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Abstract. For simple graphs 𝐺 and 𝐻, the size multipartite Ramsey number 
𝑚௝ሺ𝐺, 𝐻ሻ is the smallest natural number t such that any arbitrary red-blue 
coloring on the edges of 𝐾௝ൈ௧ contains a red 𝐺 or a blue 𝐻 as a subgraph. We 
studied the size tripartite Ramsey numbers 𝑚ଷሺ𝐺, 𝐻ሻ, where 𝐺 ൌ 𝑚𝐾ଵ,௡ and 
𝐻 ൌ 𝑃ଷ. In this paper, we generalize this result. We determine 𝑚ଷሺ𝐺, 𝐻ሻ, where 
𝐺 is a star forest, namely a disjoint union of heterogeneous stars, and 𝐻 ൌ 𝑃ଷ. 
Moreover, we also determine 𝑚ଶሺ𝐺, 𝐻ሻ for this pair of graphs 𝐺 and 𝐻.  
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1 Introduction 

Given two simple graphs 𝐺 and 𝐻. We use the notation 𝐹 ⟶ ሺ𝐺, 𝐻ሻ when for 
any red-blue coloring of the edges of a graph 𝐹 we always have a red subgraph 
𝐺 or a blue subgraph 𝐻. The Ramsey number 𝑟ሺ𝐺, 𝐻ሻ is defined as the smallest 
positive integer n such that 𝐾௡ ⟶ ሺ𝐺, 𝐻ሻ, where 𝐾௡ is the complete graph on n 
vertices. Some values of the Ramsey number for a combination of a star and a 
path were determined by Parsons [1]. One year before, the multicolor Ramsey 
number for stars was determined by Burr and Roberts [2]. Then, the concept of 
Ramsey numbers evolved to the bipartite Ramsey number 𝑏ሺ𝐺, 𝐻ሻ, which is 
defined as the smallest positive integer n such that 𝐾௡,௡ ⟶ ሺ𝐺, 𝐻ሻ. In 1998, the 
bipartite Ramsey number for a star and a path was completed by Hattingh and 
Henning [3]. 

Furthermore, in 2004 Burger and Vuuren [4] generalized the concept of 
bipartite Ramsey numbers to the size multipartite Ramsey numbers as follows. 
Let j, l, n, r and s be natural numbers with 𝑛, 𝑟 ൒ 2. The size multipartite 
Ramsey number 𝑚௝ሺ𝐾௡ൈ௟, 𝐾௥ൈ௦ሻ is the smallest natural number t such that an 
arbitrary red-blue coloring of the edges of 𝐾௝ൈ௧, where 𝐾௝ൈ௧ is the complete 
multipartite graph having j partite sets with t vertices per each partite set, 
necessarily forces a red 𝐾௡ൈ௟ or a blue 𝐾௥ൈ௦ as a subgraph. They also gave some 
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properties of the size multipartite Ramsey numbers and determined the exact 
values of 𝑚௝ሺ𝐾ଶൈଶ, 𝐾ଷൈଵሻ, for 𝑗 ൒ 2. For the bounds of the size multipartite 
Ramsey numbers they gave a direct lower bound, a probabilistic lower bound, 
and a diagonal bipartite upper bound.  

Syafrizal, et al. [5] generalized this concept by removing the completeness 
requirement. Thus, the size multipartite Ramsey number, 𝑚௝ሺ𝐺, 𝐻ሻ, is defined 
as the smallest positive integer t such that 𝐾௝ൈ௧ ⟶ ሺ𝐺, 𝐻ሻ. They also determined 
the size multipartite Ramsey numbers for paths and other graphs [5,6], 
especially the size multipartite Ramsey numbers for 𝑃ଷ and stars [7]. Then, 
Surahmat and Syafrizal [8] gave the size tripartite Ramsey numbers for paths 𝑃௡ 
and stars, for 3 ൑ 𝑛 ൑ 6. Meanwhile, the size multipartite Ramsey numbers for 
stars and cycles have been investigated by Lusiani, et al. [9]. They also 
provided the size tripartite Ramsey numbers for 𝑃ଷ and a disjoint union of 
homogeneous stars [10] and the size tripartite Ramsey numbers for stars with 
paths and cycles [11]. Recently, Jayawardene and Samarasekara [12] 
determined the size multipartite Ramsey numbers for 𝐶ଷ and all graphs up to 4 
vertices, including the star of order 4. However, the multipartite Ramsey 
numbers for 𝑃ଷ and a disjoint union of heterogeneous stars have not been 
determined. 

Here, the generalized concept of the size multipartite Ramsey numbers for a star 
forest and 𝑃ଷ is used. The star forest is a disjoint union of heterogeneous stars. 
In this paper, we determine the size multipartite Ramsey numbers 
𝑚௝൫⋃ 𝐾ଵ,௡೔

௞
௜ୀଵ , 𝑃ଷ൯,  for j = 2, 3,  where ⋃ 𝐾ଵ,௡೔

௞
௜ୀଵ  is  a  star  forest, for 

𝑛௜ ൒ 1, 𝑘 ൒ 2 and 𝑃ଷ is a path on 3 vertices. For 𝑘 ൌ 1, Hattingh and Henning 
[3] determined 𝑚ଶ൫𝐾ଵ,௥, 𝑃௦൯, for 𝑟, 𝑠 ൒ 2.  

For some terms in graph theory used in this paper, we refer to Chartrand [13]. 
Let 𝐺 be a finite and simple graph. The vertex and edge sets of graph 𝐺 are 
denoted by 𝑉ሺ𝐺ሻ and 𝐸ሺ𝐺ሻ, respectively. A matching of a graph 𝐺 is defined as 
the set of edges without a common vertex. Let 𝑒 ൌ 𝑢~𝑣 be an edge in 𝐺, then u 
is called adjacent to v. The neighborhood 𝑁ሺ𝑣ሻ of a vertex v is the set of 
vertices adjacent to v in 𝐺. The degree 𝑑ሺ𝑣ሻ of a vertex v is |𝑁ሺ𝑣ሻ|. The 
maximum degree of 𝐺 is denoted by ∆ሺ𝐺ሻ, where ∆ሺ𝐺ሻ ൌ maxሼ𝑑ሺ𝑣ሻ|𝑣 ∈
𝑉ሺ𝐺ሻሽ. The minimum degree of 𝐺 is denoted by 𝛿ሺ𝐺ሻ, where 𝛿ሺ𝐺ሻ ൌ
maxሼ𝑑ሺ𝑣ሻ|𝑣 ∈ 𝑉ሺ𝐺ሻሽ. A star 𝐾ଵ,௡ is the graph on 𝑛 ൅ 1 vertices with one 
vertex of degree n, called the center of this star, and n vertices of degree 1, 
called the leaves. Any red-blue coloring of graph 𝐾௝ൈ௧ is represented by 
𝐾௝ൈ௧ ൌ 𝐹ோ ⊕ 𝐹஻ or 𝐾௝ൈ௧ ൌ 𝐺ோ ⊕ 𝐺஻, where 𝐹ோ and 𝐺ோ are the red graphs and 
𝐹஻ and 𝐺஻ are the blue graphs. 
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2 Bipartite Ramsey Numbers 

In this section, we discuss the size bipartite Ramsey number 
𝑚ଶ൫⋃ 𝐾ଵ,௡೔

௞
௜ୀଵ , 𝑃ଷ൯, for 𝑘 ൒ 2 and 𝑛௜ ൒ 1. We compute the formula of this 

Ramsey number for any 𝑘 ൒ 2 and 𝑛௜ ൒ 1. In particular, for 𝑛௜ ൌ 1, for all 𝑖, we 
obtain the value of 𝑚ଶ൫𝑘𝐾ଵ,ଵ, 𝑃ଷ൯ ൌ 𝑚ଶሺ𝑘𝑃ଶ, 𝑃ଷሻ, correcting the previous result 

given by Christou, et al. [14]. They showed that 𝑚ଶ൫𝑘𝑃ଶ, 𝐾ଵ,௡൯ ൌ 𝑛 ൅ ቔ௞ିଵ

ଶ
ቕ, for 

𝑘 ൒ 2 and 𝑛 ൒ 1. For 𝑛 ൌ 2, they had 𝑚ଶሺ𝑘𝑃ଶ, 𝑃ଷሻ ൌ 2 ൅ ቔ௞ିଵ

ଶ
ቕ, which is not 

correct for 𝑘 ൒ 4. 

Lemma 2.1   𝑚ଶሺ𝑘𝑃ଶ, 𝑃ଷሻ ൌ ൜
2,    𝑓𝑜𝑟 𝑘 ൌ 1
𝑘,   𝑓𝑜𝑟 𝑘 ൒ 2  

Proof. Let 𝑡 ൌ ൜
2,    𝑓𝑜𝑟 𝑘 ൌ 1
𝑘,   𝑓𝑜𝑟 𝑘 ൒ 2  

We consider the coloring of 𝐾ଶൈሺ௧ିଵሻ ൌ 𝐹ோ ⊕ 𝐹஻, such that 𝐹஻ does not contain 
𝑃ଷ. So, ∆ሺ𝐹஻ሻ ൑ 1. This is trivial for 𝑘 ൌ 1 since 𝐹஻ ൌ 𝐾ଶ and 𝐹ோ is an empty 
graph. For 𝑘 ൒ 2, we choose 𝐹஻ ൌ ሺ𝑘 െ 1ሻ𝑃ଶ. In this case, we will have no 𝑘𝑃ଶ 
in 𝐹ோ and 𝐹஻ ⊉ 𝑃ଷ. So, 𝑚ଶሺ𝑘𝑃ଶ, 𝑃ଷሻ ൒ 𝑡. 

