

On Size Bipartite and Tripartite Ramsey Numbers for The Star Forest and Path on 3 Vertices

Anie Lusiani^{1*}, Edy Tri Baskoro² & Suhadi Wido Saputro²

¹Politeknik Negeri Bandung, Jalan Gegerkalong Hilir, Ciwaruga, Kabupaten Bandung Barat 40559, Indonesia

²Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia *E-mail: anie.lusiani@polban.ac.id

Abstract. For simple graphs *G* and *H*, the size multipartite Ramsey number $m_j(G, H)$ is the smallest natural number *t* such that any arbitrary red-blue coloring on the edges of $K_{j\times t}$ contains a red *G* or a blue *H* as a subgraph. We studied the size tripartite Ramsey numbers $m_3(G, H)$, where $G = mK_{1,n}$ and $H = P_3$. In this paper, we generalize this result. We determine $m_3(G, H)$, where *G* is a star forest, namely a disjoint union of heterogeneous stars, and $H = P_3$. Moreover, we also determine $m_2(G, H)$ for this pair of graphs *G* and *H*.

Keywords: path; size multipartite Ramsey number; star forest.

1 Introduction

Given two simple graphs *G* and *H*. We use the notation $F \rightarrow (G, H)$ when for any red-blue coloring of the edges of a graph *F* we always have a red subgraph *G* or a blue subgraph *H*. The *Ramsey number* r(G, H) is defined as the smallest positive integer *n* such that $K_n \rightarrow (G, H)$, where K_n is the complete graph on *n* vertices. Some values of the Ramsey number for a combination of a star and a path were determined by Parsons [1]. One year before, the *multicolor Ramsey number* for stars was determined by Burr and Roberts [2]. Then, the concept of Ramsey numbers evolved to the *bipartite Ramsey number* b(G, H), which is defined as the smallest positive integer *n* such that $K_{n,n} \rightarrow (G, H)$. In 1998, the bipartite Ramsey number for a star and a path was completed by Hattingh and Henning [3].

Furthermore, in 2004 Burger and Vuuren [4] generalized the concept of bipartite Ramsey numbers to the size multipartite Ramsey numbers as follows. Let *j*, *l*, *n*, *r* and *s* be natural numbers with $n, r \ge 2$. The *size multipartite Ramsey number* $m_j(K_{n\times l}, K_{r\times s})$ is the smallest natural number *t* such that an arbitrary red-blue coloring of the edges of $K_{j\times t}$, where $K_{j\times t}$ is the complete multipartite graph having *j* partite sets with *t* vertices per each partite set, necessarily forces a red $K_{n\times l}$ or a blue $K_{r\times s}$ as a subgraph. They also gave some

Received December 5th, 2018, Revised October 23rd, 2019, Accepted for publication October 29th, 2019. Copyright © 2020 Published by ITB Institute for Research and Community Services, ISSN: 2337-5760, DOI: 10.5614/j.math.fund.sci.2020.52.1.1

properties of the size multipartite Ramsey numbers and determined the exact values of $m_j(K_{2\times 2}, K_{3\times 1})$, for $j \ge 2$. For the bounds of the size multipartite Ramsey numbers they gave a direct lower bound, a probabilistic lower bound, and a diagonal bipartite upper bound.

Syafrizal, *et al.* [5] generalized this concept by removing the completeness requirement. Thus, the size multipartite Ramsey number, $m_j(G, H)$, is defined as the smallest positive integer *t* such that $K_{j\times t} \rightarrow (G, H)$. They also determined the size multipartite Ramsey numbers for paths and other graphs [5,6], especially the size multipartite Ramsey numbers for P_3 and stars [7]. Then, Surahmat and Syafrizal [8] gave the size tripartite Ramsey numbers for paths P_n and stars, for $3 \le n \le 6$. Meanwhile, the size multipartite Ramsey numbers for stars and cycles have been investigated by Lusiani, *et al.* [9]. They also provided the size tripartite Ramsey numbers for P_3 and a disjoint union of homogeneous stars [10] and the size tripartite Ramsey numbers for stars with paths and cycles [11]. Recently, Jayawardene and Samarasekara [12] determined the size multipartite Ramsey numbers for C_3 and all graphs up to 4 vertices, including the star of order 4. However, the multipartite Ramsey numbers for P_3 and a disjoint union of heterogeneous stars have not been determined.

