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SCHOUTEN BRACKET OF HOLOMORPHIC TENSORS
OF A KAHLERIAN MANIFOLD™
%)

*
Jorga Ibrahim

RINGKASAN

Kita perlihatkan bahwa "Schouten bracket"
dari pada tensor-temsor holomorph milik suatu
manifold kdahler yang kompak W mendefinistkan
suatu struktur "graded complex Lie algebra"
pada ruang tensor - tensor holomorph dari pada
manifold tersebut. Digini diperoleh suatu pro-
posisi yang penting yang memperluas sebuah ha-
stl yang terkenal dari Lichnerowicz [6,7].

ABSTRACT

It 18 shown that the Schouten bracket of
holomorphic temsors of a compact kahlerian ma-
nifold W defines a structure of graded complex
Lie algebra on the space of holomorphic ten-
sors of the manifold. We obtain an important
proposition which generalizes a wellknown re-
sult of Lichnerowicz [6,7].

Introduction

Given a compact kahlerian manifold (W,g) of complex di-
mension dimC W = n, Lichnerowicz {[6,7] has obtained important
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properties of holomorphic tensors of W and its holomorphic
forms as well. Under certain hypotheses given to the first
Chern class Cl(w) of W, some of the results generalize those

obtained by Kodaira, Kobayashi and Calabi.

The fact that the Schouten bracket of holomorphic tensors
of W defines a structure of graded complex Lie algebra on the
space of such tensors leads us to investigate more characters
of holomorphic tensors and forms of W. We obtain an important
result, that is the proposition in §4a which generalizes a
wellknown result of Lichnerowicz, and a fundamnetal theorem in

§4d.

1. Notion of complex manifold

Suppose W is a compact and connected analytic complex

manifold and let its complex dimension, dimCW = n. A domain

U of W is a connected open set of W. We denote by c” the
space of n-tuples of complex numbers. In what follows, on in-
dices we put the following convention: the greeks a, B, etc.
=1, ..., n, the latins a, b, etc. =1, ..., 2n and a0 = o + n.

a. A complex chart (or system of local complex coordinates)
is defined on a domain U of W by:

WU : zeU + {z%} ¢ ¢™

We write z* = za. If U and’V are respectively domains of two
complex charts {z*} and {zB } with non - empty intersection,
then the complex coordinates {zu} of zeUNV of the first chart
are holomorphic functions, Yiht non-vanishing jacobian Jg, of

the complex coordinates {zB } of the same point z on the sec~
ond chart. We write:

Jg = det (3. 2

B
where Ba = 3/Bza, BB, = 8/82B . The complex structure of W

furnishes the manifold itself with a natural orientation. On
each point z of W, the complex structure of W determines a

c
complex structure of its tangent space Tz' 1f Tz is the com-

e
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plexification of Tz, the complex structure of Tz is defined by
the operator Jz(Ji = -Id) on the elements of T;. The tensor
field J of The operators Jz determines the "almost complex
structure" of W. If S; and §§ are respectively the proper
subspaces of Tz corresponding to the proper values i and -i by

Jz respectively, then we have:

C _ e
Tz - Sz®sz

This decomposition leads to the notion of type for the complex
tensors and the operators on W.

b. A g-form of W is a complex exterior differential form of
order q. A form of type (r,s) has the components with r indi-
ces in o and s indices in B. If d is the operator of exterior
differentiation, we then have d = d' + d'', where d' is of

type (1,0) and d'' of type (0,1). From d2 = 0, we deduce by

considering the types, that d'2 =0, d"2 =0 and d'd'' +

d''d' = 0.

A holomorphic r-form B is an r-form of type (r,0) such
that d''8 = 0. It is equivalently to say that: it is a form
of type (r,0) such that in any complex chart (or simply, lo-
cally) admits local holomorphic functions as its components.

