
PR)CEEDINGS ITB VoL. 8, No, 3, L974.

SCHOUTEN BMCKET OF HOLOMORPHIC TENSORS

OF A KAHLERIAN MANIFOLD*)

Jorga rbrahin**)

R I N G K A S A N

Kita perlihatkan balu'ta 'tSehouten braeket"
dari pada tensor-tensor holomorph milik suatu
mmtifoLd kiihler yang kompak w mendefinisikan
suatu stvuktur "graded eompler Lie algebra"
padn rumtg tensor - tensor holonorph dari pada
manifold tersebut. Disini diperoLeh suatu pro-
posisi yang penting Aang memperluas sebuah ha-
siL Aang terkenal dari Lichnerouiez f6,71.

A B S T R A C T

It is shoun that the Sehouten braeket of
holomorphic tensoz:s of a eonpaet kahlerian ma-
nifold W defines a strueture of gnaded cornpLer
Lie aLgebra on the spaee of holomorphie ten-
sors of the manifold. We obtain an irnpottant
proposition uhieh generalizes a uelLknotn re-
suLt of Liehnerouicz 16,71.

Introduetion

Glven a compact kEhlerian manifold (W,g) of complex di-
mension dima W = n, Lichnerowicz [6r7] has obtained important
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properties of holomorphic tensors of W and its holoroorphlc
forms as we1l. Under certain hypotheses given to the first
Chern cl-ass C, (W) of W, some of the results generallze those

I

obtained by Kodai.ra, Kobayashi and Calabt.
The fact that the Schouten bracket of holomorphic tensors

of W defines a structure of graded complex Lle algebra on the
space of such tensors leads us to lnvestlgate more characters
of holomorphic tensors and forms of W. We obtain an lmportant
resul t ,  that  is  the proposi t ion in  54a which general izes a
wellknown result of Lichnerowicz, and a fundamnetal theorem in
g  4 d .

7 Nn*a'nu ̂ € ^^-nLer manifold

Suppose W is a compact and connected analytic complex
manifold and l-et its complex dimension, dlmaW = n. A domain

U of W is a connected open set of W. We denote by Cn the
space of n-tuples of complex numbers. In what fo11ows, on l-n-
dices we put the following convention: the greeks o,, B, etc.
=  l ,  . . . ,  n ,  t h e  l a t i n s  a ,  b ,  e t c .  =  1 ,  . . . ,  2 n  a n d  o  =  o  +  n .

a. A cornplex chart (or system of local comflI"ex coordinates)
is  def ined on a domain U of  W bv:

V :  zn I I  *  { "0 }  e  Ct, U  " " -  L .  )

We write ." = 
"d.^ 

If U and.V are respectively domains of two

complex char ts  {z-}  an. i  {zP }  wi th non -  empty in tersect ion,

then the complex coordinate" {"o} of zeUOV of the first chart

are holomorphic functions,^wiht non-vanlshing Jacobian .f$, of

the eomplex coordinaa"" trg'] of the same point z on the sec-
ond char t .  We wr i te :

; f  = a. t  (0U. z0;

^ , ^  0  - . -  R '
where Eo = 3/Ar* ,  DB. = D/32-  .  The compJ-ex st ructure of  l t /

furn ishes the mani fo ld i tse l f  wl th a natura l  or ientat lon.  0n
each point z of Inl, the complex structure of W deternlnes a

complex st ructure of  i ts  tangent  sPace T- .  I f  T:  is  the com-
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plexification of T-, ttLe complex structure of T- i.s defined by
^ z - - z

the operator J (Jz = -Id) on the elements of Tc. The tensor'  z -  z  '  z
field J of The operators J, determines the "almost complex

structurer l  o f 'W. I f  S!  ana S!  are respect ive ly  the proper
z z

subspaces of f! corresponding to the proper values i and -i by' z

J respectively. then we have:
2 -

T c  =  S c ( D S c
z  z -  z

Thls decomposltlon leads to the notion of type for the complex
tensors and the operators on W.

b. A q-form of W is a complex exterior differential forur of
order q. A form of type (5,s) has the components rrrlth r indl--
ces in cr and s indlces in S. If d is the operator of exterior
d l f ferent ia t ion,  we then have d = dr  *  dt  t ,  where dt  is  of

t ype  (1 ,0 )  and  d t  I  o f  t ype  (0 ,1 ) .  F ron  d2  =  0 ,  we  deduce  by

consider ing the types,  that  d '2  = O,  d"2 = 0 and drdt  r  +
d t  t d t  =  o .