Here, the generalized concept of the size multipartite Ramsey numbers for a star forest and P_3 is used. The star forest is a disjoint union of heterogeneous stars. In this paper, we determine the size multipartite Ramsey numbers $m_j(\bigcup_{i=1}^k K_{1,n_i}, P_3)$, for j = 2, 3, where $\bigcup_{i=1}^k K_{1,n_i}$ is a star forest, for $n_i \ge 1, k \ge 2$ and P_3 is a path on 3 vertices. For k = 1, Hattingh and Henning [3] determined $m_2(K_{1,r}, P_s)$, for $r, s \ge 2$.

For some terms in graph theory used in this paper, we refer to Chartrand [13]. Let *G* be a finite and simple graph. The vertex and edge sets of graph *G* are denoted by V(G) and E(G), respectively. A matching of a graph *G* is defined as the set of edges without a common vertex. Let $e = u \sim v$ be an edge in *G*, then *u* is called *adjacent* to *v*. The *neighborhood* N(v) of a vertex *v* is the set of vertices adjacent to *v* in *G*. The degree d(v) of a vertex *v* is |N(v)|. The maximum degree of *G* is denoted by $\Delta(G)$, where $\Delta(G) = \max\{d(v)|v \in V(G)\}$. The minimum degree of *G* is denoted by $\delta(G)$, where $\delta(G) = \max\{d(v)|v \in V(G)\}$. A star $K_{1,n}$ is the graph on n + 1 vertices with one vertex of degree *n*, called the *center* of this star, and *n* vertices of degree 1, called the *leaves*. Any red-blue coloring of graph $K_{j\times t}$ is represented by $K_{j\times t} = F_R \bigoplus F_B$ or $K_{j\times t} = G_R \bigoplus G_B$, where F_R and G_R are the red graphs and F_B and G_B are the blue graphs.

2 **Bipartite Ramsey Numbers**

In this section, we discuss the size bipartite Ramsey number $m_2(\bigcup_{i=1}^k K_{1,n_i}, P_3)$, for $k \ge 2$ and $n_i \ge 1$. We compute the formula of this Ramsey number for any $k \ge 2$ and $n_i \ge 1$. In particular, for $n_i = 1$, for all *i*, we obtain the value of $m_2(kK_{1,1}, P_3) = m_2(kP_2, P_3)$, correcting the previous result given by Christou, *et al.* [14]. They showed that $m_2(kP_2, K_{1,n}) = n + \lfloor \frac{k-1}{2} \rfloor$, for $k \ge 2$ and $n \ge 1$. For n = 2, they had $m_2(kP_2, P_3) = 2 + \lfloor \frac{k-1}{2} \rfloor$, which is not correct for $k \ge 4$.

Lemma 2.1 $m_2(kP_2, P_3) = \begin{cases} 2, & \text{for } k = 1 \\ k, & \text{for } k \ge 2 \end{cases}$ (2. for k = 1

Proof. Let $t = \begin{cases} 2, & \text{for } k = 1 \\ k, & \text{for } k \ge 2 \end{cases}$

We consider the coloring of $K_{2\times(t-1)} = F_R \oplus F_B$, such that F_B does not contain P_3 . So, $\Delta(F_B) \leq 1$. This is trivial for k = 1 since $F_B = K_2$ and F_R is an empty graph. For $k \geq 2$, we choose $F_B = (k - 1)P_2$. In this case, we will have no kP_2 in F_R and $F_B \not\supseteq P_3$. So, $m_2(kP_2, P_3) \geq t$.

