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A NECESSARY AND SUFFICIENT CONDITION FOR
THE UFTIQUENESS OF MINIMUM SPANNINIG TREE

Oleh Maman A. Djauhari'

SARI

Dengan menggunakan relasi samar sebagai sudut pandang, dalam tulisan ini
dikembangkan suatu sifat fundamentd dari penutup transitif min-maks suatu disimilaritas.
dalam hubungannya dengan ultrametrik sub-dominan. Sifat tersebut memungkinkan kita
merumuskan dan membuktikan suatu syarat cukup dan periu agar suatu disimilaritas
memiliki pohon kerangka minimum yang tunggal. Apabila tidak tunggal, sifat itu dapat
menjadi landasan untuk menentukan semua pohon kerangka minimum lokal.

ABSTRACT

We develop a fundamental property of min-max transitive closure of a dissimilariw,
considered as a fu2ry relation, in connection rvith its subdominant ultrametric. This will
enable us firstly to derive a necessary and suffrcient condition for the uniqueness of its
minimum spanning tree, and secondly to find all possible local minima.
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I. INTRODUCTION
The concept of minimum spanning tree (MST) was originally developed in the field

of graph theory. In the last two decades we see its widespread use in many disciplines

such as biology, social science, economy, antrophometry and general taxonoml' Il],
data analysis [2], regression analysis [4] and [5], computer science [6], networking

[8], and multivariate and clustering analysis [10].

The ability to detect the uniqueness of MST is the first great problem for statisticians

in using MST for their statistical analysis. The complexity of statistical analysis of a

dissimilaritv data matrix depends on the uniqueness of its MST (see [5], and [10]).
Unfortunately, as far as we know (see [l], [3], [7], [8], [9], and [ll l). there is no

algorithm that can detect the uniqueness of MST. The second great problem is the

fact that only one MST can be given by all existing algorithms, even for the case

where there are actually more than one MST. This fact can also be found in

theoritical literatures (see [6], [9]. and I l]). In these trvo circumstances, Proposition

l, Proposition 2 and Proposition 3 are the main result of this work. In particular.

Proposition 3 provides us with tu'o fundamental results:

l. A necessary and suffrcient condition for the uniqueness of MST.

2. An algorithm for constructing the union of all possible MSTs which. if it is not

unique, gives us all MSTs.

The basic problem in this paper, firstly is to propose and to show a necessary and

sufficient condition for uruqueness of MST of a dissimilaritl,'. Secondly is to give an

algorithm for finding all possible MSTs, if there are actually more than one MST.

For this purpose we consider a dissimilarity as a fuzzy- relation. Some basic concepts

can be found in [3].

Suppose R a fuzzy relation on a set I; Card(I) = n and for every (x,y) in IxI we have

0 a tr^ (x,y) < o, where pr is a membership function on R. In this paper we develop

a fundamental property of min-max transitive closure R- of \ where R is a

dissimilarity, in connection with subdominant ultrametric. Another representation of
R" can be seen in [7] and [l]. The relationship between subdominant ultrametric

and minimum spanning tree such as shown in [2], [6], and [9] will be exploited in

order to derive a necessary and sufficient condition for the uniqueness of minimum

spanning tree in a dissimilariry*.

2. TRANSITIVE CLOSURE

A fuzzy relation R on I is called max-min transitive if for all x, Y , z in I we have

Fn (x, z) ( V, {F,* (x,y) n pn 0,2)}

It is known that max-mrn transitiviS' of R can be verified through mar-min

composition o. If R02 = R o R is a fuz4 relation defined by
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p*, (x,z) = Vv {Fr(x,y) n p* (y,z)}

for all x, t', z rn I, we have the following properties [7].

Theorem L If Ro2 = R , thenRis max-min transitive.

Theorem 2 R is max-min transitive ,"f and only if Rt g R.

Since I is finite, the max-min transitive closure R- of R has the followine
representatron:

R- = R u Ru t-, Ro3 '*., ... r_., R*,

for an integer k; I S k < n, where Rok = R o R o ... o & k times max-min composition
o o f R .

