^  z  ) -  zoZ
(2 )

which has the u and v

- -  t , ' )  2 1
u  =  r i  -  Ua- (x -  -  Y  '  +

G2 + y212

components described by:

( x - x o ) Z + ( y - y J 2

"21 
{y(*xo * yro -  ,2) + x(yxo - xyo)i

2 (xz  +  vz)  { (xxo  *  yyo  -  
"2 )2  

+  (yxo  -  xyo)2}
(3 )
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feed ing  vor tex  shee t

S(2 , )

\_

Figure 1. Analytical Model
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v = -  2 v a 2 x v  - l
(*2 + y2)2 2n

+ (y  -  yo)2

^2) -  l ( rxo

x - x o

(x -  * o ) 2

+ I y o - - xvo) ]

z1x2 + y21 { (xxo + yyo -  ^2)2 + (y*o - *vo) 2)

Using Blasius theorem for the forces acting on the
der,  we obta in:

D- iL= \ i pg " ( f ! ) zd ,

(4 )

cylln-

(s)

I
\

ll

r*' r"3 + yZ) - zyou(xf

, = - . 2 g f'-6'

where the integration
around the cylinder,
drag and lift forces
Hence:

! =

of,+

Since:  CD =

and u L -

Ehen:  CO =

is carried out along a closed path
and D and L are the tlne depenient

acting on the cylinder, respectlvely.

a2xo0l

mx
* yf; - ,2>\ (6 )

Iyo + vZ) - u{xf - y2")k3 * ,3 - ^2)} ( 7 )* ,:3
D -

PrJ2a

L

ptJ2a

axo f

- ^u ' (xo  +v i ) "& 'o+y t -  u r )

. f  ?  I  t  .  ^t27 (xi + yo) - 2yov(xi + yt - ^r)j (8)

I
h
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a f
u L -

v2z?o * rf,yz<"f, *
" ' )

{ yo - t f ;>c"! * y! -  
" l>t (e)

b. The motion of the uoy,teu

The.motion of the vortex is governed by the condi-
t ion that the total force acting on the feeding vortex'
sheet - which is assumed to have vanishlng strength -

and the point vortex is zero. Mathematical ly there is a
branch l ine between zo and 21, the separation point, and
the velocity potential 0 ls discontinuous across this
branch 1 ine .  .The d iscont inu i ty  [n  $  l s  equa l  to  f ,  the
strength of the vortex. Therefore there ls a dlscontinul-
ty +n pressure across this branch l ine with a nagnitude of
-  { ,  and the  to ta l  fo rce  ac t ing  on  thLs  vor tex  sheet  1s
equal to

- ipf eo - z1)

where z1 is the locat,i.on.of the sepatatlon polnt.

The force acting on the concentrated vortex ls equal
to its circulation . t i.mes, -pi- t imes the relative velocity
between the fluid and the vortex at the polnt vortex, Vo -
2o,  hence has a magni tude of  ip f (Vo -  io) .  To nake the
net force on the concentrated vortex and lts'feeding vor-
tex sheet vanish, we must have:

-  ip i (zo  -  z1)  +  ip f (vo  -  i6 )  =  o

h "3 
+ v2")

2
J O

+ u(xl

2 o +  ( z o -  z 1 )

where Vo has components uo and vo parallel to
axes, respectively. From equations (3) and
ploy lng a l imi t  process,  we obta in:

^2yo
2 2

e  x o - Y o
uo=u-ua-n - -T -

t*J + Y;) 
-

and
2uazxoys

Vo = - ---T---rv-
("6 + yJ)-

i
: - \ t

f - " o

(1oa)

(10)

t he  1  and ' y
(4)  and'em-

I

t .

!t,

'n G3 + yl; 1"1 +

2
a x o

2yo -.  ^2)
(11 )

f
2tr <"3 * y3l 6! + yf, - ^2>

(t2)
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The
and

trajectory of the
is  descr ibed by:

point vortex is a

xo  =  xo ( t )

I s  =  Ye ( t )

uo = uo( t )

vo = vo( t )

func,tion of t ime,

(13)

(14)

furthermore:

and

From equation (10) we obtain:

d * o , * o - x l d

F-  |  E '= to

d l o , y o - y l d

e; - -  |  EEt  
= 'o

(1s)

(16)