Now, we show that $m_2(kP_2, P_3) \leq t$. We consider any coloring of $K_{2\times t} = G_R \oplus G_B$, such that G_B does not contain a blue P_3 , so $\Delta(G_B) \leq 1$. For k = 1, we have $K_{2\times 2} = G_R \oplus G_B$. So, G_B is either a matching graph or an empty graph and G_R is either $2P_2, P_4$ or C_4 , which implies $G_R \supseteq 2P_2$. For $k \geq 2$, we have $K_{2\times k} = G_R \oplus G_B$. Let $U = \{u_1, u_2, \dots, u_k\}$ and $V = \{v_1, v_2, \dots, v_k\}$ be two partite sets in $K_{2\times k}$. If G_B is a matching graph, then every vertex in $K_{2\times k}$ is relabeled such that $u_i \sim v_i$ in G_B , for every $i = 1, 2, \dots, k$. We consider a cycle in $K_{2\times k}$, namely $C'_k = u_1v_1u_2v_2u_3v_3 \dots u_kv_ku_1$. So, $E(C'_k) - E(G_B)$ contains a red kP_2 .

In Lemma 2.1 we obtain the size bipartite Ramsey number, $m_2(\bigcup_{i=1}^k K_{1,n_i}, P_3)$, for $n_i = 1$, for all *i*. So, in Theorems 2.2, 2.4 and 2.5, we determine the size bipartite Ramsey numbers $m_2(\bigcup_{i=1}^k K_{1,n_i}, P_3)$, for all $n_i \ge 1$, for $2 \le k \le 4$. For a combination of two stars and P_3 , we show this case in Theorem 2.2.

Theorem 2.2 Let n_1 and n_2 be positive integers. Then, $m_2(K_{1,n_1} \cup K_{1,n_2}, P_3) = \max\{n_1, n_2\} + 1$.

Proof. Let $n_1 \ge n_2 \ge 1$, so we have $\max\{n_1, n_2\} + 1 = n_1 + 1$. To show that $m_2(K_{1,n_1} \cup K_{1,n_2}, P_3) \ge n_1 + 1$, we consider the coloring of $K_{2 \times n_1} = F_R \bigoplus F_B$, such that F_B does not contain P_3 . So, $\Delta(F_B) \le 1$. We can choose $F_B = F_B = F_B \oplus F_B$.

n₁P₂. Let $U = \{u_1, u_2, ..., u_{n_1}\}$ and $V = \{v_1, v_2, ..., v_{n_1}\}$ be two partite sets in $K_{2 \times n_1}$. Every vertex in $K_{2 \times n_1}$ is relabeled such that $u_i \sim v_i$ in F_B , for every $i = 1, 2, ..., n_1$. Since $u_i \sim v_j$ in F_R , for $i \neq j$, so F_R does not contain K_{1,n_1} . Therefore, $m_2(K_{1,n_1} \cup K_{1,n_2}, P_3) \ge n_1 + 1$.

Figure 1 (a). $G_B = pK_2$, for $1 \le p \le n + 1$ (b). $2K_{1,n_1} \subseteq G_R \subseteq K_{2 \times (n_1+1)}$.

Now, we show that $m_2(K_{1,n_1} \cup K_{1,n_2}, P_3) \leq n_1 + 1$. We consider any coloring of $K_{2\times(n_1+1)} = G_R \bigoplus G_B$, such that G_B does not contain a blue P_3 , so $\Delta(G_B) \leq$ 1. Let $U = \{u_1, u_2, \dots, u_{n_1+1}\}$ and $V = \{v_1, v_2, \dots, v_{n_1+1}\}$ be two partite sets in $K_{2\times(n_1+1)}$. If G_B is a matching graph, then every vertex in $K_{2\times(n_1+1)}$ is relabeled such that $u_i \sim v_i$ in F_B , for any $i = 1, 2, \dots, n_1 + 1$, see Figure 1(a). Since $u_1 \sim v_j$ and $v_1 \sim u_j$ in G_R , for $2 \leq i, j \leq n_1 + 1$, we find a disjoint union of stars $2K_{1,n_1}$ in G_R , see Figure 1(b).

For the proofs of Theorems 2.4 and 2.5, we use Lemma 2.3, which is stated as follows. Note that we previously defined $sum(A) = \sum_{i=1}^{k} n_i$, for $A = \{n_1, n_2, ..., n_k\}$.

