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ABSTRACT

Coding with Side Information. (August 2004)

Sze Ming Cheng, B.S., University of Hong Kong;

M.S., Hong Kong University of Science and Technology;

M.S., University of Hawaii

Chair of Advisory Committee: Zixiang Xiong

Source coding and channel coding are two important problems in communi-

cations. Although side information exists in everyday scenario, the effect of side

information is not taken into account in the conventional setups. In this thesis, we

focus on the practical designs of two interesting coding problems with side informa-

tion: Wyner-Ziv coding (source coding with side information at the decoder) and

Gel’fand-Pinsker coding (channel coding with side information at the encoder).

For WZC, we split the design problem into the two cases when the distortion of

the reconstructed source is zero and when it is not. We review that the first case,

which is commonly called Slepian-Wolf coding (SWC), can be implemented using

conventional channel coding. Then, we detail the SWC design using the low-density

parity-check (LDPC) code. To facilitate SWC design, we justify a necessary require-

ment that the SWC performance should be independent of the input source. We show

that a sufficient condition of this requirement is that the hypothetical channel between

the source and the side information satisfies a symmetry condition dubbed dual sym-

metry. Furthermore, under that dual symmetry condition, SWC design problem can

be simply treated as LDPC coding design over the hypothetical channel.

When the distortion of the reconstructed source is non-zero, we propose a prac-

tical WZC paradigm called Slepian-Wolf coded quantization (SWCQ) by combining

SWC and nested lattice quantization. We point out an interesting analogy between
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SWCQ and entropy coded quantization in classic source coding. Furthermore, a

practical scheme of SWCQ using 1-D nested lattice quantization and LDPC is imple-

mented.

For GPC, since the actual design procedure relies on the more precise setting

of the problem, we choose to investigate the design of GPC as the form of a digi-

tal watermarking problem as digital watermarking is the precise dual of WZC. We

then introduce an enhanced version of the well-known spread spectrum watermarking

technique. Two applications related to digital watermarking are presented.



v

To my parents



vi

ACKNOWLEDGMENTS

I would like to sincerely thank my advisor Professor Zixiang Xiong for his sup-

port, guidance, encouragement and trust. He is more a mentor than a mere advisor

to me. He has set a high standard for me that really helps me grow. I would like to

thank Professors Andrew Chan, Costas Georghiades, and Andreas Klappenecker for

spending their valuable time and effort in serving on my committee.

I want to thank my parents for their love and support, and for giving me the

freedom to pursue my dream.

I would like to thank all my groupmates in the multimedia lab at TAMU. I want

to thank Angelos Liveris and Dr. Vladimir Stankovic̀ for their generosity in sharing

many of their ideas with me, and for proofreading several of my writings. I am

greatly in debt to Jianping Hua, Zhixin Liu, Yong Sun, and Yang Yang for their help

in various projects. I want to thank Tim Lan for his help regarding channel coding

in general. I have received numerous help from Jianhong Jiang and Dr. Zhongmin

Liu when I first moved to the South. My life would have been awful without them.

There are numerous others without whom my Ph.D. years would have been both

more difficult and less pleasant. I would like to thank all of them. Unfortunately, it

is impossible to name them all; I sincerely apologize to those whom I omitted.



vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A. Coding in Communication . . . . . . . . . . . . . . . . . . 1

B. Coding with Side Information . . . . . . . . . . . . . . . . 2

C. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1. Distributed Source Coding and Wyner-Ziv Coding . . 3

2. Broadcast Channel Coding and Gel’fand-Pinsker Coding 5

D. Brief History of WZC and GPC . . . . . . . . . . . . . . . 6

E. Organization of the Thesis . . . . . . . . . . . . . . . . . . 8

F. Contributions of the Thesis . . . . . . . . . . . . . . . . . 9

G. Notations and Conventions . . . . . . . . . . . . . . . . . . 10

II THEORY OF WYNER-ZIV CODING AND GEL’FAND-

PINSKER CODING . . . . . . . . . . . . . . . . . . . . . . . . 11

A. Problem Setups and Theoretical Limits . . . . . . . . . . . 11

1. Wyner-Ziv Coding . . . . . . . . . . . . . . . . . . . . 11

a. Binary Symmetric Case . . . . . . . . . . . . . . 12

b. Quadratic Gaussian Case . . . . . . . . . . . . . . 13

2. Gel’fand-Pinsker Coding . . . . . . . . . . . . . . . . . 14

a. Binary Symmetric Case . . . . . . . . . . . . . . 14

b. Quadratic Gaussian Case: Dirty Paper Coding . . 15

B. Duality of Wyner-Ziv Coding and Gel’fand-Pinsker Coding 16

1. Duality Example: Quadratic Gaussian Case . . . . . . 17

C. Successive Refinement of Wyner-Ziv Coding . . . . . . . . 20

1. Theoretical Background . . . . . . . . . . . . . . . . . 21

2. Main Result . . . . . . . . . . . . . . . . . . . . . . . 22

D. Computing Theoretical Limits Using Iterative Algorithm . 26

1. Channel Capacity . . . . . . . . . . . . . . . . . . . . 27

2. Rate-Distortion Function . . . . . . . . . . . . . . . . 33

3. Capacity-Power Function . . . . . . . . . . . . . . . . 38

4. Numerical Examples . . . . . . . . . . . . . . . . . . . 43

III WYNER-ZIV CODING DESIGN . . . . . . . . . . . . . . . . . 50

A. Slepian-Wolf Coding: Zero Distortion Case . . . . . . . . . 51



viii

CHAPTER Page

1. General Approaches . . . . . . . . . . . . . . . . . . . 51

a. Random Binning . . . . . . . . . . . . . . . . . . 51

b. Structure Binning . . . . . . . . . . . . . . . . . . 52

c. Multilevel Slepian-Wolf Coding . . . . . . . . . . 53

2. LDPC Code Based Slepian-Wolf Coding . . . . . . . . 54

a. Symmetry Conditions . . . . . . . . . . . . . . . . 59

B. Wyner-Ziv Coding: Non-Zero Distortion Case . . . . . . . 67

1. General Approaches . . . . . . . . . . . . . . . . . . . 67

a. Nested Lattice Quantization . . . . . . . . . . . . 67

b. Slepian-Wolf Coded Quantization . . . . . . . . . 68

2. 1-D Slepian-Wolf Coded Quantization . . . . . . . . . 71

a. Basic Setup . . . . . . . . . . . . . . . . . . . . . 71

b. Design Issues . . . . . . . . . . . . . . . . . . . . 73

c. Experimental Results . . . . . . . . . . . . . . . . 78

IV GEL’FAND-PINSKER CODING DESIGN . . . . . . . . . . . . 83

A. Overview of Digital Watermarking . . . . . . . . . . . . . . 83

B. Spread Spectrum Watermarking . . . . . . . . . . . . . . . 86

C. Enhanced Spread Spectrum Watermarking . . . . . . . . . 88

1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . 88

2. System Setup . . . . . . . . . . . . . . . . . . . . . . . 90

3. Performance Analysis . . . . . . . . . . . . . . . . . . 92

4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . 97

D. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 99

1. AAC Audio Watermarking . . . . . . . . . . . . . . . 99

a. Proposed AAC Watermarking System . . . . . . . 100

b. Experimental Results . . . . . . . . . . . . . . . . 102

2. AAC Audio Error Concealment . . . . . . . . . . . . . 112

a. Proposed Error Concealment Scheme . . . . . . . 113

b. Experimental Results . . . . . . . . . . . . . . . . 118

V CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

B. Future Directions . . . . . . . . . . . . . . . . . . . . . . . 122

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



ix

LIST OF TABLES

TABLE Page

I Dual components of WZC and GPC. . . . . . . . . . . . . . . . . . . 17

II Encoding and decoding procedures of Gaussian WZC and Gaus-

sian GPC using nested code. . . . . . . . . . . . . . . . . . . . . . . 20

III Channel capacities for different cases in Example 1. (C1 and C2

are illustrated in Fig. 16 for different Pθ’s.) . . . . . . . . . . . . . . . 46

IV Rate-distortion function for different cases in Example 2. (R1(D),

R2(D), R3(D), R4(D), and R5(D) are illustrated in Fig. 17 for

different µ’s.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

V High-rate classic source coding vs. high-rate Wyner-Ziv coding. . . . 70

VI Rates distributed over different Slepian-Wolf coders for top-down

and bottom-up approaches when dmin = 12σZ and Λ = 5. . . . . . . . 75

VII The table shows the conditional entropy of Bk(X) given previous

decoded bits and the side information S, the overall rate R =

H(BΛ(X)|S) and the corresponding squared error distortion D =

E[(X − X̂)2] for different dmin. We assume the jointly Gaussian

model of X = S + Z where S and Z are independent Gaussian

random variables with σ2
Z = 0.01 and σ2

S = 1, respectively. . . . . . . 76

VIII Degree profiles of the first four bit planes obtained with the top-

down approach. Only the left profiles (λ) are shown since the

right profiles (ρ) can be derived from the rate and λ given that ρ

is concentrated on two consecutive degrees. . . . . . . . . . . . . . . 81

IX Estimates of the sums of σS′j for the Gaussian distributed host signal. 97

X Noise-to-mask ratio (NMR) of watermarked audio. . . . . . . . . . . 102

XI Watermark bit error rate at different embedding rate. . . . . . . . . . 103



x

TABLE Page

XII Watermark bit error rate at different embedding rate after MP3

transcoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

XIII Percentage size change after watermarking. . . . . . . . . . . . . . . 105

XIV Percentage change in audio clip size after watermarking. . . . . . . . 118

XV SNR change (in dB) after embedding enhancement information. . . . 119

XVI SNR comparison (in dB) of three different error concealment schemes:

our scheme (upper), zero replacement scheme (middle), blindly

duplication from previous time frame (lower). . . . . . . . . . . . . . 120



xi

LIST OF FIGURES

FIGURE Page

1 A point-to-point communication system. . . . . . . . . . . . . . . . . 1

2 Distributed source coding with three sources. . . . . . . . . . . . . . 4

3 Distributed source coding implemented by WZC. . . . . . . . . . . . 5

4 Broadcast channel coding with three receivers. . . . . . . . . . . . . . 6

5 Broadcast channel coding implemented by GPC. . . . . . . . . . . . 7

6 RWZ(D) and RX|S(D) for the binary symmetric case with pZ = 0.27. 13

7 CGP (P ) and CY |S(P ) for the binary symmetric case with pZ = 0.1. . 16

8 Illustrating duality of WZC and GPC. . . . . . . . . . . . . . . . . . 17

9 Gaussian Gel’fand-Pinsker coding in different setups: (a) dirty

paper coding and (b) digital watermarking. . . . . . . . . . . . . . . 18

10 Optimum setup of the Wyner-Ziv problem for X = S + Z. . . . . . . 23

11 Successive refinement with side information for X = S + Z. . . . . . 26

12 Algorithm for computing capacity of a channel with side information. 32

13 Algorithm for computation of rate-distortion function with side

information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

14 Algorithm for computation of capacity-power function with side

information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

15 Binary symmetric channel with channel state information θ and τ . . 45

16 Channel capacity C versus pθ for different cases in Example 1. . . . . 47

17 Rate-distortion functions for different cases in Example 2. . . . . . . 49



xii

FIGURE Page

18 The Tanner graph of a binary (6,2)-LDPC code. . . . . . . . . . . . . 55

19 Message updates of a variable node and a check node. . . . . . . . . 56

20 1-D and 2-D nested lattices based on similar sublattices. . . . . . . . 68

21 Operational rate-distortion function for 1-D nested lattice quantization 69

22 A nested scalar quantizer with nesting ratio N = 4. . . . . . . . . . 71

23 The proposed Wyner-Ziv scheme with SWC. . . . . . . . . . . . . . 72

24 Results based on nested scalar quantization with and without

SWC for the top-down approach. . . . . . . . . . . . . . . . . . . . 80

25 Results based on nested scalar quantization with and without

SWC for the bottom-up approach. . . . . . . . . . . . . . . . . . . . 82

26 Block diagram of a general SS watermarking system. . . . . . . . . . 88

27 The figures compare the performance of enhanced SS watermark-

ing (dashed lines) from conventional SS watermarking (solid lines)

and STDM (dash-dot lines) for uniform host signal. The ideal case

that without host signal interference (dotted lines) is also shown. . . 106

28 The figures shows the robustness gain against the (host) signal to

(attack) noise ratio for n = 2, 8, 50 when the host signal is uni-

formly distributed. An ideal case with no host signal interference

is also shown for comparison. . . . . . . . . . . . . . . . . . . . . . . 107

29 The figure shows the robustness gain against the (host) signal to

(attack) noise ratio for different reductions of host signal variance.

An ideal case with no host signal interference is also shown for

comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

30 The figures compare the performance of enhanced SS watermark-

ing (dashed lines) from conventional SS watermarking (solid lines)

and STDM (dash-dot lines) for Gaussian distributed host signal.

The ideal case that without host signal interference (dotted lines)

is also shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



xiii

FIGURE Page

31 The figure shows the robustness gain against the (host) signal to

(attack) noise ratio for n = 2, 8, 50 when the host signal is Gaus-

sian distributed. An ideal case with no host signal interference is

also shown for comparison. . . . . . . . . . . . . . . . . . . . . . . . 110

32 Block diagrams of our proposed AAC watermarking system: (a)

Encoding; (b) Decoding. . . . . . . . . . . . . . . . . . . . . . . . . 111



1

CHAPTER I

INTRODUCTION

A. Coding in Communication

The ability to send and receive information over a long distance is a blessing of the

modern world. Regardless of the type of information (image, video, audio, etc.) and

the transmission medium (a coaxial cable, a band of radio frequency, a beam of light,

etc.), many scenarios can be modelled by a point-to-point communication system as

shown in Fig. 1.

Destination
Information

Source
Trasmitter Channel Receiver

Fig. 1. A point-to-point communication system.

A point-to-point communication system contains five parts: an information source,

a transmitter, a channel, a receiver, and a destination. Given a source signal, the

transmitter produces a signal suitable for transmission over the channel. The chan-

nel, which is generally imperfect, may introduce noise to this signal. The object of

the receiver is to reconstruct the original source with the highest possible fidelity.

Provided that the same fidelity of the reconstructed source is maintained, an

efficient transmitter-receiver pair should minimize the use of resources such as the

power of the transmitted signal and the number of channel uses. On one hand,

the transmitter should remove any redundancy in the information source to reduce

unnecessary channel use. For example, consecutive frames in a slowly varying video

This dissertation follows the style of IEEE Trans. Inform. Theory.
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sequence are almost the same. Therefore, given the first frame, most pixels in the

next frame can be well predicted and hence are redundant. The process of removing

redundancy essentially “compresses” the source and is commonly known as source

coding. On the other hand, the transmitter can introduce useful redundancy with

which the receiver can detect and potentially correct transmission errors caused by the

channel noise. As a result, compared to an uncoded system that maintains the same

fidelity of reconstructed signal, less power will be needed. The process of introducing

redundancy is commonly known as channel coding.

Our first impulse might suggest that a scheme constructed by designing source

coding and channel coding independently cannot be optimum. However, from the

Shannon’s separation theorem [85, 94], there is no loss in theory in restricting ourselves

to a separate design. Therefore, we can design an optimum scheme by combining the

best source code for the given the information source and the best channel code for

the given channel. This makes source coding and channel coding each an interesting

area of study of its own.

B. Coding with Side Information

In many scenarios, besides their regular inputs, the transmitter and/or the receiver

are given some extra information regarding the source and the channel. For example,

this “side information” can be the nature and the format of the source and the

mean and the variance of the channel noise. To incorporate this side information

in a communication system, it is thus necessary to study source coding and channel

coding with side information.

Since side information can be given to the encoder and/or decoder, this results

in four different cases. However, several of these cases are trivial in the sense that
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conventional source and channel coding techniques can be employed directly. For

example, when side information is given to both the encoder and decoder, we can

easily include this side information in the scheme design by using optimized coders

for the different outcomes of the side information. Yet another example, consider

source coding when side information is given to the encoder alone; it is shown in

[11] that the side information is useless and thus can be ignored.2 The two most

interesting cases are source coding with side information at the decoder, a.k.a. Wyner-

Ziv coding (WZC) [104], and channel coding with side information at the encoder,

a.k.a. Gel’fand-Pinsker coding (GPC) [47]. Therefore, we will be focus on these two

cases in this thesis.

C. Applications

Besides the connections with a point-to-point communication system, WZC and GPC

are closely related to multiterminal communication systems with more than one trans-

mitter and/or one receiver. More precisely, WZC and GPC can be used as a building

block for distributed source coding [78, 107] and broadcast channel coding [31, 33],

respectively.

1. Distributed Source Coding and Wyner-Ziv Coding

Consider numerous heat sensors spreading over a region, measuring temperature, and

sending it back to a base station. In order to save the production cost of these sensors

and simplify the scheme design, we assume these sensors transmit measurements

directly to the base station without the help of other sensors as relay. Hence, the

transmitter in each sensor can only know its local measurement. However, in most

2This is intuitive because all possible side information related to the source can
be generated from the source itself, and the latter is always given to the encoder.
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cases, the measurements of all these sensors are correlated; so the question is: can we

incorporate this correlation effectively to compress these measurements even though

joint encoding is not permitted?

Encoder 

3

X2

X1

m1

m2

m3

X1 , X2 , X3

sources
reconstructed

Base

Station

source 2

source 3

source 1

Encoder 

Encoder 

X

Fig. 2. Distributed source coding with three sources.

The above scenario is a typical example of distributed source coding in which

several correlated sources are encoded separately but decoded jointly as shown in

Fig. 2. A solution of this interesting problem can be implemented using WZC. As

shown in Fig. 3, the first source X1 will be coded using conventional source coding.

At the base station, X1 will be the first to be decoded and used as side information

for the subsequent decoding of all other sources. Knowing the reconstructed X̂1 at

the base station, the second source X2 is coded using WZC. And just as X̂1, the

reconstructed X̂2 is also treated as side information for the subsequent decoding

stages. Similar decoding procedure with all the previous decoded sources as side

information continues until all sources are reconstructed.
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^

1

X2

m1

m2

m3

X1

X2

X3 X3

X2

X1

X1

Source

Encoder

Wyner−Ziv

Encoder

Wyner−Ziv

Encoder

Wyner−Ziv

Decoder

Wyner−Ziv

Decoder

Source

Decoder

Base Station

,

^

^

^

^

^

X

Fig. 3. Distributed source coding implemented by WZC.

2. Broadcast Channel Coding and Gel’fand-Pinsker Coding

As shown in Fig. 4, a broadcast channel setup includes one sender and several re-

ceivers. The object is to broadcast messages from the sender to all receivers. A typical

example is TV or radio broadcast, where the same “messages” are broadcasted to all

receivers. In general, the message to each receiver can be different as will be discussed

here.

Similar to the relation between DSC and WZC, broadcast channel coding can be

implemented using GPC as building blocks. Whereas decoding is performed layer by

layer in DSC, encoding will be implemented layer-wise here instead. As shown in Fig.

5, encoding is split into two steps. Temporary outputs X1, X2, and X3 are generated

in the first step and they are combined to form the actual encoding output X in

the second step. GPC is incorporated into the broadcast channel setup as follows.

The first message m1 is transmitted through the hypothetical channel between X1

and Y1 using conventional channel coding. Upon making the decision of X1, m2 is
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^

1 , m2 , m3

Y1

Y2

Y3

m1

m2

m3

message 3

message 2

message 1

Xmessages

Station
Base

Decoder 

Decoder 

Decoder 

Channel

Broadcast

^

^

m

Fig. 4. Broadcast channel coding with three receivers.

sent through the hypothetical channel between X2 and Y2 using GPC with X1 as

side information. In general, the message mi is transmitted through the hypothetical

channel between Xi and Yi using GPC with X1, X2, ..., Xi−1 as side information.

D. Brief History of WZC and GPC

Lossless source coding with side information at the decoder was introduced by Wyner

and Ziv in [103, 101]; the achievable region of this problem was addressed by Ahlswede

and Körner in [5] and by Wyner in [99, 100]. This problem can be viewed as a special

case of lossless distributed source coding, whose theoretical limit for two input sources

was found by Slepian and Wolf in [87] and by Gács-Körner in [42]. Due to the

renowned work of [87], lossless source coding with side information at the decoder is

also commonly known as asymmetric Slepian-Wolf Coding (SWC) or simply SWC.

The lossy source coding problem with side information at the decoder, i.e., the WZC

problem described in this thesis, was both introduced and solved theoretically by

Wyner and Ziv in [104].
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^

1
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Channel
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Channel
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Encoder

,

Combine

^

^
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Fig. 5. Broadcast channel coding implemented by GPC.

Channel coding with side information at the encoder was first addressed by

Shannon in [86]. However, he considered a causal case where future channel states

are not available to the transmitter. The noncausal case was first considered by

Kusnetsov and Tsybakov in [55], where channels with random defects and errors

were examined. The GPC problem studied in this thesis was a generalized version of

this problem and its capacity was found by Gel’fand and Pinsker in [47].

Wyner was the first who hinted a practical solution for SWC [105], which was

based on channel coding. However, his approach had been widely forgotten and

it was until 1999 when Pradhan and Ramchandran rediscovered it and presented

the first implementation [75]. Since then, it is commonly accepted that SWC is a

channel coding problem in nature. To achieve the theoretical limit, schemes based on

capacity approaching channel codes such as turbo code [12] and low-density parity-

check (LDPC) code [43, 59] were studied by numerous researchers in [45, 9, 4, 58]

and [84, 88, 26, 57], respectively.

For WZC, Zamir and Shamai proposed a nested coding scheme [112] that poten-

tially can reach the WZC limit. However, this is possible only when high dimensional
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lattice codes, which are very difficult to implement in practice, are used. In [75],

Pradhan and Ramchandran implemented a practical scheme based on trellis code,

which were then extended by Wang and Orchard in [96]. In [79], Rebollo-Monedero

et al. treated WZC as a quantization problem and attempted to solve it by optimal

quantizer design. The best result before our work was by Chou et al. described in

[21], which was based on a combination of turbo code and trellis coded quantization

[63].

The nested coding idea used in WZC was proposed for GPC by Zamir et al. in

[113]. Based on this idea, numerous attempts [72, 73, 41] have been made to use

advance channel codes to implement the nested code. However, this involves the

use of channel codes for source coding. This is a challenging problem that remains

open. Digital watermarking [91] has been an active research area since early 90’s.