If f at any lnstant is known, equations (l_5) and (16) can
be enployed to predict the vortex trajectory ln a progres-
sive fashion, since the lnlt ial posltton of the vortex
shed ls  known, i .e .  at  the separat ton polnt .

c. Non-dimensionalizq.tion

For further computation, it ls convenlent to write
all the pertlnent equati.ons in dirnensionless forms. For
th ls  purpose,  we def ine:

I
Y = 

2t U" 
- dlnensionless vortex strength

V
r = 

t 
- dimenslonless veloclty

After some arrangement, equatlon (2) can be written as:

.3 (2a)
z(az - zoz)

d. Calculation of uortex sttength^

To calculate the strength of the vortex at any in-
stant along lts path, the condition that the veloclty at
the separation point should be equal to zero ls iurposed.

2
w=(r^ i r . iy t ;+,"+

z
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f o r z =From equat ion (2a) ,
z1 is  obta ined:

l 1
v = -' 2rUa a

and employing a Limlt process t

c 2a ' -  z L

2z r
"L^2

" ,  
-  Z ^ -  Z  -

r  v  a  - Z O Z !

G2 - .?) e1 - z) 1^2 - zoir)

z. l^2  - .? ro-  
"o . r^2

( 1 7 )

Refer r ing  to

and

I

and a f te r  some

which is always
reasons,

e, Diy,ection of the

To predict
d ing,  consider

figure 1, then v/e can write

i0
z o -  z I  =  a p e

10
z L =  a e

2  2 2 i
a  - a e 2 2

a  - a

(18)

( t  e)

There is obtained

zo = a(elo * p. lo) (20)

and
_  - i e  - . i ' h
2o = a(e-" + p"- '* ;  (2L)

Subst i tut ing these values into equat ion (17) we obtain:

i  (e-0)
1 +

^  4  2 i0  4  3 ie ,  - i0
z a e  - a e  L e ; - " 4 "10 { . t o *p " t o i, - 1-r pe

(22)

algebra,  equat ion (22)  can be reduced to:

y = p s i n 0 s e c ( 0 - 0 )  Q 3 )

real  and posi t ive,  s ince f rom physical

. 1 T 1 7o- i<0<o* t

initial uoz,tex shedding

the dlrection of the inltial vortex shed-
the fl-ow situation shortlv after a vottex
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i s  shed
press ion

from
( 18)

the  separa t ion  po in t
in to  equat ion  (2a) ,  we

zL .  Subs t i t u t l ng
ob ta in:

t

ex-

Subst i tu t ing expression (23)  in to equat ion (24) ,  we ob-
ta in l

v=t  

"* ;F

1I
P ( "10  *  p " i0 ) ( r  +  2cos(o-O) )

(24)

expanslon of  r^r  wi th respect  to  p y ie lds:

'  '3w't p = g  *  P ( a , p ) o = O  +  . . . . . . .  ( 2 6 )

of order p2 and hlgher, and after some al-
(25)  and (26)  g lve:

w = 1 -
( " io  *  p . iO)2

__ i  s i t_O sec(0-0 \  
e5)

(e ' "  +  p . " )  ( t  *  2cos(o-O) )

Taylor series

Omitting terms
gebra,  equat ions

- t :  a
.  a r v

w = r - e  - l - e

.  L6 -2 i0 .  ̂  - i
r e  l l e

- i0  s in 0 sec (0:0)
I + 2  c o s  ( 0 - 0 )

0  *  i  s i n  0  s e c  ( 0 - 0 ) ,' 1 + 2 c o s ( 0 - g ) r

Since the  ve loc i ty  a t  the  separa t ion  po in t  shou ld  be
to zero, we obtain an addit ional condit ion that w =
p - t  0 .  Th is  cond i t ion  v ie lds :

(27)

equal
0 for

Two relations between Q
but only one relation is

0=

Equat ion (28)  determines
tex shedding.

and 0.resul t  f rom
v a 1 i d ,  i . . e . :

0  -  0 . 6 7 7

the d i rect ion of  the

(28a )

equat ion 28a,

(28)

initial vor-

1 _ e-2i0 _ i . - i0 : in 1 sec !g-Q) _ o1 + 2 c o s ( 0 - 0 )
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f. Frequencg of uorteu shed&tng

At some distance downstream, the vortex belng shed
off the cyli.nder stops growing, breaks away from the feed-
ing vortex sheet and jotns the rows of von Karman vor-
t ices. This situation is assumed to take p1-ace when the
vortex attained its maxi.rnum strength. At the same tlme,
another  vor tex of  opposi te sense star ts  to be shed of f  a t
the other separation point, growing and travelltng down-
stream in a similar fashion as the former vortex. Hence
vortices are shed off alternately at elther separation
point, and give rise to time dependent and oscil lating
lift and drag forces on the cylinder.