A holonorphic r-form P, is an r-form of type (r,0) such
that  drrg = 0.  I t  is  equivalent ly  to  say that :  i t  is  a form
of  type ( r ,0)  such that  in  any complex char t  (or  s imply,  1o-
calJ-y) adrnits local holomorphic functions as its components.

By abuse of terminology, we call an r-tensor A an anti-
symmetric contravariant r-tensor of W. A holomorphic r-ten-
sor  is  an r - tensor  of  type ( r r0)  admit t ing,  on a complex
chart, components which are local holomorphic functions.

c. A holomorphie transfomation of W is a transformation of W
which leaves its complex structure invariant -or equivalently-
leaves J invariant. A holomotphie infinitesimal transfotma-
t ion is  def ined'by a real  vector  f ie ld X such that  L(X)J = 0,
where L(X) is the operator of Lie derivation with re-
spect to X. This means that in a complex chart we have:

E6x0=o ( 1 .  1 )

The re lat ions (1.1)  say that  the par t  X1'0 of  type (1,0)
of  X is  a holomorphic vector  ( l - tensor) .  Moreover JX is  again
a holomorphic infinitesimal transformatlon. Suppose L is the
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Lie algebra of holomorphic inf ini tesimal transfonirat ions of W.
If X, YeL, we then obtain the fol lowing ldentl t ies of Lie
b r a c k e t s :

l J X , Y l  =  [ X , J Y ]  = J I X , Y ]

and thus J defines on L a structure of complex Lie al8ebra.
Let G be the largest connected group of hol-omorphic transfor-
mations of lr l. Bochner and Montgomery tl l  have established
that G admits a natural structure of complex Lie group, GxW ->

W bein$ holomorphic. The algebra of G can be ldentif ied by
the complex L ie a lgebra L (see a lso [4] ) .

d.  We denote by Hr of  complex d lmension brrg(W),  the complex

vector space of cLosed. holomorphic r-forms of W. Let Tr be

the space of holonorphic r-tensors of W. If AeTr and $eHr,
then i(A)B (where i(A) ls the operator of exterlor product by
A) is a holomorphic scalar on Wr and in fact slnce W ls com-
p a c t :

i (A )B  =  cons t .

We denote by It, the complex subspace of Tr defined by the
elements A such that :

I
t

{

for  a l l  e lements $
In par t icu lar

the e lements X of

i (A )B  =  o

- --t
o r H . . t n

to  the  e lements  X- ' "  o f  I ,
the complex subspace I of L

they correspond
such that :

I f ,  X ,  YeL  and  BeH1 ,  we

{
I
I
I

i ( x )B  =  0

for arry closeci holomorphlc l-form B.
then have:

L ( x ) B ( Y )  -  L ( Y ) g ( x )  -  B ( [ x , Y ] )  =  0

and hence:

i ( [ x , Y ] ) B  =  0
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Thus [X,Y]  eI .  I f  Lr  = [L,L]  ls  the der lved ideal  of  L,  rhen
LrcI and I is an ldeal of L such that L/I is abellan (see
t6l). We see that lf X ls an element of L and admits a zero
on W, then lt necessarlly belongs t.o I.

Howeverl lf XeL and AeTr(r>1), L(X)A does not necessarl-

ly belongs to Ir on a complex manlfold; but later we see that,

in the kihlerlan case, indeed it does, that ls l(X)eetr (see

t6 t ) .

