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A SIMPLE METHOD TO CALCULATE THE OSCILLATING
LIFT ON A CIRCULAR CYLINDER
IN POTENTIAL FLOW

*
Harijono Djojodihardjo )

RINGKASAN

Suatu model aliran potensial sederhana
diuratkan untuk menghitung gaya angkat yang
berosilasi pada silinder lingkaran. Pada da-
sarnya, gaya angkat yang berosilasi ini dise-
babkan karena adanya vortex yang dilepaskan
oleh gilinder dari titik pemisahan. Kekuatan
vortex dan lintasannya dihitung dengan meng~
gunakan syarat bahwa gaya pada vortex dan
bidang vortex yang menumbuhkannya harus sama
dengan nol. Vortex ini terputus dari gilinder
pada waktu kekuatannya mencapai maksimum, dan
vortex yang lain mulail dilepaskan pada sisi
stlinder yang lain.

Hasil perhitungan menunjukkan harga gaya
angkat maksimum yang mendekati harga yang di-
peroleh secara eksperimentil. Demikian pula,
untuk aliran subkritis, diperoleh hasil per-
hitungan bilangan Strouhal yang mendekati har-
ga yang dipereleh secara eksperimen.

ABSTRACT

A simple potential flow model is present-
ed to caleulate the oscillating Uift on a
etreular cylinder. In essence, the time de-
pendent 1ift acting on a cylinder is due to
the presence of a vortex shed off the se-
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paration point on the cylinder. The vortex
strength and <its trajeetory is predicted em-
ploying the condition of zero forece on the
vortex and its feeding vortex sheet. The vor-
tex breaks away from the eylinder and is con~
vected by the fluid after the vortex strength
reaches a maximum value, and another vortex is
shed at the other side of the eylinder.
Oscillating 1lift with the right order of
magnitude of available experimental results
was predicted. For suberitical flow, good
agreement is obtained between the predicted
Strouhal number and that found experimentally.

LIST OF SYMBOL

- radius of the cylinder

- 1lift coefficient

- drag coefficient

- drag force

- V-1

- lift force

- Reynolds number
- Strouhal number

- time

- free stream velocity

- von Karman's vortex velocity
- velocity

- veloéity of point vortex at z,
- x component of V,

- y component of Vg

- complex potential

- v/U

- longitudinal coordinate

- lateral coordinate
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- x + iy
- vortex strength
angular position of point vortex

- dimensionless vortex strength

> < © o N
]

- ratio between lateral to longitudinal
distances of von Karman vortices

p - distance between z, and z; expressed
in units of a

0 - angular position of separation point

I. Introduction

The oscillating lift acting on a circular cylinder has
been a subject of continued interest, especially in the light
of increased effort to understand and overcome wind excited
vibration in the field of industrial aerodynamics. Several
experimental investigations were performed by many investi-
gators, among others Roshko (4,5), Fung (3), and Bishop and
Hassan (2). Recently, Alexander (1) has proposed a simple
theory to calculate the oscillating lift acting on a circular
cylinder. The present article presents an analytical model
somewhat similar to that introduced by Alexander, but intro-
duces additional conditions based on physical considerations.
Alexander has preassumed the vortex trajectory, and also
assumed that the vortex shed off the cylinder breaks away from
the cylinder or joins the vortex street at the instant when
the 1lift force on the cylinder attained its maximum value, and
hence suddenly the force on the cylinder due to the vortex
vanishes. In the present theory, the above assumptions are
removed, and instead, the vortex trajectory is computed em-
ploying the condition of zero force on the vortex and its
feeding vortex sheet. The vortex breaks away from the cylin-
der and is convected by the fluid after its strength reaches a
maximum value.

The present model is capable of predicting the oscillat-
ing lift within the right order of magnitude of available
experimental results. However, to some extent, most experi-
mental results are affected by three dimensional' effects.

II. Analytical Model

Consider the flow around a circular cylinder, and assume
that initially a simple vortex is shed off at one of the sepa-
ration points on the cylinder, and then convected downstream.
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In this process, the vortex grows in strength. The feeding
points - or separation points - will be defined from experi-
mental evidence, or they may be arbitrarily defined and veri-
fied later. It is assumed that as soon as the vortex attains
its maximum strength, then it stops growing in 'strength and
breaks away from its feeding vortex sheet and starts to be
convected downstream at von Karman's velocity and at constant
strength. At the same time, another vortex is shed off on the
other separation point. This assumption is based on the prem-
ise that the vortex cannot decrease in strength, or unroll,
and if such tendency seems to occur, the vortex will break
away from its feeding vortex sheet and another vortex of oppo-
site sense is generated. The initial path of the vortex shed
off the cylinder is governed by the condition of zero force
on the vortex and its feeding vortex sheet. The strength of
the vortex at any instant is governed by the condition that
the velocity at the separation point should always be equal to
zero.