To calculate the frequency of vortex sheddlng, whlch
in dimensionless form is characterlzed by the Strouhal-
number, we impose the condition that the vortices 

-whlch

join the von Karman vortex street attain the well known
von Karmanrs vortex veloci-ty. Hence:

a t

t

u=u-ftta' i  +=t

1 -v f t an t r Uv
I

u _
U

(29a)

(2e)

(31)

I
J{

t

where: I - the dlstance between two successive vortlces
y - Lhe lateral dlstance of the vortlces from the

^ symmetry axis
U - von Karmanrs vortex velocity

When the vortex attains its maxlmum strength' then
Y = 0, and from equation (10) we obtain:

2o = Vo (30)

where Vo' is  the l -ocal  fLuid veJ-ocl ty .  This  s l tuat ion lm-
plies that the vortex is then convected by the fluld, the
fluid velocity being now identif ied as von Karmanrs vortex
veloc i ty .  Hence:

u o = u

and vo  =  0  (wh ich  shou ld  be  ver i f ied  la te r ) .

U is the computed u component of the vortex veloc-
ity at the instant when the vortex attalns lts maximum
s t rength.
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Equatton (29)
lng forn:

where:

can be reduced further into the

R
t a n h a = i

2nvo=T

foll-ow-

$2)

(33)

(34)

(35)

(37)

(38)

Equatlon (34) can be solved graphicalJ-y for calculatlng 1.
The Stroutral number can then be obtalned from

(3s)

III. Calculation of oortex tra4eetory

Equations (15), (16) and (23) comprlse the set of equa-
tlons that determlne the strength and motlon of the vortex.
The lnit ial condltion ls deflned by asslgnlng the locatlon of
the separat lon point ,  i .e .  the ln l t la l  posi t lon of  the vor tex,
and computatlon of the dlrect{on of the lnltlal verter shed-
dlng, whlch is glven by equatton C28). To colrpute the vortex
trajectory, equatlon (15) and (16) are lntegrated numerLcally,
whlle the computation progresses in a step by step fashlon.
Integrating equatlon (15) and (16) over the tlne Lncrement At,
and uslng lInear approxlmatl-on, we obtaln:

R_2( l - - u /u )'  
\a/y

xo * (xo - x1) lny - lny. xo = u6. At

yo + (yo - y1) lny - 1nY. yo = vo. At

' 2 2
x o - Y o

uo= i  -m- I
1xo _ ys) ul+ylyt*l+ v3-u
2xsYs Yovo=-W*t6

^ nD 2Ua\ = - = -
t r t

U U I

t

{

t \

where all varlables have been rendered dlnenslonl-ess through
dlvlslon wlth approprlate characterlstl"c quantLties.

The veloclty components u6 and Vo of the vortex (fron
equatlon (3a) and (3b) is given by:

yo

(3e)
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Again, all varlables ln equatlons (38) and (39) are dimenslon-
1ess. The computatlon algorlthu 1s shown 1n figure 2. The
lift and drag forces acting on the cyllnder due to the vortex
throughout J.ts trajectory ls couputed fron equatlons (5) and
( 7 ) .

IV. ResuLts utd DiscLtssions

Since the present theory does not expllclt ly lncorporate
viscosity, the locatLons of the separation polnts cannot be
predlcted, and recourse should be made to experlmental evl-
dence ln order to determlne these locatlons and then proceed
with the calculatLon of the vortex trajectory.

Experlmental results (6) lndlcate that the separatlon
polnts, 1.e. the polnt at whlch the boundary layer leayes the
cyllnder, occur at about 0s = 95o for Re < 1.06 x 106 and
be tween  50 "  t o  80 "  f o r  1 .08 ;106  <  Re  <  2 .L2  x  1 -06 .