2. Structute of graded Lie algebra of tensors l?,3l

Let V be a differentiable nanifold of dlmenslon m. In
what follows, we shall mean by a tensor, an antlsynmetric con-
travarlant tensor of V.

a. Suppose A and B are respectlvely r- and s-tensors of V.
t lne Schoutenbraeket  [9 ]  of  A and B,  [A,B] ,  ls  an ( r+s-J_)- ren-
sor such that for any closed (r+s-l)-forr p of V, we have:

.  
i ( [A ,B ] )u  =  ( -1 ) t " * " r (a )d r (B )u  +  ( - r ) r r ( r )d i (A )u  (2 .1 )

The re latLon (2.1)  determlnes uniquely the tensor  [ArB] .
One can easily f ind that on a domaln U of a system of Io-

cal  coordinates {*k} ,  [erS]  has the componenrs:

le ,urk2" 'k r+s = 
# r l r " '1 . :  .  o^ t2" ' i r ,a  u i r " ' i "

r r . . . a r J 1 . . . J s

o t a " ' t t

where e is the indicator tensor of Kronecker. We

lB ,A l  =  ( - t ) r s  [ e ,n ]

( 2 . 2 )

deduce a lso :

( 2 . 3 )

If C is a t-tensor, we then have the following formula:
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( - r ) " t [ [ c ,A ] ,B l  +  ( - t ) t " [ [B , c ] ,A l  +  ( - 1 ) t t l h , , s l , c l

=  Q  ( 2 . 4 )

Thus the space of tensors of V adnlts a etyweture of g?ad-
ed Lie algebra determined by the Schouten bracket. This
bracket has been studled by NiJenhuls [8].

b. 0n the algebra of tensors of V, we define an operator t(A)
on forms of V, where A ls a tensor aa foLl-ows: lf A ls an s-
tensor and B 1s an r-form (r>s-l), then:

L(A)8 = d l (A)g -  ( -1)"  r (e)aB (2 .s )

It ls clear that L(A)B ts an (r*s-1)-forn. For s=1, thls op-
erator reduces to the usuaL operator of Lle derlvatlon wlth
respect to a vector. 0n a domaln U of a system of Local co.

t .

ordLnates {x^}, t (1.)B has the components:

l L ( A ) B l k . . . k
s r

{  . . 1  1 _ . . . 1
- , . - : r ] " " ' 1 .a .  A^1" ' ^ "R  +( r - s )  ! s !  " U " . . . U ,  " J "  ^ '  u t r _ . . . 1 " J " + 1 . , .  j ,

S A11" ' t "  n r rur r . . . l sks . . .k r ( 2 . 6 )

I f  t ( A ) B  =  0 ,
r iqnt by A.

Suppose K is

we then slmply say that the form B ls

an m-form on V of kernel k. Obvlouslv:

t (A)K = d l (A)K

on a donain U of a system of local coordlnate" {*k}, we have:
i . . . . i  I  , .  I

l ( A ) K l r r = 1  A t  " k r .  i  { ,  d * " - t A . . . A d x n. u  
; I  , 1 . . . . " t " + l _ . . . 4 m



Furthermore:

L(A)K lu  =

sf,| ar(kAtil"'t"-r)' 1 r . .  .1 " i " * r_ . . . r ru*  
34 .  

. .Ad* i t

invariant by A lf and only if on each
local coordlnate" {*k}, we have:

Thus the n-forn K ls

maln U of a system of
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do-

t i , . . . 1  .
a t ( k A '  " - t ) = 0

3,  The KAhle" ian case [6,7)
a. Let W be a compact connected analytic
dimaW = n. Conslder the 

"o""i i..r i '  
,u"r

(1r1) .  We int roduce on the space of  such
erator  J  (wi th {2 = - ra)  def ined bv:

( J t ) (u , v )  =  t  ( Ju "v )

for  any pai r  (u 'v)  of  vectors urv.  r f  t  is  syuunetr lc ,  then Jtis antisynmetric and conver""ry. 
- ro DJuureLrLc

On W, there ex ls t  herml t tan netr ics,  1.e. :  the r iemannianmetr i .cs,  of  whlch the metr ic  a"r r "o.  g is  of  type ( l , I ) .  Tothe tensor E, it correspond" by j-" re"f 2_forrn t '= ja of type
(1,1) .  In  a conplex char t  { "d}  , i th  dornain U,  w" h"J" ,

Elu = 2eo6 dza@ drB p lu lgo.- dro A arl

The nanifold W is said to admit a k?ihlez,ian struetuz.e de_fined by the netrlc g if the 
"o.r."porraing real 2-form f(=Jg)is  c losed (dF = 0) . .1n:  p" i ,  