a. Governing equations:

Figure 1 illustrates the analytical model of the flow
about a cylinder at subcritical Reynolds number. At some
instant after shedding, the vortex shed assumes a position
zo and strength I'. The complex potential at any positionm,
z = x + iy for this situation is given by:

2 . 2
- - a%y _ il - il a” _ ¢
W(Z) = -U(z f - ) o In (z zy) + T In (z z,) (1)

where all symbols are defined in the "List of symbols".
The velocity field at any point z(x,y) in the flow is giv-

en by:
I
dz
2 . 2
a il a a a
=U(1 - —7) + o (= + = ) (2)
22 2ma "2 Zg z 2 _ Eoz

which has the u and v components described by:

2(x2 - 2 -
u=y -ttty T Y = Yo

(x2 + y2)2 2n (x - xo)2 + (y - yo)2

22r g toyy, - a?) + x(yx, = xy,)}

- 3
2(x2 + y2) {(xxo + yyo - a2)2 + (yxO - xyo)z}
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Figure 1. Analytical Model
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2Ua2xy r X 7 X
vV = - - =
27

(x2 + y2)2

(x - xe)2 + (y - Yo)z

a2r  1xGx, + yy, - a?) - yxg - xy )}
Yoy 2 2.2 2 )
267+ y%) {xxg + ¥y, =~ a9% + (yx, = xy,)7%

Using Blasius theorem for the forces acting on the cylin-
der, we obtain:

D-iL =% ip¢c(§—‘:)2 dz (5)

where the integration is carried out along a closed path
around the cylinder, and D and L are the time dependent
drag and lift forces acting on the cylinder, respectively,

Hence:
2

a“x el
D = X
2 2,2, 2 2
(Xo + yo) (XO + Yo — az)
r 2 2 2 2
fi; (Xo‘+ yo) - ZyOU(xo +y, - 32)} (6)
L = azpF X
2 2,2, 2 2 2
(Xo+yo) (XO+YO— a’)
I 2 2, 2 2., 2 2 2..
o 77 (6 +¥5) = U5 - y5) (x§ + y4 - a2} ¢))
Since: CD = DZ
pU%a
and CL=L
pUza
axgI'
then: Ch = X
D 2 2 2 2
Uz(xo + yo)z(xo + yg - 32)

{g—ﬂ (xg + vyﬁ) - ZYOU(xg + yg - aH} (8)
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C - aF X
L~ 2 2 2.2, 2 2 2
UT(xg + y5) " (%g + yg - ")
T 2 2 2 2., 2 2 2
{YQ ﬂ (XO + yo) + U(,Xo - yo) (xo + Yo - ao)} €))

The motion of the vortex

The motion of the vortex is governed by the condi-
tion that the total force acting on the feeding vortex
sheet — which is assumed to have vanishing strength -
and the point vortex 1is zero. Mathematically there is a
branch line between 2z, and zj, the separation point, and
the velocity potential ¢ is discontinuous across this
branch 1line. .The discontinuity 4in ¢ is equal to ', the
strength of the vortex. Therefore there is a discontinui-
ty in pressure across this branch line with a magnitude of
- d, and the total force acting on this vortex sheet is
equal to

- ipf’(z0 - z7)
where zj is the location of the separation point.

The force acting on the concentrated vortex is equal
to its circulation times,-pi times the relative velocity
between the fluid and the vortex at the point vortex, Vg, -
Zo, hence has a magnitude of ipT' (Vg - 2,). To make the
net force on the concentrated vortex and its ‘feeding vor-
tex sheet vanish, we must have:

- 1p0(zg = 27) + 10T(Vy - o) = O (10a)
or

zo + (24 - 27)

|

=V, (10)

where V, has components u, and v, parallel to the x and' y
axes, respectively. From equations (3) and (4) and em~
ploying a limit process, we obtain:

x2 _ y2 a2y
2 o o T [¢]
U= U -V s - 73 3z 1D
(Xo +50) (x5 + yo) (% + Yo — @ )
and 2
2Ua2xoy0 r a xg (12)
Vo =T T35 7 7 2 '

2 2. 2,2
(xg + ¥o) (xo + ¥0) (x5 + yo - 27)
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The trajectory of the point vortex is a function of time,
and is described. by:

Xy = Xo(t) (13)

Yo = Yo(t)
furthermore:

uy, = u,y(t)
and (14)
Vo = Vo (E)

From equation (10) we obtain:

dxg X, - X1 d

F"‘"_F_EE F=Uo (15)
dy, Yo ~ V1 4
& FTT &t (16)

If T' at any instant is known, equations (15) and (16) can
be employed to predict the vortex trajectory in a progres-
sive fashion, since the initial position of the vortex
shed is known, i.e. at the separation point.