Based on these resuLts, some values of 0 are assumed, and
the vortex traJectory, l-1ft and drag coefficients, vortex
strength, vortex veloctty, tr - the ratlo between lateral sepa-
ration and longltudinal separation of Karman vortlces - and
Stroutral nurnber S are computed fo1-l-owlng the procedure out-
l lned prevlously. The resuLts are tabulated ln Table 1. Some
vaLues obtalned experlmentalLy and by Alexander are also shown
in Table 1 for comparlson.

For the case ln whlch the separatlon point ls located on
Ehe upstream side of the cylinder, say 0" = I.74 radlan, a
maxLmum llft coefficl.ent of 1.55 was obtained. Experlnental
results Lndlcate conslderable scatter, and time depend'ent ltft
as high as 1.3 has been shovrn by Drescher (cited in reference
1) and Macovsky (cited ln reference 11) and Bearman (13). It
should be remarked that Dost experimental- data are affected to
some degree by three dl-menslonal effects, whlch resuLt ln low-
er measured llft coefficients than predicted two-dlmensional
values. Recent results obtalned by Jordan and Fronur (12) en-
ploying nr:merlcal sol-utlon of the equations governing time-de-
pendent, vlscous, lncompresslble flow past a cyllnder indlcate
peak to peak arnpl-itude of the l-ift oscil latlon of l-.5 for
Re = 400 and 1.9 for Re = 1000. Thelr resuLts are an ade-
quate descriptlon of the fl-ow past a circular cyllnder for Re
400,  but  are not 'ent l re ly  val id  for . ,Re > 1000.

The Strouhal number for this case lras found to be 0.159,
which is wlthin the reglon of experinental results. Relf and
Sinnons (8) obtained values of S between 1.9 to 2.4 for Rey-
nolds nudber betrdeen 8 x 105 to 3 x 105,  and S = 2.4 t  3 .1 for
Re 4.0 x 105 + 106, whlle recent experiment conducted by
gearman (9)  showed that  S = 1.8 .^  2.3 for  Re -  195 + 3.8 x
l -05.  For  supercr i t lca l  region,  i .e .  for  Re 4 x L05,  Bearnan

I
' i )
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Figure 2: Conputatlon A1-gorithm
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found that  S = 0.44 -  0.46,  whi .Le Delany and Sorensen (10)

found  tha t  S  =  0 ,34  -  0 .48  fo r  Re  106 .  I n  add i t i on ,  t he  p re -
sent  method resul ts  in  the value of  I  o f  0.288,  which is  in
good agreement  wi th exper imenta l  resul t  0 .2806 repor ted in
reference 7.

For Reynolds number greater than 106 r the separation
po in t  occu rs  f u r t he r  downs t ream,  1 .e .  a t  abou t  50 "  - ' 80o .  As -
suming separat ion points located between these values,  there
resul ts  maximum l i f t  coef f ic lent  as h igh as 2.73 for  0"  = 1.0
radian,  whi le  Cl  = 1.9:  for  0"  = 0.79 radian.  Exper imenta l
resul ts  ind icate that  S increases to about  0.24 before sudden
reduct ion of  drag coef f ic ient  occurs,  and lncreases fur ther  to
0.48 at  supercrJ- t ica l  region.  The present  rnethod is  able to
predict  the tendency of  S to lncrease l f  the f lov changes f rom
subcr i t ica l  to  supercr i t lca l  region,  1.e.  i f  the seoarat ion
point moves downstream, but indicate l-ower values of S at hoth
cases.  Clear ly  the addi t ional  increase in S should he due to
turbulence, whlch l-s not taken lnto account in the present
theo ry .  A t  supe rc r i t i ca l  r eg ion ,  I  va r l es  be tween  0 .22  to  0 .3
for  0"  vary ing between 0.79 to l - .00.

The time dependent drag obtained by the present method
wi l l  be zero only when vo = 0,  i .e .  when the vor tex jo lns von
Karman vor tex st reet . .  S ince.  in  general  the vor tex t ra jectory
is  not  para l le l  to  the f ree st ream di rect ion,  the t ime depen-
dent  drag is  non zero.  Carefu l  examinat ion of 'equat ion (8)
reveals that depending on the val-ue of y and ye (latera1 posi-
t lon of  the vor tex) ,  the t ime dependent  drag coef f ic ient  may
assume posi t ive or  negat ive value.  Relat ive ly  large value of
the time dependent drag Cp is obtained when the vortex is
c lose to the cy l inder ,  and Cg decreases rapid ly  in  inverse
propot ion to xo as xo increases.