- iw,g l  
ls  ca l ted a kt ihLer ianmanifold and the real 2-forr r ttt""i.rndamental form of oo.

b. Suppose (W,g) is a conpact k5hlerian nanifold, dlmaW = n
with the fundamental forn F. This form adrnits a tezo co_

( 2 . 7 )

complex roanl,fold and
2-tensors t  o f  type

tensors a real op_
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variant derivative ln the riemannlan connectlon (we call: the
kihl-erian connection) defined by the metric g.. Locally, the
only coefficl-ents which do not necessarlly vanish of thls
connectlon, are those of pure type:

F 0 - ^ 0 0 ^ -t o^, 
= E da&,- and

r J J  P  I P

Let o and B be two r-forms of (W,g). We denote by (or$)
the lnterior product of o and I (in general of two tensors; lse
consider only on forms). We revtew the followlng hermitlan
scalar product defined by:

<0,8> =  . f " (o ,8 )n ( 3 . 1 )

where n ls the volume element of W.
If 6 ls the operator of codlfferentlatlon on forms, ne

then  have  6  =  6 t  +  6 r r ,  whe re  6 t  l s  o f  t ype  ( -1 r0 )  and  6 t t  o f
type (0r-1) .  The operators 61 6t  and 6t t  are respect iveJ_y
the  t ransposes  o f  d ,  d t  and  d t r  w i t h  respec t  t o  (3 .1 ) .  Fo r  a
k'dhlerlan manifold (W,g) the laplaclan A = dd * 6d of l{odge -
de Rharn on forms can be written as:

A  =  2 ( d r 6 '  +  6 ' d ' )  =  2 ( d f r  +  6 t ' ) ( 3 . 2 )

and hence it ls of type (0,0) . Frou (3,2), in the kAhlerlan
case, i-t follows that any holomorphlc forn ls harmonic and in
parti-cular it is closed. We obtain also that the part of type
(1r0) of a real harnontc l-form l-s holomorphic; the first Bet-
t i  number of  w,  bt (w) = 2br ,O(W),  where bt ,O(")  = p ls  known

as the irregularity of the manifold.

If XeL and BeHr, then:

L(x)B = (d i (x)  + i (x)d)B = 0

Thus on a compact klhlerlan manifold, any holomorphlc form is
lnvariant by the algebra L (or by the group G).

c.  Let  A be an r - tensor  of  type ( r ,0) .  By dual l ty  def lned by
the metric and the complex conJugatlon Lt pernits us to intro-
duce an r - form o(A) of  type ( r r0)  wi th:

N - d

l - -  =  |-BY  .By

o - . . . o
G'0r . . .F ,  =  tdror" 'uFro.  o  r ( 3 . 3 )
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The oap o is an antl l inear bljectlon fron the space of r-ten-
sors of  type ( r ,0)  onto the space of  r - forms of  type ( r ,0) .

For that A is to be holornorphlc (Aefr), it ls necessary and
sufflclent that locally:

a6 e ' r " 'o t  =  v6  lPr " '9 .  =  o

where V is the operator of covarlant differentiation in the
kihlerlan connectlon.

One example ln utl l lzlng o, we see that the tensor A be-

longs to Tr lf and only if the part of type (r+1,0) of o(A) is
zero,  that  1s to say:

l vo(A)  l r * t ,o  = o ( 3 . 4 )

We deduce that from the antlsynnetrization, o(A) is neces-
sar l ly  d ' -e losed (d 'o(e)  = 91.  From the decomposi t ion of  c .
de Rham, it follows that:

q(A) = a'u + rro(A) (Aerr) (3.5)

where IIo(A) ts a holomorphlc r-forur. The followings holomor-
phlc scalar

m(A;  =t (A)r ro(A)  = (no(A), r1o(A))

on a conrpaef, k'dhlertan manlfold is a constant. From (3.5), we
obta in:

<Ho(A), i lo(A)> = <I Io(A) ,o(A)> = Vm(A) ( 3 . 6 )

where V is the voh,rme of W. Ilence n(A) = 0 te1ls that o(A) ts
dt-homologous to zero.  Frorn,  (3.6) ,  1 t  fo l lows t } : .a t  aholo-

motphie !-tensov A. belonge to tt if and. onLy if m(A) = g ,,
o(A)  is  dt -homoLogous to zero [71.