Lemma 2.3 Let $N = \{n_1, n_2, ..., n_k\}$, for $k \ge 2$ and $n_1 \ge n_2, \ge \cdots \ge n_k \ge 1$. For $1 \le i \le 2^k$, let $A \in \mathcal{P}(N)$, where $A_i \ne A_j$, for $i \ne j$. Let $B_i = N - A_i$, and $L_i = \max\{\operatorname{sum}(A_i) + |B|, \operatorname{sum}(B_i) + |A|\}$. There exists $p \in \{1, 2, 3, ..., 2^k\}$, where A_p or B_p is not empty (or A_p or B_p is not N), such that $L_k = \min\{L_i | 1 \le i \le 2^k\}$.

Proof. Let $A_r = \emptyset$ and $B_r = N$, for any $r \in \{1, 2, 3, ..., 2^k\}$. Then $L_r = \max\{\operatorname{sum}(A_r) + |B_r|, \operatorname{sum}(B_r) + |A_r|\} = \operatorname{sum}(N)$. Let us consider A_s , where $|A_s| \ge 1$ and $B_s = N - A_s$, where $|B_s| \ge 1$. We assume that $|A_s| = t \ge 1$.

Then $L_s = \max\{ \operatorname{sum}(A_s) + k - t, \operatorname{sum}(B_s) + t \}$. Note that $\operatorname{sum}(N) = \operatorname{sum}(A_s) + \operatorname{sum}(B_s) \ge \operatorname{sum}(A_s) + k - t$ and $\operatorname{sum}(N) = \operatorname{sum}(A_s) + \operatorname{sum}(B_s) \ge t + \operatorname{sum}(B_s)$. So, if $A_s = \{1\}$, then $L_s = L_r$. Otherwise, $L_s < L_r$. Then, $L = \min(L_s) < L_r$. Therefore, L is minimum when A and B are not empty.

Theorem 2.4 Let $N = \{n_1, n_2, n_3\}$ be the set of the number of leaves of three stars K_{1,n_1}, K_{1,n_2} and K_{1,n_3} , respectively. If $L = \{\max\{\operatorname{sum}(A) + |B|, \operatorname{sum}(B) + |A|\}|A, B \subseteq N, A \cup B = N, A \cap B = \emptyset\}$, then $m_2(\bigcup_{i=1}^3 K_{1,n_i}, P_3) = \min(L)$.

Proof. Let $n_1 \ge n_2 \ge n_3 \ge 1$. We have $L = \{n_1 + n_2 + n_3, \max\{n_1 + 2, n_2 + n_3 + 1\}, n_1 + n_2 + 1, n_1 + n_3 + 1\}$. By Lemma 2.2, $L = \{\max\{n_1 + 2, n_2 + n_3 + 1\}, n_1 + n_2 + 1, n_1 + n_3 + 1\}$. Therefore, $\min(L) = \max\{n_1 + 2, n_2 + n_3 + 1\}$.

Let $t = \max\{n_1 + 2, n_2 + n_3 + 1\}$. To show that $m_2(\bigcup_{i=1}^3 K_{1,n_i}, P_3) \ge t$, we consider the coloring of $K_{2\times(t-1)} = F_R \bigoplus F_B$, such that F_B does not contain a blue P_3 , so $\Delta(F_B) \le 1$. We can choose that $F_B = (t-1)P_2$. Let $U = \{u_1, u_2, \dots, u_{t-1}\}$ and $V = \{v_1, v_2, \dots, v_{t-1}\}$ be two partite sets in $K_{2\times(t-1)}$. Every vertex in $K_{2\times(t-1)}$ is relabeled such that $u_i \sim v_i$ in F_B , for any $i = 1, 2, \dots, t-1$. We have the following two possibilities for the values of t - 1:

1. For $t - 1 = n_1 + 1$.

Since $u_1 \sim v_j$, for $2 \leq j \leq n_1 + 1$ in F_R , the star K_{1,n_1} can be constructed by these vertices. Since $v_1 \sim u_i$, for $2 \leq i \leq n_2 + 1 \leq n_1 + 1$ in F_R , the star K_{1,n_2} can be constructed by vertices $v_1, u_2, u_3, ..., u_{n_2+1}$. However, we cannot construct the star K_{1,n_3} , since we cannot choose any of the remaining vertices as its center.