Now, we show that 𝑚ଶሺ𝑘𝑃ଶ, 𝑃ଷሻ ൑ 𝑡. We consider any coloring of 𝐾ଶൈ௧ ൌ
𝐺ோ ⊕ 𝐺஻, such that 𝐺஻ does not contain a blue 𝑃ଷ, so ∆ሺ𝐺஻ሻ ൑ 1. For 𝑘 ൌ 1, we 
have 𝐾ଶൈଶ ൌ 𝐺ோ ⊕ 𝐺஻. So, 𝐺஻ is either a matching graph or an empty graph 
and 𝐺ோ is either 2𝑃ଶ, 𝑃ସ or 𝐶ସ, which implies 𝐺ோ  ⊇ 2𝑃ଶ. For 𝑘 ൒ 2, we have 
𝐾ଶൈ௞ ൌ 𝐺ோ ⊕ 𝐺஻. Let 𝑈 ൌ ሼ𝑢ଵ, 𝑢ଶ, … , 𝑢௞ሽ and 𝑉 ൌ ሼ𝑣ଵ, 𝑣ଶ, … , 𝑣௞ሽ be two 
partite sets in 𝐾ଶൈ௞. If 𝐺஻ is a matching graph, then every vertex in 𝐾ଶൈ௞ is 
relabeled such that 𝑢௜ ∼ 𝑣௜ in 𝐺஻, for every 𝑖 ൌ 1, 2, … , 𝑘. We consider a cycle 
in 𝐾ଶൈ௞, namely 𝐶௞

ᇱ ൌ 𝑢ଵ𝑣ଵ𝑢ଶ𝑣ଶ𝑢ଷ𝑣ଷ … 𝑢௞𝑣௞𝑢ଵ. So, 𝐸ሺ𝐶௞
ᇱ ሻ െ 𝐸ሺ𝐺஻ሻ contains a 

red 𝑘𝑃ଶ. Therefore, 𝐺ோ contains a red 𝑘𝑃ଶ.  

In Lemma 2.1 we obtain the size bipartite Ramsey number, 𝑚ଶ൫⋃ 𝐾ଵ,௡೔
௞
௜ୀଵ , 𝑃ଷ൯, 

for 𝑛௜ ൌ 1, for all 𝑖. So, in Theorems 2.2, 2.4 and 2.5, we determine the size 
bipartite Ramsey numbers 𝑚ଶ൫⋃ 𝐾ଵ,௡೔

௞
௜ୀଵ , 𝑃ଷ൯, for all 𝑛௜ ൒ 1, for 2 ൑ 𝑘 ൑ 4. 

For a combination of two stars and 𝑃ଷ, we show this case in Theorem 2.2. 

Theorem 2.2   Let 𝑛ଵ and 𝑛ଶ be positive integers. Then, 𝑚ଶ൫𝐾ଵ,௡భ
∪

𝐾ଵ,௡మ
, 𝑃ଷ൯ ൌ maxሼ𝑛ଵ, 𝑛ଶሽ ൅ 1. 

Proof. Let 𝑛ଵ ൒ 𝑛ଶ ൒ 1, so we have maxሼ𝑛ଵ, 𝑛ଶሽ ൅ 1 ൌ 𝑛ଵ ൅ 1. To show that 
𝑚ଶ൫𝐾ଵ,௡భ

∪ 𝐾ଵ,௡మ
, 𝑃ଷ൯ ൒ 𝑛ଵ ൅ 1, we consider the coloring of 𝐾ଶൈ௡భ

ൌ 𝐹ோ ⊕
𝐹஻,  such that FB does not contain 𝑃ଷ.  So, ∆(FB) ≤ 1.  We can choose FB = 
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n1P2.  Let 𝑈 ൌ ሼ𝑢ଵ, 𝑢ଶ, … , 𝑢௡భ
ሽ and 𝑉 ൌ ሼ𝑣ଵ, 𝑣ଶ, … , 𝑣௡భ

ሽ be two partite sets in 
𝐾ଶൈ௡భ

. Every vertex in 𝐾ଶൈ௡భ is relabeled such that 𝑢௜ ∼ 𝑣௜ in 𝐹஻, for every 
𝑖 ൌ 1, 2, … , 𝑛ଵ. Since 𝑢௜ ∼ 𝑣௝ in 𝐹ோ, for 𝑖 ് 𝑗, so 𝐹ோ does not contain 𝐾ଵ,௡భ

. 

Therefore, 𝑚ଶ൫𝐾ଵ,௡భ
∪ 𝐾ଵ,௡మ

, 𝑃ଷ൯ ൒ 𝑛ଵ ൅ 1. 

 

Figure 1 (a). 𝐺஻ ൌ 𝑝𝐾ଶ, for 1 ≤ p ≤ n + 1   (b). 2𝐾ଵ,௡భ ⊆ 𝐺ோ ⊆ 𝐾ଶൈሺ௡భାଵሻ. 

Now, we show that 𝑚ଶ൫𝐾ଵ,௡భ
∪ 𝐾ଵ,௡మ

, 𝑃ଷ൯ ൑ 𝑛ଵ ൅ 1. We consider any coloring 
of 𝐾ଶൈሺ௡భାଵሻ ൌ 𝐺ோ ⊕ 𝐺஻, such that 𝐺஻ does not contain a blue 𝑃ଷ, so ∆ሺ𝐺஻ሻ ൑
1. Let 𝑈 ൌ ሼ𝑢ଵ, 𝑢ଶ, … , 𝑢௡భାଵሽ and 𝑉 ൌ ሼ𝑣ଵ, 𝑣ଶ, … , 𝑣௡భାଵሽ be two partite sets in 
𝐾ଶൈሺ௡భାଵሻ. If 𝐺஻ is a matching graph, then every vertex in 𝐾ଶൈሺ௡భାଵሻ is 
relabeled such that 𝑢௜ ∼ 𝑣௜ in 𝐹஻, for any 𝑖 ൌ 1, 2, … , 𝑛ଵ ൅ 1, see Figure 1(a). 
Since 𝑢ଵ ∼ 𝑣௝ and 𝑣ଵ ∼ 𝑢௝ in 𝐺ோ, for 2 ൑ 𝑖, 𝑗 ൑ 𝑛ଵ ൅ 1, we find a disjoint union 
of stars 2𝐾ଵ,௡భ

 in 𝐺ோ, see Figure 1(b).  

For the proofs of Theorems 2.4 and 2.5, we use Lemma 2.3, which is stated as 
follows. Note that we previously defined sumሺ𝐴ሻ ൌ ∑ 𝑛௜

௞
௜ିଵ , for 𝐴 ൌ

ሼ𝑛ଵ, 𝑛ଶ, … , 𝑛௞ሽ.  

Lemma 2.3 Let 𝑁 ൌ ሼ𝑛ଵ, 𝑛ଶ, … , 𝑛௞ሽ, for 𝑘 ൒ 2 and 𝑛ଵ ൒  𝑛ଶ, ൒ ⋯ ൒  𝑛௞ ൒ 1. 
For 1 ൑ 𝑖 ൑ 2௞, let 𝐴 ∈ 𝒫ሺ𝑁ሻ, where 𝐴௜ ് 𝐴௝, for 𝑖 ് 𝑗. Let 𝐵௜ ൌ 𝑁 െ 𝐴௜, and 
𝐿௜ ൌ maxሼsumሺ𝐴௜ሻ ൅ |𝐵|, sumሺ𝐵௜ሻ ൅ |𝐴|ሽ. There exists 𝑝 ∈ ሼ1,2,3, … , 2௞ሽ,  
where 𝐴௣ or 𝐵௣ is not empty (or 𝐴௣ or 𝐵௣ is not 𝑁), such that 𝐿௞ ൌ
minሼ𝐿௜|1 ൑ 𝑖 ൑ 2௞ሽ. 

Proof. Let 𝐴௥ ൌ ∅ and 𝐵௥ ൌ 𝑁, for any 𝑟 ∈ ሼ1,2,3, … , 2௞ሽ. Then 𝐿௥ ൌ
maxሼsumሺ𝐴௥ሻ ൅ |𝐵௥|, sumሺ𝐵௥ሻ ൅ |𝐴௥|ሽ ൌ sumሺ𝑁ሻ. Let us consider 𝐴௦, where 
|𝐴௦| ൒ 1 and 𝐵௦ ൌ 𝑁 െ 𝐴௦, where |𝐵௦| ൒ 1. We assume that |𝐴௦| ൌ 𝑡 ൒ 1. 
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Then 𝐿௦ ൌ maxሼsum ሺ𝐴௦ሻ ൅ 𝑘 െ 𝑡, sum ሺ𝐵௦ሻ ൅ 𝑡ሽ. Note that sumሺ𝑁ሻ ൌ
sumሺ𝐴௦ሻ ൅ sumሺ𝐵௦ሻ ൒ sumሺ𝐴௦ሻ ൅ 𝑘 െ 𝑡 and sumሺ𝑁ሻ ൌ sumሺ𝐴௦ሻ ൅
sumሺ𝐵௦ሻ ൒ 𝑡 ൅ sumሺ𝐵௦ሻ. So, if 𝐴௦ ൌ ሼ1ሽ, then 𝐿௦ ൌ 𝐿௥. Otherwise, 𝐿௦ ൏ 𝐿௥. 
Then, 𝐿 ൌ minሺ𝐿௦ሻ ൏ 𝐿௥. Therefore, 𝐿 is minimum when 𝐴 and 𝐵 are not 
empty.  