By abuse of terminology, we call an r-tensor A an anti-

symmetric contravariant r—tensor of W. A holomorphic r-ten-
sor 1is an r-tensor of type (r,0) admitting, on a complex
chart, components which are local holomorphic functions.
c. A holomorphic transformation of W is a transformation of W
which leaves its complex structure invariant -or equivalently-
leaves J invariant. A holomorphic infinitesimal transforma-
tion is defined by a real vector field X such that L(X)J = 0,
where L(X) dis the operator of Lie derivation with re-
spect to X. This means that in a complex chart we have:

X"=0 (1.1)

The relations (l.1) say that the part Xl’o of type (1,0)
of X is a holomorphic vector (l-tensor). Moreover JX is again
a holomorphic infinitesimal transformation. Suppose L is the
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Lie algebra of holomorphic infinitesimal transformations of W.
If X, YeL, we then obtain the following identities of Lie
brackets:

[JX,Y] = [X,JY] = J[X,Y]

and thus J defines on L a structure of complex Lie al8ebra.
Let G be the largest connected group of holomorphic transfor-
mations of W. Bochner and Montgomery [1l] have established
that G admits a natural structure of complex Lie group, GxW -
W being holomorphic. The algebra of G can be identified by
the complex Lie algebra L (see also [4]).

d. We denote by H® of complex dimension br O(W), the complex
bl

vector space of closed holomorphic r-forms of W. Let T° be

the space of holomorphic r-tensors of W. 1If AETr and BeHr,
then i(A)B (where i(A) 1is the operator of exterior product by

A) is a holomorphic scalar on W, and in fact since W is com-

pact:

i(A)B = const.

We denote by Ir, the complex subspace of 1" defined by the
elements A such that:

i(A)B =0

for all elements £ of n'. 1.0
In particular to the elements X’  of I, they correspond
the elements X of the complex subspace I of L such that:

iX)B =0

for any closed holomorphic l-form B. If, X, YeL and BeHl, we
then have:

LX)B(Y) — L(Y)B(X) - B([X,Y]) =0
and hence:

i([X,Y])B =0

fare—— pienti
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Thus [X,Y] €I. If L' = [L,L] is the derived ideal of L, then
L'CI and I is an ideal of L such that L/I is abelian (see
[6]). We see that if X is an element of L. and admits a zero
on W, then it necessarily belongs to I. '

However, if XeL and AeTr(r>1), L(X)A does not necessari-
1y belongs to 1I¥ on a complex manifold; but later we see that,

in the kahlerian case, indeed it does, that is L(X)ASIr (see
[61).

2. Structure of graded Lie algebra of tensors [2,3]

Let V be a differentiable manifold of dimension m. 1In
what follows, we shall mean by a tensor, an antisymmetric con-
travariant tensor of V. )

a. Suppose A and B are respectively r- and s-tensors of V.
the Schouten bracket [9] of A and B, [A,B], is an (r+s-1)-ten-
sor such that for any closed (r+s-1)-form U of V, we have:

rs+s

1([A,BDU = (-1)"°71(A)di(B)u + (-1)T1(B)di(A)n (2.1)

The relation (2.1) determines uniquely the tensor [A,B].
One can easily find that on a domain U of a system of lo-

cal coordinates {xk}, [A,B] has the components:

k,...k k
(a5 2 T L

= (r-1)!s! ~, . a

-t Ryl

“Js
TITG-DT ¢ B 3, A (2.2)

il"'irJZ"'js
where € is the indicator tensor of Kronecker. We deduce also:
r
[B,A] = (-1)"° [A,B] (2.3)

If C is a t-tensor, we then have the following formula:
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-1)%%[1c,A1,B] + (-D[[B,c],A] + (-1)*F[[A,B],C]

=0 (2.4)

Thus the space of tensors of V admits a structure of grad-
ed Lie algebra determined by the Schouten bracket. This
bracket has been studied by Nijenhuis [8].

b. On the algebra of tensors of V, we define an operator L(A)
on forms of V, where A 1s a temsor as follows: if A is an s-
tensor and B is an r-form (r>s-1), then:

L(A)B = di(A)B - (-1)° 1(A)dB (2.5)