However, most of the earlier work was ad hoc in nature [91, 49, 71]; a noteworthy

counterexample is spread spectrum watermarking introduced by Cox et al. in [34],

which borrows idea from spread spectrum communications [74]. In the late 90’s, it was

recognized in [35, 19, 65] that digital watermarking can be treated as a special case of

GPC. This opens a whole new perspective in approaching the digital watermarking

problem.

E. Organization of the Thesis

Although the theoretical limits of coding problems with side information are well-

known, their implementations are not. Therefore, we focus on their practical designs

in this thesis, which is organized as follows. In Chapter II, we review the theoretical

background of WZC and GPC, present a theoretical result regarding the successive

refinability of WZC, and describe a computational algorithm in finding theoretical
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limits for coding problems with side information in general. Chapter III is focused

on the practical design of SWC and WZC. We depict the SWC design based on low-

density parity-check (LDPC) code and describe a general paradigm dubbed Slepian-

Wolf coded quantization (SWCQ) for WZC. Chapter IV describes the practical design

of GPC in the sense of digital watermarking. Application examples are provided.

F. Contributions of the Thesis

The main contributions of the thesis are the following:

• An efficient algorithm to compute the theoretical limit of the coding problem

with side information for any discrete source and channel.

• Stating and proving that a general class of sources is successively refinable in

the WZC setting.

• An efficient design of SWC based on LDPC codes.

• A sufficient condition when the SWC performance is equivalent to the corre-

sponding LDPC code performance of conventional channel coding.

• A WZC paradigm that outperforms any previous scheme reported in the liter-

ature [108].

• Schematic connection between our WZC paradigm and entropy-coded quanti-

zation for classic source coding.

• An improved spread spectrum watermarking technique for general digital wa-

termarking problems.

• A novel AAC audio watermarking scheme.
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• Error concealment of AAC audio using digital watermarking.

G. Notations and Conventions

Empty set is represented by ø. We use the shorthanded notation xn
k for the sequence

xk, xk+1, ..., xn. When k > n, xn
k will be understood as a null sequence. Script

letters are used for the alphabets of random variables. A channel with the input

X and the output Y will be represented by X → Y . We always assume a binary

input channel X → Y with input alphabet {−1, 1} unless stated otherwise. Without

sacrificing clarity, we slightly abuse our notations in which an operation on a vector

is interpreted as that on the individual components. For example, f([x1, x2, x3]) ,

[f(x1), f(x2), f(x3)].
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CHAPTER II

THEORY OF WYNER-ZIV CODING AND GEL’FAND-PINSKER CODING

In this chapter, we will focus on the theoretical aspect of the two coding problems,

Wyner-Ziv Coding (WZC) [104] and Gel’fand-Pinsker Coding (GPC) [47]. In the first

section, we will present formal definitions for the problems and review their theoretical

limits. We will explain the duality of the two problems in Section IIB. In Section

IIC, we present a generalization of successive refinement from classic source coding

to WZC and our contribution on this area. To end this chapter, we will derive an

iterative algorithm in computing the theoretical limits of WZC and GPC problems.

A. Problem Setups and Theoretical Limits

1. Wyner-Ziv Coding

Given two identically and independently distributed (i.i.d.) and correlated sources X

and S with joint distribution pS,X(s, x), the WZC problem is the lossy compression

problem of X with S as side information provided only to the decoder. Define a

distortion mapping d(·, ·) : X × X → R, where X is the alphabet of X.1 For a

predefined distortion D, the minimum rate required to have the reconstructed X̂

satisfy E{d(X, X̂)} ≤ D is [104]

RWZ(D) = min
p(u|x)p(x̂|s,u)

:E[d(X,X̂)]≤D

I(U ; X)− I(U ; S), (2.1)

where U is an auxiliary random variable. Note that in general (2.1) itself is a optimiza-

tion problem. In Section IID, an efficient way to compute the rate-distortion function

1For simplicity, we assume the reconstructed X̂ shares the same alphabet X with
X.
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will be presented. Before that, we describe here two cases when the rate-distortion

function can be solved relatively easily.

a. Binary Symmetric Case

X and S are binary symmetric sources, the correlation between them is modelled as

a binary symmetric channel with crossover probability pZ and the distortion measure

is the Hamming distance. We can write X = S
⊕

Z, where Z is a Bernouli(pZ)

source. Then the rate-distortion function RZ(D) for Z serves as the performance

limit RX|S(D) of lossy coding of X given S at both the encoder and the decoder.

From [30] we have

RX|S(D) = RZ(D) =





H(pZ)−H(D), 0 ≤ D ≤ min{pZ , 1− pZ},
0, D > min{pZ , 1− pZ}.

(2.2)

On the other hand, the Wyner-Ziv rate-distortion function in this case is [104]

RWZ(D) = l.c.e{H(pZ ∗D)−H(D), (pZ , 0)}, 0 ≤ D ≤ pZ , (2.3)

the lower convex envelop of H(pZ ∗D)−H(D) and the point (D = pZ , R = 0), where

pZ ∗D = (1− pZ)D + (1−D)pZ .

For pZ ≤ 0.5, RWZ(D) ≥ RX|S(D) with equality only at two trivial distortion-

rate points: (pZ , 0) and (0, H(pZ)). See Fig. 6 for pZ = 0.27. Thus Wyner-Ziv coding

suffers rate loss in this binary symmetric case for not having the side information S at

the decoder. When D = 0, the Wyner-Ziv problem degenerates to the Slepian-Wolf

problem with RWZ(0) = RX|S(0) = H(X|S) = H(pZ).
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Fig. 6. RWZ(D) and RX|S(D) for the binary symmetric case with pZ = 0.27.

b. Quadratic Gaussian Case

X and S are zero mean and stationary Gaussian memoryless sources and the distor-

tion metric is MSE. Let the covariance matrix of X and S be Λ =




σ2
X %σXσS

%σXσS σ2
S




with |%| < 1, then [102]

RWZ(D) = RX|S(D) =
1

2
log+

[
σ2

X(1− %2)

D

]
, (2.4)

where log+x = max{logx, 0}. Surprisingly, there is no rate loss with Wyner-Ziv

coding in this quadratic Gaussian case!2 If S can be written as S = X + Z, with

2This result will be shown in Section IIC as a byproduct of the proof of successive
refinability of quadratic Gaussian sources.
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independent X ∼ N(0, σ2
X) and Z ∼ N(0, σ2

Z), then

RWZ(D) = RX|S(D) =
1

2
log+

[
σ2

Z

(1 + σ2
Z/σ2

X)D

]
. (2.5)

On the other hand, if X = S +Z, with independent S ∼ N(0, σ2
S) and Z ∼ N(0, σ2

Z),

then

RWZ(D) = RX|S(D) =
1

2
log+

(
σ2

Z

D

)
. (2.6)

2. Gel’fand-Pinsker Coding

Consider a memoryless channel with channel state information S. More precisely, the

output of the channel Y is probabilistic with distribution p(y|s, x) when the channel

input and channel state information are x and s, respectively. The GPC problem is

the channel coding problem when the channel state information S is given only to

the encoder. The maximum rate to have lossless transmission, i.e., the capacity of

the channel, is [47]

CGP = max
p(u|s)p(x|u,s)

I(U ; Y )− I(U ; S), (2.7)

where U is an auxiliary random variables. For some cases, we may want to constraint

the “power” of the channel input. Define a power mapping p(·, ·) : S × X → R,

where S and X are the alphabets of S and X, respectively. For a predefined power

constraint P , the capacity of the channel is

CGP (P ) = max
p(u|s)p(x|u,s)
:E[p(S,X)]≤P

I(U ; Y )− I(U ; S), (2.8)

a. Binary Symmetric Case

Consider the channel described by Y = S
⊕

X
⊕

Z, where X and Y are the input and

output of the channel and S, X and Z are independent. Let Z and S be Bernouli(pZ)

and Bernouli(pS) sources, respectively. Define the power measure as the Hamming
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weight of X. When S is given to both the encoder and decoder as side information,

the capacity-power function is [30]

CY |S(P ) = H(P ∗ pZ)−H(pZ), (2.9)

where P ∗ pZ = (1 − pZ)P + (1 − P )pZ . On the other hand, the Gel’fand-Pinsker

capacity-power function in this case is [77]

CGP (P ) = u.c.e.{H(P )−H(pZ), (0, 0)}, P ≤ 0.5, (2.10)

the upper concave envelop of H(P ) − H(pZ) and the point (P = 0, C = 0). For

P ≤ 0.5, CGP (P ) ≤ CY |S(P ) with equality only at two trival capacity-power points:

(0, 0) and (0.5, 1 − H(pZ)) (see Fig. 7 for pZ = 0.1). Thus Gel’fand-Pinsker coding

suffers capacity loss in this binary symmetric case for not having the side information

S at the decoder.

b. Quadratic Gaussian Case: Dirty Paper Coding

Consider a similar additive channel as the previous case, i.e., Y = X + S + Z, where

X and Y are the input and output of the channel and S,X and Z are independent.

Assume, however, S and Z are Gaussian with variances σ2
S and σ2

Z , respectively.

Consider S as the side information and use X2 as the power measure. We can think

of S as an interference known to the encoder but not the decoder. An interesting

analogy is writing a message over dirty paper; as a result the writer can tell for sure

where the dirt is but the reader cannot because the dirt and the written message may

not be distinguishable. Hence, this special case of GPC is also commonly known as

dirty paper coding. From [29], we have

CGP (P ) = CY |S(P ) =
1

2
log+ P

σ2
Z

, (2.11)
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Fig. 7. CGP (P ) and CY |S(P ) for the binary symmetric case with pZ = 0.1.

where log+ x = max{logx, 0}. Surprisingly, there is no capacity loss of Gel’fand-

Pinsker coding in this quadratic Gaussian case!

B. Duality of Wyner-Ziv Coding and Gel’fand-Pinsker Coding

The duality of WZC and GPC has been addressed by several research groups [32, 77,

10] and can be visualized if we concatenate the two setups as in Fig. 8. As shown

clearly in Fig. 8, the Gel’fand-Pinsker encoder essentially plays the same role as the

Wyner-Ziv decoder and so as the reconstructed X̂ in WZC and the channel input X

in GPC. Similarly, we can reverse the order of WZC and GPC in Fig. 8 to enable

us to visualize the duality between the Wyner-Ziv encoder and the Gel’fand-Pinsker

decoder. Table I summarizes the dual components of WZC and GPC.
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Wyner−Ziv Coding

Wyner−Ziv

Encoder

Gel’fand−Pinsker

Decoder|p(y s,x)
Wyner−Ziv Decoder/

Gel’fand−Pinsker Encoder
X/Xm Y m
^ ^

(side information)S

X

Gel’fand−Pinsker Coding

Fig. 8. Illustrating duality of WZC and GPC.

Table I. Dual components of WZC and GPC.

WZC GPC

X Y

X̂ X

S S

Encoder Decoder

Decoder Encoder

In [77], Pradhan et al. defines a stricter sense of duality in which the definition

requires the optimum setups (i.e., those achieve the rate-distortion function and the

capacity-power function) share the same joint distribution for both problem. However,

we will not go further detail into this kind of duality. Instead, we attempt to further

clarify the concept of duality via a specific example.

1. Duality Example: Quadratic Gaussian Case

We now depict in more detail the duality of the quadratic Gaussian cases in WZC and

GPC. However, to better illustrate the duality, we will reformat dirty paper coding
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(Gaussian GPC) into digital watermarking [49].

Watermarker

(a)

S Z

m X Y m̂
Encoder Decoder

Z

m Y m̂
Encoder Decoder

(b)

X

S

Extractor
Watermark

Fig. 9. Gaussian Gel’fand-Pinsker coding in different setups: (a) dirty paper coding

and (b) digital watermarking.

As shown in Fig. 9, the two setups are essentially the same. The only difference

is that the addition of S is done inside the encoder instead of the channel for the

digital watermarking case. As a result, there is a renaming of X, the output of the

encoder; X in the digital watermarking setup is now equivalent to X +S in the dirty

paper coding setup. Moreover, rather than considered as an interference, S is now

interpreted as a host signal into which an watermark is embedded. In a nutshell,

the object of digital watermarking is to maximize the robustness of the watermark

against noise for the fixed distortion of the watermarked signal. More background
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on the digital watermarking problem will be described later in Chapter IV. In the

following, we will describe a coding technique, namely nested coding, through which

the duality of Gaussian WZC and digital watermarking is exemplified.

Consider a code C and its subcode Ci ⊂ C, i = 0, 1, 2, ..., N − 1. We call this code

collection a nested code if Ci, i = 0, 1, 2, ..., N − 1, partition C. That is

C =
N−1⋃
i=0

Ci (2.12)

Ci ∩ Cj = ø,∀i, j, i 6= j (2.13)

This nested coding setup is used for WZC as follows. Given a source X, the en-

coder searches for the codeword c that is closest from X. This essentially “quantized”

x to c as in conventional source coding. However, instead of directly transmitting c

to the decoder, only the index of the subcode containing c will be sent. More pre-

cisely, the encoder transmits m to the decoder if c ∈ Cm. The rationale is as follows.

Assuming that the correlation between X and S are sufficiently large, the decoder

can correctly identify c out of Cm with high probability by reconstructing it simply

as the closest codeword from S.

For GPC, or digital watermarking in this case, the watermarker attempts to

embed a message m by modifying S and the amplitude of this modification should be

minimized to preserve the quality of the watermarked signal. To use the nested code

for GPC, for a message m, the encoder sends the codeword c in Cm that is closest

to S, whereas the decoder simply recover the message as the index of subset that

contains a codeword closest to the received watermarked signal Y . The encoding

and decoding procedures of both WZC and GPC are summarized in Table II, which

clearly manifests the duality of the two coding problems as the encoder of one is

exactly the same as the decoder of the other and vice versa.
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Table II. Encoding and decoding procedures of Gaussian WZC and Gaussian GPC

using nested code.

WZC GPC

Encoding Input: x Input: m, s

Output: m Output: c = arg min
c∈Cm

(s− c)2

if





c = arg min
c∈C

(x− c)2

c ∈ Cm

Decoding Input: m, s Input: y

Output: c = arg min
c∈Cm

(s− c)2 Output: m

if





c = arg min
c∈C

(y − c)2

c ∈ Cm

C. Successive Refinement of Wyner-Ziv Coding

In this section, we focus on successive refinement of the Wyner-Ziv problem described

in [89]. Similar to the problem in classic source coding [40], a successive refinement

coding scheme for the Wyner-Ziv problem consists of multi-stage encoders and de-

coders where each decoder uses all the information generated from previous encoding

stages and the side information, which could be different from stage to stage. We

call such a scheme successively refinable if the rate-distortion pair associated with

any stage falls on the same Wyner-Ziv rate-distortion curve given the corresponding

side information. It was shown in [89] that if the side information for all stages are

identical, the jointly Gaussian source with squared error distortion measure is succes-

sively refinable. We extend successive refinability from jointly Gaussian source to the

more general types of sources described by Pradhan et al. in [77]. In other words, we
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show that a source is successively refinable in the Wyner-Ziv setting as long as the

difference between the source and the side information is Gaussian and independent

of the side information. As a by-product, we give an alternative proof of a result in

[77] regarding no rate loss in WZC.

In the following, we review the definition of successive refinement and successive

refinability for the Wyner-Ziv problem. Our theoretical result is presented afterward.

1. Theoretical Background

Definition 1 (Successive refinement code [89]): An (n, M1, M2, D1, D2) succes-

sive refinement (SR) code for the source X with side information S1 and S2 consists

of a first-stage encoder-decoder pair (f1, g1):

f1 :X n → {1, 2, ..., M1}

g1 :{1, 2, ..., M1} × Sn
1 → X̂ n

and a second-stage (or refinement) encoder-decoder pair (f2, g2):

f2 :X n → {1, 2, ..., M2}

g2 :{1, 2, ..., M1} × {1, 2, ..., M2} × Sn
2 → X̂ n

such that E[d(Xn, g1(f1(X
n), Sn

1 ))] ≤ D1 and E[d(Xn, g2(f1(X
n), f2(X

n), Sn
2 ))] ≤ D2.

Definition 2 (Successive refinability [89]): A source X is said to be successively

refinable from D1 to D2 (D1 > D2) with side information S1 and S2 if for any

δ > 0 and ε > 0, there exists an (n, exp[n(RWZ,S1(D1) + δ)], exp[n(RWZ,S2(D2) −
RWZ,S1(D1)+δ)], D1+ε,D2+ε) SR code for some sufficiently large n, where RWZ,S1(D)
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and RWZ,S2(D) are the Wyner-Ziv rate-distortion functions with side information S1

and S2, respectively.

Successive refinement can be naturally extended to any finite number of stages.

We skip the formal definition of a multistage successive code, as it is a straightforward

extension of Definition 1. One degenerate, but important scenario, is when the side

information at all the decoding stages are the same. Under this situation, we repeat

the conditions given in [89] for successive refinability as follows:

A source X with identical side information S is K-stage successively refinable with

distortion levels D = (D1, D2, ..., DK), if and only if there exist random variables, U1,

U2, ..., UK , and K deterministic functions fk : Uk×S → X̂ , 1 ≤ k ≤ K, such that the

following conditions hold:

1. RX|S(Dk) = I(X; Uk|S) and E[d(X, fk(Uk, S))] ≤ Dk, k = 1, 2, ..., K

2. (U1, U2, ..., UK) ↔ X ↔ S

3. (U1, U2, ..., Uk−1) ↔ (Uk, S) ↔ X, k = 2, 3, ..., K.

2. Main Result

Proposition 1: Given a source X and common side information S for all refinement

stages, the Wyner-Ziv problem is successively refinable if X = S + Z, where Z ∼
N(0, σ2

Z) is the Gaussian noise, independent of S.

Proof. Construct U = X + T as the auxiliary random variable, where T ∼ N(0, σ2
T )

is independent of X as shown in Fig. 10, then



23

Z

UXS

T

Fig. 10. Optimum setup of the Wyner-Ziv problem for X = S + Z.

R = I(X; U)− I(S; U)

= H(U)−H(U |X)−H(U) + H(U |S)

= −H(X + T |X) + H((S + Z) + T |S)

= −H(T ) + H(Z + T )

=
1

2
log+ σ2

Z + σ2
T

σ2
T

, (2.14)

where log+ x = max{log x, 0}. Let X̂ = aS + bU be the MMSE linear estimate of X

given S and U , then from E[(X̂ −X)S] = E[(X̂ −X)U ] = 0, we have

a =
σ2

T

σ2
Z + σ2

T

, b =
σ2

Z

σ2
Z + σ2

T

,

and

D = E[(X − X̂)2] =
σ2

T σ2
Z

σ2
Z + σ2

T

. (2.15)

Substitute (2.15) into (2.14), we get

R =
1

2
log+ σ2

Z

D
=

1

2
log+

σ2
X|S
D

= RX|S(D). (2.16)

Since (2.16) coincides with the rate-distortion function when side information is also

given to the encoder, the setup in Fig. 10 must be optimal. Hence

R∗(D) =
1

2
log+ σ2

Z

D
.
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Now, we attach a second stage to further decompose U into T ′ and U ′ as in Fig.

11, where T ′ ∼ N(0, σ2
T ′) is independent of U . We can consider T + T ′ as a Gaussian

random variable and this reduces our setup to the one in the previous case in Fig. 10.

Thus we also achieve the Wyner-Ziv bound with the auxiliary random variable U ′.

To refine from distortion D1 (with the first stage auxiliary random variable U ′)

to distortion D2 (with the second stage auxiliary random variable U), we can set

σ2
T =

σ2
Z

σ2
Z

D2
− 1

(2.17)

and

σ2
T + σ2

T ′ =
σ2

Z

σ2
Z

D1
− 1

.

This gives us

σ2
T ′ =

σ4
Z(D1 −D2)

(σ2
Z −D1)(σ2

Z −D2)
. (2.18)

This is possible since both σ2
T and σ2

T ′ in (2.17) and (2.18) are positive. Hence,

condition (1) in Section 1 is satisfied. The other two Markov conditions (2) and

(3) can be readily verified from the setup. We can further decompose U ′ and apply

similar arguments when we have more than two stages.

Remark 1: We can conclude from (2.16) that the Wyner-Ziv problem has no rate

loss in this general case with X = S + Z. This constitutes a direct proof of a result

that was first obtained in [77, p.1194] by invoking the duality between the Wyner-Ziv

problem and the Costa problem [29].

Remark 2: We can show with slight modification in the above proof that the Wyner-

Ziv problem is also successive refinable with X = g(S) + Z when g(·) is a one-to-one

mapping and Z is Gaussian and independent of S. This is because the decoder
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can treat g(S) as the actual side information. There is no loss in doing so, i.e.,

I(U ; X) − I(U ; S) = I(U ; X) − I(U ; g(S)), because g(·) is one-to-one and thus the

Markov chain S ↔ g(S) ↔ U holds.

Remark 3: We do not claim that all sources that have no rate loss in WZC are

successively refinable. This is because successive refinability and no rate loss in WZC

are two different concepts. Note that although Equitz and Cover [40] demonstrated

a source that is not successively refinable in the classic setting (without side infor-

mation), this source was shown by Steinberg and Merhav [89] to be successively

refinable in the presence of identical side information. We conjecture that there are

non-successively refinable sources (with or without rate loss) in the Wyner-Ziv set-

ting, but we are not able to come up with an example. On the other hand, we know

that the doubly symmetric binary source (with Hamming distance measure) has rate

loss but is successively refinable with WZC.

Equipped with Proposition 1 and Remark 2, we are able to give a short proof

that the Wyner-Ziv problem for any jointly Gaussian source is successively refinable.

Corollary 1: The Wyner-Ziv problem is successively refinable if the same side infor-

mation S, which is jointly Gaussian with the source X, is used in all stages.

Proof. We can model any joint Gaussian pair (S,X) as X = αS + Z, where α =

E[XS]−E[X]E[S]
E[S2]−E2[S]

and Z is Gaussian random variable with the mean E[Z] = E[S2]E[X]−E[S]E[SX]
E[S2]−E2[S]

and the variance σ2
Z = E[(X − αS)2]−E2[Z] and independent of S. Then the proof

follows from Remark 2 and Proposition 1 immediately.
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Fig. 11. Successive refinement with side information for X = S + Z.