Theorem 2.4   Let 𝑁 ൌ ሼ𝑛ଵ, 𝑛ଶ, 𝑛ଷሽ be the set of the number of leaves of three 
stars 𝐾ଵ,௡భ

, 𝐾ଵ,௡మ
 and 𝐾ଵ,௡య

, respectively. If 𝐿 ൌ ሼmaxሼsumሺ𝐴ሻ ൅ |𝐵|, sumሺ𝐵ሻ ൅
|𝐴|ሽ|𝐴, 𝐵 ⊆ 𝑁, 𝐴 ∪ 𝐵 ൌ 𝑁, 𝐴 ∩ 𝐵 ൌ ∅ሽ, then 𝑚ଶ൫⋃ 𝐾ଵ,௡೔

ଷ
௜ୀଵ , 𝑃ଷ൯ ൌ minሺ𝐿ሻ. 

Proof. Let 𝑛ଵ ൒ 𝑛ଶ ൒ 𝑛ଷ ൒ 1. We have 𝐿 ൌ ሼ𝑛ଵ ൅ 𝑛ଶ ൅ 𝑛ଷ, maxሼ𝑛ଵ ൅ 2, 𝑛ଶ ൅
𝑛ଷ ൅ 1ሽ, 𝑛ଵ ൅ 𝑛ଶ ൅ 1, 𝑛ଵ ൅ 𝑛ଷ ൅ 1ሽ. By Lemma 2.2,  𝐿 ൌ ሼmaxሼ𝑛ଵ ൅ 2, 𝑛ଶ ൅
𝑛ଷ ൅ 1ሽ, 𝑛ଵ ൅ 𝑛ଶ ൅ 1, 𝑛ଵ ൅ 𝑛ଷ ൅ 1ሽ. Therefore, minሺ 𝐿ሻ ൌ maxሼ𝑛ଵ ൅ 2, 𝑛ଶ ൅
𝑛ଷ ൅ 1ሽ. 

Let 𝑡 ൌ maxሼ𝑛ଵ ൅ 2, 𝑛ଶ ൅ 𝑛ଷ ൅ 1ሽ. To show that 𝑚ଶ൫⋃ 𝐾ଵ,௡೔
ଷ
௜ୀଵ , 𝑃ଷ൯ ൒ 𝑡, we 

consider the coloring of 𝐾ଶൈሺ௧ିଵሻ ൌ 𝐹ோ ⊕ 𝐹஻, such that 𝐹஻ does not contain a 
blue 𝑃ଷ, so ∆ሺ𝐹஻ሻ ൑ 1. We can choose that 𝐹஻ ൌ ሺ𝑡 െ 1ሻ𝑃ଶ. Let 𝑈 ൌ
ሼ𝑢ଵ, 𝑢ଶ, … , 𝑢௧ିଵሽ and 𝑉 ൌ ሼ𝑣ଵ, 𝑣ଶ, … , 𝑣௧ିଵሽ be two partite sets in 𝐾ଶൈሺ௧ିଵሻ. 
Every vertex in 𝐾ଶൈሺ௧ିଵሻ is relabeled such that 𝑢௜ ∼ 𝑣௜ in 𝐹஻, for any 𝑖 ൌ
1, 2, … , 𝑡 െ 1. We have the following two possibilities for the values of 𝑡 െ 1: 

1. For  𝑡 െ 1 ൌ 𝑛ଵ ൅ 1.  
Since 𝑢ଵ ∼ 𝑣௝, for 2 ൑ 𝑗 ൑ 𝑛ଵ ൅ 1 in 𝐹ோ, the star 𝐾ଵ,௡భ

 can be constructed 
by these vertices. Since 𝑣ଵ ∼ 𝑢௜, for 2 ൑ 𝑖 ൑ 𝑛ଶ ൅ 1 ൑ 𝑛ଵ ൅ 1 in 𝐹ோ, the 
star 𝐾ଵ,௡మ

 can be constructed by vertices 𝑣ଵ, 𝑢ଶ, 𝑢ଷ, … , 𝑢୬మାଵ. However, we 
cannot construct the star 𝐾ଵ,௡య

, since we cannot choose any of the 
remaining vertices as its center. 

2. For  𝑡 െ 1 ൌ 𝑛ଶ ൅ 𝑛ଷ. 
Since 𝑢ଵ ∼ 𝑣௝, for 𝑛ଶ ൅ 1 ൑ 𝑛ଶ ൅ 𝑛ଷ in 𝐹ோ, the star 𝐾ଵ,௡య

 can be 
constructed by these vertices. Since 𝑢௡మାଵ ∼ 𝑣௝, for 1 ൑ 𝑗 ൑ 𝑛ଶ in 𝐹ோ, the 
star 𝐾ଵ,௡మ

 can be constructed by these vertices. However, we cannot 
construct the star 𝐾ଵ,௡భ

, since we cannot choose any of the remaining 
vertices as its center. 

𝐹ோ does not contain all stars 𝐾ଵ,௡భ
, 𝐾ଵ,௡మ

 and 𝐾ଵ,௡య
, so 𝐹ோ does not contain 

⋃ 𝐾ଵ,௡೔
ଷ
௜ୀଵ . 

Now, we show that 𝑚ଶ൫⋃ 𝐾ଵ,௡೔
ଷ
௜ୀଵ , 𝑃ଷ൯ ൑ 𝑡. We consider any coloring of 

𝐾ଶൈ௧ ൌ 𝐺ோ ⊕ 𝐺஻, such that 𝐺஻ does not contain a blue 𝑃ଷ, so ∆ሺ𝐺஻ሻ ൑ 1. Then 
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𝐺஻ is a matching graph. Let 𝑈 ൌ ሼ𝑢ଵ, 𝑢ଶ, … , 𝑢௧ሽ and 𝑉 ൌ ሼ𝑣ଵ, 𝑣ଶ, … , 𝑣௧ሽ be two 
partite sets in 𝐾ଶൈ௧. Every vertex in 𝐾ଶൈ௧ is relabeled such that 𝑢௜ ∼ 𝑣௝ in 𝐺஻, 
for some 𝑖 ൌ 𝑗. We have the following two possibilities for the values of 𝑡: 

1. For 𝑡 ൌ 𝑛ଵ ൅ 2  
Since 𝑢ଵ ∼ 𝑣௝, for 3 ൑ 𝑗 ൑ 𝑛ଵ ൅ 2 in 𝐺ோ, the star 𝐾ଵ,௡భ

 can be constructed 
by these vertices. Since 𝑣ଵ ∼ 𝑢ଶ and 𝑣ଵ, 𝑣ଶ are both adjacent to 𝑢௜ for 
3 ൑ 𝑖 ൑ 𝑛ଵ ൅ 2 in 𝐺ோ, the star 𝐾ଵ,௡మ

 can be constructed by vertices 
𝑣ଵ, 𝑢ଶ, 𝑢ଷ, … , 𝑢୬మାଵ, and the star 𝐾ଵ,௡య

 can be constructed by vertices 
𝑣ଶ, 𝑢௡మାଶ, 𝑢௡మାଷ, … , 𝑢௡యା୬మାଵ. 

2. For  𝑡 ൌ 𝑛ଶ ൅ 𝑛ଷ ൅ 1 
Since 𝑢ଵ ∼ 𝑣௝, for 3 ൑ 𝑗 ൑ 𝑛ଶ ൅ 𝑛ଷ ൅ 1 in 𝐺ோ, the star 𝐾ଵ,௡భ

 can be 
constructed by vertices 𝑢ଵ, 𝑣ଷ, 𝑣ସ, … , 𝑣୬భାଶ. Since 𝑣ଵ ∼ 𝑢ଶ and 𝑣ଵ, 𝑣ଶ are 
both adjacent to 𝑢௜ for 3 ൑ 𝑖 ൑ 𝑛ଶ ൅ 𝑛ଷ ൅ 1 in 𝐺ோ, the star 𝐾ଵ,௡మ

 can be 
constructed by vertices 𝑣ଵ, 𝑢ଶ, 𝑢ଷ, … , 𝑢୬మାଵ and the star 𝐾ଵ,௡య

 can be 
constructed by vertices 𝑣ଶ, 𝑢௡మାଶ, 𝑢௡మାଷ, … , 𝑢௡యା୬మାଵ. 

Therefore, 𝐺ோ contains ⋃ 𝐾ଵ,௡೔
ଷ
௜ୀଵ .  