Like R-, the min-max transitive closure R* can be written as

R* = R r^' R'2 n R'3 rt ... n R'k

for an integer k, I < k S n, where R'k = R * R t ... * & k times min-mar
composit ion*ofRand

F*, (x,z) = 
f {r* (x,y) v pn(y,z)}

If R* and R- represent respectively the complement of R and min-max transitive
closure of R", it can be shown that R* = R* and R"" = R' . Hence by De Morgan's
rule u'e hal'e R- = R*" and Rt = R"-". These equalities enable us to llork rvith either
K or R-. Although those representations are very usefull, but it is still not
comfortable to work rvith. The follow'ing alternative form rvhich is more convenience
for constructing R is given in [7].

Theorem 3 Suppose that R is a fuzzy relation on I . Let

l ' ( x ,y )=  
"y ,  

l ( " ) ,  where

a .  e =  { c  I  c  =  ( x  =  X i , , x i . , . . . , x i .  = y ) }  i s  a  c h a i n f r o m  x  t o  y \

b .  l ( c )  =  F n  ( ( * , , , * , ,  ) ^  F * ( x , r , X , ,  ) ^ . . . ^ F n  ( * , , _ , , * ' ,  ) .

Then p, 
* 

(x,)') = l' (x,y),for all x and y in I.

In practice this theorem is still difficult to be implemented. In the next section rve will
restrict our discussion in the case where R is a dissimrlarity and we derive a
fundamental property in connection utth its sub-dominant ultrametric in order to
construct simple computation.
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MIN-MAX TRANSITIVE CLOSURE AND SUB-
DOMINANT ULTRAMETRIC

Suppose R a dissimilarity associated to dissimilarity index d on I. Hence R is a
symmetric and anti-reflexive fuz4 relation, where px (x,y) = d(x,y) for all x and y in
L In the following proposition we show that, in this case, R- has a very convenience
representation.

Proposition I If R rs a dissimilarity on r, then R* = R'k for an integer k;
I  <k<  n .

Proof

We knowthat for an integer k ; I < k < n,

R "=RnR '2n . . . n  R ' k
Now we show that the right hand side is equal to R'1.

By definition,

F*.,(x, z) =l {p*(x,y)vpn 0,2)1,
for all x, y and z in I. Especiatly if y = z, then

!r^, (x, z) < pn (x, z) v v^(z,z)

But pj(z,z) = 0. Hence,

F*" (x,z) < pn(lz)

for all x and z in I or R" g R . In general we have

R"c . . . gR 'oER '2cR .

It implies that R. = R'1.

Now we show a fundamental property of R* in connection witlr subdominant
ultrametric (SDU) of dissimilarity R.

Proposition 2 If R is a dissimilarity onl . thenR' is the SDU of R.

Proof

Theorem 3 tell-s us that

F*,c (x,) ')  = ir^c- (*,1') = 
f*) 

l(C)

rvhere C = {x'.  , , ,  ' . , , .  .  ' . , ,  = r) is a chain from x tc \, .

I f  n  - .  i r  -  { r . : r }  i : , -  3 l l  1ut  l .  then
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Po*c (x, y) = ma:< {min {pn (xi,. , x,r*, )} }

=  m€x {min  {p l * "  ( * , , , * , ,  ) ,  . . . ,  } r *c  (x i ,_ , ,x , ,  ) } }

= maJ( {cr -  ma:< {a -  Fnc (*, ,  ,* , ,  ) ,  . . . ,  cr  -  [ r*c (xir_,  ,* , ,  ) ]  ]

= . 3 r  { a  - m a x  { p n ( x , , , x i r ) ,  . . . ,  p n ( x i , - , , x , , ) } }

=  c r  -  m in  {a  -  {c t  -max { } rn (x , , , x , ,  ) ,  . . . ,  pn(x , ,_ , ,x , ,  ) } } }

= o -  mif l  {max {p*(xi . ,x ir* ,  )}}

This equality implies that:

F** (x,y) = nl tn{mru{}rn(xir ,  ,x io*,  )}}

Now we will show that R'is the SDU of R.

i. It is clear that F*. (x, y) ( p* (x, y) for all x and y in I, since R* = R'k c R.

ii. If C = (x = xir, *,r, .., X,, = y) is a chain from x to y, we note that L(C; =

ma,r {p* (*,u ,  * , .* ,  )} .