D. Computing Theoretical Limits Using Iterative Algorithm

In the beginning of this chapter, we explain that the capacity and rate-distortion

function of GPC and WZC are expressed as optimization problems. Unless for some

restrictive setups, like the Gaussian and binary symmetric cases, these theoretical

limits cannot be found analytically. Hence, the goal of this section is to derive an

algorithm in finding these theoretical limits for general cases. However, instead of

directly tackling GPC and WZC, we look into the even more general setups when

two different pieces of side information, S1 and S2, are given to encoder and decoder,

respectively. In [32], the authors showed that the capacity and the rate-distortion

function for the corresponding problems are given as

C = max
q(u|s1)q′(x|u,s1)

I(U ; Y, S2)− I(U ; S1) (2.19)

and

R(D) = min
q(u|s1,x)q′(x̂|s2,u)

:E[d(X,X̂)]≤D

I(U ; X, S1)− I(U ; S2), (2.20)

where X and Y are the input and the output in the channel coding problem, and

X and X̂ are the source input and the reconstructed output in the source coding

problem. In both problems, S1 and S2 are side information at the encoder and the

decoder, respectively, and U is an auxiliary random variable. Apparently, like in WZC
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and GPC, (2.19) and (2.20) themselves are optimization problems that are not trivial

to solve. We will illustrate shortly that (2.19) and (2.20) can be computed using

iterative algorithms. The main idea, divide-and-conquer, was used in the renowned

papers by Blahut [13] and by Arimoto [7], where algorithms in computing the channel

capacity and rate-distortion function without side information are devised. First, the

optimization problem is divided into easier (convex/concave optimization) problems

in which only a subset of variables are optimized with the rest fixed. Then, the

solution to the partial optimization problem is fed into another sub-problem and

another subset of variables is optimized. The algorithm will continue to iterate until

all variables are optimized. This optimization technique was generalized in [36], where

the EM algorithm [38] was included as a special case.

In the following subsections, we will derive our iterative algorithms, which resem-

ble the algorithm in computing the capacity of defective computer memory in [50].

However, a simpler proof of convergence described in [111] is adopted. Two numerical

examples are given in the last section to demonstrate our iterative algorithms.

1. Channel Capacity

We now derive our iterative algorithm in computing the capacity of the channel coding

problem with two-sided state information described in Section IID. From (2.19),

C = max
q′(x|u,s1)q(u|s1)

∑
s1,s2,u,x,y

p(s1, s2)q(u|s1)q
′(x|u, s1)p(y|x, s1, s2) log

Q0(u|y, s2)

q(u|s1)
,

where p(s1, s2) and p(y|x, s1, s2) are determined by the channel and

Q0(u|y, s2) ,

∑
x,s1

p(s1, s2)q(u|s1)q
′(x|u, s1)p(y|x, s1, s2)

∑
x,s1,u

p(s1, s2)q(u|s1)q′(x|u, s1)p(y|x, s1, s2)
.
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Define the functional

F (q, q′, Q) =
∑

s1,s2,u,x,y

p(s1, s2)q(u|s1)q
′(x|u, s1)p(y|x, s1, s2) log

Q(u|y, s2)

q(u|s1)
,

and we have the following lemma.

Lemma 1:

C = max
q′(x|u,s1)q(u|s1)

max
Q(u|y,s2)

F (q, q′, Q). (2.21)

Proof. Since C = max
q′(x|u,s1)q(u|s1)

F (q, q′, Q0), it suffices to show

F (q, q′, Q0) = max
Q(u|y,s2)

F (q, q′, Q), which is true because for any Q,

F (q, q′, Q)− F (q, q′, Q0)

=
∑

s1,s2,u,x,y

p(s1, s2)q(u|s1)q
′(x|u, s1)p(y|x, s1, s2) log

Q(u|y, s2)

Q0(u|y, s2)

(a)

≤
∑

s1,s2,u,x,y

p(s1, s2)q(u|s1)q
′(x|u, s1)p(y|x, s1, s2)

(
Q(u|y, s2)

Q0(u|y, s2)
− 1

)
= 0,

where the equality in (a) is achieved if Q = Q0.

Lemma 1 is the key step of our algorithm. By introducing F (·, ·, ·), we can find

the capacity via optimizing variables q, q′ and Q one at a time alternatively. It is

already known from Lemma 1 that the optimal Q is simply Q0. Now for q, we have

the following lemma.

Lemma 2: For fixed q′ and Q, F (q, q′, Q) is maximized by

q∗(u|s1) =

exp
∑

s2,x,y

p(s2|s1)q
′(x|u, s1)p(y|x, s1, s2) log Q(u|y, s2)

∑
u

exp
∑

s2,x,y

p(s2|s1)q′(x|u, s1)p(y|x, s1, s2) log Q(u|y, s2)
(2.22)
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and

F (q∗, q′, Q) =
∑
s1

p(s1) max
u

∑
s2,x,y

p(s2|s1)q
′(x|u, s1)p(y|x, s1, s2) log

Q(u|y, s2)

q(u|s1)
.

(2.23)

Proof. For fixed q′ and Q, F (q, q′, Q) is maximized by q∗(u|s1) if and only if the

following Kuhn-Tucker conditions are satisfied:

∂F

∂q

∣∣∣∣
q∗

= γs1 , if q∗(u|s1) > 0, (2.24)

and

∂F

∂q

∣∣∣∣
q∗
≤ γs1 , if q∗(u|s1) = 0. (2.25)

Since ∂F
∂q

=
∑

s2,x,y

p(s1, s2)q
′(x|u, s1)p(y|x, s1, s2)

(
log Q(u|y,s2)

q(u|s1)
− 1

)
, the first Kuhn-

Tucker condition (2.24) becomes

∑
s2,x,y

p(s1, s2)q′(x|u, s1)p(y|x, s1, s2) log
Q(u|y, s2)
q(u|s1)

= γ̃s1 , (2.26)

where γ̃s1 depends only on s1. Then, (2.22) follows easily from (2.26) after some

manipulation. For the second part, note that

F (q, q′, Q)

=
∑
s1,u

p(s1)q(u|s1)
∑
s2,x,y

p(s2|s1)q
′(x|u, s1)p(y|x, s1, s2) log

Q(u|y, s2)

q(u|s1)

≤
∑
s1

p(s1) max
u

∑
s2,x,y

p(s2|s1)q
′(x|u, s1)p(y|x, s1, s2) log

Q(u|y, s2)

q(u|s1)
,

where equality holds when the Kuhn-Tucker conditions, and hence (2.26), are satis-

fied. That is, when q is equal to the optimal q∗.

The results of Lemmas 1 and 2 can be summarized in the following corollary.
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Corollary 1: For fixed q′, F (q, q′, Q) is maximized by q∗ and Q∗ if

F (q∗, q′, Q∗) =
∑
s1

p(s1) max
u

∑
s2,x,y

p(s2|s1)q
′(x|u, s1)p(y|x, s1, s2) log

Q0(u|y, s2)

q(u|s1)
, AF .

(2.27)

Now, to optimize q′ for fixed q and Q, note that

F (q, q′, Q) =
∑
s1,u,x

p(s1)q(u|s1)q
′(x|u, s1)

∑
s2,y

p(s2|s1)p(y|x, s1, s2) log
Q(u|y, s2)

q(u|s1)

≤
∑
s1,u

p(s1)q(u|s1) max
x

∑
s2,y

p(s2|s1)p(y|x, s1, s2) log
Q(u|y, s2)

q(u|s1)
︸ ︷︷ ︸

f(x,u,s1)

, BF . (2.28)

The equality holds if we select

q′(x|u, s1) =





1, if f(x, u, s1) = max
x′

f(x′, u, s1),

0, otherwise.
(2.29)

Note that there may be more than one q′’s that optimize F . Let Sq′(q, Q) be the set

of q′’s that achieves the maximum, then ||Sq′(q, Q)|| ≤ ||X ||||U×S1|| is finite, where U
and S1 are the alphabets of U and S1, respectively. Combining (2.28) and Corollary

1, we have

Corollary 2:

F (q, q′, Q) ≤
∑
s1

p(s1) max
u

max
x

∑
s2,y

p(s2|s1)p(y|x, s1, s2) log
Q(u|y, s2)

q(u|s1)
, CF

and equality holds if q′ optimizes F (q, q′, Q) with the rest two variables fixed and q

and Q optimize F (q, q′, Q) with q′ fixed.

Note that F (q, q′, Q) = CF does not promise F (q, q′, Q) = C since there are more

than one optimal q′’s in general. However, if F (q, q′, Q) = CF for all q′ ∈ Sq′(q,Q),
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then F (q, q′, Q) = C.

The overall algorithm for computing C in (2.19) is summarized in Fig. 12. We

initialize q(u|s1) as 1
||U|| and q′(x|u, s1) as random Kronecker delta functions of x for

fixed u and s1. We first optimize q and Q for fixed q′; F will then be compared with AF

to determined if q and Q are optimum. If so, q′ will be updated as a unused element

from Sq′(q, Q). The process repeats until all elements in Sq′(q, Q) are exhausted.

Proof of Convergence

We adopt a simpler proof of convergence introduced by Yueng in [111, Chapter

10], which shows that a two-step iterative maximization algorithm converge to the

global optimum if the optimization function is concave. Therefore for fixed q′ , our

algorithm will converge to the general optimal q∗(q′) and Q∗(q′) since the following

lemma holds.

Lemma 3: F (q, q′, Q) is concave over q and Q for fixed q′.

Proof. By the log-sum inequality, for an arbitrary γ ≤ 1 and γ̄ = 1− γ,

(γq1(u|s1) + γ̄q2(u|s1)) log
γq1(u|s1) + γ̄q2(u|s1)

γQ1(u|y, s2) + γ̄Q2(u|y, s2)

≤γq1(u|s1) log
q1(u|s1)

Q1(u|y, s2)
+ γ̄q2(u|s1) log

q2(u|s1)

Q2(u|y, s2)
.

(2.30)

Taking reciprocal in the logarithms, multiplying both sides by p(s1, s2)q
′(x|u, s1)p(y|x, s1, s2),

and summing over s1, s2, u, x, and y, we obtain

F (γq1 + γ̄q2, q
′, γQ1 + γ̄Q2) ≥ γF (q1, q

′, Q1) + γ̄F (q2, q
′, Q2).

Once q and Q are optimized, q′ is updated by (2.29). Since F is strictly increasing

in the algorithm and the number of q′’s is finite, F will ultimately converge to the

global optimum C.
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Fig. 12. Algorithm for computing capacity of a channel with side information.



33

2. Rate-Distortion Function

The iterative algorithm for computing the rate-distortion function with two-side state

information is similar to that for capacity computation described in Section IID.1.

However, the additional distortion constraint has to be taken into account. Using the

standard Lagrange multiplier technique, we convert (2.20) into

R(D) = min
q(u|s1,x),q′(x̂|s2,u)

I(U ; X, S1)− I(U ; S2) + µ(E[d(X, X̂)]−D), (2.31)

where µ, the Lagrange multiplier, rather than D is the actual input of computation.

Both D and R(D) are generated at the point where the R(D) curve has slope −µ.

After optimization, D can be computed as

D =
∑

s1,s2,x,u,x̂

q∗(u|s1, x)q′∗(x̂|s2, u)d(x, x̂),

where q∗(u|s1, x) and q′∗(x̂|s2, u) being the optimum conditional probabilities. Ex-

pand (2.31) and we have

R(D) = min
q(u|s1,x),q′(x̂|s2,u)

∑

s1,s2,x,u,x̂

p(s1, s2, x)q(u|s1, x)q′(x̂|s2, u) log
q(u|s1, x)

Q0(u|s2)

+ µ

( ∑

s1,s2,x,u,x̂

p(s1, s2, x)q(u|s1, x)q′(x̂|s2, u)d(x, x̂)−D

)
,

where Q0(u|s2) is the conditional probability induced by p(s1, s2, x), q(u|s1, x), and

q′(x̂|s2, u). That is, Q0(u|s2) ,
∑

s1,x,x̂
p(s1,s2,x)q(u|s1,x)q′(x̂|s2,u)

∑
s1,x,x̂,u

p(s1,s2,x)q(u|s1,x)q′(x̂|s2,u)
.

Define the functional
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G(q, q′, Q) =
∑

s1,s2,x,u,x̂

p(s1, s2, x)q(u|s1, x)q′(x̂|s2, u) log
q(u|s1, x)

Q(u|s2)

+ µ
∑

s1,s2,x,u,x̂

p(s1, s2, x)q(u|s1, x)q′(x̂|s2, u)d(x, x̂),

and we have the following lemma in contrast to Lemma 1.

Lemma 4:

R(D) = min
q(u|s1,x),q′(x̂|s2,u)

min
Q(u|s2)

G(q, q′, Q)− µD. (2.32)

Proof. Since R(D) = min
q(u|s1,x),q′(x̂|s2,u)

(G(q, q′, Q0)−µD) = min
q(u|s1,x),q′(x̂|s2,u)

G(q, q′, Q0)−
µD. It suffices to show

min
Q(u|s2)

G(q, q′, Q) = G(q, q′, Q0),

which is true because for any Q,

G(q, q, Q0)−G(q, q′, Q)

=
∑

s1,s2,x,u,x̂

p(s1, s2, x)q(u|s1, x)q′(x̂|s2, u) log
Q(u|s2)

Q0(u|s2)

≤
∑

s1,s2,x,u,x̂

p(s1, s2, x)q(u|s1, x)q′(x̂|s2, u)

(
Q(u|s2)

Q0(u|s2)
− 1

)

= 0,

where equality is achieved if Q = Q0.

Just as Lemma 1 in the capacity computation algorithm, Lemma 4 is the key

step of the rate-distortion computation algorithm. We can now find the minimum

rate R by optimizing variables q, q′, and Q one at a time alternatively. The optimal

value of Q is Q0 from Lemma 4. Now to optimize q, we have the following lemma in

contrast to Lemma 2.
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Lemma 5: For fixed q′ and Q, G(q, q′, Q) is minimized by

q∗(u|s1, x) =

exp

[
∑
s2

p(s2|s1, x) log Q(u|s2)− µ
∑
s2,x̂

p(s2|s1, x)q′(x̂|s2, u)d(x, x̂)

]

∑
u

exp

[
∑
s2

p(s2|s1, x) log Q(u|s2)− µ
∑
s2,x̂

p(s2|s1, x)q′(x̂|s2, u)d(x, x̂)

]

(2.33)

and

G(q∗, q′, Q) =
∑
s1,x

p(s1, x) min
u

[∑

s2,x̂

p(s2|s1, x)q′(x̂|s2, u) log
q(u|s1, x)

Q(u|s2)

+ µ
∑

s2,x̂

p(s2|s1, x)q′(x̂|s2, u)d(x, x̂)

]
.

(2.34)

Proof. For fixed q′ and Q, G(q, q′, Q) is minimized if and only if the following Kuhn-

Tucker conditions are satisfied:

∂G

∂q

∣∣∣∣
q∗

= γs1,x, if q∗(u|s1, x) > 0, (2.35)

and

∂G

∂q

∣∣∣∣
q∗
≤ γs1,x, if q∗(u|s1, x) = 0. (2.36)

Since

∂G

∂q
=

∑

s2,x̂

p(s1, s2, x)q′(x̂|s2, u)

(
log

q(u|s1, x)

Q(u|s2)
+ 1

)

+ µ
∑

s2,x̂

p(s1, s2, x)q′(x̂|s2, u)d(x, x̂),

(2.37)
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the first Kuhn-Tucker condition (2.35) becomes

∑

s2,x̂

p(s2|s1, x)q′(x̂|s2, u) log
q(u|s1, x)

Q(u|s2)
+ µ

∑

s2,x̂

p(s2|s1, x)q′(x̂|s2, u)d(x, x̂) = γ̃s1,x,

(2.38)

where γ̃s1,x depends only on s1 and x. Then (2.33) follows from (2.38) after some

manipulation. For the second part, note that

G(q, q′, Q)

=
∑
u,s1,x

p(s1, x)q(u|s1, x)

[∑

s2,x̂

p(s2|s1, x)q′(x̂|s2, u) log
q(u|s1, x)

Q(u|s2)

+ µ
∑

s2,x̂

p(s2|s1, x)q′(x̂|s2, u)d(x, x̂)

]

≤
∑
s1,x

p(s1, x) min
u

[∑

s2,x̂

p(s2|s1, x)q′(x̂|s2, u) log
q(u|s1, x)

Q(u|s2)

+ µ
∑

s2,x̂

p(s2|s1, x)q′(x̂|s2, u)d(x, x̂)

]
,

where equality holds when the Kuhn-Tucker conditions, hence (2.38), are satisfied.

That is when q is equal to the optimal q∗.

In contrast to Corollary 1, Lemmas 4 and 5 can be summarized by the following

corollary.

Corollary 3: For fixed q′, G(q, q′, Q) is minimized by q∗ and Q∗ if
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G(q∗, q′, Q∗)

=
∑
s1,x

p(s1, x) min
u

[∑

s2,x̂

p(s2|s1, x)q′(x̂|s2, u) log
q(u|s1, x)

Q0(u|s2)

+µ
∑

s2,x̂

p(s2|s1, x)q′(x̂|s2, u)d(x, x̂)

]
, AG.

(2.39)

To optimize q′ for fixed q and Q, note that

G(q, q′, Q)

=
∑

x̂,u,s2

q′(x̂|s2, u)

[∑
s1,x

p(s1, s2, x)q(u|s1, x)

(
log

q(u|s1, x)

Q(u|s2)
+ µd(x, x̂)

)]

︸ ︷︷ ︸
g(u,s2,x̂)

≤
∑
u,s2

min
x̂

g(u, s2, x̂) , BG, (2.40)

where equality holds if we select

q′(x̂|u, s2) =





1, if g(x̂, u, s2) = minx̂′ g(x̂′, u, s2),

0, otherwise.
(2.41)

Similar to that in the channel coding problem, there may be more than one q′’s

that optimize G. Let Sq′(q,Q) be the set of q′’s that achieves the minimum, then

||Sq′(q, Q)|| ≤ ||X̂ ||||U×S2||.

Unlike in capacity computation, we need to verify both conditions, G = AG

and G = BG, for optimality since there is no simple way in combining (2.39) and

(2.40). However, as in capacity computation, even when both conditions are satisfied,

G(q, q′, Q) may not be the global optimal since there are more than one optimal q′’s

in general. However, if the above two conditions are satisfied for all q′ ∈ Sq′(q,Q),

then R(D) = G(q, q′, Q)− µD.
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The overall algorithm is summarized in Fig. 13. The procedure is similar to that

for capacity computation.

Proof of Convergence

The same argument is used as in the channel coding case except that the maxi-

mization problem is replaced by a minimization one. Therefore we only need to show

the following lemma to prove convergence.

Lemma 6: G(q, q′, Q) is convex over q and Q for fixed q′.

Proof. Using the log-sum inequality, we can show
∑

s1,s2,x,u,x̂

p(s1, s2, x)q(u|s1, x)q′(x̂|s2, u) log q(u|s1,x)
Q(u|s2)

to be convex over q and Q for fixed

q′. Since µ
∑

s1,s2,x,u,x̂

p(s1, s2, x)q(u|s1, x)q′(x̂|s2, u)d(x, x̂) is linear with respect to q and

Q. The sum of the two expressions, i.e., G, is convex.

3. Capacity-Power Function

In some cases, it is necessary to constrain the transmission power in a communication

system. The transmission power is only a function of X in conventional communi-

cation system. However, to allow channel coding to model other problems such as

watermarking, a more general power function p(S1, S2, X) that also depends on S1 is

considered here. Hence the capacity-power function is

C(P ) = max
q(u|s1)q′(x|s1,u)

:E[p(S1,S2,X)]≤P

I(U ; Y, S2)− I(U ; S1). (2.42)

The derivation of the capacity-power function is almost the same as the previous two

cases. Hence, we will only state the results and skip all the proofs. Using the standard

Lagrange multiplier technique, we convert (2.42) into

C(P ) = max
q(u|s1)q′(x|s1,u)

I(U ; Y, S2)− I(U ; S1)− µ(E[p(S1, S2, X)]− P ), (2.43)
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Fig. 13. Algorithm for computation of rate-distortion function with side information
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where µ, the Lagrange multiplier, rather than P is the actual input of computation.

Both P and C(P ) are generated at the point where C(P ) curve has slope µ. After

optimization, P can be computed as

P =
∑
s1,x,u

p(s1)q
∗(u|s1)q

′∗(x|s1, u)p(s1, s2, x),

where q∗(u|s1) and q′∗(x|s1, u) being the optimum conditional probabilities. Expand

(2.43) and we have

C(P ) = max
q′(x|u,s1)q(u|s1)

∑
s1,s2,u,x,y

p(s1, s2)q(u|s1)q
′(x|u, s1)p(y|x, s1, s2) log

Q0(u|y, s2)

q(u|s1)

− µ

( ∑
s1,x,u

p(s1)q(u|s1)q
′(x|s1, u)p(s1, s2, x)− P

)
,

where Q0(u|y, s2) is the conditional probability induced by p(s1, s2), q(u|s1), q′(x|u, s1),

and p(y|x, s1, s2). That is,

Q0(u|y, s2) ,

∑
x,s1

p(s1, s2)q(u|s1)q
′(x|u, s1)p(y|x, s1, s2)

∑
x,s1,u

p(s1, s2)q(u|s1)q′(x|u, s1)p(y|x, s1, s2)
.

Define the functional

Fc(q, q
′, Q) =

∑
s1,s2,u,x,y

p(s1, s2)q(u|s1)q
′(x|u, s1)p(y|x, s1, s2) log

Q(u|y, s2)

q(u|s1)

− µ
∑
s1,x,u

p(s1)q(u|s1)q
′(x|s1, u)p(s1, s2, x),

and we have the following lemma in contrast to Lemmas 1 and 4.

Lemma 7:

C(P ) = max
q(u|s1),q′(x|s1,u)

max
Q(u|y,s2)

Fc(q, q
′, Q) + µP. (2.44)

From Lemma 7, we can find C(P ) by maximizing Fc one variable at a time. It is

already known that the optimum Q is Q0. To optimize q, we have the following
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lemma in contrast to Lemmas 2 and 5.

Lemma 8: For fixed q′ and Q, Fc(q, q
′, Q) is maximized by

q∗(u|s1, x) =

exp

[ ∑
s2,x,y

p(s2|s1)q
′(x|s1, u)p(y|x, s1, s2)[log Q(u|y, s2)− µp(x, s1)]

]

∑
u

exp

[ ∑
s2,x,y

p(s2|s1)q′(x|s1, u)p(y|x, s1, s2)[log Q(u|y, s2)− µp(x, s1)]

]

(2.45)

and

Fc(q
∗, q′, Q)

=
∑
s1

p(s1) max
u

∑
s2,x,y

[
p(s2|s1)q

′(x|u, s1)p(y|x, s1, s2)

(
log

Q(u|y, s2)

q(u|s1)
− µp(s1, s2, x)

)]
.

Lemmas 7 and 8 can be summarized by the following corollary in contrast to

Corollaries 1 and 3.