The resul t  ind icates d iscrepancy in  the l i f t  coef f ic lent
in  the order  of  401l  for  forward separat ion point .  Relat lve ly
bet ter  agreement  is  shovm for  act  separat ion point ,  i .e .  wi th-
In 6%. These resul - ts  a lso c lear ly  ind icate that  the presence
of sna1I vertical velocity component of the vortex rnay glve
r ise to s igni f icant  changes in the values of  t ime dependent
drag and vor tex st rength,  in  par t icu lar  for  forward separat ion
point. Further evaluation of the theory should be accornpanied
by compar ison wi th re l iab le exper i rnenta l  resul ts ,  which ner i ts
fur ther  s tudy.

Work is  in  progress to invest igate the problem of  s tabi l -
ity and convergence of the numerical- computational scheme.
However, several computati-on performed with At varylng frorn
0.01,  0.02 'and 0.01 has indicated reasonable converging behav-
iour  of  the solut ion,  in  par t icu lar  for  the calculat ion of  yo,
Clro"*, Yo, xo, tr and S, as shor,rn in table 1. The variatlon of
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Table 1: Varlous Cornputation Results

* From Alexander; Alexander dete:mines 51 = l and Sn = 0.L91.
where yo = r l  .  I f  S ls  taken to be 0.27,  then n = 0.707,
and  hence  1  =  3 .7 ,  I  =  0 .382 ;  i f  S  i s  t aken  to  be  0 .2 ,  t hen
I  =  0 . 9 5 5 ,  1  =  5 . 0 ,  I  =  0 . 2 8 .

** From Prandtl- & TletJens.

*  From P.W. Bearman,  at  l -05 < Re < 3.8 x 105.

{* From Drescher (clted by Alexander).

/ i Peak to peak amplitude, from reference 12, for Re = 1.000.

0 A t uo vo
I

nd

C1
m&

cD
nax Ye xo 1 I s

L . 7 4 0 . 0 3 0 .404 0 .  001 1 . 0 4 9 J . v ) 0 . 0 7 L .265 o.2 I4 5  . 05 0  . 501 0  . 1 6

L . 7 4 o . o 2 0 . 5 1 0  . 0 2 1 . 0 4 1 2 .  8 0 -0 .146 1 . 3 0 8 0 . 2 3 0 o . 4 ) 0 . 4 0 6 o , I 7 7

0  . 01 0 . 7 6 2 - 0 . 0 4 L .024 I  < q - 0 .340 I  .384 0 . 2 3 1 9 . 6 0  . 288 0  . 159

1 . 0 0 0  . 0 3 0 . 5 4 5 0.022 r. .034 J . I ) 0.299 0 . 8 5 7 L .  2 5 4 5  . 4 0 0 . 3 2 0 0.202

1 . 0 0 0  . 0 2 o . 5 7 4 0  . 001 1 .018 2 , 7 3 0 . 3 7 9 0.883 L 25r 5  . 5 5 0 .312 0.202

o . 7 9 0  . 0 3 0 .  705 0 .005 L.O?L z .  ) > 0 . 5 5 0 .704 L ,709 6 . 4 0 , 2 2 0 . 2 2

0 .  79 o . o ? 0 .697 0. 008 1 . 0 1 3 t t o U .  J J f 0  . 695 r .692 6 . 3 d a t 0.22L

0 . 7 9 0  . 0 1 0 . 6 9 5 0  . 008 1  . 007 I .  Y J 0 . 4 2 6 0 .694 1  . 684 6 , 2 o . 2 2 4

*
0 . 7 9 0 . 5 0 1 1 0 r .224 3 . 7 0 .382 i a 1

+
1 . 3  

' **
0 .2806

0 , 1 8 ,
o .23 -

o.2 : l l
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t i m e  d e p e n d e n t  l i f t  c o e f f i c i e n t s  f o r  0  =  1 . 7 4  a n d  0  =  0 . 7 9  a r e
shown in  f igure  3 .

The present  s imp le  mode l  i s  in  no  way a  subs i tu te  fo r
v iscous  f low ana lys is ,  bu t  has  been showl  to  be  use fu l  in  es-
t imating the t ime dependent l i f t  on a cyl inder -and in identi-
fy ing  fac to rs  cont r i t ru t ing  to  the  osc i l la t ing  l i f t  and  drag ,
and the  inc rease o f  S t rouha l  number .
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