Non-dimensionalization

For further computation, it is convenient to write
all the pertinent equations in dimensionless forms. For
this purpose, we define:

T
Y = onta dimensionless vortex strength
w = %- - dimensionless velocity

After some arrangement, equation (2) can be written as:

2 3
v= -5+ iy 2 ] (2a)

z %0 g(a® - 242)

Calculation of vortex strength

To calculate the strength of the vortex at any in-
stant along its path, the condition that the velocity at
the separation point should be equal to zero is imposed.
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From equation (2a), and employing a limit process, for z =
z] is obtained:

2 2
~ T ~ i ac - Zl
Y= 2mla a 2 2
Zl zla
-z + 2
Zl o a - Eozl

(a2 - 2D (2 - 20) (2% - z02))

i
a 2.2 3
2zla - zlzo I
Referring to figure 1, then we can write
zo ~ 2] = apel¢ (18)
and
z) = aeie (19)
There is obtained
Zg = a(eie + pei¢) (20)
and
Eo = a(e_le + pe—1¢) (21)

Substituting these values into equation (17) we obtain:

(a2 = a2 (cape!®) [a” - a1 + el V)]
e216 - aae:}]'e(e—le + pe—1¢) - al‘eie(e1e + peie)
(22)

and after some algebra, equation (22) can be reduced to:

‘v = p sin 8 sec(f - ¢) (23)

which is always real and positive, since from physical
reasons, '

LA

2

Direction of the initial vortex shedding

6 - %-< ¢ <0+

To predict the direction of the initial vortex shed-
ding, consider the flow situation shortly after a vortex
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is shed from the separation point z1. Substituting ex-
pression (18) into equation (2a), we obtain:

1 iy L
v = l -~ T T - i (24)
10402 0 (19 L 1% (1 4 acos(-0))

Substituting expression (23) into equation (24), we ob-
tain:

1 i sin 8 sec(6-9)

@+ 02 (1% 4 pel® (1 + 2008 (8-6))

(25)

Taylor series expansion of w with respect to p yields:

.

W= W + p(ap 0=0

om0 o (26)

Omitting terms of order p2 and higher, and after some al-
gebra, equations (25) and (26) give:

e-216 _ ie—le sin 8 sec (6-¢)

w=1- 1+ 2 cos (8-¢)

i¢-2i6 ., -i6 | i sin O sec (6-¢)
+ e [2e 1+ 2 cos (6-9) ] 27)

Since the velocity at the separation point should be equal
to zero, we obtain an additional condition that w = 0 for
p > 0. This condition yields:

-216 _ ie—i@ sin 6 sec (0-¢) _
e 1+ 2 cos (6~9)

1 - 0 (28a)

Two relations between ¢ and 6 .result from equation 28a,
but only one relation is valid, i.e.:

¢ =6 - 0.677 (28)

Equation (28) determines the direction of the initial vor—
tex shedding.
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Frequency of vortex shedding

At some distance downstream, the vortex being shed
off the cylinder stops growing, breaks away from the feed-
ing vortex sheet and joins the rows of von Karman vor-
tices. This situation is assumed to take place when the
vortex attained its maximum strength. At the same time,
another vortex of opposite sense starts to be shed off at
the other separation point, growing and travelling down-
stream in a similar fashion as the former vortex. Hence
vortices are shed off alternately at either separation
point, and give rise to time dependent and oscillating
lift and drag forces on the cylinder.

To calculate the frequency of vortex shedding, which
in dimensionless form is characterized by the Strouhal
number, we impose the condition that the vortices which
join the von Karman vortex street attain the well known
von Karman's vortex velocity. Hence:

u=1U 71 tanh _EX U (29a)
or

u_ _ ~ Ta 2ny

0 1-vy 1 tanh 1 (29)

where: 1 - the distance between two successive vortices

y - the lateral distance of the vortices from the
. symmetry axis
U - von Karman's vortex velocity

When the vortex attains 1ts maximum strength, then
Y = 0, and from equation (10) we obtain:

¢, =V, (30)

where Vg, is the local fluid velocity. This situation im-
plies that the vortex 1s then convected by the fluid, the
fluid velocity being now identified as von Karman's vortex
velocity. Hence:

ug = U (31)

and v, = 0 (which should be verified later).