Theorem 2.5   Let 𝑁 ൌ ሼ𝑛ଵ, 𝑛ଶ, 𝑛ଷ, 𝑛ସሽ be the set of the number of leaves of 
three stars 𝐾ଵ,௡భ

, 𝐾ଵ,௡మ
, 𝐾ଵ,௡య

 and 𝐾ଵ,௡ర
, respectively. If 𝐿 ൌ ሼmaxሼsumሺ𝐴ሻ ൅

|𝐵|, sumሺ𝐵ሻ ൅ |𝐴|ሽ|𝐴, 𝐵 ⊆ 𝑁, 𝐴 ∪ 𝐵 ൌ 𝑁, 𝐴 ∩ 𝐵 ൌ ∅ሽ, then 
𝑚ଶ൫⋃ 𝐾ଵ,௡೔

ସ
௜ୀଵ , 𝑃ଷ൯ ൌ minሺ𝐿ሻ. 

Proof. Let 𝑛ଵ ൒ 𝑛ଶ ൒ 𝑛ଷ ൒ 𝑛ସ ൒ 1. We have  𝐿 ൌ ሼ𝑛ଵ ൅ 𝑛ଶ ൅ 𝑛ଷ ൅
𝑛ସ, maxሼ𝑛ଵ ൅ 3, 𝑛ଶ ൅ 𝑛ଷ ൅ 𝑛ସ ൅ 1ሽ, 𝑛ଵ ൅ 𝑛ଶ ൅ 2, 𝑛ଷ ൅ 𝑛ସ ൅ 2, 𝑛ଵ ൅ 𝑛ଶ ൅
𝑛ଷ ൅ 1, 𝑛ଵ ൅ 𝑛ଶ ൅ 𝑛ସ ൅ 1, 𝑛ଵ ൅ 𝑛ଷ ൅ 𝑛ସ ൅ 1, maxሼ𝑛ଵ ൅ 𝑛ସ ൅ 2, 𝑛ଶ ൅ 𝑛ଷ ൅ 2ሽሽ. 

By Lemma 2.2,  

𝐿 ൌ ሼmaxሼ𝑛ଵ ൅ 3, 𝑛ଶ ൅ 𝑛ଷ ൅ 𝑛ସ ൅ 1ሽ, 𝑛ଵ ൅ 𝑛ଶ ൅ 2, 𝑛ଷ ൅ 𝑛ସ ൅ 2, 𝑛ଵ ൅ 𝑛ଶ ൅ 𝑛ଷ ൅ 1, 𝑛ଵ
൅ 𝑛ଶ ൅ 𝑛ସ ൅ 1, 𝑛ଵ ൅ 𝑛ଷ ൅ 𝑛ସ ൅ 1, maxሼ𝑛ଵ ൅ 𝑛ସ ൅ 2,  𝑛ଶ ൅ 𝑛ଷ ൅ 2ሽሽ. 

Therefore, 
 minሺ 𝐿ሻ ൌ minሼmaxሼ𝑛ଵ ൅ 3, 𝑛ଶ ൅ 𝑛ଷ ൅ 𝑛ସ ൅ 1ሽ, maxሼ𝑛ଵ ൅ 𝑛ସ ൅ 2,  𝑛ଶ ൅ 𝑛ଷ ൅ 2ሽሽ. 
Then, we have three following possibilities for minሺ 𝐿ሻ: 

1. If 𝑛ଵ ൐ 𝑛ଶ ൅ 𝑛ଷ, then minሺ 𝐿ሻ ൌ minሺ 𝐿′ሻ ൌ maxሼ𝑛ଵ ൅ 3, 𝑛ଶ ൅ 𝑛ଷ ൅ 𝑛ସ ൅ 1ሽ. 
2. If 𝑛ଵ ൏ 𝑛ଶ ൅ 𝑛ଷ, then minሺ 𝐿ሻ ൌ minሺ 𝐿"ሻ ൌ maxሼ𝑛ଵ ൅ 𝑛ସ ൅ 2,  𝑛ଶ ൅ 𝑛ଷ ൅ 2ሽ. 
3. If 𝑛ଵ ൌ 𝑛ଶ ൅ 𝑛ଷ, then minሺ 𝐿ሻ ൌ minሺ 𝐿′ሻ or minሺ 𝐿ሻ ൌ minሺ 𝐿"ሻ. 

Let 𝑡 ൌ minሺ 𝐿ሻ. To show that 𝑚ଶ൫⋃ 𝐾ଵ,௡೔
ସ
௜ୀଵ , 𝑃ଷ൯ ൒ 𝑡 we consider the coloring 

of 𝐾ଶൈሺ௧ିଵሻ ൌ 𝐹ோ ⊕ 𝐹஻, such that 𝐹஻ does not contain a blue 𝑃ଷ, so ∆ሺ𝐹஻ሻ ൑ 1. 
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We can choose that 𝐹஻ ൌ ሺ𝑡 െ 1ሻ𝑃ଶ. Let Let 𝑈 ൌ ሼ𝑢ଵ, 𝑢ଶ, … , 𝑢௧ିଵሽ and 
𝑉 ൌ ሼ𝑣ଵ, 𝑣ଶ, … , 𝑣௧ିଵሽ be two partite sets in 𝐾ଶൈሺ௧ିଵሻ. Every vertex in 𝐾ଶൈሺ௧ିଵሻ is 
relabeled such that 𝑢௜ ∼ 𝑣௜ in 𝐹஻, for every 𝑖 ൌ 1, 2, … , 𝑡 െ 1. We have four 
possibilities for the values of 𝑡 െ 1, as follows:                                     

1. For 𝑡 െ 1 ൌ minሺ 𝐿′ሻ െ 1 ൌ 𝑛ଵ ൅ 2 
Since 𝑢ଵ ∼ 𝑣௝, for 2 ൑ 𝑗 ൑ 𝑛ଵ ൅ 1 in 𝐹ோ, the star 𝐾ଵ,௡భ

 can be constructed 
by these vertices. Since 𝑣ଵ ∼ 𝑢௜, for 𝑛ଶ ൅ 2 ൑ 𝑖 ൑ 𝑛ଶ ൅ 𝑛ଷ ൅ 1 ൑ 𝑛ଵ ൅ 1 
in 𝐹ோ, the star 𝐾ଵ,௡మ

 and 𝐾ଵ,௡య
 can be constructed by vertices 

𝑣ଵ, 𝑢ଶ, 𝑢ଷ, … , 𝑢୬మାଵ and 𝑣௡భାଶ, 𝑢௡మାଶ, 𝑢௡మାଷ, … , 𝑢௡యା୬మାଵ, respectively. 
However, we cannot construct the star 𝐾ଵ,௡ర

, since we cannot choose any 
of the remaining vertices as its center. 

2. For  𝑡 െ 1 ൌ minሺ 𝐿′ሻ െ 1 ൌ 𝑛ଶ ൅ 𝑛ଷ ൅ 𝑛ସ 
Since 𝑢ଵ ∼ 𝑣௝, for 2 ൑ 𝑗 ൑ 𝑛ଶ ൅ 1 in 𝐹ோ, the star 𝐾ଵ,௡మ

 can be constructed 
by these vertices. Since 𝑢ଶ ∼ 𝑣௝, for 𝑛ଶ ൅ 2 ൑ 𝑗 ൑ 𝑛ଶ ൅ 𝑛ଷ ൅ 1 in 𝐹ோ, the 
star 𝐾ଵ,௡య

 can be constructed by these vertices. Since 𝑢ଷ ∼ 𝑣௝, for 𝑗 ൌ 1 
and 𝑛ଶ ൅ 𝑛ଷ ൅ 2 ൑ 𝑗 ൑ 𝑛ଶ ൅ 𝑛ଷ ൅ 𝑛ସ in 𝐹ோ, the star 𝐾ଵ,௡ర

 can be 
constructed by these vertices. However, we cannot construct the star 𝐾ଵ,௡భ

, 
since we cannot choose any of the remaining vertices as its center.  

3. For  𝑡 െ 1 ൌ minሺ 𝐿"ሻ െ 1 ൌ 𝑛ଵ ൅ 𝑛ସ ൅ 1 
Since 𝑢ଵ ∼ 𝑣௝, for 2 ൑ 𝑗 ൑ 𝑛ଵ ൅ 1 in 𝐹ோ, the star 𝐾ଵ,௡భ

 can be constructed 
by these vertices. Since 𝑢ଶ ∼ 𝑣௝, for 𝑛ଵ ൅ 2 ൑ 𝑗 ൑ 𝑛ଵ ൅ 𝑛ସ ൅ 1 in 𝐹ோ, the 
star 𝐾ଵ,௡ర

 can be constructed by these vertices. Since 𝑣ଵ ∼ 𝑢௜, for 3 ൑ 𝑖 ൑
𝑛ଶ ൅ 2 in 𝐹ோ, the star 𝐾ଵ,௡మ

 can be constructed by these vertices. However, 
we cannot construct the star 𝐾ଵ,௡య

, since we cannot choose any of the 
remaining vertices as its center.  