Corollary 4: For fixed q′, Fc(q, q
′, Q) is minimized by q∗ and Q∗ if

Fc(q
∗, q′, Q∗)

=
∑
s1

p(s1) max
u

∑
s2,x,y

[
p(s2|s1)q

′(x|u, s1)p(y|x, s1, s2)

(
log

Q0(u|y, s2)

q(u|s1)
− µp(s1, s2, x)

)]

,AFc.
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Now, To optimize q′ for fixed q and Q, note that

Fc(q, q
′, Q)

=
∑
s1,u,x

p(s1)q(u|s1)q
′(x|u, s1)

∑
s2,y

[
p(s2|s1)p(y|x, s1, s2)

(
log

Q(u|y, s2)

q(u|s1)
− µp(s1, s2, x)

)]

=
∑
s1,u

p(s1)q(u|s1) max
x

∑
s2,y

[
p(s2|s1)p(y|x, s1, s2)

(
log

Q(u|y, s2)

q(u|s1)
− µp(s1, s2, x)

)]

︸ ︷︷ ︸
fc(x,u,s1)

,BFc. (2.46)

The equality holds if we select

q′(x|u, s1) =





1, if fc(x, u, s1) = max
x′

fc(x
′, u, s1),

0, otherwise.
(2.47)

Like the previous two cases, since there may be more than one q′’s that optimize

Fc, let Sq′(q,Q) be the set of q′’s that achieves the maximum, then ||Sq′(q, Q)|| ≤
||X ||||U×S1|| is finite, where U and S1 are the alphabets of U and S1, respectively.

Combining (2.46) and Corollary 4, we have the following corollary in contrast to

Corollary 2.

Corollary 5:

Fc(q, q
′, Q)

≤
∑
s1

p(s1) max
u

max
x

∑
s2,y

[
p(s2|s1)p(y|x, s1, s2)

(
log

Q(u|y, s2)

q(u|s1)
− µp(s1, s2, x)

)]
, CFc

and equality holds if q′ optimizes Fc(q, q
′, Q) with the rest two variables fixed and q

and Q optimize Fc(q, q
′, Q) with q′ fixed.

Like capacity computation without power constraint, Fc(q, q
′, Q) = CFc does not

promise Fc(q, q
′, Q) to be the global optimal since there are more than one optimal
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q′’s in general. However, if Fc(q, q
′, Q) = CFc for all q′ ∈ Sq′(q,Q), then C(P ) =

Fc(q, q
′, Q) + µP .

The overall algorithm is summarized in Fig. 14. The procedure is very similar

to those in the previous two cases.

Proof of Convergence

Similar to previous cases, we need to show the following lemma to prove conver-

gence.

Lemma 9: Fc(q, q
′, Q) is concave over q and Q for fixed q′.

Proof. From Lemma 3, F (q, q′, Q) is concave. Since Fc(q, q
′, Q) = F (q, q′, Q) −

µE[p(S1, S2, X)] and µE[p(S1, S2, X)] is linear with respect to q and Q, Fc(q, q
′, Q) is

concave.

4. Numerical Examples

In this section, we provide numerical examples for our iterative algorithms. As we

shall see, while the setups of these examples are rather simple, the results are highly

non-trivial.

Example 1: Binary Symmetric Channel with Channel State Information

Consider a binary symmetric channel Y = X
⊕

τ
⊕

Z as shown in Fig. 15,

where X is the channel input and τ and Z are the channel noises. The transition

probability of τ is fixed to be Pτ , whereas the transition probability of Z can take two

different values and is controlled by a binary random variable θ with p(θ = 1) = pθ

as follows:

PZ =





PZ1 , if θ = 1,

PZ0 , if θ = 0.
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Fig. 14. Algorithm for computation of capacity-power function with side information
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θ

Fig. 15. Binary symmetric channel with channel state information θ and τ .

Consider θ and/or τ as channel state information that may be available to the encoder

and decoder. Since each coder can have 4 combination of side information (with both

state information, with only θ, with only τ , or with none of them), there are totally

16 different cases.

We use our algorithm described in Section IID.1 with Pτ = 0.5, PZ1 = 0.001,

and PZ0 = 0.3. Since Pτ = 0.5, when τ is not given to either coder, X and Y are

effectively independent and hence for all these 4 cases, the channel capacity is simply

0. This is verified in our result. More interestingly, the 16 cases can be grouped into

only 3 cases as shown in Table III, where the capacity for each case is plotted in Fig.

16. Furthermore, when τ is available at either coder, we can reach the higher capacity

C2 only if θ is available at the decoder.

Example 2: Binary Symmetric Source with Side Information

Consider the source generated by passing an all-zero sequence through the binary
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Table III. Channel capacities for different cases in Example 1. (C1 and C2 are illus-

trated in Fig. 16 for different Pθ’s.)

Capacity Cases

0
S1 = ø, S2 = ø; S1 = {θ}, S2 = ø;

S1 = ø, S2 = {θ}; S1 = {θ}, S2 = {θ}

C1

S1 = ø, S2 = {τ}; S1 = {τ}, S2 = ø;

S1 = {θ}, S2 = {τ}; S1 = {τ}, S2 = {τ};
S1 = {θ, τ}, S2 = ø; S1 = {θ, τ}, S2 = {τ}

C2

S1 = ø, S2 = {θ, τ}; S1 = {τ}, S2 = {θ};
S1 = {θ}, S2 = {θ, τ}; S1 = {τ}, S2 = {θ, τ};
S1 = {θ, τ}, S2 = {θ}; S1 = {θ, τ}, S2 = {θ, τ}

symmetric channel described in Example 1 (see Fig. 15) and assume the same numer-

ical setting with pτ = 0.5, pZ1 = 0.01, and pZ0 = 0.3. We compute the rate-distortion

functions for this source when pθ = 0.5. Like in the previous example, τ and/or θ

may be provided to the source encoder and decoder as side information, and hence

we have totally 16 different cases. Interestingly, these 16 cases can be grouped into

only 5 cases as shown in Table IV, where the rate-distortion function for each case is

plotted in Fig. 17. The reasons of some of these degenerate cases are apparent. For

instance, if τ is given to neither the encoder nor the decoder, the source is effectively

just a binary symmetric source regardless of the availability of θ. Hence, the rate-

distortion function for these cases should be the same as that for a binary symmetric

source with completely no side information. Another interesting observation is that

side information is not helpful if it is provided to the encoder alone; for instance, the

case S1 = ø, S2 = ø and the case S1 = {θ, τ}, S2 = ø share the same rate-distortion
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Fig. 16. Channel capacity C versus pθ for different cases in Example 1.

function. This is consistent with the classic result by Berger in [11].
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Table IV. Rate-distortion function for different cases in Example 2. (R1(D), R2(D),

R3(D), R4(D), and R5(D) are illustrated in Fig. 17 for different µ’s.)

R-D Cases

function

R1(D)

S1 = ø, S2 = ø; S1 = {θ}, S2 = ø;

S1 = ø, S2 = {θ}; S1 = {θ}, S2 = {θ};
S1 = {τ}, S2 = ø; S1 = {τ}, S2 = {θ};
S1 = {θ, τ}, S2 = ø; S1 = {θ, τ}, S2 = {θ}

R2(D) S1 = ø, S2 = {τ}; S1 = {θ}, S2 = {τ}
R3(D) S1 = {τ}, S2 = {τ}; S1 = {τ, θ}, S2 = {τ}
R4(D) S1 = ø, S2 = {θ, τ}; S1 = {θ}, S2 = {θ, τ}
R5(D) S1 = {τ}, S2 = {θ, τ}; S1 = {θ, τ}, S2 = {θ, τ}



49

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D in Hamming distance

R
at

e 
in

 b
ps

R
1
(D)

R
2
(D)

R
3
(D)

R
4
(D)

R
5
(D)µ=5 

µ=4 

µ=3 

µ=2.5 

µ=2 

µ=1.5 

µ=1 

Fig. 17. Rate-distortion functions for different cases in Example 2.



50

CHAPTER III

WYNER-ZIV CODING DESIGN

In this chapter, we will focus on the design of Wyner-Ziv coding (WZC) [104]. In the

first section, we will first investigate the lossless case when the distortion of the recon-

structed source is 0. This case is commonly known as Slepian-Wolf Coding (SWC)

[87]. We describe how SWC can be implemented using conventional channel coding.

In specific, we detail the SWC design using the low-density parity-check (LDPC) code

[43]. We point out that the SWC performance is needed to be independent of the

input source to facilitate efficient SWC design. We show that a sufficient condition

of this assumption is that the hypothetical channel between the source and the side

information satisfies a symmetry condition dubbed dual symmetry. Moreover, when

dual symmetry is satisfied, the LDPC code performance over the hypothetical channel

precisely translates to the SWC performance. Therefore, under that dual symmetry

condition, SWC design problem can be simply treated as LDPC coding design over

the hypothetical channel.

When the distortion of the reconstructed source can be non-zero, we propose a

practical WZC paradigm dubbed Slepian-Wolf coded quantization (SWCQ) by com-

bining SWC and nested lattice quantization [112], where nested lattice quantization

is just a special case of nested coding described in Section IIB.1. We point out an

interesting analogy between SWCQ and entropy coded quantization [48] in classic

source coding. A practical scheme of SWCQ using 1-D nested lattice quantization

and LDPC is implemeted, where detail design issues are discussed.
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A. Slepian-Wolf Coding: Zero Distortion Case

When the distortion of the reconstructed source is forced to be 0, WZC degenerates

to lossless source coding with side information at the decoder. We can easily visualize

this as a special case of SWC, a synonym of lossless distributed source coding, if we

only code one of the sources and treat all other sources in conventional SWC as side

information. Therefore, this setup is also known as the asymmetric SWC. However,

we will simply call it SWC from now on as we will only consider this asymmetric case.

1. General Approaches

a. Random Binning

Let V and S be the source and side information, respectively. Since we are considering

lossless coding, V has a finite alphabet in general.

We will consider a block code of length-n here. The idea of random binning [30,

pp. 410-413] is to partition all the length-n sequences of V randomly into bins and

only the indices of these bins are transmitted to the decoder. For an i.i.d. discrete

source V , the set of all length-n sequences generated by V is randomly partitioned

into 2nR bins. Hence, if we compress V at rate R, there should be 2nR bins.

Knowing the bin index and the sequence of side information Sn, the decoder

reconstructs V̂ n as the sequence that is jointly typical1 with Sn and lies inside the

desired bin. We can interpret the above reconstruction process as a channel decoding

procedure and S as the output of a hypothetical channel with input V . Therefore, for

a sufficiently large n, V can be reconstructed with arbitrarily small error probability

1This may involve joint typicality of a continuous random variable and a discrete
random variable since S may be continuous. However, such joint typicality can be
easily obtained by generalizing the classic case.
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as long as the rate of transmission via this hypothetical channel is less than I(V ; S),

or in other words, each bin can have maximally ≈ 2nI(V ;S) elements to have lossless

reconstruction. Since the total number of typical sequence of V with length n is

approximately 2nH(V ), the number of bins required is 2nH(V )/2nI(V ;S) = 2nH(V |S).

Hence, we can compress V at a rate H(V |S) with this random binning scheme.

Assume now side information S is also given to the encoder. For the instance

when S = s, we can optimally compress V at rate H(V |s) using classic source coding.

Hence, the optimal average compression rate is
∑
s

H(V |s)p(s) = H(V |S). Compar-

ing this rate with that obtained by random binning scheme in SWC, we can draw

two important conclusions. First, the random binning scheme must attain maximum

possible compression since it cannot outperform the optimal scheme in the better

equipped setup when side information is also provided to the encoder. Second, con-

trary to the fact that WZC setup has rate loss in general (see Section IIA.1), SWC

setup has no rate loss comparing with this better equipped setup when side informa-

tion is also given to the encoder.

b. Structure Binning

Unfortunately, the random binning scheme is not friendly to implement. The main

difficulty is to assign a random binning that yet can facilitate decoding with low

computational complexity. However, a more detail observation of our previous discuss

concludes that purely random assignment of codewords is not necessary; it is more

important instead to have each bin to behave like a good channel code so as to

approach the hypothetical channel capacity I(V ; S).

An interesting approach that was first suggested by Wyner [105] and was re-

discovered and first implemented by Pradhan and Ramchandran [76] is to use an

arbitrary linear channel code to partition the set of all vn’s into cosets or bins with
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different syndromes. Since all cosets of a linear channel code share the same distance

properties, all bins (cosets) now are indeed good channel code as desired provided

that the linear channel code itself is good. Note that the syndrome now acts as the

bin index to be transmitted at the encoder. Hence, for the (n, k)-channel code and

thus with a (n − k) × n parity matrix H, Slepian-Wolf encoding is to compute and

output the syndrome

wn−k = vnHT .

Since the length of the syndrome is n− k, the compression ratio is n : n− k.

In order to perform Slepian-Wolf decoding, channel decoding is modified in such

a way that v̂n is reconstructed as a code vector inside the coset with the desired

syndrome instead of a codeword of the channel code. More precisely, receiving sn,

the decoder should select from the bin that maximize the a posteriori probability, i.e.,

v̂n = arg max
v∈{v′|wm=v′nHT }

p(vn|sn). (3.1)

c. Multilevel Slepian-Wolf Coding

Since in general the bin index V has an alphabet size larger than two, we may need a

non-binary channel code to implement SWC. As a non-binary code is usually harder to

deploy and design, a better alternative is to first map V into its binary representation

B0, B1, ..., BΛ−1 and then code Bi, i = 0, ..., Λ− 1 one level at a time. More precisely,

each bit level now employs a different channel code and generates its own syndrome

during encoding, and then multistage decoding [51] is employed. Note that bits

obtained from previous stages will be used along with S as side information for

decoding the bit in the current stage. If we assign SWC rate for the ith stage as

H(Bi|S,B0, ...Bi−1) and assume bits from previous stages are perfectly recovered, Bi

can be reconstructed losslessly with the given rate by the “no rate loss” argument of
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SWC. Furthermore, since V and its binary representation B0, B1, ..., BΛ−1 are one-to-

one correspondence, we have

H(V |S) = H(B0, B1, ..., BΛ−1|S)

= H(B0|S) + H(B1|S, B0) + ... + H(BΛ−1|S, B0, ...BΛ−2).

Note that each term in the L.H.S. is the assigned rate for a stage. Hence, the rate

required to compress V in one shot is equal to the total rate required to compress V

one bit level at a time; we have no performance loss in splitting the coding scheme

into stages!

2. LDPC Code Based Slepian-Wolf Coding

The low-density parity-check (LDPC) code [44] is a very good choice in implementing

SWC. First, the LDPC code has very good performance. Second, it allows flexible

code designs to adapt any kind of channel [22, 23, 80, 82]. The second benefit is

especially appealing since the hypothetical channel between V and S can be weird in

the sense of conventional channel coding.

A LDPC code is a linear block code. As the name suggested, the parity check

matrix is sparse such that the number of non-zero elements in the parity matrix is

relatively small. A LDPC code is best represented using a Tanner graph [92]. As

an example, the Tanner graph of a binary (6,2)-LDPC code is shown in Fig. 18.

The circles in the left are called the variable nodes and the squares on the right are

called the check nodes. Each check node corresponds to a parity check equation of

the LDPC code. parity checks equal to 0. The number of branch enumerated from

a variable/check node is called the degree of that variable/check node. Note that

each branch in a Tanner graph corresponds to a non-zero elements in the parity check

matrix. Hence, the “low-density” property of LDPC codes translates to small average
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degrees of the variable and check nodes. If all variable nodes have the same degree

and so are all the check nodes, then the LDPC code is called regular. Otherwise, the

LDPC code is irregular.

6

1
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V3

V4

V5

V6

V1+V3+V4

V1+V2+V6

V3+V5

V4+V5+V

V

Fig. 18. The Tanner graph of a binary (6,2)-LDPC code.

To perform Slepian-Wolf encoding, the encoder computes and output the values

of all check nodes, which are equivalent to the syndrome bits W n−k. Given the side

information Sn, the Slepian-Wolf decoder should reconstruct V n as the best estimate

out of all code vectors with syndrome W n−k. MAP decoder (3.1) is optimum but is

not realistic to implement for large code length n. Alternatively, a very good estimate

V̂ n can be obtained using message-passing algorithm [81] as in conventional LDPC

decoding.

As the name suggested, messages are exchanged between two ends of each branch

in a message-passing algorithm. The message going into or out of a variable node

possesses the “belief” of the value of that variable node. For binary LDPC codes, these
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messages are typically in the form of log-likelihood ratios (i.e., log p(observation|Vi=1)

p(observation|Vi=−1)

for the messages passing into or out of the variable node Vi). Upon receiving the

messages, both variable and check nodes update the messages by combining the beliefs

of the messages, and send the new messages to the other ends. To avoid the belief

in a message is doubly counted, the message originated from the same branch is not

included in the update (see Fig. 19).
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Fig. 19. Message updates of a variable node and a check node.

Recall that V, W , and S represent the value of a variable node, the value of a check

node, and side information, respectively. Denote V ,W , and S as their corresponding

alphabets. Use m to represent the value of a message andM to represent its alphabet.

For a variable node i, denote the initial message mapping as Ψ
(0)
i : S → M, the

variable node message mapping as Ψi : S × Mdi−1 → M, and the final message

mapping as Ψ
(f)
i : S ×Mdi →M, where di is the degree of the variable node i and

the final message mapping combine all received messages to facilitate estimation of

the actual values of the variable node i. Similarly, for a check node j, denote the check

node message mapping as Φj : W×Mdj−1 →M, where dj is the degree of the check

node j. It is understood that the di − 1 (dj − 1) input messages are those connected

to the variable (check) node excluding to the message coming from the same branch
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as the output message. Now, the message-passing algorithm can be more precisely

summarized as follows:

1. Initialization: for every variable node i, generate message using initial message

mapping Ψ
(0)
i and pass it to every connected check node.

2. Loop:

• Check node update: for every check node j and for every branch in that

check node, update message using check node message mapping Φj and

pass it back to the connected variable node.

• Variable node update: for every variable node i and for every branch in

that variable node, update message using variable node message mapping

Ψi and pass it back to the connected check node.

• Exit conditions: for every variable node i, use the final message mapping

Ψ
(f)
i to estimate the value of the variable node i. Exit if 1). the estimated

variable nodes possess the desired syndrome, or 2). the maximum number

of iterations is reached.

It is generally impossible to combine the beliefs of the messages exactly. However,

if we assume all received message are independent of the others, then the mappings

Ψi, Ψ
(f)
i , and Φj have relatively simple forms that [57]

Ψi(s,m1,m2, ..., mdi−1) = log
p(s|Vi = 1)

p(s|Vi = −1)
+

di−1∑

i′=1

mi′ (3.2)

Ψ
(f)
i (s,m1,m2, ..., mdi

) = log
p(s|Vi = 1)

p(s|Vi = −1)
+

di∑

i′=1

mi′ , (3.3)

and

Φj(w, m1,m2, ..., mdj−1) = 2 atanh


w

dj−1∏
i=1

tanh
(mi

2

)

 , (3.4)
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when the messages are in the form of log-likelihood ratios that

Ψ
(0)
i (s) = log

p(s|Vi = 1)

p(s|Vi = −1)
.

The resulting message-passing algorithm is commonly known as the belief propagation

algorithm [70] or the sum-product decoding algorithm [54]. When the information

of a message passes back to itself, the assumption that the received messages are

independent will obviously fail. This happens if there exists cycles in the Tanner

graph and the number of iterations is larger than or equal to half of the length of the

shortest cycle. For long block length n and small average node degree (low-density),

the average length of cycles is large and the belief-propagation algorithm has good

performance.

For LDPC coding in conventional channel coding, the decoding error probability

is independent of the transmitting codeword provided that the channel satisfies certain

symmetry condition. Hence, we can assume any codeword to be sent when we analyze

the LDPC code performance. In specific, by assuming all-one codeword is sent and by

tracking the density distribution of the average beliefs of the variable nodes, we could

estimate the probability of decoding error after any number of iterations in theory.

However, this cannot be easily done for a specific LDPC code since each variable/check

node can have different degree. Nonetheless, if we consider an ensemble of codes

which bear the same degree profile in the sense that the fraction of nodes with any

particular degree is the same, then the problem become tractable and this technique is

commonly known as density evolution. Density evolution can be employed for LDPC

code design. The basic idea is to adjust the degree profile interactively such that the

decoding error probability predicted by density evolution is smallest.

It is desirable to translate this design technique to SWC. However, we have

to ensure that the SWC performance should be independent of the input codeword
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as in conventional channel coding; otherwise, it is practically impossible to analyze

the SWC performance. Our major result in this section is that under a symmetry

condition dubbed dual symmetry, the SWC performance is independent of the input

codeword. Moreover, if we assume all-one codeword is transmitted, Slepian-Wolf

decoding is exactly equivalent to LDPC decoding since w in (3.4) is now always

equal to 1. This concludes that the performance of LDPC coding translates to that

of the SWC precisely. This means that if a LDPC code can perform well over the

hypothetical channel V → S, then the resulting SWC performs just as well. Hence,

we can simply use the conventional density evolution based design for SWC without

any modification!

a. Symmetry Conditions

Definition 3: A binary input channel V → S is called sign-symmetric if p(s|V =

1) = p(−s|V = −1).

Remark 4: Sign symmetry is first addressed in [44] and is referred to as output

symmetry in [81]. Note that sign symmetry is different from the usual notion of

symmetry for discrete channels [30, pp. 189-190].

Definition 4: We call a message-passing decoding algorithm for SWC symmetric if

it satisfies the following conditions [81]:

[Variable node symmetry]

Ψv(−s,−m1, ...,−mdv−1) = −Ψv(s,m1, ..., mdv−1)

and Ψ
(0)
v (−s) = −Ψ

(0)
v (s)

for s ∈ S and mk ∈M, k = 1, ..., dv − 1.

[Check node symmetry] Ψc(b0, b1m1, ..., bdc−1mdc−1)

= Ψc(1,m1, ..., mdc−1)
(∏dc−1

i=0 bi

)
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for any ±1 sequence b0, ..., bdc−1 and mk ∈M, k = 1, ..., dc − 1.

Note that the belief propagation algorithm is symmetric if the hypothetical channel

V → S is sign-symmetric.

As mentioned previously, the performance analysis of SWC will only be tractable

if the probability of error is independent of the input V n. We now show that if

the message-passing decoding algorithm is symmetric and the hypothetical channel

V → S is sign-symmetric then the above assumption is valid.

Lemma 1: Denote the error probability of Slepian-Wolf decoding after i iterations

with an input vn as P
(i)
e (vn). If the hypothetical channel V → S is sign-symmetric and

the message-passing decoding algorithm is symmetric, then P
(i)
e (vn) is independent

of vn.