U is the computed u component of the vortex veloc-
ity at the instant when the vortex attains its maximum
strength.
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Equation (29) can be reduced further into the follow-

ing form:
tanh o =-§ (32)
where: o
o = —11 (33)
_2Q - U/w)

Equation (34) can be solved graphically for calculating 1.
The Strouhal number can then be obtained from

= (35)

III. Calculation of vortex trajectory

Equations (15), (16) and (23) comprise the set of equa-
tions that determine the strength and motion of the vortex.
The initial condition is defined by assigning the location of
the separation point, 1l.e. the initial position of the vortex,
and computation of the direction of the initial vortex shed-
ding, which is given by equation (28). To compute the vortex
trajectory, equation (15) and (16) are integrated numerically,
while the computation progresses in a step by step fashion.
Integrating equation (15) and (16) over the time increment At,
and using linear approximation, we obtain:

Xy + (xo - xl) lny - lny. x5 = ug. At (36)

Yo + (Jo = ¥1) Iny - lny. yo = vo. At (37)

where all variables have been rendered dimensionless through
division with appropriate characteristic quantities.

The velocity components ug and v, of the vortex (from
equation (3a) and (3b) is given by:

2
X6 " Yo Yo
Y =l- S Y T 37 3 (38)
(2o = ¥o) (x5 + y5) (x, + 5, - 1)
2x5Y 6 Yo
Vo = - 72+t 73 ) (39)

2 7
2+ y2 Gyl +yio D

I
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Again, all variables in equations (38) and (39) are dimension-
less. The computation algorithm i1is shown 1in figure 2. The
1lift and drag forces acting on the cylinder due to the vortex
throughout its trajectory is computed from equations (6) and

.

IV. Results and Discussions

Since the present theory does not explicitly incorporate
viscosity, the locations of the separation points cannot be
predicted, and recourse should be made to experimental evi-
dence in order to determine these locations and then proceed
with the calculation of the vortex trajectory.

Experimental results (6) indicate that the separation
points, i.e. the point at which the boundary layer leaves the

. cylinder, occur at about 85 = 95° for Re < 1.06 x 10% and

between 50° to 80° for 1.08 x 106 < Re < 2.12 x 10°.

Based on these results, some values of O are assumed, and
the vortex trajectory, 1lift and drag coefficients, vortex
strength, vortex velocity, A — the ratio between lateral sepa-—
ration and longitudinal separation of Karman vortices — and
Strouhal number S are computed following the procedure out-
lined previously. The results are tabulated in Table 1. Some
values obtained experimentally and by Alexander are also shown
in Table 1 for comparison.

For the case In which the separation point is located on
the upstream side of the cylinder, say 65 = 1.74 radian, a
maximum 1ift coefficient of 1.55 was obtalned. Experimental
results indicate considerable scatter, and time dependent 1lift
as high as 1.3 has been shown by Drescher (cited in reference
1) and Macovsky (cited in reference 11) and Bearman (13). It
should be remarked that most experimental data are affected to
some degree by three dimensional effects, which result in low-~
er measured 1ift coefficients than predicted two-dimensional
values. Recent results obtained by Jordan' and Fromm (12) em-~
ploying numerical solution .of the equations governing time-de-
pendent, viscous, incompressible flow past a cylinder indicate
peak to peak amplitude of the lift oscillation of 1.5 for
Re = 400 and 1.9 for Re = 1000, Their results are an ade~-
quate description of the flow past a circular cylinder for Re
400, but are not entirely valid foxr Re > 1000.

The Strouhal number for this case was found to be 0.159,
which is within the region of experimental results. Relf and
Simmons (8) obtained values of S between 1.9 to 2.4 for Rey-
nolds number between 8 x 105 to 3 x 10%, and S = 2.4 + 3.1 for
Re 4.0 x 10° ¢ 106, while recent experiment conducted by

Bearman (9) showed that S = 1.8 + 2.3 for Re = 105 » 3.8 x
10°. For supercritical region, i.e. for Re 4 x 105, Bearman
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INPUT: O, At

CALCULATE INITIAL
DIRECTION OF SHEDDING

e

CALCULATE INITIAL STRENGTH OF VORTEX
NEAR THE CYLINDER

CALCULATE: VELOCITY FIELD,
LIFT, DRAG, ON CYLINDER

CALCULATE NEW LOCATION
OF VORTEX

CALCULATE STRENGTH OF
VORTEX

VORTEX STRENGTH

X0 DECREASING?

CALCULATE STROUHAL NUMBER S
AND A

END

Figure 2: Computation Algorithm
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found that S = 0.44 - 0.46, while Delany and Sorensen (10)

found that S = 0.34 - 0.48 for Re 10®. 1In addition, the pre-
sent method results in the value of X of 0.288, which is in
good agreement with experimental result 0.2806 reported in
reference 7.