It is clear that L(A)B is an (r+s-1)-form. For s=1, this op-
erator reduces to the usual operator of Lie derivation with
respect to a vector. On a domain U of a system of local co-

ordinates {xk}, L(A)B has the components:

(LB, =
T

S
1 geeed, ; Ail. i . .
) 'a!
(r-s)!s! "k .kr js il"'isjs+l"'jr
1 ...d
=D F1tttts
G-DT A 311612...1Sks...kr (2.6)

If L(A)R = 0, we then simply say that the form B is ZInva-
riant by A.
Suppose K is an m-form on V of kernel k. Obviously:

L(A)K = di(A)K

On a domain U of a system of local coordinates {xk}, we have:

fpeeed Tor1 In
1(AK|; =1_A S ke, {1 4 dx A...Adx
S: llco.o s S"I"l". m

-~
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Furthermore:
L(A)KJU =

s-1 ti_ ...1i i i
L5 ka s-1, e dx 3A...Adx @

- 1
(s-1)! t l...isiS+l...im

Thus the m-form K is invariant by A if and only if on each do-

main U of a system of local coordinates {xk}, we have:

i i

1t

t
at(kA ) =0 2.7

8. The Kahlerian caqse [6,7]

a. Let W be a compact connected analytic complex manifold and

dimCW = n. Consider the covariant real 2~tensors t of type

(1,1). We introduce on the space of such tensors a real op-

erator J (with g? = ~1d) defined by:
UGt) (u,v) = ¢ (Ju,v)

for any pair (u,v) of vectors u,v. If t is symmetric, then Jt
is antisymmetric and conversely.

On W, there exist hermitian metrics, i.e.: the riemannian
metrics, of which the metric tensor g is of type (1,1). To
the tensor 8, it corresponds by J a real 2-form F = Jg of type

(1,1). In a complex chart {za} with domain U, we have:

o g8 i a B
EJU = 2ga§ dz” ® dz F|U = igag dz” A dz

The manifold W is said to admit a kdhlerian structure de-
fined by the metric g if the corresponding real 2-form F(=Jg)
is closed (dF = 0). The pair (W,g) 1s called a kdhlerian
manifold and the real 2-form F the fundamental form of W.

b. Suppose (W,g) is a compact k3hlerian manifold, dimcw =n

with the fundamental form F. This form admits a rezo co-
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variant derivative in the riemannian connection (we call: the
kahlerian connection) defined by the metric g. Locally, the
only coefficients which do not necessarily vanish of this
connection, are those of pure type:

¢ = 0P 4
gy &

o -
- and T%- = ¢
BBy "¢ “BY T gy

Let o and B be two r-forms of (W,g). We denote by (0,B)
the interior product of o and B (in general of two tensors; we
consider only on forms). We review the following hermitian
scalar product defined by:

<a,B> = fw(a,B)n (3.1)

where n is the volume element of W.

If 6 is the operator of codifferentiation on forms, we
then have § = §' + §'', where 8' is of type (-1,0) and 8'' of
type (0,-1). The operators 8, §' and §'' are respectively
the transposes of d, d' and d'' with respect to (3.1). For a
kahlerian manifold (W,g) the laplacian A = d§ + 8d of Hodge -
de Rham on forms can be written as:

A=2d'6" +8'd') =2('"" +6'Y) (3.2)

and hence it is of type (0,0). From (3,2), in the kahlerian

case, it follows that any holomorphic form is harmonic and in

particular it is closed. We obtain also that the part of type

(1,0) of a real harmonic l-form is holomorphic; the first Bet-

ti number of W, bl(w) = 2bl o(W), where bl O(W) = p is known
bl 9’

as the irregularity of the manifold.
If XeL and BeHr, then:

L(X)B = (di(X) + 1(X)d)B = 0

Thus on a compact kahlerian manifold, any holomorphic form is
invariant by the algebra L (or by the group G).

c. Let A be an r-tensor of type (r,0). By duality defined by
the metric and the complex conjugation it permits us to intro-
duce an r-form 0(A) of type (r,0) with:

O'l. . .Ur
a(a)- - =g=  ...8" A (3.3)
PreePr P91 PO,
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The map 0 is an antilinear bijection from the space of r-ten-
sors of type (r,0) onto the space of r-forms of type (r,0).