Proof. Our proof follows closely the proof of Lemma 1 in [81]. Assume vn and sn

are realizations of the correlated sources, where vn is input to the variable nodes of

the LDPC and the check node values wn−k are computed and transmitted to the

decoder. Let zn be a length-n vector with component zi = sivi. Since V → S is

sign-symmetric, it is easy to verify that p(zi|V n = 1n) = p(si|V n = vn), where 1n

is an all-one sequence with length n. In other words, the probability of receiving sn

given vn being transmitted is the same as that of receiving zn given all-one sequence

being transmitted.

Let vi and cj denote an arbitrary variable node and one of its neighboring check

nodes, respectively. For any received channel output sn and syndromes wn−k, let

m
(l)
ij (sn, wn−k) and m

(l)
ji (sn, wn−k) denote the message sent from vi to cj and the

message sent from cj to vi in iteration l. At l = 0, we have m
(0)
ij (sn, wn−k) =

vim
(0)
ij (zn, 1n−k) from the variable node symmetry (Definition 4).

Assume that we have m
(l)
ij (sn, wn−k) = vim

(l)
ij (zn, 1n−k) in iteration l. Since
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wn−k is syndrome of vn, i.e., wj

∏
k:∃e=(vk,cj)

vk = 1 and thus m
(l+1)
ji (sn, wn−k) =

vim
(l+1)
ji (zn, 1n−k) from the check node symmetric condition (Definition 4). From this,

we can conclude m
(l+1)
ij (sn, wn−k) = vim

(l+1)
ij (zn, 1n−k) using variable node symmetry

again in iteration l + 1. Hence by induction, we can show that any message from the

check nodes and the variable nodes given sn being received is equal to the product of

vi and the correspond message given zn is received. Therefore, both cases cause the

same number of errors and this completes the proof.

For the multilevel SWC, all the previous decoded bit planes can also be considered

as side information. Hence, in this case, our hypothetical channel, which includes

decoded bits from other bit planes, is not even a single real number. The notion of

sign symmetry is too restrictive for our purpose. Thus we introduce a more general

type of symmetry as follows.

Definition 5: We call a binary input channel V → S dual-symmetric if there exists

a mapping g : S → S such that for any s,

p(s|V = 1) = p(g(s)|V = −1) and g(g(s)) = s. (3.5)

Before proceeding to our main result, we will present some properties of dual

symmetry.

Lemma 2: Sign symmetry implies dual symmetry.

Proof. Pick g(s) = −s.

Lemma 3: Strong symmetry2 [30, pp. 189-190] implies dual symmetry.

2This condition is usually simply referred to as symmetry, but we use the term
strong symmetry to avoid confusion.



62

Proof. If a binary input channel V → S is strongly symmetric, then the probability

of S given V = 1 is a permutation of the probability of S given V = −1. Therefore,

there exists a mapping g such that p(s|V = 1) = p(g(s)|V = −1), ∀s. Moreover,

strong symmetry requires

p(s|V = −1) + p(s|V = 1) = p(s′|V = −1) + p(s′|V = 1),

for all s and s′. In particular,

p(s|V = −1) + p(s|V = 1) = p(g(s)|V = −1) + p(g(s)|V = 1)

⇒p(s|V = −1) = p(g(s)|V = 1).

This implies g(g(s)) = s.

Remark 5: Although strong symmetry and sign symmetry both imply dual symme-

try, it is easy to find a dual-symmetric channel that satisfies neither of the former

symmetries. Hence dual symmetry is the weakest among the three.

Remark 6: Weak symmetry [30, pp. 190] does not imply dual symmetry. For

example3, consider a binary input channel with S = {s1, s2, s3} such that p(s1|V =

−1) = 0.5, p(s2|V = −1) = 0.3, p(s3|V = −1) = 0.2, p(s1|V = 1) = 0.3, p(s2|V =

1) = 0.2, and p(s3|V = 1) = 0.5. This channel is weakly symmetric, we have that

g(s1) = s2, g(s2) = s3, and g(s3) = s1. Since it holds obviously that g(g(s1)) =

g(s2) = s3 6= s1, the channel is not dual-symmetric.

Lemma 4: If the binary input channel V → S is dual-symmetric, the input distri-

bution that achieves the capacity is uniform, i.e., p(V = 1) = p(V = −1) = 0.5.

3This example is originated from an anonymous reviewer.
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Proof. Let p(V = 1) = q, the optimum q should maximize the mutual information

I(V ; S) = H(S) − H(S|V ). From (3.5), it can be readily verified that H(S|V ) is

independent of q. Therefore, the optimum q should maximize H(S). Expand

H(S) = −
∑

s

p(s) log p(s)

= −
∑

s

(p(s|V = 1)q + p(s|V = −1)(1− q))

log (p(s|V = 1)q + p(s|V = −1)(1− q)) ,

and note that H(S) is a concave function with respect to q because each summand is

concave and concavity is preserved by summation. By its concavity, H(S) achieves

the global maximum when ∂H
∂q

= 0 is satisfied. Since

∂H

∂q
=−

∑
s

(p(s|V = 1)− p(s|V = −1)) log (p(s|V = 1)q + p(s|V = −1)(1− q))

∑
s

(p(s|V = 1)− p(s|V = −1))

=−
∑

s

(p(s|V = 1)− p(s|V = −1)) log (p(s|V = 1)q + p(s|V = −1)(1− q)) ,

we have

∂H

∂q

∣∣∣∣
q=0.5

=
∑

s

(p(s|V = −1)− p(s|V = 1))

log (p(s|V = 1) + p(s|V = −1))

(a)
=

∑
s

(p(g(s)|V = 1)− p(g(s)|V = −1))

log (p(g(s)|V = −1) + p(g(s)|V = 1))

=
∑

s

(p(s|V = 1)− p(s|V = −1))

log (p(s|V = −1) + p(s|V = 1))

= − ∂H

∂q

∣∣∣∣
q=0.5

= 0,
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where (a) comes from the dual-symmetric properties of V → S. Thus the optimum

input distribution is uniform (p(V = 1) = q = 0.5).

We are interested in dual symmetry because we can show that the sign-symmetric

condition in Lemma 1 can be replaced by this weaker condition.

Lemma 5: If the message-passing decoding algorithm is symmetric and the hypo-

thetical channel V → S is dual-symmetric, then there exists a sufficient statistic L

for S such that V → L satisfies sign symmetry.

Proof. Define f(s) , log p(s|V =1)
p(s|V =−1)

, then L , f(S) is the log-likelihood ratio (LLR) of

V given S. Note that L is a sufficient statistic for S. Hence the proof is complete if

we can show V → L to be sign-symmetric.

pL|V (l|V = 1) =
∑

s∈{s|f(s)=l}
pS|V (s|V = 1)

(a)
=

∑

s∈{s|f(s)=l}
pS|V (g(s)|V = −1)

=
∑

z∈{z|f(g−1(z))=l}
pS|V (z|V = −1)

(b)
=

∑

z∈{z|f(z)=−l}
pS|V (z|V = −1)

= pL|V (−l|V = −1),

where (a) comes from the dual symmetry of V → S and (b) follows from f(g−1(z)) =

f(g(z)) = log p(g(z)|V =1)
p(g(z)|V =−1)

= log p(z|V =−1)
p(z|V =1)

= −f(z).

Theorem 1: If the message-passing decoding algorithm is symmetric and the hy-

pothetical channel V → S is dual-symmetric, then without loss of performance, the

decoder can preprocess the channel output such that the resulting error probabil-

ity of Slepian-Wolf decoding after i iterations, P
(i)
e (vn), is independent of the input



65

sequence vn.

Proof. From Lemma 5, the message-passing decoder can treat L rather than S as the

output without loss of performance. Then result follows directly from Lemma 1.

Theorem 1 allows us to choose any input sequence for our analysis. In particular,

if we select the all-one sequence as our input, then all the check nodes will have value

one and the message-passing decoding algorithm degenerates to that for conventional

channel decoding. Therefore, the SWC performance will be exactly equivalent to

the LDPC coding performance in conventional channel coding. Moreover, all code

designing tools for conventional channel coding can be used for SWC provided that

the conditions in Theorem 1 are satisfied. In specific, this allows us to use density

evolution [80] to analyze LDPC code based SWC performance. The above discussion

is summarized in the below corollary.

Corollary 6: If the message-passing decoding algorithm is symmetric and the hy-

pothetical channel V → S is dual-symmetric, then the performance of the resulting

SWC is exactly the same as that of the LDPC coding applying on V → S.

When the belief propagation decoding algorithm is employed, the preprocessing

step in Theorem 1 is just equivalent to setting the initial message as the LLR L. In

this case, stronger statements can be made about density evolution if the hypothetical

channel satisfies dual symmetry. First, we start with a definition.

Definition 6 (Symmetric distribution [81]): A distribution is symmetric if its

density p(v) satisfies p(v) = evp(−v),∀v.

It is shown in [80] that if the initial message distribution is symmetric and the

belief propagation decoding algorithm is used, then density evolution converges to a

fixed point. Moreover, an upper bound for the code threshold, which describes the
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minimum correlation between the source and side information to have no SWC error,

can be derived from the stability condition analysis [80]. We will show below that if

the hypothetical channel is dual-symmetric and the LLR of the source given the side

information L is selected as the initial message, then the initial message distribution

is symmetric.

Theorem 2: For a binary SWC scheme with input V and side information S, if

the hypothetical channel V → S is dual-symmetric, then the initial message in log-

likelihood ratio given all-one input sequence is symmetric.

Proof. Recall that L from the proof of Lemma 1 is a sufficient statistic for S and

hence can be used as the initial message without performance loss. Assuming that

all-one sequence is transmitted, we have

pL|V (l|V = 1) =
∑

s∈{s|f(s)=l}
pS|V (s|V = 1)

(a)
=

∑

s∈{s|f(s)=l}
elpS|V (s|V = −1)

(b)
= el

∑

s∈{s|f(s)=l}
pS|V (g−1(s)|V = 1)

= el
∑

z∈{z|f(g(z))=l}
pS|V (z|V = 1),

(c)
= el

∑

z∈{z|f(z)=−l}
pS|V (z|V = 1),

= elpL|V (−l|V = 1),

where (a) is due to the definition of l, (b) is due to (3.5), and (c) is obtained from

f(g(z)) = log p(g(z)|V =1)
p(g(z)|V =−1)

= log p(z|V =−1)
p(z|V =1)

= −f(z).

From Theorem 1, it follows that we can analyze the SWC performance assuming

all-one input sequence. Then from Theorem 2 and [80], density evolution assuming

all-one input sequence will converge to a fixed point. For completeness, we present
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the upper bound of the code threshold derived from the stability condition as follows.

Given that the length of the LDPC code and the number of iterations tend to infinity,

the necessary condition for no SWC error is [80]

λ′(0)ρ′(1) <

(∫

R
pL|V (l|1)e−

l
2 dl

)−1

,

where λ(·) and ρ(·) are the left and right degree distributions of the LDPC code,

respectively.

B. Wyner-Ziv Coding: Non-Zero Distortion Case

In this section, we will move to the more general case when the distortion of the

reconstructed source can be nonzero. Hence, there will be no restriction in the source

alphabet and the source can be continuous in general. We will emphasize this by

denoting the source as X while keeping the same notation S for the side information.

1. General Approaches

a. Nested Lattice Quantization

Recall the nested coding scheme described in Chapter II. In practice, it is hard to

implement nested code without any structure. Therefore, it is common to constraint

all the codewords of both subcodes and the original code as lattice point and this

results in nested lattice [112, 113]. For instance, Fig. 20 shows examples of 1-D

and 2-D nested lattices [113] based on similar sublattices [27]. The fine lattice code

corresponds to the codewords represented by all the numbers in Fig. 20, while a

subcode or a coarse lattice code includes only the codewords indexed by one particular

number. The coarse lattice is nested in the fine lattice in the sense that each point of

the coarse lattice is also a point of the fine lattice but not vice versa. To encode, x
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is first quantized with respect to the fine source code, resulting in quantization loss.

However, only the index identifying the coarse lattice that contains the quantized x

is coded to save rate. Note that this index is essentially the bin index in SWC with

the bin corresponding to the union of the fine lattice Vornoni regions of elements

of the coarse lattice. Knowing the coarse lattice that x lies closest to and the side

information sn, the decoder estimates x̂ appropriately.

3 330 02 21 1 1 20

0

1

2

3

8

4

5

6

7

0

0

1

1

Fig. 20. 1-D and 2-D nested lattices based on similar sublattices.

b. Slepian-Wolf Coded Quantization

Although it is proven in [113] that nested lattice quantization approaches the Wyner-

Ziv limit for infinite dimensional source and channel codes, high dimensional nested

lattice is difficult to implement whereas low dimensional nested lattice quantization

has rather poor performance. For example, Fig. 21 shows the operational rate-

distortion function for 1-D nested lattice quantization, which exhibits a huge gap

from the Wyner-Ziv limit at high rate. An immediate attempt to improve the per-

formance of nested lattice quantization is to compress the bin index with entropy

encoding. However, as we shall see, conventional entropy coding is not sufficient.
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Fig. 21. Operational rate-distortion function for 1-D nested lattice quantization

One interesting observation for low-dimensional nested lattice quantization is

that the bin index V and the side information S is highly correlated. This means

I(V ; S) > 0 and H(V ) is strictly larger than H(V |S). Hence, there will be per-

formance loss if we attempt to compress V ignoring the side information S. Note

that conventional entropy coding (e.g., context based arithmetic coding [83]) does

not work since S is only available to the decoder. However, since V is discrete and S

is available to the decoder, we can compress V losslessly using SWC. And better still,

it is possible to achieve the theoretical limit H(V |S) since SWC has no rate loss. To

summarize, we propose a WZC paradigm dubbed as Slepian-Wolf coded quantization

(SWCQ) as nested lattice quantization followed by SWC.

For practical lossless source coding, conventional technique (e.g., Huffman cod-
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ing, arithmetic coding, Lempel-Ziv coding [114], PPM [24] and CTW [98]) have dom-

inated so far. However, if one regards lossless source coding as a special case of

Slepian-Wolf coding without side information at the decoder, then channel coding

techniques can also used for source coding based on syndromes [64]. In this light, the

SWC component in SWCQ can be viewed as the counterpart of entropy coding in

classic source coding. Although the idea of using channel codes for source coding dates

back to the Shannon-MacMillan theorem [85, 60] and theoretical results appeared in

[97, 6], practical turbo/LDPC code based noiseless data compression scheme did not

appear until very recently [46, 17].

Starting from syndrome based approaches for entropy coding, one can easily

make the schematic connection between entropy-coded quantization for classic source

coding and SWC-NQ for Wyner-Ziv coding, as syndrome based approaches can also

be employed for SWC (or source coding with side information at the decoder) in the

latter case. Performance-wise, our work in [106, 56, 108] reveals that the performance

gap of high-rate Wyner-Ziv coding (with ideal Slepian-Wolf coding) to DWZ(R) is

exactly the same as that of high-rate classic source coding (with ideal entropy coding)

to the distortion-rate function DX(R). This interesting and important finding is

highlighted in Table V.

Table V. High-rate classic source coding vs. high-rate Wyner-Ziv coding.

Classic source coding WZC

Coding scheme Gap to DX(R) Coding scheme Gap to DWZ(R)

ECSQ [48] 1.53 dB SWC-NSQ 1.53 dB

ECLQ (2-D) [28] 1.36 dB SWC-NQ (2-D) [56] 1.36 dB

ECTCQ [93] 0.2 dB SWC-TCQ [108] 0.2 dB
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2. 1-D Slepian-Wolf Coded Quantization

In this section, we will illustrate a WZC scheme based on 1-D nested lattice quantiza-

tion and LDPC code. For simplicity, we assume the source X and the side information

S is related by X = S + Z, where both S ∼ N(µS, σ2
S) and Z ∼ N(µZ , σ2

Z) are i.i.d.

and independent of each other.

a. Basic Setup

Fig. 22 shows a nested scalar quantizer, which consists of a coarse coset channel code

with minimum distance dmin nested in a fine uniform scalar quantizer with stepsize q.

Obviously dmin is an integer multiple of q and we call N = dmin

q
the nesting ratio. To

encode, X is quantized by the fine source code (uniform quantizer). However, only

the index J (0 ≤ J ≤ N − 1) of the coset channel code that the quantized X belongs

to is coded by SWC.

y^

mind     =4q

x
D

pdf of 

q

X

1 100 0 12 2 23 3 3

x

Fig. 22. A nested scalar quantizer with nesting ratio N = 4.

To employ (n, k)-LDPC codes for SWC, the coset index J is first grouped into

a block Jn. Since binary LDPC codes are used, multilevel SWC described in Section

IIIA.1.c will be employed. Hence, we split Jn into bit planes before SWC. Assume N

is a power of 2 and Λ = log2 N is the number of bit planes, and define

Bk(x) ≡
⌊

2k+1x

dmin

⌋
mod 2 and bk(x) ≡

⌊
x

2kq

⌋
mod 2,

then Bk(X
n) represents the kth bit plane of Jn starting from the most significant bit
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(MSB) plane, and bk(X
n) represents the kth bit plane of Jn starting from the least

significant bit (LSB) plane. While these bit planes can be transmitted in many differ-

ent orders, we focus on the two most natural choices: sequentially coding bit planes,

B0(X
n), B1(X

n), ..., BΛ−1(X
n), starting from the MSB plane B0(X

n) (top-down ap-

proach), and sequentially coding bit planes, b0(X
n), b1(X

n),..., bΛ−1(X
n), starting

from the LSB plane b0(X
n) (bottom-up approach). The proposed WZC scheme for

the top-down approach is illustrated in Fig. 23.

Estimate

Quantization

SWC/LDPC

Encoder

SWC/LDPC

SWC/LDPC

SWC/LDPC
Decoder l

x̂

B1(x)

B1(x)

B2(x)

x J(x)

X

s

Bl(x)

Decoder 1

Decoder 2

Fig. 23. The proposed Wyner-Ziv scheme with SWC.

Note that multistage decoding is used and the values of all previous received bit

planes are considered as a part of the hypothetical channel output in each Slepian-Wolf

decoder, i.e., we have the hypothetical channels Bk(X) → (S, B̂0(X), ..., B̂k−1(X))

for the top-down approach and bk(X) → (S, b̂0(X), ..., b̂k−1(X)) for the bottom-up

approach at the kth bit plane. However, for sufficiently small error probability (∼ 10−5
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in our experiment), the channels Bk(X) → (S,B0(X), ..., Bk−1(X)) and bk(X) →
(S, b0(X), ..., bk−1(X)) essentially have the same statistics as the previous pair. Hence,

these two approximated channels will be used instead in our analysis. Furthermore,

given this approximation, it is easy to verify using the chain rule that the performances

of both top-down and bottom-up approaches are the same.

Given the coset index J and the side information S, the decoder recovers X

using the optimum non-linear estimator. If mean square error is used as the distor-

tion measure, the optimum estimate for a particular sample xi is the centroid of X

given si and the received bits. For example, when Λ bits B1(xi), B2(xi), ..., BΛ(xi)

are received by the decoder, the centroid should be computed as E[X|si] over {x :

Bk(x) = Bk(xi), k = 1, 2, ..., Λ} in which xi can only exist according to the information

obtained from the Λ received bits. In other words,

x̂i(si, B1(xi), B2(xi), ..., BΛ(xi)) =
1√

2πσ2
Z

∫

{x:Bk(x)=Bk(xi),i=1,2,...,Λ}

e
− (x−si)

2

2σ2
Z dx. (3.6)

b. Design Issues

Dual Symmetry

We will now show that the hypothetical channels for all bit levels are dual-

symmetric for both top-down and bottom-up approaches. Hence by Theorem 1,

design techniques based on density evolution can be employed. We will only focus on

the top-down approach since the proof for the bottom-up approach is similar.

Assume µX = µS = µZ = 0. In order to match the notation in previous section,

we relabel 0 as 1 and 1 as −1. Denote [Bj(X), Bj+1(X), ..., Bk(X)] = Bk
j (X). Then,

it is easy to verify that

p(Bk(X) = 1) = p(Bk(X) = −1) =
1

2
(3.7)
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and

p(Bk
j (X) = vk

j , S = s) = p(Bk
j (X) = −vk

j , S = −s) (3.8)

for any j and k. Consider the hypothetical channel Bk(X) → (Bk−1
0 (X), S) at the

kth bit plane, then

p(Bk−1
0 (X) = vk−1

0 , S = s|Bk(X) = −1)

=
p(Bk

0 (X) = [vk−1
0 ,−1], S = s)

p(Bk(X) = −1)

(a)
=

p(Bk
0 (X) = [−vk−1

0 , 1], S = −s)

p(Bk(X) = 1)

= p(Bk−1
0 (X) = −vk−1

0 , S = −s|Bk(X) = 1),

where (a) is due to (3.7) and (3.8). Define gk : {−1, 1}k−1 × R → {−1, 1}k−1 × R
with gk(v

k−1
0 , s) = gk(−vk−1

0 ,−s). Then Bk(X) → (Bk−1
0 (X), S) is dual-symmetric

and gk(·, ·) is the mapping required in Definition 5.

Assume µX = µS = µ 6= 0 but µZ = 0. The hypothetical channel considered

by each Slepian-Wolf decoder is no longer dual-symmetric. Hence, designs based on

density evolution will not perform well in general. However, this can be solved easily

by adjusting the quantization function. Specifically, define

B′
k(x) =





1 0 ≡
⌊

2k(x−µ)
dmin

⌋
mod 2,

−1 otherwise,
(3.9)

to be transmitted, and replace Bk(X
n) by B′

k(X
n) in the described WZC scheme.

Define g′k(v
k−1
0 , s) = g′k(−vk−1

0 , 2µ− s); then it is easy to verify that g′k(g
′
k(v

k−1
0 , s)) =

(vk−1
0 , s) and p(B′k−1

0 (X),S)|B′k(X)(v
k−1
0 , s|1) = p(B′k−1

0 (X),S)|B′k(X)(g
′
k(v

k−1
0 , s)| − 1).

Hence, the hypothetical channel B′
k(X) → (B′k−1

0 (X), S) is dual-symmetric. Note

that the above discussion actually suggests an intuitive scheme: one should shift the
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source to zero mean before quantization.