4. For  𝑡 െ 1 ൌ minሺ 𝐿"ሻ െ 1 ൌ 𝑛ଶ ൅ 𝑛ଷ ൅ 1 
Since 𝑢ଵ ∼ 𝑣௝, for 2 ൑ 𝑗 ൑ 𝑛ଶ ൅ 1 in 𝐹ோ, the star 𝐾ଵ,௡మ

 can be constructed 
by these vertices. Since 𝑢ଶ ∼ 𝑣௝, for 𝑛ଶ ൅ 2 ൑ 𝑗 ൑ 𝑛ଶ ൅ 𝑛ଷ ൅ 1 in 𝐹ோ, the 
star 𝐾ଵ,௡య

 can be constructed by these vertices. Since 𝑣ଵ ∼ 𝑢௜, for 3 ൑ 𝑖 ൑
𝑛ଵ ൅ 2 in 𝐹ோ, the star 𝐾ଵ,௡భ

 can be constructed by these vertices. However, 
we cannot construct the star 𝐾ଵ,௡ర

, since we cannot choose any of the 
remaining vertices as its center.  

Since 𝐹ோ does not contain all stars  𝐾ଵ,௡భ
, 𝐾ଵ,௡మ

, 𝐾ଵ,௡య
 and 𝐾ଵ,௡ర

, therefore 𝐹ோ 
does not contain ⋃ 𝐾ଵ,௡೔

ସ
௜ୀଵ . 

Now we show that 𝑚ଶ൫⋃ 𝐾ଵ,௡೔
ସ
௜ୀଵ , 𝑃ଷ൯ ൑ 𝑡. We consider any coloring of 

𝐾ଶൈ௧ ൌ 𝐺ோ ⊕ 𝐺஻, such that 𝐺஻ does not contain a blue 𝑃ଷ, so ∆ሺ𝐺஻ሻ ൑ 1. Then 
𝐺஻ is a matching graph. Let 𝑈 ൌ ሼ𝑢ଵ, 𝑢ଶ, … , 𝑢௧ሽ and 𝑉 ൌ ሼ𝑣ଵ, 𝑣ଶ, … , 𝑣௧ሽ be two 
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partite sets in 𝐾ଶൈ௧. Every vertex in 𝐾ଶൈ௧ is relabeled such that 𝑢௜ ∼ 𝑣௜ in 𝐺஻, 
for any 𝑖 ൌ 1,2, … , 𝑡. There are four possibilities for the values of 𝑡, as follows. 

1. For  𝑡 ൌ minሺ𝐿ᇱሻ ൌ 𝑛ଵ ൅ 3 
Since 𝑢ଵ ∼ 𝑣௝, for 2 ൑ 𝑗 ൑ 𝑛ଵ ൅ 1 in 𝐺ோ, the star 𝐾ଵ,௡భ

 can be constructed 
by these vertices. Since 𝑣௝ ∼ 𝑢௜ for 𝑗 ൌ 1, 𝑛ଵ ൅ 2, 𝑛ଵ ൅ 3 and 2 ൑ 𝑖 ൑ 𝑛ଶ ൅
1 in 𝐺ோ, the star 𝐾ଵ,௡మ

, 𝐾ଵ,௡య
  and 𝐾ଵ,௡ర

 can be constructed by vertices 

൛𝑣ଵ, 𝑢ଶ, 𝑢ଷ, … , 𝑢୬మାଵൟ, ൛𝑣௡భାଶ, 𝑢௡మାଶ, 𝑢௡మାଷ, … , 𝑢୬మା௡యାଵൟ and 

൛𝑣௡భାଷ, 𝑢௡మା௡యାଶ, 𝑢௡మା௡యାଷ, … , 𝑢୬మା௡యା௡రାଵൟ, respectively.  
2. For  𝑡 ൌ minሺ𝐿ᇱሻ ൌ 𝑛ଶ ൅ 𝑛ଷ ൅ 𝑛ସ ൅ 1 

Since 𝑣ଵ ∼ 𝑢௜, for 4 ൑ 𝑖 ൑ 𝑛ଵ ൅ 3 in 𝐺ோ, the star 𝐾ଵ,௡భ
 can be constructed 

by these vertices. Since 𝑣௝ ∼ 𝑢௜ for 𝑖 ൌ 1, 2,3 and 2 ൑ 𝑗 ൑ 𝑛ଶ ൅ 𝑛ଷ ൅ 𝑛ସ ൅
1 in 𝐺ோ, the star 𝐾ଵ,௡మ

,  𝐾ଵ,௡య
  and 𝐾ଵ,௡ర

 can be constructed by vertices 

൛𝑢ଵ, 𝑣ଶ, 𝑣ଷ, … , 𝑣୬మାଵൟ, ൛𝑢2, 𝑣௡2ାଶ, 𝑣௡మା3, … , 𝑣୬మା௡యାଵൟ and 

൛𝑢3, 𝑣௡మା௡యାଶ, 𝑣௡మା௡యାଷ, … , 𝑣୬మା௡యା௡రାଵൟ, respectively.  
3. For  𝑡 ൌ minሺ𝐿"ሻ ൌ 𝑛ଵ ൅ 𝑛ସ ൅ 2 

Since 𝑢௜ ∼ 𝑣௝, for 𝑖 ൌ 1,2 and 2 ൑ 𝑗 ൑ 𝑛ଵ ൅ 𝑛ସ ൅ 1 in 𝐺ோ, the star 𝐾ଵ,௡భ
 

and 𝐾ଵ,௡ర
 can be constructed by vertices 𝑢ଵ, 𝑣ଶ, 𝑣ଷ, … , 𝑣୬భାଵ and 

𝑢ଶ, 𝑣௡భାଶ, 𝑣௡భାଷ, … , 𝑣௡భା୬రାଵ. Since 𝑣௝ ∼ 𝑢௜, for 3 ൑ 𝑖 ൑ 𝑛ଶ ൅ 𝑛ଷ ൅ 2 and 

𝑗 ൌ 1, 𝑛ଵ ൅ 𝑛4 ൅ 2 in 𝐺ோ, the star 𝐾ଵ,௡మ
 and 𝐾ଵ,௡3 can be constructed by 

vertices ൛𝑣௡1ା௡4൅2, 𝑢3, 𝑢4, … , 𝑢୬మା2ൟ and ൛𝑣1, 𝑢௡మା3, 𝑢௡మା4, … , 𝑢୬మା௡యା2ൟ, 
respectively.  

4. For  𝑡 ൌ minሺ𝐿"ሻ ൌ 𝑛ଶ ൅ 𝑛ଷ ൅ 2 
Since 𝑢௜ ∼ 𝑣௝, for 𝑖 ൌ 1,2 and 2 ൑ 𝑗 ൑ 𝑛ଶ ൅ 𝑛ଷ ൅ 1 in 𝐺ோ, the star 𝐾ଵ,௡మ

 
and 𝐾ଵ,௡య

 can be constructed by vertices 𝑢ଵ, 𝑣ଶ, 𝑣ଷ, … , 𝑣୬మାଵ and 
𝑢ଶ, 𝑣௡మାଶ, 𝑣௡మାଷ, … , 𝑣௡మା୬యାଵ. Since 𝑣௝ ∼ 𝑢௜, for 3 ൑ 𝑖 ൑ 𝑛ଵ ൅ 𝑛ସ ൅ 2 and 
𝑗 ൌ 1, 𝑛ଶ ൅ 𝑛ଷ ൅ 2 in 𝐺ோ, the star 𝐾ଵ,௡భ

 and 𝐾ଵ,௡ర
 can be constructed by 

vertices ൛𝑣௡మା௡యାଶ, 𝑢ଷ, 𝑢ସ, … , 𝑢୬భାଶൟ and ൛𝑣ଵ, 𝑢௡భାଷ, 𝑢௡భାସ, … , 𝑢୬భା௡రାଶൟ, 
respectively.  

Therefore, 𝐺ோ contains ⋃ 𝐾ଵ,௡೔
ସ
௜ୀଵ .  

From Theorems 2.4 and 2.5, we obtain 𝑚ଶ൫⋃ 𝐾ଵ,௡೔
௞
௜ୀଵ , 𝑃ଷ൯ ൌ minሺ𝐿ሻ for 

𝑘 ∈ ሼ2, 3, 4ሽ. For 𝑘 ൒ 5, it seems that the bipartite Ramsey number for a pair of 
⋃ 𝐾ଵ,௡೔

௞
௜ୀଵ  and 𝑃ଷ is minሺ𝐿ሻ. For example, it is easy to see the bipartite Ramsey 

number for a pair of 2𝐾ଵ,଺ ∪ 2𝐾ଵ,ହ ∪ 𝐾ଵ,ସ ∪ 𝐾ଵ,ଷ ∪ 𝐾ଵ,ଶ and 𝑃ଷ. In this case, we 
calculate that minሺ𝐿ሻ ൌ 19. Then, 𝑚ଶ൫2𝐾ଵ,଺ ∪ 2𝐾ଵ,ହ ∪ 𝐾ଵ,ସ ∪ 𝐾ଵ,ଷ ∪
𝐾ଵ,ଶ, 𝑃ଷ൯ ൌ 19, see Figure 2. 
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Figure 2 A disjoint union of stars 2𝐾ଵ,଺ ∪ 2𝐾ଵ,ହ ∪ 𝐾ଵ,ସ ∪ 𝐾ଵ,ଷ ∪ 𝐾ଵ,ଶ in  𝐾ଶൈଵଽ. 