For Reynolds number greater than 106, the separation
point occurs further downstream, i.e. at about 50° -'80°. As-
suming separation points located between these values, there
results maximum 1lift coefficient as high as 2.73 for 6g = 1.0
radian, while Cp = 1.93 for 0g = 0.79 radian. Experimental
results indicate that S increases to about 0.24 before sudden
reduction of drag coefficient occurs, and increases further to
0.48 at supercritical region. The present method is able to
predict the tendency of S to increase if the flowv changes from
subcritical to supercritical region, i.e. if the separation
point moves downstream, but indicate lower values of S at hoth
cases. Clearly the additional increase in S should ke due to
turbulence, which 1is not taken into account in the present
theory. At supercritical region, A varies between 0.22 to 0.3
for 65 varying between 0.79 to 1.00.

The time dependent drag obtained by the present method
will be zero only when v, = 0, i.e. when the vortex joins von
Karman vortex street. Since in general the vortex trajectory
is not parallel to the free stream direction, the time depen-
dent drag is non zero. Careful examination of ' equation (8)
reveals that depending on the value of y and y, (lateral posi-
tion of the vortex), the time dependent drag coefficient may
assume positive or negative value. Relatively 1large value of
the time dependent drag Cp is obtained when the vortex is
close to the cylinder, and Cp decreases rapidly in inverse

propotion to x, as x, increases.

The result indicates discrepancy in the 1lift coefficient
in the order of 40% for forward separation point. Relatively
better agreement is shown for act separation point, i.e. with-
in 6%Z. These results also clearly indicate that the presence
of small vertical velocity component of the vortex may give
rise to significant changes in the values of time dependent
drag and vortex strength, in particular for forward separation
point. Further evaluation of the theory should be accompanied
by comparison with reliable experimental results, which merits
further study.

Work is in progress to investigate the problem of stabil-
ity and convergence of the numerical computational scheme.
However, several computation performed with At varying from
0.01, 0.02 ‘and 0.01 has indicated reasonable converging behav-
iour of the solution, in particular for the calculation of vyg,

Clmax’ Yo» Xos A and S, as shown in table 1. The variation of
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Table 1: Various Computation Results

o foe | w [ vo |l by x| o1 A s
1.74 (0.03 | 0.404 | 0.001 | 1.049{ 3.95 | 0.07 .265|0.214 | 5.05 [ 0.501 | 0.16
1.74 |0.02 [0.57 | 0.02 [1.041|2.80 |-0.146 |1.308 | 0.230 | 6.45 | 0.406 | 0.177
1.74 |0.01 |0.762 |-0.04 [1.024|1.55 |-0.3401.384]0.231|9.6 |0.288 | 0.159
1.00 [0.03]0.545 | 0.022 [1.034|3.15 | 0.299 (0.867 | 1.234 | 5.40 | 0.320 | 0.202
1.00 {0.02 }0.574 | 0.001 |1.018( 2.73 | 0.379(0.883 | 1.251}|5.650.312 | 0.202
0.79 [0.03|0.705 | 0.005 |1.021 | 2,55 | 0.55 .704 | 1.709 | 6.4 [0.22 | 0.22
0.79 [0.02]0.697 | 0.008 [1.013{2.29 | 0.335|0.695|1.692 6.3 [0.22 | 0.221
0.79 [0.01|0.695 | 0.008 |1.007{1.93 | 0.426 |0.694 | 1.684 | 6.2 [0.22 | 0.224
0.79 0.5 0 2.3 0 1.224 | 3.7 0.382 | 0.27

L.3% 0.2832 Iy

0.23"
* From Alexander; Alexander determines S1 = 1 and Sn = 0.191.
where y, = n. If § is taken to be 0.27, then n = 0.707,

and hence 1 = 3.7, XA = 0.382; if S is taken to be 0.2, then
n=20.955, 1=5.0, A = 0.28.

*% From Prandtl & Tietjens.
+ From P.W. Bearman, at 10° < Re < 3.8 x 102,

++ From Drescher (cited by Alexander).

#f Peak to peak amplitude, from reference 12, for Re

= 1.000.

b
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time dependent 1lift coefficients for © = 1.74 and 6 = 0.79 are
shown in figure 3.

The present simple model is in no way a subsitute for
viscous flow analysis, but has been shown to be useful in es-
timating the time dependent 1lift on a cylinder .and in identi-
fying factors contributing to the oscillating 1ift and drag,
and the increase of Strouhal number.
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