Table VI. Rates distributed over different Slepian-Wolf coders for top-down and bot-

tom-up approaches when dmin = 12σZ and Λ = 5.

k 0 1 2 3 4

H(Bk(X)|Bk−1
0 , S) 0.43 0.43 0.72 0.91 0.97

H(bk(X)|bk−1
0 , S) 1.00 1.00 0.98 0.47 0.01

Top-down versus bottom-up approaches

Although the overall rate for the two approaches are the same, they distribute

the rates differently among Slepian-Wolf coders. For example, Table VI shows the

optimum compression rate for each Slepian-Wolf coder when dmin = 12σZ and Λ = 5

for both approaches. The higher the rate means the poorer the hypothetical channel

(the weaker the correlation) and vice versa. The required rate of the LDPC code

should be one minus the compression rate. If the code rate reaches 0 or 1, then

there is no use (or no need) to employ SWC, which is beneficial since each LDPC

code introduces certain rate loss. Hence from Table VI, we expect that the bottom-

up approach performs better than the top-down approach. Our experiments showed

that the above statement is generally true. One intuitive reason is that the lower bit

planes are more uncertain than the higher ones. Without the knowledge of the higher

bit planes, the conditional entropies of the lower bit planes given side information,

i.e., the compression rates of the first few bit planes in the bottom-up approach, are

very close to one, whereas for the top-down approach, the compression rates for these

bit planes also approach one but not as fast as in the bottom-up approach because

the values of the upper bit planes, an extra side information, are now available.

On the other hand, the advantage of the top-down approach is its progressive
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nature. Its decoder can have a good estimate of X even if only the first few bit planes

are received. This is not true for the bottom-up approach since these bit planes have

the least impact to the overall distortion and hence almost no distortion reduction is

expected.

Choice of Quantization Step Size dmin

Table VII. The table shows the conditional entropy of Bk(X) given previous decoded

bits and the side information S, the overall rate R = H(BΛ(X)|S) and

the corresponding squared error distortion D = E[(X − X̂)2] for different

dmin. We assume the jointly Gaussian model of X = S + Z where S and

Z are independent Gaussian random variables with σ2
Z = 0.01 and σ2

S = 1,

respectively.

H(Bk(X)|Bk−1(X), S) R D

k 1 2 3 4 5 6 7 – –

dmin = 3σZ ,Λ = 3 0.99 0.99 1.00 – – – – 2.98 8.95e-3

dmin = 6σZ ,Λ = 4 0.79 0.77 0.92 0.98 – – – 3.46 8.44e-4

dmin = 12σZ ,Λ = 5 0.43 0.43 0.72 0.91 0.98 – – 3.46 1.16e-4

dmin = 24σZ ,Λ = 6 0.22 0.21 0.43 0.72 0.91 0.98 – 3.46 1.16e-4

dmin = 48σZ ,Λ = 7 0.12 0.10 0.22 0.43 0.72 0.91 0.98 3.47 1.16e-4

If we exclude SWC in our scheme, the total rate R is just equal to the number

of received bit planes Λ. Thus the optimum scheme requires minimizing D over dmin

for each fixed Λ. However, it turns out that each Λ has a different optimum dmin and

D increases rather rapidly from the minimum as dmin deviates from its optimal value,

thus it would be impossible to find a single dmin that allows the scheme to approach the

optimum performance for all refinement stages [37]. However, when NSQ is followed

by SWC, the performance of our scheme is much less sensitive to the choice of dmin.
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Note that the main difference now is that R depends not only on Λ but also on dmin.

Specifically, by adjusting dmin, it might happen that more than one Λ will result in

the same R. For easy exposition, we list in Table VII the conditional entropies of

Bk(X) given S and the previous decoded bits with different dmin, the corresponding

total rate R, and the overall distortion D when Λ bit planes are received. For every

doubling of dmin, we deliberately increase the number of decoded layers Λ by one to

ensure q and hence D to be a constant since D ≈ q2

12
for dmin À σZ [37], where this

fact is verified in the last column of Table VII. Moreover, it is interesting to see from

the second to the last column of Table VII that the R’s are about the same for these

settings too, where the inertness of R can be explained as follows. Let Pe be the

outage probability when S and X are relatively far apart with respect to dmin. If

dmin À σZ as described above, then Pe ≈ 0. Denote ∆R as the rate increase if all bit

planes more significant than B1 are also transmitted. In other words, R + ∆R is the

rate when q is kept fixed while dmin tends to infinity, i.e., that with classic uniform

scalar quantization having the step size q. Denote the additionally transmitted bit

planes as B0
−∞(X). Then all these bit planes will be different from those obtained by

quantizing X̂ (i.e., B0
−∞(X) 6= B0

−∞(X̂)) only if S and X are far apart with respect

to dmin. Therefore,

∆R = H(B0
−∞(X)|S, BΛ(X))

≤ (1− Pe)H(B0
−∞(X)|B0

−∞(X) = B0
−∞(X̂), S, BΛ(X)) +

PeH(B0
−∞(X)|B0

−∞(X) 6= B0
−∞(X̂), S, BΛ(X))

≈ 0,

since H(B0
−∞(X)|B0

−∞(X) = B0
−∞(X̂), S, BΛ(X)) = 0 and H(B0

−∞(X)|B0
−∞(X) 6=

B0
−∞(X̂), S, BΛ(X)) ≤ H(B0

−∞(X)), which is the entropy of quantized X with step
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size dmin, is finite because dmin and σ2
X (assuming σ2

S < ∞ and σ2
Z < ∞) are finite.

From the above discussion we concludes that for a sufficiently large dmin, both R

and D, and hence the performance of the scheme will not vary with further increase of

dmin. More interestingly, one can show as a stronger result that any dmin is very close

to be optimum in terms of minimizing the gap between the resulting (R, D)-pair and

the Wyner-Ziv rate-distortion function, provided that dmin is large compared to σZ

[37]. In addition, the optimum gap will be 1.53 dB asymptotically at high rate [106].

Even though our scheme uses a fixed dmin for all Λ, the above conclusion ensures

that our scheme is practically successively refinable, i.e., it achieves the operational

rate-distortion function for all refinement stages, as long as dmin is sufficiently large

and ideal SWC is assumed.

A large dmin is appealing on the surface as it allows finer rate control in practice.

However, each practical Slepian-Wolf code is subject to a small probability of error

and hence we may want to limit the number of layers. On the other hand, dmin should

not be too small since otherwise the overall distortion would increase significantly as

shown in Table VII.

c. Experimental Results

We carry out experiments for both the top-down and bottom-up approaches. For

both cases, we assume σ2
S = 1 and σ2

Z = 0.01. For the top-down approach, we set

dmin = 12σZ , which is the optimal choice for any rate approximately less than 10 bits

per sample as is shown in [56]. The ideal compression rates for the corresponding first

five MSB planes, which are also shown in Table VI, are approximately 0.43, 0.43, 0.72,

0.91, and 0.97 bit per sample, respectively. From the fourth bit plane on, the rate

for each bit plane is very close to 1 bit and thus the corresponding bit plane becomes

almost impossible to compress. Hence the Slepian-Wolf coders are only employed for
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the first four MSBs. For the bottom-up approach, we adjust dmin such that for each

Λ only two bit planes require SWC. The resulting dmin’s are 2.3, 2.1, 1.85, 1.8, and

1.7 for Λ = 3, 4, 5, 6, and 7, respectively. We design the LDPC code for each SWC

using Gaussian approximation [23], which is built upon density evolution [81]. Due

to limited space, we present only the degree profiles for the top-down approach in

Table VIII.

Fig. 24 and Fig. 25 show results of the top-down approach and the bottom-

up approach and the same schemes without SWC are included for comparison. To

validate our results, we include in the same figures the high-rate analysis obtained by

[56]. Our result with practical SWC (codelength= 106 bits) is approximately 1.33 dB

away from the Wyner-Ziv bound at low rate (0.47 bit per sample) and up to about

2.83 dB away at high rate (5.65 bits per sample) for the top-down approach. For

the bottom-up approach, our performance gap is 1.66 dB at low rate (0.93 bit per

sample) and up to 1.80 dB at high rate (5.00 bits per sample). Thus in high rate

(e.g., 5 bits per sample), our practical SWC design loses 1.3 dB and 0.27 dB with the

top-down and bottom-up approaches, respectively. However, while the bottom-up

approach performs better than the top-down approach, the latter has the advantage

of being progressive as explained in Section IIIB.2.b.
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Fig. 24. Results based on nested scalar quantization with and without SWC for the

top-down approach.
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Table VIII. Degree profiles of the first four bit planes obtained with the top-down

approach. Only the left profiles (λ) are shown since the right profiles (ρ)

can be derived from the rate and λ given that ρ is concentrated on two

consecutive degrees.

B0(X) and B1(X) B2(X) B3(X)

i λi i λi i λi

2 0.16145 2 0.24662 2 0.37896

3 0.15690 3 0.16433 3 0.16390

4 0.00648 4 0.00001 4 0.02500

5 0.01472 6 0.14552 5 0.01662

6 0.02235 7 0.04093 6 0.12736

7 0.08156 8 0.00229 7 0.02027

8 0.10091 12 0.00699 8 0.00008

20 0.01793 14 0.09045 10 0.02903

21 0.01386 17 0.00857 11 0.01409

22 0.10531 27 0.06355 15 0.01249

23 0.04517 28 0.03661 20 0.11028

24 0.01099 30 0.02529 62 0.01723

41 0.01885 99 0.00001 66 0.07192

44 0.00414 100 0.16877 100 0.01270

99 0.01713

100 0.22216
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Fig. 25. Results based on nested scalar quantization with and without SWC for the

bottom-up approach.
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CHAPTER IV

GEL’FAND-PINSKER CODING DESIGN

In this chapter, we will describe the practical design of Gel’fand-Pinsker Coding

(GPC) [47]. However, GPC is a rather general problem that actual design procedure

relies on the more precise setting of the problem. For example, the side information

can take as a form of interference or channel state information; the design procedures

for these two cases can be rather different. In this thesis, we focus on the design of

GPC as the form of a digital watermarking problem. We make this decision because

digital watermarking is the precise dual of Wyner-Ziv coding (WZC) [104] as is shown

in Section IIB. Although the nested coding approach is applicable in theory for the

digital watermarking problem, the “channel noise” resulting from malicious attacks

can be rather arbitrary in a practical digital watermarking scenario; in specific, the

nested coding approach is not even robust against the common scaling attack. Hence,

we will deviate from the nested coding approach and instead introduce an enhanced

version of the well-known spread spectrum watermarking technique.

In the following, we will give an overview of digital watermarking and we will

then describe the classic spread spectrum watermarking technique. We will introduce

our enhance approach in Section IVC. To end this chapter, two applications related

to digital watermarking will be depicted.

A. Overview of Digital Watermarking

Advances in compression technology have allowed multimedia data to be stored and

distributed in digital form. On one hand, digital medium is very convenient for

consumers; on the other hand, it poses severe threat to copyright owners (e.g., the

record and film companies) as illegal copies can be freely reproduced and distributed
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without any quality degradation. The situation will only get worse as the peer to

peer and broadband technologies become more popular.

Thus there is an urgent need to protect digital medium from illicit use or dis-

tribution. Traditional cryptographic techniques are inadequate in this case because

the protection is lost after the user decrypts the medium. This gives rise to the de-

velopment of the digital watermarking technology. To achieve copyright protection,

a digital watermark for ownership identification is inserted into the digital medium

by the copyright owner before the medium is distributed to the consumer. Besides

the identification of the copyright owner, the watermark can also contain information

of the consumer to track the source of illicit distribution and ultimately to prevent

this from happening.1 Ideally, the watermark should always be present unless serious

damage is introduced to the medium; to the extend that it is completely useless. In

addition, the watermark should be perceptually transparent (or imperceptible) unless

it is “visible” in nature. This means that the watermarked signal does not contain

any perceivable artifact and hence is perceptually indistinguishable from the original

signal. Furthermore, without knowing the exact “location” of the watermark, an

attacker can only remove the watermark by brute force (i.e., distorting all samples).

Therefore, an imperceptible watermark is also more robust than a perceptible one in

the sense that a malicious user needs to “locate” the watermark before he/she can

remove it effectively.

Practical watermarking techniques have existed for a long time. For example,

paper millers in the medieval time added watermarks to their products to distinguish

them from others [49]. Before the “universal developer” [52, pp. 523-525][71] was in-

vented, invisible ink such as fruit juice had been used extensively to hide information

1This type of watermark is usually referred to as fingerprinting.
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inside an innocent-looking letter. Popular techniques for copyright protection did not

appear until the early 1990s. One of them is the spread spectrum (SS) watermarking

technique introduced by Cox et al. [34], which borrows ideas from spread spectrum

communications. The scheme has good robustness in general, but its performance is

limited by the fact that the host signal itself acts as an interference to watermark

recovery. The simple yet important technique known as low-bit modulation was men-

tioned and reinvented in several papers [49, 71, 91]. In contrast to SS watermarking,

the host signal in low-bit modulation does not appear as an interference. Realizing

these, Chen and Wornell developed QIM [18] with significant performance gain, much

of which stems from the fact that the host signal in QIM does not interfere with wa-

termark extraction. However, QIM, being a variation of nested coding, suffers the

same weakness that the resulting watermark can be easily destroyed by scaling at-

tack. In this thesis, we introduce an enhanced SS watermarking scheme that attempts

to diminish the host signal interference while the robustness against scaling attacks

is maintained. The key idea is to embed watermark into a transformed host signal

which has a smaller variance.

In contemporaneous independent work, Malvar and Florencio proposed an im-

proved SS watermarking in which host interference cancellation is achieved by care-

fully adjusting the distortion level at each signal sample [62]. Although their goal

of reducing host interference is the same as ours, the approaches taken are different.

While Malvar and Florencio impose constraint on the magnitude of sample distortion,

we impose constraint on watermarking keys. These two approaches are complemen-

tary to each other, as one may be more suitable than the other depending on the

application.
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B. Spread Spectrum Watermarking

The main idea of spread spectrum watermarking is to spread the distortion introduced

in the watermarking process to many samples. This increases the robustness of the

watermark because attacking a few watermarked samples will unlikely be able to

destroy the watermark. Moreover, it is easier to make the watermark imperceptible

because the distortion to each individual sample is small.

Consider the host signal sequence as S = S1, S2, ..., Sn and assume that a single

bit b ∈ {1,−1} will be embedded into S for simplicity. The watermark embedding

process can be summarized as [34]

Xi = Si + b∆i · κi, i = 1, 2, ..., n, (4.1)

where Xi is a sample of the watermarked sequence and κi is a sample of a water-

marking key sequence, which is also provided to the watermark decoder. In order to

keep the secrecy of the watermark, the embedded bit b can only be retrieved with

the same key sequence. The non-negative factor ∆i is used to control the amount of

distortion introduced to each host sample.

It is more convenient to write (4.1) in vector form as

X = S + b∆κ, (4.2)

where S = (S1, S2, ..., Sn)T , κ = (κ1, κ2, ..., κn)T , and ∆ is an n× n diagonal matrix

with ∆1, ∆2, ..., ∆n as its diagonal elements. In conventional SS watermarking, ∆

and κ are assumed to be independent of S.

Assume the watermarked signal X is attacked and let Y = (Y1, Y2, ..., Yn)T be

the signal after an additive attack. Write Y = X + Z, where Z = (Z1, Z2, ..., Zn)T

is the attack. We will try to extract b from Y. To do this, we estimate b from the



87

inner product Π = 〈Y,κ〉 , 1
n

∑n
i=1 Yiκi of Y and κ. Assume S and Z are i.i.d. and

independent from each other2 with zero mean and variances σ2
S and σ2

Z , respectively.

Then, we have

E[Π|κ] = E[〈Y,κ〉] = E[〈S,κ〉] + E[b〈∆κ,κ〉] + E[〈Z,κ〉] = b
tr(∆)

n

and

var[Π|κ] = var[〈S,κ〉] + var[〈Z,κ〉] = E[〈S, κ〉2] + E[〈Z,κ〉2]

=
1

n2
E

[
n∑

i=1

n∑
j=1

SiκiSjκj

]
+

1

n2
E

[
n∑

i=1

n∑
j=1

ZiκiZjκj

]

=
1

n2

n∑
i=1

n∑
j=1

σ2
Sδijκiκj +

1

n2

n∑
i=1

n∑
j=1

σ2
Zδijκiκj =

σ2
S + σ2

Z

n
,

where δij is equal to 1 for i = j and 0 otherwise. Since E[Π|κ] is proportional to b

and the scaling factor tr(∆) does not depend on b, we can determine b from Π using

0 as a threshold. That is, the estimate b̂ = sgn(Π). The complete SS watermarking

system is summarized in Fig. 26.

If samples of Z and S are Gaussian distributed, the error probability in estimating

b is

Pr(b̂ 6= b) =
1

2
erfc

(
tr(∆)√

2n(σ2
S + σ2

Z)

)
. (4.3)

However, according to the central limit theorem, Eqn. (4.3) gives accurate estimate

of the error probability even for non-Gaussian cases as long as n is large.

2Unfortunately, this assumption does not hold for deliberate attacks because the
attacker is likely to respond according to what he/she receives. Hence, Z depends on
X, and thus on S in this case.
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Fig. 26. Block diagram of a general SS watermarking system.

C. Enhanced Spread Spectrum Watermarking

1. Motivation

As we can see from (4.3), the probability of error depends on the original host signal

σ2
S. In particular, the larger the variance σ2

S, the higher the probability of error. This

means that the host signal sequence S appears as an interference to estimating b.

When S is known to the decoder, this interference can be eliminated by subtracting

〈S,κ〉 from Π. This scenario is commonly known as private watermarking. How-

ever, it is much more realistic in practice to consider public watermarking when S is

unknown to the decoder.

When both the noise and host signals are Gaussian, it is possible to construct

a public watermarking scheme with equal embedding capability as the best private

watermarking scheme [29]. Loosely speaking, this means that under the Gaussian

assumption, it is possible to eliminate the host signal interference even for public wa-

termarking. Stronger results when the host and the attack signals are not stationary
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or ergodic and when the attack is arbitrary with constrained squared-error distortion

are proved in [110] and [25], respectively. Practical approaches such as QIM and

scalar Costa scheme are described in [18, 39]. The simplest example of these zero

host interference schemes is low-bit modulation [71]. The watermark embedder sim-

ply replaces the least significant bit of the host signal with the embedded bit. The

watermark decoder extracts the embedded bit directly from the least significant bit of

the watermarked signal. Obviously, the error probability of decoding the embedded

bit does not depend on the host signal. As pointed out in [62], the main weakness of

these schemes is that the watermark can be easily destroyed by scaling.

In the analysis of the SS watermarking scheme (see (4.1)–(4.3)), we assume that

both κ and ∆ are independent of S. The improved scheme in [62] takes ∆i as a

function of S and constrains the average distortion by limiting the magnitude of E[∆i].

This scheme is shown to be able to withstand 20 dB more of noise power, compared

with the conventional SS scheme for high (host) signal to (attack) noise ratio. The

main difficulty in applying this scheme is that one may not have the freedom of varying

∆i. This happens when the distortion of individual samples rather than the average

distortion is important. For instance, watermark embedding of audio signal is usually

applied in the frequency domain. A masking function [68] is computed for each group

of coefficients known as a bark band and the modification will be imperceptible as

long as the distortion introduced to each coefficient has value smaller than the mask

of the corresponding bark band it belongs to. Assume the mask function on a sample

is mi, the best ∆i to allow maximum hiding capability is simply equal to mi. That

is, the maximum allowed watermarking power should be used. Therefore, we do not

have the freedom to cancel the effect of S by varying ∆i in this case. In our work, we

reduce the interference by varying κ instead and our goal is to confine the choice of

keys to those satisfying var(〈S, κ〉) ≈ 0.
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2. System Setup

In this section, we propose an enhanced SS watermarking scheme by “transforming”

the host sequence into another one before watermark embedding. As a result, the

variance of the transformed host sequence will be much smaller than before, and so

will be the probability of error according to (4.3). We show that the effect is the same

as using a signal dependent key described in the previous Section.

In a nutshell, we perform the following: 1) Sort the original sequence; 2) construct

a new host signal by taking the difference of every two consecutive samples in the

sorted sequence; and 3) add a watermark to the new host signal.

In practice, we do not actually construct the new host signal during watermark

embedding. Instead, we generate the watermarked signal directly from the original

host signal using the sorting index obtained in step 1). Specifically, we first sort

S in ascending order and obtain SI1 ≤ SI2 ≤ SI3 ... ≤ SIn . Then, assuming n is

even for the sake of simplicity, we construct a hypothetical host signal sequence

S′ = (S ′1, S
′
2, ..., S

′
n/2)

T with

S ′j = (−1)j(SI2j
− SI2j−1

). (4.4)

We explicitly make the two consecutive S ′j’s have alternate signs to ensure that
∑n/2

j=1 S ′j has approximately zero mean. Since adjacent sorted samples of S are close

in their values, we conclude that with high probability, the sample values of S′ will

be much smaller than those of S. Moreover, σ2
S′ is much smaller than σ2

S.

We “embed” bit b into S′ as follows. We prepare a length-n/2 watermark key

sequence κ′ = (κ′1, κ
′
2, ..., κ

′
n/2)

T , κ′i = {−1, 1} and generate the watermarked sequence

X′ = (X ′
1, X

′
2, ..., X

′
n/2)

T as

X ′
j = S ′j + b∆′

jκ
′
j (4.5)
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just like in conventional SS watermarking, where ∆′
j controls the amount of distortion

that can be added to S ′j. As mentioned previously, we do not actually construct X′

but instead we modify S into sequence X = (X1, X2, ..., Xn)T such that X′, which

satisfies (4.5), is a transform of X just as S′ is a transform of S. Since S ′j is related

to both SI2j−1
and SI2j

, the perturbation b∆′
jκ
′
j can be achieved by varying SI2j−1

and/or SI2j
. This extra flexibility is useful because SI2j−1

and SI2j
may have unequal

susceptibility to noise. For simplicity, we split the distortion evenly among the pair.

Thus we construct

XI2j
= SI2j

+ (−1)jb
∆′

j

2
κ′j; XI2j−1

= SI2j−1
− (−1)jb

∆′
j

2
κ′j, (4.6)

and obtain X ′
j = (−1)j(XI2j

−XI2j−1
) = S ′j + b∆′

jκ
′
j as desired.

Recall that Y is the distorted X received by the watermark decoder. To decode

b, we first transform Y into another sequence Y′ = (Y ′
1 , Y

′
2 , ..., Y

′
n/2)

T with the help of

the sorting indices I , (I1, I2...In)T as in (4.4). The embedded bit b̂ is then estimated

to be sgn
(

2
n

∑n/2
j=1 κ′jY

′
j

)
as in conventional SS watermarking. Therefore, both the

sorting indices I and the watermark key κ′ are required for decoding.