The image of Tr under the nap AeTr->Ho(A)eHr is a subspace

Qr of Hr. rf Ho(A)#0 is an element of Qr, then according to

(3 . 6) , n(A) = i (A)no(A) #0. Thus a non-tv' iuial member of Qr
does not haue a zero on w.
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4. 
, 

HoLomorphie tensons Leauing a real Zn-form K > 0 inuati_
an' .

Let (Wrg) be a compacr kAhlerlan roanifoLdr dlnaW = n. By
linearity the schouten bracket can be extended to complex ten-
sors of the complex manifold W. If A ls an r-tenaor, we may
also extend the operator L(A) to compl_ex forns of W.

?..r.If AeTr and BeTs, then on a domaln U of a compLex chart
Iz--), the Schouten bracket [ArB] has the components (see
( 2 . 2 ) ) :

ra,sr 2" ' r ,+" = G+rI . l ; : : :13;. . .o"o '  "prar 'o1" 'o"

.  # .r i : : :rU .o"u'" 'osr^oel" 'e' ( 4 . 1 )

Fron (4.1), it follows that the components of IA'B] are l_ocal

holonorphic functlons and hence [ArB] is contained in rr*s-l.
Thus the Schouten bracket defines on the space of ho1-omorphlc
tensors, a sttuetuz,e of graded eotnpLer Lie algebna. Moreover,
the compact manifold W belng k3h1_erian, if B fs a holonorphlc
(r+s-1)- form, then i t  ls  c losed and f ron (2.1) ,  l t  fo l lows
tha t :

i ( [A ,B ] )B  =  ( -1 ) r " * " r (o )d l (B )B  +  ( -1 ) t r ( s )a r ( l )B

where the holonorphic forms 1(A)B and i(B)B are closed. So
that :

i ( [ A , B ] )  =  0

We thus obtain the followlng important proposltlon gene-
raLizing a welknown result of Llchnerowlcz [7]:

Ptoposition - on a compact kdhLerian nanifold, i.f AeTt and

BeTs, then the holomorphic (r+s-l-)-tensor [A,B] zis eontained.
. _r*s-lin I''" 

-. 
In parti,cular tf xei., and AeTr, then the x-tensor

L(X)A beLongs to T,

b .  I f K l 0 i s a  r e a i - 2 n - f o r n > 0 o n  W ,  t h e n K = f n  f o r a
scalar  f  > 0.  Suppose A ls  a reEl  r - tensor  of  W. Fron (2.7) ,
it follows that K is lnvarlant by A if and only if on a donain
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U of a complex chart, we have:

a i o .  .  .  i -
V a ( f A  '  ' )  = 0  ( 4 . 2 )

Let L, be the complex subalgebra of L leaving the form K =

fr1 lnvariant. If X€Lf, then oo 11:

va(fxa) = Vo(fxo) + vB-(fxB) = o

But L, ls a complex subalgebrar JXeL, and hence:

va(f(Jx)") = rvo(fxo) - ive(fxB) = 0

And clearly, w€ deduce for any XeLf, that:

V (fx0) = 0' 0 \ r r \  /

that ls equivalentJ-y under the intrinslc form, we obtaln:

6 '1 to1x1 'o ) )  =  o  ( 4 .3 )

where X1'0 1"  the par t  of  type (1,0)  of  x .

More general.ly, suppose K ls invarlant by a real r-tensor
(r>1)

A = A r t o + A o , r

the surn of  l ts  par t  of  type ( r r0) ,  Arr0,  and l ts  cornplex con-

jugate AO' t  = I t '0 .  We deduce f rom (4.2)  that  K is  l -nvar lant

by A if and only if on each domaln U of a complex chart {zo}:

v^ ( reopz " ' o t ,  =  o  (4 .4 )
0 , -

or intrinsi-cally:

6 ' { f c r ( A r ' o ) }  =  o
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c. Guided by the analyses i-n 54b, we introduce the complex

subalgebra Ur(f) (f>0) of Tr defined by rhe holomorphic r-ten-
sors A sat is fy ing:

6 ' { f o ( A ) }  =  0  ( 4 . 5 )

for which we have gi-ven the interpretation. In what follows
we denote by Lf the cornplex subalgebra of L defined by the ho-

lomorphic vectors sat i .s fy ing (4.3)  .