Now, we consider another extremal example in Figure 3. Since 100 is too large 
compared to other numbers of leaves, 100 and the other numbers of leaves are 
in a different partite set. We calculate that minሺ𝐿ሻ ൌ 109. Then, 𝑚ଶ൫𝐾ଵ,ଵ଴଴ ∪
𝐾ଵ,ହହ ∪ 8𝐾ଵ,ଵ, 𝑃ଷ൯ ൌ 109. Therefore, we present the following conjecture. 

 

Figure 3 A disjoint union of stars 𝐾ଵ,ଵ଴଴ ∪ 𝐾ଵ,ହହ ∪ 8𝐾ଵ,ଵ in 𝐺ோ ⊆ 𝐾ଶൈଵ଴ଽ. 

Conjecture 2.1   Let 𝑁 ൌ ሼ𝑛ଵ, 𝑛ଶ, 𝑛ଷ, … , 𝑛௞ሽ be the set of the number of leaves 
of stars 𝐾ଵ,௡೔

, for 𝑛௜ ൒ 1, 1 ൑ 𝑖 ൑ 𝑘 and 𝑘 ൒ 2, respectively. If 𝐿 ൌ
ሼmaxሼsumሺ𝐴ሻ ൅ |𝐵|, sumሺ𝐵ሻ ൅ |𝐴|ሽ|𝐴, 𝐵 ⊆ 𝑁, 𝐴 ∪ 𝐵 ൌ 𝑁, 𝐴 ∩ 𝐵 ൌ ∅ሽ, then 
𝑚ଶ൫⋃ 𝐾ଵ,௡೔

௞
௜ୀଵ , 𝑃ଷ൯ ൌ minሺ𝐿ሻ. 

3 Tripartite Ramsey Numbers 

In this section, the size tripartite Ramsey numbers for a star forest and 𝑃ଷ is 
investigated.   

Theorem 3.1   Let 𝑛ଵ ൒ 𝑛ଶ ൒ 1 be positive integers. Let 𝐴 ൌ ቒଶା௡భା௡మ

ଷ
ቓ and    

𝐵 ൌ ቒ௡భାଵ

ଶ
ቓ. Then, 𝑚ଷ൫𝐾ଵ,௡భ

∪  𝐾ଵ,௡మ
, 𝑃ଷ൯ ൌ maxሼ𝐴, 𝐵ሽ. 
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Proof. Let 𝑡 ൌ maxሼ𝐴, 𝐵ሽ. To show that 𝑚ଷ൫𝐾ଵ,௡భ
∪  𝐾ଵ,௡మ

, 𝑃ଷ൯ ൒ 𝑡, we 
consider the two following possibilities for the value of 𝑡: 

1. If 𝐴 ൒ 𝐵, then 𝑡 ൌ ቒଶା௡భା௡మ

ଷ
ቓ. We make the edges of graph 𝐾ଷൈሺ௧ିଵሻ red. 

Since  ห𝑉൫𝐾ଷൈሺ௧ିଵሻ൯ห ൌ 3𝑡 െ 3 ൌ 3 ቒଶା௡భା௡మ

ଷ
ቓ െ 3 ൏ 2 ൅ 𝑛ଵ ൅ 𝑛ଶ ൌ

ห𝑉൫𝐾ଵ,௡భ
∪  𝐾ଵ,௡మ

൯ห, 𝑉൫𝐾ଷൈሺ௧ିଵሻ൯ contains neither a blue 𝑃ଷ nor the red 
𝐾ଵ,௡భ

∪  𝐾ଵ,௡మ
.  

2. If 𝐴 ൏ 𝐵, then 𝑡 ൌ ቒ௡భାଵ

ଶ
ቓ. Suppose that 𝑚ଷ൫𝐾ଵ,௡భ

∪  𝐾ଵ,௡మ
, 𝑃ଷ൯ ൏ 𝑡. Then, 

𝑛ଵ ൑ 2ሺ𝑡 െ 1ሻ െ 1 ൌ 2 ቒ௡భାଵ

ଶ
ቓ,  which is a contradiction. 

Therefore, 𝑚ଷ൫𝐾ଵ,௡భ
∪  𝐾ଵ,௡మ

, 𝑃ଷ൯ ൒ 𝑡. 

Now, we show that 𝑚ଷ൫𝐾ଵ,௡భ
∪  𝐾ଵ,௡మ

, 𝑃ଷ൯ ൑ 𝑡. We consider any coloring of 
𝐾ଷൈ௧ ൌ 𝐺ோ ⊕ 𝐺஻ such that 𝐺஻ does not contain a blue 𝑃ଷ. Thus, ∆ሺ𝐺஻ሻ ൑ 1 and 
𝐺஻ is a matching graph. We consider any two endpoints of a 𝑃ଶ in 𝐺஻, say 𝑢 and 
𝑣. We know that 𝑑ீೃ

ሺ𝑢ሻ ൌ 𝑑ீೃ
ሺ𝑣ሻ ൌ 2𝑡 െ 1. If 𝑛ଵ ൌ 2𝑡 െ 1 െ 𝑠, for some 

nonnegative integers 𝑠 ൑
௧

ଶ
, then 𝑛ଶ ൑ 𝑡 െ 1 ൅ 𝑠. Then we always have a 

disjoint union of two stars 𝐾ଵ,௡భ
∪  𝐾ଵ,௡మ

 in 𝐺ோ with 𝑢 and 𝑣 as their centers, 
respectively, and all vertices that are in the same partite set with 𝑣 being the 
leaves of 𝐾ଵ,௡భ

.  

Theorem 3.2   Let 𝑛ଵ ൒ 𝑛ଶ ൒ 𝑛ଷ ൒ 1 be positive integers. Let 𝐴 ൌ

ቒଷା௡భା௡మା௡య

ଷ
ቓ and 𝐵 ൌ ቒ௡భାଶ

ଶ
ቓ. Then, 𝑚ଷ൫⋃ 𝐾ଵ,௡೔

ଷ
௜ୀଵ , 𝑃ଷ൯ ൌ maxሼ𝐴, 𝐵ሽ. 

Proof. Let 𝑡 ൌ maxሼ𝐴, 𝐵ሽ. To show that 𝑚ଷ൫⋃ 𝐾ଵ,௡೔
ଷ
௜ୀଵ , 𝑃ଷ൯ ൒ 𝑡, we consider 

the following two possibilities for the value of 𝑡: 

1. If 𝐴 ൒ 𝐵, then 𝑡 ൌ ቒଷା௡భା௡మା௡య

ଷ
ቓ. We make the edges of graph 𝐾ଷൈሺ௧ିଵሻ red. 

Since  ห𝑉൫𝐾ଷൈሺ௧ିଵሻ൯ห ൌ 3𝑡 െ 3 ൌ 3 ቒଷା௡భା௡మା௡య

ଷ
ቓ െ 3 ൏ 3 ൅ 𝑛ଵ ൅ 𝑛ଶ ൅

𝑛ଷ ൌ ห𝑉൫⋃ 𝐾ଵ,௡೔
ଷ
௜ୀଵ ൯ห, 𝑉൫𝐾ଷൈሺ௧ିଵሻ൯ contains neither a blue 𝑃ଷ nor the red 

⋃ 𝐾ଵ,௡೔
ଷ
௜ୀଵ .  

2. If 𝐴 ൏ 𝐵, then 𝑡 ൌ ቒ௡భାଶ

ଶ
ቓ. Suppose that 𝑚ଷ൫⋃ 𝐾ଵ,௡೔

ଷ
௜ୀଵ , 𝑃ଷ൯ ൏ 𝑡. Then, 

𝑛ଵ ൑ 2ሺ𝑡 െ 1ሻ െ 2 ൌ 2 ቒ௡భାଶ

ଶ
ቓ െ 4 ൏ 𝑛ଵ,  which is a contradiction. 

Therefore, 𝑚ଷ൫⋃ 𝐾ଵ,௡೔
ଷ
௜ୀଵ , 𝑃ଷ൯ ൒ 𝑡. 
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Now, we show that 𝑚ଷ൫⋃ 𝐾ଵ,௡೔
ଷ
௜ୀଵ , 𝑃ଷ൯ ൑ 𝑡. We consider any coloring of 

𝐾ଷൈ௧ ൌ 𝐺ோ ⊕ 𝐺஻, such that 𝐺஻ does not contain a blue 𝑃ଷ. Thus, ∆ሺ𝐺஻ሻ ൑ 1 
and 𝐺஻ is a matching graph. Let 𝑈 ൌ ሼ𝑢ଵ, 𝑢ଶ, … , 𝑢௧ሽ, 𝑉 ൌ ሼ𝑣ଵ, 𝑣ଶ, … , 𝑣௧ሽ  and 
𝑊 ൌ ሼ𝑤ଵ, 𝑤ଶ, … , 𝑤௧ሽ be the three partite sets of graph 𝐾ଷൈ௧. Let 𝐸ሺ𝐺஻ሻ ⊇
𝐸ሺ𝑈𝑉ሻ ∪ 𝐸ሺ𝑉𝑊ሻ ∪ 𝐸ሺ𝑈𝑊ሻ, where 𝐸ሺ𝑈𝑉ሻ ൌ ൛𝑢ଵ𝑣ଵ, 𝑢ଶ𝑣ଶ, … , 𝑢௣𝑣௣ൟ,
𝐸ሺ𝑉𝑊ሻ ൌ ሼ𝑣௣ାଵ𝑤ଵ, 𝑣௣ାଶ𝑤ଶ, … , 𝑣௣ା௤𝑤௤ሽ and 
𝐸ሺ𝑈𝑊ሻ ൌ ൛𝑢௣ାଵ𝑤௤ାଵ, 𝑢௣ାଶ𝑤௤ାଶ, … , 𝑢௣ା௥𝑤௤ା௥ൟ. Note that 𝑝 ൅ 𝑞 ൑ 𝑡, 𝑞 ൅ 𝑟 ൑
𝑡 and 𝑝 ൅ 𝑟 ൑ 𝑡. For the values of 𝑝, 𝑞 and 𝑟, we have four matching 
possibilities in 𝐺஻:  

1. 𝑝 ൒ 1, 𝑞 ൌ 𝑟 ൌ 0, see Figure 4(a). 
2. 𝑝 ൒ 1, 𝑞 ൌ 0, 𝑟 ൒ 1, see Figure 4(b) or 𝑝 ൒ 1, 𝑞 ൒ 1, 𝑟 ൌ 0, see Figure 

4(c).   
3. 𝑝 ൒ 1, 𝑞 ൒ 1, 𝑟 ൒ 1, see Figure 5.  