For that A is to be holomorphic (AeTr), it is necessary and
sufficient that locally:

where V is the operator of covariant differentiation in the
kahlerian connection.
One example in utilizing 0, we see that the tensor A be-

longs to T' if and only if the part of type (r+1,0) of O(A) is
zero, that is to say:

[VO(A)]r+1 0" 0 (3.4)

We deduce that from the antisymmetrization, 0(A) is neces-
sarily d'-closed (d'0(A) = 0). From the decomposition of G.
de Rham, it follows that:

G(A) = d'yu + Ho(A) (AeT™) (3.5)

where Ho(A) is a holomorphic r-form. The followings holomor-
phic scalar

m(A) = i(A)Ho(A) = (Ho(A),Ho(A))

on a compact kahlerian manifold is a constant. From (3.5), we
obtain:

<Ho(A) ,Ho(A)> = <Ho(A),0(A)> = Vm(A) (3.6)

where V is the volume of W. Hence m(A) = 0 tells that o(A) is
d'-homologous to zero. From, (3.6), it follows that a holo-

morphic r-tensor A belongs to 1t i1f and only <f m(A) = 0 or
o(A) is d'-homologous to zero [7].

The image of T° under the map A€Tr+H0(A)€Hr is a subspace
Qr of H'. If Ho(A)#0 is an element of Qr, then according to

(3.6), m(A) = i(A)HO(A)Y#0. Thus a non-trivial member of Qr
does not have a zero on W.
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4. Holomorphic tensore leaving a real 2n-form K > 0 invari-
ant.

Let (W,g) be a compact kahlerian manifold, dimcw = n. By

linearity the Schouten bracket can be extended to complex ten-
sors of the complex manifold W. If A is an r-tensor, we may
also extend the operator L(A) to complex forms of W.

a.. If AeT® and BETS, then on a domain U of a complex chart
{z'}, the Schouten bracket [A,B] has the components (see

(2.2)):

T2...Tr+s ) 1 T2...Tr+s Apz...pr 01...08
4, 5] TG %,e.p.0, .00 A % B
L] . 2.l.pr 10.. S
N (-F €T2...Tr+s BAOZ...OSa Apl...pr .1
r!(S—l)! pl...pro'z-..()'s A ‘

From (4.1), it follows that the components of [A,B] are local

holomorphic functions and hence [A,B] 1is contained in Tr+s—1'

Thus the Schouten bracket defines on the space of holomorphic
tensors, a structure of graded complex Lie algebra. Moreover,
the compact manifold W being k3hlerian, if R is a holomorphic
(r+s-1)-form, then it is closed and from (2.1), it follows
that:

rs+s

i([A,B])B = (-1)"° "1(A)di(B)B + (-1)Ti(B)di(A)B

where the holomorphic forms 1i(A)B and 1(B)B are closed. So
that:

i({A,B]) =0

We thus obtain the following important proposition gene-
ralizing a welknown result of Lichnerowicz [7]:

Proposition - On a compact kdhlerian manifold, if AT and

BeTs, then the holomorphic (r+s-1)-tensor [A,B) is contained

in 1771 o particular if XeL and AeT®, then the r-temsor

L(X)A belongs to 1.

b. If K# 0 is a real 2n-form >0on W, then K = fn for a
scalar £ > 0. Suppose A is a real r-tensor of W. From (2.7),
it follows that K is invariant by A if and only if on a domain
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U of a complex chart, we have:

aiz...i

v_(£A Ty =0 (4.2)

Let Lf be the complex subalgebra of L leaving the form K =
fn invariant. 1If XeLf, then on U:

a, _ o —ceBy
Va(fX ) = Va(fX ) + VB(fX ) =0

But Lf is a complex subalgebra, JXeLf and hence:

]
(=]

a, _ (08 é
Va(f(JX) ) = iVa(fX ) - 1v§(fx )

And clearly, we deduce for any XeL_, that:

f
a—
Va(fX ) 0
that is equivalently under the intrinsic form, we obtain:

§'{£fo(x>*%)

}=0 (4.3)
1,0
where X is the part of type (1,0) of X.
More generally, suppose K is invariant by a real r-tensor

(r>1)

r,0 0

A=A 4 AT

the sum of its part of type (r,0), Ar’o, and its complex con-
jugate AO’r = Zr,O. We deduce from (4.2) that K is invariant
by A if and only if on each domain U of a complex chart {z"}:

fo To JUNIIN o) .
vt hH =0 (4.4
or intrinsically:

§'{£a(aA"° %1 = 0
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c¢. Guided by the analyses in 84b, we introduce the complex
subalgebra Ur(f) (pr) of Tr defined by the holomorphic r-ten—
sors A satisfying:

§'{fo(a)} =0 (4.5)

for which ~we have given the interpretation. In what follows
we denote by Lf the complex subalgebra of L defined by the ho-

lomorphic vectors satisfying (4.3).

Let A€Ur(f). If AeIr, then 0(A) is d'-homologous to ze-
ro (see §3c). From (4.5), it follows that:

§'(fd'y) =0

for a form Y. We obtain:

<fd'uy,d'u> = <§'(fd'yW),p> = 0

If U is an open set of W on which f # 0, then d'u and hence A
are zero on U. By analyticity, A vanishes on W and thus

U (NT" = 0. We establish [5]:

Lemma - If given a non-trivial scalar £>0 or a compact kihle-
rian manifold (W,g), we then ahve Ur(f) 15 = 0. Moreover:

dimCUr(f) <b_

,0
A non-trivial element of Ur(f) never vanishes on W.

In particular, the complex subalgebra Ly of L which leav-
es the 2n-form K = fn>0 invariant is such that Lnt = 0. Lf
18 abelian and

dimCLf j_bl’o(W) =p

To see the inequality of dimensions of the lemma, we observe
the antilinear map AeUr(f) > HO(A)EQ%:Hr. This map is injec-
tive since it has Ur(f)nIr as its kernel. The proof of the

lemma is complete.

d. Suppose f # 0 is a scalar > 0 on (W,g). If AeUr(f) and
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BeUS (£), then locally we have:

Ap
v, (fA

AC e T

cesp
IS v, (e $y = 0 (4.6)

Introducting the kahlerian connection of the manifold,
(4.1) can be expressed as:

Tyeo o Trtg 1 Tz...Tr+s Apz.. oy 01 os
[A,B] = m € A V)\B
Pyee+P Oye O
r T,...T AC,...O0 cen
n7 T2t %20 PP 4.7)
r!(s-1)! . 5 A
OpeeeP TguesO
From (4.6) and (4.7), a computation shows that:
Toeeal AC,...0
£a,8] 2 T -9, (fa A B) 2 rhs
Thus we derive the formula:
fo([A,B]) = - §'c(£(A A B)) (4.8)
Since 5'2 = 0, we deduce that:
§'{fo([A,BD} =0
r+s-1 . -
and that [A,Ble U (f). According to the proposition of

+_
§4a, we see that [A,B]e ) i 1. Hence by the lemma of §4c, we

have [A,B] = 0. Consequently from (4.8), it follows that

§'{fo(A A B)} = 0, which implies A A BeUr+S(f).

In particular if XeLf and AcU(f), where:

uE) = @ vTE

r=0

then L(X)A = [X,A] = 0.
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We have proved the following fundamnetal theorem:
Theorem - If £ is a non-negative scalar on a compact kahlerian

manifold (W,g), AeUr(f) and BeUS(f), then we have [A,B] = 0
+
and ANBEU™ S (£). Thus the exterior product of antisymmetric

tensors of W defines on U(f) a structure of exterior algebra.

In particular, the Lie algebra Ly leaves invariant each ele-
ment of U(f).
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