If we let

κIi
=





(−1)
i
2 κ′i

2

, i is even

−(−1)
i+1
2 κ′i+1

2

, i is odd

(4.7)

and

∆Ii
=





∆′
i
2

/2, i is even

∆′
i+1
2

/2, i is odd,

(4.8)

we obtain Xi = Si + b∆iκi from (4.6). The expression is the same as that of the em-

bedding process in conventional SS watermarking. But unlike the traditional scheme,
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κ, which can be viewed as a combined key of I and κ′, does depend on the host signal

S. Therefore, we can consider our enhanced SS scheme as conventional SS scheme

but with a signal dependent key. This dependency reduces the degree of freedom

of κ from n to n/2. In other words, the number of valid keys decreases from 2n to

2n/2. Note that var(〈S,κ〉) = 1
n

∑n/2
j=1 κ′j(−1)jvar(SI2j

− SI2j−1
) ≈ 0 as SI2j−1

≈ SI2j
.

Constructing κ can be considered as selecting good keys out of all possible keys that

satisfy var(〈S,κ〉) ≈ 0.

It seems that the reduction in the number of valid keys may result in lesser se-

curity, because the smaller the size of the key set implies the easier the embedded

information to be extracted by an unauthorized person using brute force. However,

if we use a different key for each embedding bit,3 it is easy to show that the result-

ing enhanced SS watermarking scheme has perfect secrecy [90, ch. 2]. In practice,

these keys can be constructed as consecutive sections cutting from a pseudo-random

sequence generated by a single seed.

3. Performance Analysis

Define Π′ , 〈κ′,Y′〉, the estimate of embedded bit b̂ = sgn(Π′). Since Y ′
j =

(−1)i(YI2j
− YI2j−1]

) = S ′j + b∆′
jκ
′
j + (−1)j(ZI2j

− ZI2j−1
), then

E[Π′|κ′] = E[〈S′,κ′〉|κ′] + b

(
2

n

)
tr(∆′) = E[〈S′,κ′〉|κ′] + b

(
2

n

)
tr(∆)

because tr(∆) =
∑n

i=1 ∆i =
∑n

i=1 ∆Ii
=

∑n/2
j=1 ∆I2j

+ ∆I2j−1
=

∑n/2
j=1 ∆′

j/2 + ∆′
j/2 =

tr(∆′). In addition,

var[Π′|κ′] = var[〈S′, κ′〉|κ′] +

(
2

n

)2

nσ2
Z .

3This is, of course, just the main idea of one-time pad.
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The transform of S to S′ is non-linear. This makes it almost impossible to

compute the exact var[〈S′,κ′〉|κ′]. Therefore, we further assume that elements of κ′

are i.i.d. with zero mean and that S′ and κ′ are independent, then

Eκ′ [E[〈S′, κ′〉|κ′]] =
2

n
Eκ′




n/2∑
j=1

E[S ′j]κ
′
j


 = 0

and

Eκ′ [var[〈S′, κ′〉|κ′]] ≈ Eκ′ [E[〈S′,κ′〉2|κ′]]

=
4

n2




n/2∑
j=1

E[S ′2j ] + Eκ′




n/2∑
j=1

∑

i6=j

E[S ′iS
′
j]κ

′
iκ
′
j







=
4

n2

n/2∑
j=1

σ2
S′j .

By the central limit theorem, the probability of error can be approximated as4

Pr(b̂ 6= b) ≈ 1

2
erfc

(
Eκ′ [E[Π′|κ′]]√
2Eκ′ [var[Π′|κ′]]

)
=

1

2
erfc


 tr(∆)√

2(
∑n/2

j=1 σ2
S′j

+ nσ2
Z)


 . (4.9)

From (4.9), we need to find the statistics of S ′j’s in order to compute the error

probability. Recall SI = (SI1 , SI2 ...SIn)T is the sorted sequence of S in ascending

order. Assume Si has a cumulative distribution function FS(s) and a probability

density function fS(s). The joint probability density function of the two consecutive

4Strictly speaking, the probability of error should be Eκ′

[
1
2
erfc

(
E[Π′|κ′]√
2var[Π′|κ′]

)]
.

However, (4.9) gives a reasonable approximation as E[Π′|κ′] and var[Π′|κ′] are ap-
proximately constants with respect to κ′. Note that E[Π′|κ′] and var[Π′|κ′] are

related to κ′ via the terms
∑n/2

j=1 E[S ′j]κ
′
j and

∑n/2
j=1

∑
i6=j E[S ′iS

′
j]κ

′
iκ
′
j, respectively.

Since S ′i’s have alternating signs and are independent of κ′, the summands of∑n/2
j=1 E[S ′j]κ

′
j and

∑n/2
j=1

∑
i6=j E[S ′iS

′
j]κ

′
iκ
′
j will tend to cancel out and hence the sums

will be close to 0.
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ordered random variables SIl
and SIl+1

is [69, pp. 246]

fSIl
SIl+1

(SIl
, SIl+1

)

=





n!
(l−1)!(n−l)!

FS(SIl
)l−1fS(SIl

)fS(SIl+1
)(1− FS(SIl+1

))n−l−1, SIl
≤ SIl+1

0, SIl
> SIl+1

.

For SIl
> SIl+1

, the density is obviously 0 because SI are ordered ascendingly. For

SIl
≤ SIl+1

, we want l− 1 S’s to be no bigger than SIl
, n− l− 1 S’s to be no smaller

than SIl+1
, and have the remaining two S’s take values SIl

and SIl+1
.

Let dj = SI2j
− SI2j−1

, j = 1, 2, ....n
2
, then

fdj
(d) =





n!
(2j−2)!(n−2j)!

∫
R FS(s)2j−2fS(s)fS(d + s)(1− FS(d + s))n−2jds, d > 0

0, otherwise.

Note that S ′j = (−1)jdj, hence σ2
S′j = σ2

dj
.

Uniform Host Signal

We can find σ2
S′j exactly in only a few cases. One of them is when the host signal

is uniformly distributed. Assume that Si is uniformly distributed with support ω,

i.e.,

fSi
(s) =





1
ω

s ∈ [0, ω]

0 otherwise,

then for d > 0,

fdj
(d) =

n!

(2j − 2)!(n− 2j)!

∫ ω−d

0

(
S

ω

)2j−2 (
1

ω

)2 (
1− S + d

ω

)n−2j

ds

=
n

ωn
(ω − d)n−1.

Hence E[dj] = ω
n+1

and E[d2
j ] = 2ω2

(n+1)(n+2)
. We have σ2

S′j
= σ2

dj
= E[d2

j ] − E[dj]
2 =
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12nσ2
S

(n+1)2(n+2)
. Thus,

Pr(b̂ 6= b) ≈ 1

2
erfc


 tr(∆)√

2(
6n2σ2

S

(n+1)2(n+2)
+ nσ2

Z)


 . (4.10)

The host signal interference tends to disappear as
∑n/2

i σ2
S′j

=
6n2σ2

S

(n+1)2(n+2)
tends to 0

for large n.

We compare enhanced SS watermarking with conventional SS watermarking, the

spread-transform dither modulation (STDM), and an ideal case when host signal

is known to the decoder and hence does not act as an interference. STDM is a

combination of QIM and conventional SS watermarking [18]. It happens to have the

same weakness as QIM in the sense that its watermark can be easily destroyed by

signal scaling. Chen and Wornell show the watermarking power of STDM is 1.25 dB

higher than that in the ideal case in order to achieve the same probability of error

[18].

The performances of the four different cases are shown in Fig. 27. We plot

the log error probability against tr(∆)/nσS = 1
n

∑n
i=1 ∆i/σS, which is the average

magnitude of the watermark to that of the host signal. Results for several n’s and

(host) signal to (attack) noise ratios are computed. For all combinations, enhanced

SS watermarking has performance very close to that of the ideal case and achieves

lower error probability than that of STDM for the same allowed distortion. Although

there are other QIM variations [39] that offer better performance than STDM, their

watermarks have high susceptibility to signal scaling as in the QIM case.

For large n,
∑n/2

j σ2
S′j

is practically 0. The error probability Pr(b̂ 6= b) is then

approximately 1
2
erfc

(√
tr2(∆)

2(nσ2
Z)

)
, and depends on tr(∆)2/n as a whole. Therefore, like

conventional SS watermarking, we can tradeoff the embedding rate and the distortion

introduced to the watermarked signal. For example, to reduce the absolute distortion
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by half, one needs approximately quadruple n to keep the same probability of error.

It is interesting to look at the actual robustness gain of enhanced SS water-

marking. We want to see how much more noise an enhanced SS watermark can

withstand comparing to a conventional SS watermark. From (4.10) and (4.3), we

have
(

σZ

σZ0

)2

= 1 +
(
1− 6n

(n+1)2(n+2)

) (
σS

σZ0

)2

, where σ2
Z0

and σ2
Z are the noise vari-

ances introduced to the conventional SS watermark and the enhanced SS watermark

that result in the same amount of error probability. Fig. 28 plots
(

σZ

σZ0

)2

against
(

σS

σZ0

)2

to show the robustness gain as the signal to noise ratio increases for different

n. Enhanced SS watermarking offers almost the same gain as the ideal case (without

host signal interference), which is also included in Fig. 28. We expect the enhanced

scheme to approach the ideal case as n → ∞. In fact, enhanced SS watermarking

realizes most of the gain even when n is as small as two.5 This is because the host

signal does not need to be eliminated completely to achieve a huge gain. This last

point is verified in Fig. 29 which shows the theoretical robustness gain obtained by

reducing the host signal variance. The robustness gain is merely 3 dB away from the

ideal case even when the host signal variance is only reduced by half.

Another observation from Fig. 28 is that
(

σZ

σZ0

)2

≈
(

σS

σZ0

)2

for large σS/σZ0 . This

is intuitive as the signal to noise ratio increases, the error probability is dominated by

the host signal interference in conventional SS watermarking. Since there is almost

no host interference in enhanced SS watermarking, its watermark can withstand as

much noise as the combined noise power in conventional SS watermarking, which is

approximately equal to the host signal power.

Gaussian Host Signal

When the host signal is Gaussian, it is difficult to find σS′j as in the uniform case.

5A caveat is that the analysis here only give a crude estimation as the central limit
theorem will no longer be accurate for such a small n.
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Instead we perform Monte Carlo simulations to obtain an estimate of
∑n/2

j=1 σ2
S′j

as

shown in Table IX. 100000 sequences are generated to get the estimate for each n.

Table IX. Estimates of the sums of σS′j for the Gaussian distributed host signal.

n 10 50 200 500

∑n/2
j=1 σ2

S′j
0.61σ2

S 0.40σ2
S 0.28σ2

S 0.23σ2
S

Using Table IX and (4.9), we can calculate the probability of error for enhanced

SS watermarking. The results are shown in Fig. 30. Results for conventional SS

watermarking, STDM, and the ideal case are also included for comparison. As in the

uniform case, enhanced SS watermarking has error probability smaller than STDM

and very close to the ideal case.

The robustness gain of enhanced SS watermarking, i.e., the amount of additional

noise that can be withstood comparing to conventional SS watermarking, is computed

and shown in Fig. 31. The gain for the ideal case is also shown for comparison. Just

as in the uniform case, enhanced SS watermarking with Gaussian host signals has its

robustness gain quite close to the ideal case even for an n as small as two.

4. Discussion

The basic idea of enhanced SS watermarking is to impose constraint on the valid

key set so that host interference cancellation is achieved. Our “sorting and sample

differentiation” scheme is only one way to accomplish this goal. Thus one interesting

further direction is to look for an optimal scheme that satisfies either 1) the constraint

is weakest (the number of valid keys is largest) given the same level of host interfer-

ence; or 2) the host interference is minimized given the same level of constraint is

imposed (the number of valid keys is the same).
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Although the watermarking key κ can be arbitrarily chosen in theory, it is usually

implemented as a pseudo-random sequence for the ease of transmission. Due to the

dependency on the host signal, κ can no longer be reproduced as a pseudo-random

sequence with a single seed. In practice, the user key κ′ can still be generated from a

seed, and the sorting indices I1, I2, ..., In are needed separately in order to reconstruct

the watermarking key κ. It is possible to pad these sorting indices directly into the

user key but these uncoded indices can contribute significant overhead when n is

large. There are at least two compatible approaches in tackling this issue. The first

one is by taking advantage between the correlation of the host signal and the received

watermarked signal. For example, we can transmit a check sum that contributes

a smaller overhead instead of the entire sorting indices. In the decoder, we can

estimate the sorting indices from the watermarked signal and compare the checksum

of the estimate with the received one. If the checksums do not match, the next best

estimate is chosen6 and the same test is performed again. This search is repeated for

a maximum number of times or until the checksum is satisfied.

Another approach is by imposing constraint on the choice of the indices. Note

that sorting used in our setup is just one way of permuting the host signal samples.

Moreover, no restriction has been imposed on the choice of this permutation. We

can reduce the amount of the overhead by restriction this choice, or equivalently by

reducing the number of allowed permutationsi. For example, instead of sorting the

whole n-sample sequence, we can first divide it into m subblocks and perform sorting

individually. When this number is reduced to 1, i.e., only the identity permutation is

allowed, this degenerates back to the conventional SS scheme with no overhead at all.

6For our setup, this can be done effectively by swapping the two neighboring
indices with the smallest sample difference in the current permutation. Each newly
generated permutation is recorded to avoid any repetition.
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On the other hand, our current scheme corresponds to the other extreme case when

the maximum number of permutations is allowed. There should exist an optimal

number of allowed permutation that gives the highest robustness of the watermark

with a fixed amount of overhead. While we do not know what this optimum is, it

is reasonable to believe that this optimum lies between the two extreme cases (our

enhanced SS scheme and the conventional SS scheme).

D. Applications

In this section, we will describe two applications relating to digital watermarking:

AAC audio watermarking and AAC audio error concealment.

1. AAC Audio Watermarking

In the past decade, advances in audio compression have made distribution of digital

audio easy and convenient. Many commercial and non-commercial techniques have

been invented. The highly successful MPEG-1 layer 3 (MP3) [15] audio coder and

its successor AAC [3] are two examples. However, as mentioned previously in this

chapter, these compression techniques also pose a serious threat to the record and film

companies because they make illegal distribution of digital audio easy and convenient.

As a result, several watermarking schemes have been proposed to address this problem

[53, 66, 8].

The AAC encoding procedure consists of four steps: frequency transform, quan-

tization, entropy coding, and bitstream multiplexing [3, 14, 1, 2]. AAC employs

the modified discrete cosine transform (MDCT) [61] typically with 1024 samples per

frame. Perceptual modeling [68] is applied to estimate for each Bark band the max-

imum amount of distortion that can be withstood. The quantization step size is
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iteratively7 adjusted until both the bit rate is below the target and the distortion

is below the maximum acceptable perceptual threshold. Huffmann coding is then

used to encode the quantized coefficients and the step size information. Finally, the

encoded indices are multiplexed into one single bitstream.

In [66], an AAC audio watermarking scheme is proposed, which partially decodes

the compressed audio in the frequency domain and requantizes8 it after embedding a

perceptually imperceivable watermark. The distortion introduced to each frequency

coefficient is determined by the perceptual threshold, which is assumed to be recorded

during the original compression process and passed onto the compressed audio.

a. Proposed AAC Watermarking System

A drawback of the approach in [66] is that the perceptual modeling information is

usually not available when the watermark is added. It is unlikely that the compressed

audio clip stores this extra information. Although there is watermarking system that

estimates the perceptual information from the compressed audio, this results in es-

timation error and increased complexity [67]. Therefore, we assume that no such

information is available during watermark embedding and take a heuristic approach

instead. In addition, we embed the watermark directly into the quantization indices

rather than the MDCT coefficients. This speeds up the overall watermarking process

since no dequantization and requantization is necessary. Furthermore, this avoids any

tandem coding distortions (i.e., distortions accumulation due to repeated quantiza-

tion). We propose an AAC audio watermarking scheme based on our enhanced SS

7Note that there exists more sophisticated encoding system that employs forward
estimation of quantization step sizes without needs of iterations.

8Same quantization step sizes are used to avoid tandem coding distortions (i.e.,
distortions accumulation due to repeated quantization).



101

approach. A user key κ′ and the host signal samples S1, S2, ..., Sn, which are the quan-

tization indices in this case, are given to the watermark embedder. The host signal

samples are then sorted and the sorting indices I1, I2, ..., In are generated. A combined

key κ, which depends on both the user key and the sorting indices, is constructed

as in (4.7) and sent to the decoder for watermark decoding. Alternatively, the user

key and the sorting indices can be transmitted separately to regenerate the combined

key κ at the decoder. Block diagrams for watermark embedding and decoding in our

proposed system are shown in Fig. 32 (a) and (b), respectively.

The distortion control in Fig. 32 determines ∆i, which controls the amount of

distortion imposed to the ith quantization index. Ideally, this can be done by ap-

plying perceptual modeling to the original audio. For example, if one coefficient can

tolerate a distortion of 10 units and its current quantization step size is two. Then

we can approximately vary the corresponding index by five steps without affecting

the quality.9 However, as mentioned before, this information is not easily accessible

during watermark embedding. Therefore, a heuristic scheme is employed as follows:

1. Pick indices corresponding to a frequency range in which the human ears are

more sensitive to distortion (to prevent destruction of the watermark by fre-

quency truncation attack).

2. Set ∆i to 0 for zero indices (to avoid having distortion during silent period).

3. Set ∆i to be 1 for the remaining indices (to minimize distortion).

The modified quantization indices after watermarking are compressed with Huff-

man coding using the original codebook. It is possible to search for the optimum

9Uniform quantization is assumed in this idealized example.
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Table X. Noise-to-mask ratio (NMR) of watermarked audio.

Audio clip1 clip2 clip3 clip4 clip5 clip6 clip7

NMR -1.40 -9.44 -8.87 -7.21 -3.20 -6.01 -8.38

codebook again as in AAC encoding. However, we do not take this approach due to

complexity concerns.

We decode the watermark from the MDCT coefficients instead of the quantization

indices directly. This is because the quantization indices are relatively vulnerable to

digital/analog/digital conversion as quantization step sizes may change.

b. Experimental Results

Perceptual quality

Although we use a heuristic estimate on the perceptual model for the water-

mark embedding, test results show the perceptual quality were acceptable under

office or lab environments where the tests are conducted. We provide in Table X

the noise-to-mask ratio (NMR) [16] for the watermarked audio as an objective mea-

sure of the audio quality. Samples of watermarked music clips can also be found at

http://samuel.ee.tamu.edu/research/aactest.asp.

Information hiding capacity

In general, the robustness of the watermark drops naturally with the increase

of information hiding rate. Information hiding capacity is defined as the maximum

amount of information that can be embedded into the host signal while guaranteeing

correct retrieval. We estimate this information hiding capacity by measuring the

watermark bit error rate (WBER) for different embedding rates and different audio

clips without noise (Table XI). The information hiding capacity of our system is
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approximately 30 bps. The source of error is mainly due to imperfect host interference

elimination as the sorting indices are obtained from ordering the quantization indices

instead of the MDCT coefficients, where the latters are actually used for watermark

recovery. This is a trade-off with the complexity as MDCT transform is not necessary

in our encoding scheme.

Table XI. Watermark bit error rate at different embedding rate.

Audio Embedding Rate (bps)

10 20 30 50 80

clip1 0 0 0 0.001 0.0037

clip2 0 0 0 0 0

clip3 0 0 0 0 0

clip4 0 0 0 0.013 0.0014

clip5 0 0 0 0 0

clip6 0 0 0 0 0

clip7 0 0 0 0 0

Robustness against transcoding

To estimate the robustness of our watermark against transcoding, we first decode

the watermarked AAC audio to WAV format and then convert it to MP3 format.

It is then decoded to WAV format again and encoded back to AAC format. The

transcoded AAC audio is inputted to the decoder for the watermark retrieval after

resynchronization. The resulting WBER is shown in Table XII. Note that there is

some drop in the WBER even when the information hiding rate increases, this is

probably due to statistical error since the test audio sequence is pretty short (< 20

sec on average) for good perceptual quality test. Despite the increase in the WBER
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Table XII. Watermark bit error rate at different embedding rate after MP3 transcod-

ing.

Audio Embedding Rate (bps)

10 20 30 50 80

clip1 0 0.003 0.003 0.014 0.010

clip2 0 0 0 0 0

clip3 0 0 0 0.001 0.001

clip4 0 0.002 0.004 0.007 0.025

clip5 0 0 0.002 0 0

clip6 0 0 0 0 0

clip7 0 0 0 0.002 0.002

after transcoding, the watermark is still shown to be robust at a relatively high rate

of 10 bps.

Change in file size after watermarking

An increase of audio clip size after watermarking is expected due to data em-

bedding. Table XIII lists the percentage increase in file size for different test clips

after watermarking. The increase in file size is below 5% for all test clips and about

1% higher than that obtained in [66]. The extra 1% increase could be due to the

fact that our simplified approach does not perform any AAC encoding steps except

Huffmann encoding. Performing those AAC encoding steps (e.g., searching for op-

timum Huffmann tables) will increase the compression ratio at the cost of increased

complexity.
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Table XIII. Percentage size change after watermarking.

Audio clip1 clip2 clip3 clip4 clip5 clip6 clip7

Size Increase 3.9% 3.8% 2.0% 3.0% 3.8% 4.0% 1.7%
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Fig. 27. The figures compare the performance of enhanced SS watermarking (dashed

lines) from conventional SS watermarking (solid lines) and STDM (dash-dot

lines) for uniform host signal. The ideal case that without host signal inter-

ference (dotted lines) is also shown.
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Fig. 28. The figures shows the robustness gain against the (host) signal to (attack)

noise ratio for n = 2, 8, 50 when the host signal is uniformly distributed. An

ideal case with no host signal interference is also shown for comparison.
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Fig. 29. The figure shows the robustness gain against the (host) signal to (attack)

noise ratio for different reductions of host signal variance. An ideal case with

no host signal interference is also shown for comparison.
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Fig. 30. The figures compare the performance of enhanced SS watermarking (dashed

lines) from conventional SS watermarking (solid lines) and STDM (dash-dot

lines) for Gaussian distributed host signal. The ideal case that without host

signal interference (dotted lines) is also shown.
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2. AAC Audio Error Concealment

Effective transmission of digital audio over noisy channels is a challenging task for

researchers. Although channel coding can be used to protect the audio from network

errors, it usually requires extra payload. Since most users are only concerned with

the perceptual quality of the received audio, error free transmission is not necessary.

Therefore, error concealment [109] [95] [20], which typically extracts features from

the received audio and uses them to recover the lost data, is very attractive in audio

transmission as it improves the perceptual quality without the need of additional

payload.