 

Figure 4 Three matching possibilities in 𝐺஻. 

 

Figure 5 A matching in 𝐺஻, if 𝑝 ൒ 1, 𝑞 ൒ 1, 𝑟 ൒ 1. 



12 Anie Lusiani, et al. 

 

To show the three stars in 𝐺ோ, we choose the centers of stars 𝐾ଵ,௡భ
, 𝐾ଵ,௡మ

 and 
𝐾ଵ,௡య

 are 𝑢ଵ, 𝑣ଵ and either 𝑣୮ାଵ ሺif 𝑝 ൏ 𝑡ሻ or 𝑤ଵ ሺif 𝑝 ൌ 𝑡ሻ, respectively. If 

𝑡 ൌ 𝐴, then 𝑡 ൌ ቒଷା௡భା௡మା௡య

ଷ
ቓ ൑ ቒଷାଷ௡భ

ଷ
ቓ ൌ 1 ൅ 𝑛ଵ. If 𝑡 ൌ 𝐵, then 𝑡 ൌ ቒ௡భାଶ

ଶ
ቓ ൑

𝑛ଵ ൅ 1. Therefore, 𝑡 െ 1 ൌ 𝑛ଵ, for all 𝑛ଵ, 𝑛ଶ and 𝑛ଷ. Then, 𝑡 െ 1 ൑ 𝑛ଵ ൑ 2𝑡 െ
2. Let 𝑠ଵ ൌ 𝑛ଵ െ ሺ𝑡 െ 2ሻ ൒ 1, so 𝑣ଶ, 𝑣ଷ, … , 𝑣௣, 𝑣௣ାଶ, … , 𝑣௣ା௤, 𝑣௣ା௤ାଵ, … , 𝑣௧, 
𝑤ଵ, 𝑤ଶ, 𝑤ଷ, … , 𝑤௦భ

 are the leaves of 𝐾ଵ,௡భ
. We have the following two 

possibilities to obtain the stars 𝐾ଵ,௡మ
 and 𝐾ଵ,௡య

: 

1. If 𝑛ଶ ൑ 𝑡 െ 𝑠ଵ, then 𝑤௦భାଵ, 𝑤௦భାଶ, … , 𝑤௦భା௡మ
 are the leaves of 𝐾ଵ,௡మ

. Since 
𝑛ଷ ൑ 𝑛ଶ ൑ 𝑡 െ 𝑠ଵ ൑ 𝑡 െ 1, we have 𝑢ଶ, 𝑢ଷ, … , 𝑢௡యାଵ are the leaves of 
𝐾ଵ,௡య

, see Figure 6. 

 

Figure 6 A disjoint union of stars ⋃ 𝐾ଵ,௡೔
ଷ
௜ୀଵ  in 𝐺ோ, if 𝑝 ൏ 𝑡. 

2. If 𝑡 െ 𝑠ଵ ൑ 𝑛ଶ ൑ 𝑛ଵ and let 𝑠ଶ ൌ 𝑛ଶ െ ሺ𝑡 െ 𝑠ଵሻ ൒ 1, then 𝑤௦భାଵ, 𝑤௦భାଶ, 
 … , 𝑤௧, 𝑢ଶ, 𝑢ଷ, … , 𝑢௦మାଵ are the leaves of 𝐾ଵ,௡మ

. Since 𝑛ଵ ൅ 𝑛ଶ ൌ 2𝑡 െ 2 ൅
𝑠ଶ,   so 𝑛ଷ ൑ 𝑡 െ 𝑠ଶ െ 1. Then, 𝑢௦మାଶ, 𝑢௦మାଷ, … , 𝑢௡యା௦మାଵ are the leaves of 
𝐾ଵ,௡య

. 

Therefore, we have a disjoint union of stars ⋃ 𝐾ଵ,௡೔
ଷ
௜ୀଵ  in 𝐺ோ, where 𝑢ଵ, 𝑣ଵ and 

𝑣௣ାଵ are their centers.                  

Theorem 3.3   Let 𝑛ଵ ൒ 𝑛ଶ ൒ 𝑛ଷ ൒ 𝑛ସ ൒ 1 be positive integers. Let 𝐴 ൌ

ቒସା௡భା௡మା௡యା௡ర

ଷ
ቓ and 𝐵 ൌ ቒ௡భାଷ

ଶ
ቓ. Then, 𝑚ଷ൫⋃ 𝐾ଵ,௡೔

ସ
௜ୀଵ , 𝑃ଷ൯ ൌ maxሼ𝐴, 𝐵ሽ. 

 
Proof. Let 𝑡 ൌ maxሼ𝐴, 𝐵ሽ. To show that 𝑚ଷ൫⋃ 𝐾ଵ,௡೔

ସ
௜ୀଵ , 𝑃ଷ൯ ൒ 𝑡, we consider 

the following two possibilities for the value of 𝑡: 
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1. If 𝐴 ൒ 𝐵, then 𝑡 ൌ ቒସା௡భା௡మା௡యା௡ర

ଷ
ቓ. We make the edges of graph 𝐾ଷൈሺ௧ିଵሻ 

red. Since  ห𝑉൫𝐾ଷൈሺ௧ିଵሻ൯ห ൌ 3𝑡 െ 3 ൌ 3 ቒସା௡భା௡మା௡యା௡ర

ଷ
ቓ െ 3 ൏ 4 ൅ 𝑛ଵ ൅

𝑛ଶ ൅ 𝑛ଷ ൅ 𝑛ସ ൌ ห𝑉൫⋃ 𝐾ଵ,௡೔
ସ
௜ୀଵ ൯ห, 𝑉൫𝐾ଷൈሺ௧ିଵሻ൯ contains neither a blue 𝑃ଷ 

nor the red ⋃ 𝐾ଵ,௡೔
ସ
௜ୀଵ .  

2. If 𝐴 ൏ 𝐵, then 𝑡 ൌ ቒ௡భାଷ

ଶ
ቓ. Suppose that 𝑚ଷ൫⋃ 𝐾ଵ,௡೔

ସ
௜ୀଵ , 𝑃ଷ൯ ൏ 𝑡. Then, 

𝑛ଵ ൑ 2ሺ𝑡 െ 1ሻ െ 3 ൌ 2 ቒ௡భାଷ

ଶ
ቓ െ 5 ൏ 𝑛ଵ,  which is a contradiction. 

Therefore, 𝑚ଷ൫⋃ 𝐾ଵ,௡೔
ସ
௜ୀଵ , 𝑃ଷ൯ ൒ 𝑡. 

Now, we show that 𝑚ଷ൫⋃ 𝐾ଵ,௡೔
ସ
௜ୀଵ , 𝑃ଷ൯ ൑ 𝑡. We consider any coloring of 

𝐾ଷൈ௧ ൌ 𝐺ோ ⊕ 𝐺஻ such that 𝐺஻ does not contain a blue 𝑃ଷ, so ∆ሺ𝐺஻ሻ ൑ 1. Then, 
𝐺஻ is a matching graph, see Figures 4 and 5. The centers of stars 
𝐾ଵ,௡భ

, 𝐾ଵ,௡మ
, 𝐾ଵ,௡య

 and 𝐾ଵ,௡ర
 are 𝑢ଵ, 𝑣ଵ, 𝑣௣ାଵ and 𝑤ଵ, respectively. We have the 

following two possibilities to obtain 𝐾ଵ,௡భ
 and 𝐾ଵ,௡మ

: 

1. If 𝑛ଵ ൑ 𝑡 െ 2, then 𝑣ଶ, 𝑣ଷ, … , 𝑣୮, 𝑣୮ାଶ, … , 𝑣୮ା୯ାଵ, … , 𝑣୬భାଶ  are the leaves 
of 𝐾ଵ,௡భ

. Since 𝑛ଶ ൑ 𝑛ଵ ൑ 𝑡 െ 2, we have 𝑤ଶ, … , 𝑤௡మାଵ are the leaves of 
𝐾ଵ,௡మ

. There are 𝑡 െ 𝑛ଶ ൅ 1 ൒ 1 vertices in 𝑊 െ ሼ𝑤ଵ,𝑤ଶ, … , 𝑤௡మାଵሽ. We 
have the following two possibilities to obtain 𝐾ଵ,௡య

 and 𝐾ଵ,௡ర
: 

a) If 𝑛ଷ ൑ 𝑡 െ ሺ𝑛ଶ ൅ 1ሻ, then 𝑤௡మାଶ, 𝑤௡మାଷ, … , 𝑤௡మା௡యାଵ and 𝑢ଶ, 𝑢ଷ, …,  
𝑢୬రାଵ are the leaves of 𝐾ଵ,௡య

 and 𝐾ଵ,௡ర
, respectively. 