Suppose that cr is a chain from x to y and c2 is a chain from y to z, such that
F** (x,y) = L (Cr) *d F*r (y,z)= L (Ct.

Suppose also that c: is a chain from x to z, constructed from cr and c2 such
that:

L(Cr) = max {L(Cr), L(Cz)}

In this case,

L(Cr; = max { p^* (*,y), }r*. (y,r)}

and we have.

P** (x,z) = 
J:l? L (C) < L(C:)

< max { {F*_ (x, y), F^, (y,z)l

It implies tlnt R* is an ultrametric on I.

iii. Suppose that U is the USD of R. Now we show that U = R'.

Consider a chain Cr = (x =Xir,xir,  . . . ,  xi.  = y) from x to y where

lt*. (x,y) = L(C1). Then,
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a. pu(x,y) < max {pu(x,z), pu (y,z)} for all x, y and z inr, because u is an
ultrametric. Especially,

pu(x,y) < max {pu(x, xi,. ), Fu(xi* ;y)}

fo ra l l  k=  1 ,2 , . . . ,  r .  Hence,

pu(x,y) ( max {p,r(x, xi, ), Fu(x,, ,y)}

< max {pu(x, X;, ) , max {pu( x,z , X,, ) , Iru( xil , y)} }

( max {ir,r(x, x,, ) , fru( *,, , *,, ) ,pu( x,, , y)}

ln general we have

ttu(x,y) S mpx {p,r(x ' r ,  * ,**,  )  } ,  I  < k S r-  l .

b. U is the USD of R. Then by definition, U c R or

Fu(x,y) S pn(x,y), for all x and y in I.

From a and b, we have;

Pu(x ,y )  =  t f l  {FR(x ,k ,  r ,u* ,  )  } ,  I  <  k  <  r  -  l .

< L(c,) = F** (x,y).

or py(x,y) S F** (x,y).

It has been shown that R* is an ultrametric and u is the sDU of R. Hence the
inequality pu(x,y) S p** (x, y) gives us pu(x,y) = F** (x, y) or U = R*.

4, SUB-DOMINANT ULTRAMETRIC AI\D MINIMUM
SPANNING TREE

Through the notion of subdominant ultrametric, in this section we will show a
necessary and sufficient condition for the uniqueness of minimum spanning tree.
Suppose M is a minimum spanning tree of dissimilarity R defined by a dissirilarity
index d. If iand j are arbitrarytwo vertices in M, andi i= *,, xz, ... ,x, = j ) is the
chain from i to j in M, we know that the distance d betrveen i and j given by

is the SDU of R. Hence

6(ij) = m.ax d(xr, xr*r)



PROCEEDINGS NB, VOL. 29, NO 1/2. 1996

pR* (i, j) = 6 (ii)

-  d  (x lo  ,  X to* r  )

for a positive integer lq. This equality and the above popositions show that the
number of zero entries of (R - R*), substraction of two matrices in the usual sense,
determines the uniqueness of its minimum spanning tree. More spesifically we have
the following proposition.

Proposition 3 Dissimilarity R has a unique minimum spanning tee if and onty rf
the number of zero entries in the lower (or upper) triangle ^otri, of (i - R,) beioi,
(or above) diagonal, is equal to (n-t).

If in a dissimilarity there are more than one MSTs, then we can find all MSTs by
inspecting zero entries of lower (or upper) triangle matnx of (R - R*) below (or
above) diagonal; we delete all unnecessary zero entnes.

5. CONCLUDING REMARK

The abilit-v to detect the uniqueness of MST and the fact that onl1, one MST can be
given b}'all existing algorithms, even for the case where there are actualty more than
one MST, is the great problem for statisticians in using MST for their statistical
analysis' We have handled this problem through the notion of fu24 relarion. There
are three propositions resulted in thrs work; proposition l, proposition 2 and
Proposition 3. In particular. Proposition 3 provides ui with two fundamental results:
l. A necessary and sufficient condition for the uniqueness of MST.
2. An algorithm for constructing the union of all possible MSTs which, if it is not

unique, gives us all MSTs.
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