There are two issues in error concealment: complexity of the receiver and inac-

curate extraction of enhancement features at the decoder. Both can be addressed by

extracting the features at the encoder and transmitting them to the decoder along

with the audio. However, this method has the same disadvantage as using channel

coding in that an extra payload is also required. This extra payload not only uses

up more bandwidth, but necessarily modifies the audio format if neither a common

area nor a user data area is available. This format change makes the audio no longer

decodable by an ordinary decoder.

In this work, we apply data hiding technique to embed these enhancement fea-

tures for error concealment of MPEG-2 AAC audio. Specifically, a novel modulo

watermarking technique is deployed in our scheme. Modulo watermarking, which ex-

tracts hidden data as the modulo of the sum of a watermarked integer signal samples,

is an example of one-to-many embedding schemes. In other words, several differ-

ent watermarked signals can contain the same hidden data. This property gives the

watermark encoder freedom in selecting a watermarked signal with small perceptual

distortion.
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Portions of the AAC encoded audio such as audio headers are naturally more

important than the others. When the encoded audio is transmitted via a noisy chan-

nel, unequal error protection (UEP) is usually applied to ensure almost no corruption

on these portions. In this work, we will assume the headers are very well protected

and can be fully recovered. However, frequency coefficients, which are much less im-

portant and not protected substantially, may be lost during transmission. When this

happens, we extract the enhancement features from embedded watermarks and use

them for error concealment.

As will be shown afterward, the file size increase due to our watermark embedding

scheme is negligible ( < 0.1 %). This file size increase corresponds to a relatively small

drop in SNR ( < 0.7 dB) under noiseless conditions. However, under noisy network

conditions, our experimental results show a consistent SNR gain of our scheme over

the zero replacement and the frame duplication schemes at a packet loss ratio of 0.01,

and the gain is even more conspicuous as the network conditions get worse.

a. Proposed Error Concealment Scheme

Since a coefficient is most effectively estimated by its nearest neighbors, ideally, adja-

cent coefficients along both time and frequency axes should not be packed together,

because the sources of estimation will be lost as well when the packet is dropped.

However, we do not impose this as a requirement of our scheme, because we target

at overlaying our scheme on any other protecting scheme.

As coefficients inside a frequency band share similar perceptual behavior, we

choose to group them together for estimation.

Denote (i, j)-band as the the jth band at the ith time frame and assume co-

efficients c[i, l] in (i, j)-band are lost, where l ∈ Lj; Lj is the index set of the jth

band. We estimate c[i, l] as ĉ0[i, l] = 0, ĉ1[i, l] = c[i − 1, l], ĉ2[i, l] = c[i + 1, l], or
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ĉ3[i, l] = 1
2
(c[i− 1, l] + c[i + 1, l]).

For each of the four choices, we define m̃[i, j] as the index that minimizes the

mean square error. That is,

m̃[i, j] = argminm̃∈{0,1,2,3}
∑

l∈Lj

(c[i, l]− ĉm̃[i, l])2.

m̃[i, j] is pre-computed and embedded into the original AAC audio. Embedding

m̃[i, j] into the (i, j)-band itself will not work because when we need this information,

the band is lost and m̃[i, j] cannot be recovered as well. We split m̃[i, j] into two bits

and embed them separately into the two neighboring bands.

Define

m[i, j] =





0, if m̃[i− 1, j] ∈ {0, 1} ∧ m̃[i + 1, j] ∈ {0, 2},

1, if m̃[i− 1, j] ∈ {2, 3} ∧ m̃[i + 1, j] ∈ {0, 2},

2, if m̃[i− 1, j] ∈ {0, 1} ∧ m̃[i + 1, j] ∈ {1, 3},

3, if m̃[i− 1, j] ∈ {2, 3} ∧ m̃[i + 1, j] ∈ {1, 3}.

The higher and the lower bit of m[i, j] tell whether the current band is suitable

for estimating the band in the next time frame ((i + 1, j)-band) and in the last time

frame ((i− 1, j)-band), respectively.

For example, suppose the (i, j)-band is lost, from the lower bit of m[i + 1, j]

and the higher bit of m[i− 1, j], we can determine whether the current band should

be estimated from any of its neighbors. When it is estimated from both sides, it

is scaled by 1/2. If one of its neighbors is lost, we estimate the current band from

the remaining neighbor. If both neighbors are loss, then we assume m̃[i, j] = 0 and

replace the coefficients by zeros.

Upon deciding the enhancement information m[i, j], we need to determine what
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watermarking scheme should be used to embed the information. Watermarking

schemes can be roughly categorized into two classes: fragile and robust watermarking.

Fragile watermarking trades robustness with information embedding rate, and vice

versa for robust watermarking.

Since there are two bits for each m[i, j] and one m[i, j] per band, the embedding

rate is about 44100/1024 × 49 × 2 × 2
.
= 8kbits/sec for a dual channel audio with

sampling rate 44100 Hz. This is a very high embedding rate for robust watermark,

which typically has a rate less than 10 bits/sec. Therefore, fragile watermark is the

only possible choice.

One typical fragile watermarking scheme is least bit modulation (LBM). We can

embed a bit into a host signal sequence by simply replacing the least significant bit of

one signal sample by the embedding bit. The information embedding rate of LBM can

be very high. For example, if we embed a bit into each sample of dual channel audio

with sampling rate 44100 Hz, the embedding rate is up to 44100× 2
.
= 80kbits/sec in

theory. However, since only the least significant bit is modified, the watermark can

be removed easily by truncating the embedded bit. Fortunately, unlike dealing with

copyright protection application, deliberate attacks to our watermark is not likely.

Since different signal samples may have different susceptibilities to distortion,

we should adaptively select the embedding locations. However, for LBM, both the

encoder and the decoder have to agree with a predefined embedding locations, because

there is no side-information in telling the decoder the embedding locations. Note that

it may not be a problem for some other applications in which a key is available for

decoding, because the key itself can serve as the side-information. However, for the

error concealment problem, it is not reasonable to require a user to provide a “key”

before enhancement is performed.

To enable flexible encoding, we propose a novel fragile watermarking technique
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that does not require the decoder to have the knowledge of the exact embedding

locations. Let a = a1, a2, ...aN be an arbitrary integer host signal sequence. We

embed an integer m̂ ∈ [0,M ] by enforcing the following:

N∑
j=1

aj ≡ m̂ mod M.

Note that LBM is a special case of modulo watermarking when N = 1 and K = 2.

There is more than one possible watermarked signal containing with the same

embedded information. The encoder has the freedom of choosing locations of modi-

fications that give a watermarked signal perceptually closest to the original. Despite

that, the decoder does not really need to know these locations where modifications

have been made.

One limitation in applying our fragile watermarking is that it can only be de-

ployed after quantization, otherwise the watermark will be destroyed. Moreover, since

it is very hard to embed watermark into a Huffman coded signal, we embed the en-

hancement features into the quantization indices, which are obtained after partial

decoding. After watermarking, the modified indices will be encoded using Huffman

coding with the original codebook.

With the freedom of embedding given by modulo watermarking, the question left

is what indices and by how much they should be modified. Ideally, this can be done

by applying perceptual modeling to the original audio. For example, if we know one

coefficient can afford a distortion of 10 units and its current quantization step size is

2 unit. Then we know that we can approximately vary the corresponding index by 5

steps without affecting the quality. 10

However, the perceptual model may not be accessible, because the file can be

10Linear quantization is assumed in this simplified example.
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already compressed. Although we can also estimate the model from the decompressed

audio, the estimation is not accurate in general. Therefore, we employ a heuristic

approach as follows without using the perceptual model:

To embed m[i, j] into the quantization indices q[i, l] of (i, j)-band, l ∈ Lj, let

η ≡ ∑
l∈Lj

q[i, l] − m[i, j] mod M , where M is the number of different values that

can be embedded and hence is 4 in this case. Let’s first assume 0 ≤ η < M/2 = 2,

1. Among all indices lie within range [qmin, qmax], select η of them with largest

magnitudes.

2. Declare embedding failure and leave indices unchanged if less than η indices can

be found in step 1.

3. Subtract each of those indices by 1.

If 4 > η ≥ 2, replace η as 4− η and proceed all steps except modifying the last

one with addition instead of subtraction.

Since the enhancement features (m[i, j]) are independently stored, they are useful

even when only a fraction of them is retrieved correctly. Therefore, embedding failure

in the scheme is acceptable.

The lower limit qmin in the first step restrains modification of small value indices,

because they are more probable to have high susceptibility to distortion. In particular,

no distortion should be imposed on zero indices. qmin also serves as a design parameter

in trading error free distortion with error concealment capability. As qmin increases,

it is more probable that the embedding of m[i, j] fails and leaves the indices with no

distortion. However, the inaccurate m[i, j] will make the error concealment process

less efficient. In our experiment, qmin is simply set to be 1.

qmax is equal to the maximum possible value available in the Huffman table less
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Table XIV. Percentage change in audio clip size after watermarking.

clip1 clip2 clip3 clip4 clip5 clip6 clip7

0.02% 0.02% 0.06% 0.01% 0.03% 0.06% 0.06%

1. This prevents indices from being out of bound after modification. Large indices

are selected for modification because they can withstand a larger distortion.

b. Experimental Results

The Huffman codebook used in the original audio is optimized in the AAC encoder.

Since we modify the indices but keep the old codebook, it is expected the size of the

audio will increase. However, the increase is small because we only change relatively

few indices. Table XIV indeed confirms this–the size increase is less than 0.1 % over

all test audio clips.

In contrast, we need 8 kbits/sec if an explicit overhead is written to the audio.

This corresponds to 8/256=3 % of total file size for an audio encoded at 256 kbits/sec.

In the case of no error, we expect the embedded watermark to deteriorate the au-

dio quality. However, our test shows that the perceptual quality of the watermarked

audio clips is acceptable in office or lab environment. As a objective measure, we

compare the SNR difference of each AAC coded audio clip before and after the wa-

termarking. The SNR decrease due to watermarking is between 0.03 dB and 0.68 dB

(Table XV).

We assume the AAC audio coefficients are packetized and transmitted via a noisy

channel. Each packet consists of coefficients from one time frame. Packet is either

correctly received or lost. A periodic packet loss is assumed in our simulation with

a fixed packet loss ratio. We compare our scheme with two reference schemes (Ref.1
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Table XV. SNR change (in dB) after embedding enhancement information.

AAC audio After watermarking SNR changes

clip1 32.87 32.69 0.18

clip2 18.18 17.95 0.23

clip3 17.13 17.10 0.03

clip4 31.50 31.29 0.21

clip5 28.66 27.99 0.67

clip6 24.47 23.79 0.68

clip7 26.73 26.69 0.04

and Ref.2). In Ref.1, all lost coefficients are set to 0, In Ref.2, the previous adjacent

time frame is copied to the current lost one (Table XVI).

Our enhanced audio results in higher SNR than the control audio in all cases.

The slight drop in SNR due to watermark embedding is quickly exceeded by the gain

obtained from our enhancement even at a small error rate of 0.01. Moreover, the gain

is more conspicuous as the error rate increases.
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Table XVI. SNR comparison (in dB) of three different error concealment schemes: our

scheme (upper), zero replacement scheme (middle), blindly duplication

from previous time frame (lower).

Packet loss ratio

0.01 0.02 0.05 0.1 0.2

clip1

Ours 22.79 20.99 15.80 13.25 9.91

Ref.1 20.92 16.99 12.90 10.01 6.74

Ref.2 18.60 15.06 10.63 7.61 4.24

clip2

Ours 16.93 15.94 13.92 11.80 9.49

Ref.1 16.01 14.56 11.87 9.47 6.82

Ref.2 15.02 13.01 9.90 7.20 4.42

clip3

Ours 16.12 15.23 13.06 11.16 8.65

Ref.1 15.73 14.39 11.81 9.50 6.87

Ref.2 14.41 12.49 9.36 6.71 3.92

clip4

Ours 23.74 19.62 15.27 12.42 9.55

Ref.1 20.64 17.37 12.88 9.99 6.98

Ref.2 17.18 14.22 10.15 7.25 4.09

clip5

Ours 23.93 21.20 14.91 12.63 9.30

Ref.1 22.17 18.75 12.73 10.35 6.92

Ref.2 19.35 15.08 10.13 7.67 4.53

clip6

Ours 20.73 18.82 16.81 13.62 10.59

Ref.1 19.99 17.06 13.17 10.57 7.19

Ref.2 16.73 14.19 9.18 6.61 3.19

clip7

Ours 23.33 21.10 15.19 13.26 9.87

Ref.1 20.07 17.46 12.16 9.97 7.05

Ref.2 18.82 15.87 8.59 6.26 3.36
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CHAPTER V

CONCLUSION

A. Summary

Source coding and channel coding are two main components in point-to-point com-

munications. Although side information naturally exists in many scenarios, the effect

of side information is not taken into account in the conventional setups. While side

information can be given to the encoder and/or decoder and thus yields several dif-

ferent cases, two problems that worth particular attention are source coding with

side information at the decoder (Wyner-Ziv coding) and channel coding with side

information at the encoder (Gel’fand-Pinsker coding) since they require completely

different design strategies from the conventional source and channel coding problems.

In Chapter II, we briefly review the theories of WZC and GPC and describe a

new result regarding sucessive refinement for WZC. Although the theoretical limits of

WZC and GPC are known in the literatures, they cannot be obtained in close forms

in general. For problems with discrete alphabets, we present an iterative algorithm in

computing the theoretical limits of coding problems with side information in general.

In Chapter III, we discuss issues in WZC design. We split our discussion into

the two cases when the distortion of the reconstructed source is zero and when it is

not. We review that the first case, which is commonly called SWC, can be imple-

mented using conventional channel coding. Then, we detail the SWC design using

the low-density parity-check (LDPC) code. To facilitate efficient SWC design, a nec-

essary requirement is that the SWC performance is needed to be independent of the

input source. We show that a sufficient condition of this requirement is that the

hypothetical channel between the source and the side information satisfies a symme-
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try condition dubbed dual symmetry. Moreover, when dual symmetry is satisfied,

the LDPC code performance over the hypothetical channel precisely translates to

the SWC performance. Therefore, under that dual symmetry condition, SWC design

problem can be simply treated as LDPC coding design over the hypothetical channel.

When the distortion of the reconstructed source is non-zero, we propose a prac-

tical WZC paradigm called Slepian-Wolf coded quantization (SWCQ) by combining

SWC and nested lattice quantization. We point out an interesting analogy between

SWCQ and entropy coded quantization in classic source coding. Furthermore, a prac-

tical scheme of SWCQ using 1-D nested lattice quantization and LDPC is implemeted,

where detail design issues are discussed.

In Chapter IV, we focus on the design of GPC. However, GPC is a rather general

problem that actual design procedure relies on the more precise setting of the problem.

We choose to investigate the design of GPC as the form of a digital watermarking

problem since digital watermarking is the precise dual of WZC as is shown in Section

IIB. Although the nested coding approach described in Section IIB is applicable

in theory for the digital watermarking problem, a common scaling attack can easily

destroy the watermark generated by nested coding. Hence, we instead introduce

an improved version of the well-known spread spectrum watermarking technique.

Finally, two applications related to digital watermarking are depicted.

B. Future Directions

Our proposed SWCQ paradigm performs very well for Gaussian WZC problem. Ac-

tually, it is only 0.5 dB away from the Wyner-Ziv limit if LDPC code based SWC and

trellis coded quantization are used [108]. However, this good performance is restricted

to the case when the source statistics is well-defined and known. In classic source
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coding, there exists the so-called universal source coding schemes such as Lempel-

Ziv coding [114], which do not require the knowledge of the precise statistics of the

source. It is an interesting direction to search for “universal Wyner-Ziv coding” that

is defined in a similar manner.

In our digital watermarking design, we discard nested coding as an option since

it is not robust against scaling attack. However, nested coding is supposed to be

efficient for other applications such as broadcast channel coding. Efficient design of

GPC using nested code is another difficult but rewarding research direction.



124

REFERENCES

[1] “MPEG. Coding of moving pictures and associated audio for digital storage

media at up to 1.5 Mbit/s, part 3: Audio. International Standard IS 11172-3,”

ISO/IEC JTC1/SC29 WG11, 1992.

[2] “MPEG. Information technology–generic coding of moving pictures and as-

sociated audio, part 3: Audio. International Standard IS 13818-3,” ISO/IEC

JTC1/SC29 WG11, 1994.

[3] “MPEG. MPEG-2 advanced audio coding, AAC. International Standard IS

13818-7,” ISO/IEC JTC1/SC29 WG11, 1997.

[4] A. Aaron and B. Girod, “Compression with side information using turbo codes,”

in Proc. DCC’02, Snowbird, UT, Mar. 2002.

[5] R. Ahlswede and J. Körner, “Source coding with side information and a converse

for the degraded broadcast channel,” IEEE Trans. Inform. Theory, vol. 21,

no. 6, pp. 629–637, Nov. 1975.

[6] T. Ancheta, “Syndrome source coding and its universal generalization,” IEEE

Trans. Inform. Theory, vol. 22, pp. 432–436, July 1976.

[7] S. Arimoto, “An algorithm for calculating the capacity of an arbitrary discrete

memoryless channel,” IEEE Trans. Inform. Theory, vol. 18, pp. 14–20, Jan.

1972.

[8] M. Arnold and S. Kanka, “MP3 robust audio watermarking,” in DFG VIIDII

Watermarking Workshop, Erlangen, Germany, 1999.



125

[9] J. Bajcsy and P. Mitran, “Coding for the slepian-wolf problem with turbo

codes,” in Proc. GlobeCom’01, San Antonio, TX, Nov. 2001.

[10] R. J. Barron, B. Chen, and G. W. Wornell, “The duality between information

embedding and source coding with side information and some applications,”

IEEE Trans. Inform. Theory, vol. 49, pp. 1159–1180, May 2003.

[11] T. Berger, Rate Distortion Theory: A Mathematical Basis for Data Compres-

sion. Englewood Cliffs, NJ: Prentice-Hall, 1971.

[12] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-

correcting coding and decoding: Turbo-Codes,” in Proc. IEEE International

Conference on Communications, Geneva, Switzerland, May 1993.

[13] R. Blahut, “Computation of channel capacity and rate-distortion functions,”

IEEE Trans. Inform. Theory, vol. 18, pp. 460–472, July 1972.

[14] M. Bosi, K. Brandenburg, S. Quackenbush, L. Fielder, K. Akagiri, H. Fuchs,

M. Dietz, J. Herre, G. Davidson, and Y. Oikawa, “ISO/IEC MPEG-2 advanced

audio coding,” Journal of the Audio Engineering Society, vol. 45, no. 10, pp.

789–814, Oct. 1997.

[15] K. Brandenburg and H. Popp, “An introduction to MPEG Layer-3,” [On-

line]. Available: http://citeseer.ist.psu.com/brandenburg00introduction.html,

accessed on 22 July 2004.

[16] K. Brandenburg and T. Sporer, “NMR and masking flag: Evaluation of quality

using perceptual criteria,” in Proc. 11th inter. AES Conf., Portland, OR, May

1992.



126

[17] G. Caire, S. Shamai, and S. Verdu, “Lossless data compression with error cor-

recting codes,” in Proc. ISIT’03, Yokohama, Japan, July 2003.

[18] B. Chen and G. W. Wornell, “Quantization index modulation: A class of prov-

ably good methods for digital watermarking and information embedding,” IEEE

Trans. Inform. Theory, vol. 47, pp. 1423–1443, May 2001.

[19] B. Chen and G. Wornell, “Achievable performance of digital watermarking sys-

tems,” in Proc. ICMCS99, Florence, Italy, July 1999.

[20] Y. L. Chen and B. S. Chen, “Model-based multirate representation of speech

signals and its application to recovery of missing speech packets,” IEEE Trans.

Speech and Audio Processing, vol. 5, pp. 220–231, May 1997.

[21] J. Chou, S. Pradhan, and K. Ramchandran, “Turbo and trellis-based construc-

tions for source coding with side information,” in Proc. DCC’03, Snowbird, UT,

Mar. 2003.

[22] S.-Y. Chung, D. Forney, T. J. Richardson, and R. L. Urbanke, “On the design

of low-density parity-check codes within 0.0045 dB of the Shannon limit,” IEEE

Comm. Letters, vol. 5, pp. 58–60, Feb. 2001.

[23] S.-Y. Chung, T. J. Richardson, and R. L. Urbanke, “Analysis of sum-product

decoding of low-density parity-check codes using a Gaussian approximation,”

IEEE Trans. Inform. Theory, vol. 47, pp. 657–670, Feb. 2001.

[24] J. Cleary and I. Witten, “Data compression using adaptive coding and partial

string matching,” IEEE Trans. Communications, vol. 32, pp. 396–402, Apr.

1984.



127

[25] A. S. Cohen and A. Lapidoth, “The Gaussian watermarking game,” IEEE

Trans. Inform. Theory, vol. 48, pp. 1639–1667, June 2002.

[26] T. Coleman, A. Lee, M. Medard, and M. Effros, “On some new approaches

to practical Slepian-Wolf compression inspired by channel coding,” in Proc.

DCC’04, Snowbird, UT, Mar. 2004.

[27] J. Conway, E. Rains, and N. Sloane, “On the existence of similar sublattices,”

Canad. J. Math., vol. 51, pp. 1300–1306, 1999.

[28] J. Conway and N. Sloane, “A lower bound on the average error of vector quan-

tizers,” IEEE Trans. Inform. Theory, vol. 31, pp. 106–109, Jan. 1985.

[29] M. H. M. Costa, “Writing on dirty paper,” IEEE Trans. Inform. Theory, vol. 29,

pp. 439–441, May 1983.

[30] T. M. Cover and J. Thomas, Elements of Information Theory. New York:

Wiley, 1991.

[31] T. M. Cover, “Broadcast channels,” IEEE Trans. on Inform. Theory, vol. 18,

no. 1, pp. 2–14, 1972.

[32] T. M. Cover and M. Chiang, “Duality between channel capacity and rate distor-

tion with two-sided state information,” IEEE Trans. Inform. Theory, vol. 48,

pp. 1629–1638, June 2002.

[33] T. Cover, “Comments on broadcast channels,” IEEE Trans. on Inform. Theory,

vol. 44, no. 6, pp. 2524–30, 1998.

[34] I. J. Cox, J. Kilian, F. T. Leighton, and T. Shamoon, “Secure spread spectrum

watermarking for multimedia,” IEEE Trans. Image Processing, vol. 6, pp. 1673–

1687, 1995.



128

[35] I. J. Cox, M. L. Miller, and A. L. McKellips, “Watermarking as communications

with side information,” Proc. IEEE, vol. 87, pp. 1127–1141, 1999.
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