b) If 𝑡 െ ሺ𝑛ଶ ൅ 1ሻ ൏ 𝑛ଷ ൑ 𝑛ଶ, let 𝑠ଵ ൌ 𝑛ଷ െ ሺ𝑡 െ ሺ𝑛ଶ ൅ 1ሻሻ ൒ 1, then 
𝑤௡మାଶ, 𝑤௡మାଷ, … , 𝑤௧, 𝑢ଶ, 𝑢ଷ, … , 𝑢௦భାଵ are the leaves of 𝐾ଵ,௡య

. Since 
𝑛ଵ ൅ 𝑛ଶ ൅ 𝑛ଷ ൑ 2𝑡 െ 3 െ 𝑠ଵ, 𝑛ସ ൑ 𝑡 െ 𝑠ଵ െ 1. Then, 𝑢௦భାଶ, 𝑢௦భାଷ, …,   
𝑢௦భା୬రାଵ are the leaves of 𝐾ଵ,௡ర

.  

2. If 𝑡 െ 1 ൑ 𝑛ଵ ൑ 2𝑡 െ 3 and let 𝑠ଶ ൌ 𝑛ଵ െ ሺ𝑡 െ 2ሻ ൒ 1, then 
𝑣ଶ, 𝑣ଷ, … , 𝑣୮, 𝑣୮ାଶ, … , 𝑣୮ା୯, 𝑣୮ା୯ାଵ, … , 𝑣୲, 𝑤ଶ, 𝑤ଷ, 𝑤௦మାଵ are the leaves of  
𝐾ଵ,௡భ

. We have three possibilities:  
a. If 𝑛ଶ ൏ 𝑡 െ ሺ𝑠ଶ ൅ 1ሻ and let 𝑠ଷ ൌ 𝑛ଷ ൅ 𝑛ଶ ൅ 𝑠ଶ ൅ 1 െ 𝑡 ൒ 1, then 

𝑤௦మାଶ, 𝑤௦మାଷ, … , 𝑤௦మା௡మାଵ are the leaves of 𝐾ଵ,௡మ
 and we have two 

possibilities: 
i. If 𝑛ଷ ൑ 𝑡 െ ሺ𝑛ଶ ൅ 𝑠ଶ ൅ 1ሻ, then 𝑤௦మା௡మାଶ, 𝑤௦మା௡మାଷ, …,  

𝑤௦మା௡మା௡యାଵ are the leaves of 𝐾ଵ,௡య
. Since 𝑛ସ ൑ 𝑛ଷ, so 

𝑢ଶ, 𝑢ଷ, … , 𝑢୬రାଵ are the leaves of 𝐾ଵ,௡ర
. 

ii. If 𝑡 െ ሺ𝑛ଶ ൅ 𝑠ଶ ൅ 1ሻ ൏ 𝑛ଷ ൑ 𝑛ଶ, then 𝑤௦మା௡మାଶ, 𝑤௦మା௡మାଷ, … , 𝑤୲, 𝑢ଶ,    
𝑢ଷ, … , 𝑢௦యାଵ are the leaves of 𝐾ଵ,௡య

. Since 𝑛ଵ ൅ 𝑛ଶ ൅ 𝑛ଷ ൑ 2𝑡 െ 3 ൅
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𝑠ଷ, so 𝑛ସ ൑ 𝑡 െ 1 െ 𝑠ଷ. Then, 𝑢ୱయାଶ, 𝑢ୱయାଷ, … , 𝑢ୱయା୬రାଵ are the 
leaves of 𝐾ଵ,௡ర

. 

b. If nଶ ൌ t െ ሺsଶ ൅ 1ሻ, then wୱమାଶ, wୱమାଷ, … , w୲ are the leaves of Kଵ,୬మ
.    

Since nଵ ൅ nଶ ൌ 2t െ 3 ൅ sସ, so nଷ ൅ nସ ൑ t െ 1 െ sସ. Then, 
uଶ, uଷ, …,  u୬యାଵ and u୬యାଶ, u୬యାଷ, … , u୬యା୬రାଵ are the leaves of Kଵ,୬య

 
and Kଵ,୬ర

, respectively. 
c. If t െ ሺsଶ ൅ 1ሻ ൏ nଶ ൑ nଵ and let sସ ൌ nଶ ൅ sଶ ൅ 1 െ t ൑ 1, then 

wୱమାଶ, wୱమାଷ, … , w୲, uଶ, uଷ, … , uୱరାଵ are the leaves of Kଵ,୬మ
. Since 

nଵ ൅ nଶ ൌ 2t െ 3 ൅ sସ, so nଷ ൅ nସ ൑ t െ 1 െ sସ. Then, uୱరାଶ, uୱరାଷ, …, 
uୱరା୬యାଵ and uୱరା୬యାଶ, uୱరା୬యାଷ, … , uୱరା୬యା୬రାଵ are the leaves of 
Kଵ,୬య

 and Kଵ,୬ర
, respectively. 

Therefore, we find a disjoint union of stars ⋃ 𝐾ଵ,௡೔
ସ
௜ୀଵ  in 𝐺ோ, where 𝑢ଵ, 𝑣ଵ, 𝑣௣ାଵ 

and 𝑤ଵ are their centers. 

From Theorems 3.1, 3.2 and 3.3 we obtain that 𝑚ଷ൫⋃ 𝐾ଵ,௡೔
௞
௜ୀଵ , 𝑃ଷ൯ ൌ

maxሼ𝐴, 𝐵ሽ, where 𝐴 ൌ ቒ௞ା௡భା௡మା⋯ା௡ೖ

ଷ
ቓ and 𝐵 ൌ ቒ௡భା௞ିଵ

ଶ
ቓ,  for  𝑘 ൌ 2, 3, 4.  For 

𝑘 ൒ 5, it seems that the tripartite Ramsey number of ⋃ 𝐾ଵ,௡೔
௞
௜ୀଵ  and 𝑃ଷ is also 

maxሼ𝐴, 𝐵ሽ. For example, 𝑚ଷ൫2𝐾ଵ,଺ ∪ 2𝐾ଵ,ହ ∪ 𝐾ଵ,ସ ∪ 𝐾ଵ,ଷ ∪ 𝐾ଵ,ଶ, 𝑃ଷ൯ ൌ

max ቄቒ଻ା଺ା଺ାହାହାସାଷାଶ

ଷ
ቓ , ቒ଺ା଺

ଶ
ቓቅ ൌ 13 and  𝑚ଷ൫𝐾ଵ,ଵ଴଴ ∪ 𝐾ଵ,ହହ ∪ 8𝐾ଵ,ଵ, 𝑃ଷ൯ ൌ

max ቄቒଵ଴ାଵ଴଴ାହହାଵାଵାଵାଵାଵାଵାଵାଵ

ଷ
ቓ , ቒଵ଴଴ାଽ

ଶ
ቓቅ ൌ 58, which can be seen in 

Figures 7 and 8, respectively. 

 

Figure 7 A disjoint union of stars 2𝐾ଵ,଺ ∪ 2𝐾ଵ,ହ ∪ 𝐾ଵ,ସ ∪ 𝐾ଵ,ଷ ∪ 𝐾ଵ,ଶ in 𝐾ଷൈଵଷ. 
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Figure 8 A disjoint union of stars 𝐾ଵ,ଵ଴଴ ∪ 𝐾ଵ,ହହ ∪ 8𝐾ଵ,ଵ in 𝐾ଷൈହ଼. 

Note that from these figures, we may have a different way to choose the stars 
than as mentioned in the proof of Theorem 3.3. Moreover, to obtain 𝑚ଷ൫2𝐾ଵ,଺ ∪
2𝐾ଵ,ହ ∪ 𝐾ଵ,ସ ∪ 𝐾ଵ,ଷ ∪ 𝐾ଵ,ଶ, 𝑃ଷ൯ and 𝑚ଷ൫𝐾ଵ,ଵ଴଴ ∪ 𝐾ଵ,ହହ ∪ 8𝐾ଵ,ଵ, 𝑃ଷ൯ we cannot 
use the technique for choosing stars in the proof of Theorem 3.3. So, we would 
need to develop a new technique to prove the following conjecture. 

Conjecture 3.1  Let 𝑛ଵ ൒ 𝑛ଶ ൒ ⋯ ൒ 𝑛௞ ൒ 1 be positive integers. Let 𝐴 ൌ

ቒ௞ା௡భା௡మା⋯ା௡ೖ

ଷ
ቓ and 𝐵 ൌ ቒ௡భା௞ିଵ

ଶ
ቓ. Then, 𝑚ଷ൫⋃ 𝐾ଵ,௡೔

௞
௜ୀଵ , 𝑃ଷ൯ ൌ maxሼ𝐴, 𝐵ሽ. 
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