Let  A€Ur( f ) .  I f  AeIr ,  then o(A) is  dr-homologous to ze-
ro  ( see  53c ) .  F rom (4 .5 ) ,  i t  f o l l ows  tha t :

6 r  ( f d ' u )  =  o

for  a form u.  We obta in:

< f d t i l r d t p >  =  < 6 t ( f d t U ) , U >  =  0

If U is an open set of W on which t + 0, then dtu and hence A
are zero on U. By analytlclty, A vanlshes on W and thus

u t ( f ) n r r  =  O .  We  es tab l i sh  [ 5 ] :

Lenrrne. - If giuen a non-triuial scalan f>0 o?; a eoftlpaet kiihLe-

r ian mani foLd (W,E),  ue then ahue vr( t )  I r  * '0 .  Moreover:

d incur( f )  .  b . ,g{" )

A non-triuial eLement of ut (f) nexer oqnishes on W.
fn particular" the eornpler sutbaLgebra Lt of L uhich Leau-

es the 2n-form K = fr1:0 inuav,iant is sueh that L{T = 0. Lt

is ahelian and.

d lna l r  1b1 ,6 (w)  
=  I

To see the inequality of dimensions of the lernna, we observe

the anti l inear nap Aeur(f) * Ito(A)eQtnt. Thls map is lnjec-

t ive s ince i t  has Ut( f )n l r  as l ts  kernel .  The proof  of  the
lemma is cornplete.

d. Suppose f I 0 is a scalar > 0 on (W,g). If AeUrCf) ana
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Beus(f) ,  then local ly we have:

) .o^ .  .  .0  t ro^ .  .  . ry
v - ( f l - z  

r \ = n  v r f B '  " ) = o  G . 6 )
A '  

'  -  w  ' L t '

Introducting the kihlerian connection of the manifoldt

(4.1)  can be expressed as:

r ^ . . . r _ - ,  _  ,  r ^ . . . r  ,  ^ l O ,  
. 9 r _  

- o 1 . . . o "
f A . B ' l  

z  t " + s  =  , L - r z  
r t s

-  ( F D E T t ^  A d  ^ ^  
u l o

P 2 " ' v r v 1 "  ' " s

*' r l ( s - l ) l  " ^  
^ d  n u  

' 1 "

v r . . . p  o ^ . . . o
I r z s

From (4 .6)  and (4 .7 ) ,  a  computa t ion  shows tha t :

r ^ . . . T - - , _  t r o " . . . o . , o
f [ A , B ] z  

f f s = V I ( f A A B )  L  L T E

Thus we deri-ve the formula:

f o ( [ A , B ] )  =  -  6 ' o ( f ( A  A  B ) )

S ince  6 t2  =  0 ,  we  deduce  tha t :

( 4 . 8 )

6 ' { f o ( [ A , B ] ) ]  =  o

and that  [A,B]e ut*" - l ( t ) .  According to the proposi t ion of

54a,  we see that  [A,B]e r r*s- l  .  I {ence by the lennna of  54c,  we

have [A,r1 = 6.  Consequent ly  f rom (4.8) '  i t  fo l lows that

6 ' { f o (A  A  B ) }  =  0 ,  wh i ch  lmp l i es  R  A  seu r+s ( f ) .

In  par t icuLar i f  XeL,  and AeU(f) ,  where:

u(r)  = 6 ur(r )
r=0

E h e n  L ( x ) A  =  [ X , A ]  =  0 .
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We have proved the fol lowing fundamnetal theorem:
Theorem - If t is a non-negatiue scalar on q, compaet kdhLerian

manifold. (w,g), eeurlt; and BerJs (f) , then ue haue [A,n1 = 6
qnd. AI\Beut*"(r). Thus the eetey,Lor p,oduet of antisynrmetrLc
tensots of W defines on U(t) a strueture of erterior aLgebra.
In particular., the Lie algebz,a L. Leaues inuaz'iant each ele-
m e n t  o f  U ( f ) .
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