2. For $t - 1 = n_2 + n_3$.

Since $u_1 \sim v_j$, for $n_2 + 1 \leq n_2 + n_3$ in F_R , the star K_{1,n_3} can be constructed by these vertices. Since $u_{n_2+1} \sim v_j$, for $1 \leq j \leq n_2$ in F_R , the star K_{1,n_2} can be constructed by these vertices. However, we cannot construct the star K_{1,n_1} , since we cannot choose any of the remaining vertices as its center.

 F_R does not contain all stars K_{1,n_1}, K_{1,n_2} and K_{1,n_3} , so F_R does not contain $\bigcup_{i=1}^3 K_{1,n_i}$.

Now, we show that $m_2(\bigcup_{i=1}^3 K_{1,n_i}, P_3) \le t$. We consider any coloring of $K_{2\times t} = G_R \bigoplus G_B$, such that G_B does not contain a blue P_3 , so $\Delta(G_B) \le 1$. Then

 G_B is a matching graph. Let $U = \{u_1, u_2, ..., u_t\}$ and $V = \{v_1, v_2, ..., v_t\}$ be two partite sets in $K_{2 \times t}$. Every vertex in $K_{2 \times t}$ is relabeled such that $u_i \sim v_j$ in G_B , for some i = j. We have the following two possibilities for the values of t:

- 1. For $t = n_1 + 2$ Since $u_1 \sim v_j$, for $3 \le j \le n_1 + 2$ in G_R , the star K_{1,n_1} can be constructed by these vertices. Since $v_1 \sim u_2$ and v_1, v_2 are both adjacent to u_i for $3 \le i \le n_1 + 2$ in G_R , the star K_{1,n_2} can be constructed by vertices $v_1, u_2, u_3, \dots, u_{n_2+1}$, and the star K_{1,n_3} can be constructed by vertices $v_2, u_{n_2+2}, u_{n_2+3}, \dots, u_{n_3+n_2+1}$.
- 2. For $t = n_2 + n_3 + 1$

Since $u_1 \sim v_j$, for $3 \leq j \leq n_2 + n_3 + 1$ in G_R , the star K_{1,n_1} can be constructed by vertices $u_1, v_3, v_4, \dots, v_{n_1+2}$. Since $v_1 \sim u_2$ and v_1, v_2 are both adjacent to u_i for $3 \leq i \leq n_2 + n_3 + 1$ in G_R , the star K_{1,n_2} can be constructed by vertices $v_1, u_2, u_3, \dots, u_{n_2+1}$ and the star K_{1,n_3} can be constructed by vertices $v_2, u_{n_2+2}, u_{n_2+3}, \dots, u_{n_3+n_2+1}$.

Therefore, G_R contains $\bigcup_{i=1}^3 K_{1,n_i}$.

Theorem 2.5 Let $N = \{n_1, n_2, n_3, n_4\}$ be the set of the number of leaves of three stars $K_{1,n_1}, K_{1,n_2}, K_{1,n_3}$ and K_{1,n_4} , respectively. If $L = \{\max\{\operatorname{sum}(A) + |B|, \operatorname{sum}(B) + |A|\}|A, B \subseteq N, A \cup B = N, A \cap B = \emptyset\}$, then $m_2(\bigcup_{i=1}^4 K_{1,n_i}, P_3) = \min(L)$.

Proof. Let $n_1 \ge n_2 \ge n_3 \ge n_4 \ge 1$. We have $L = \{n_1 + n_2 + n_3 + n_4, \max\{n_1 + 3, n_2 + n_3 + n_4 + 1\}, n_1 + n_2 + 2, n_3 + n_4 + 2, n_1 + n_2 + n_3 + 1, n_1 + n_2 + n_4 + 1, \max\{n_1 + n_4 + 2, n_2 + n_3 + 2\}\}$.

By Lemma 2.2,

 $L = \{ \max\{n_1 + 3, n_2 + n_3 + n_4 + 1\}, n_1 + n_2 + 2, n_3 + n_4 + 2, n_1 + n_2 + n_3 + 1, n_1 \\ + n_2 + n_4 + 1, n_1 + n_3 + n_4 + 1, \max\{n_1 + n_4 + 2, n_2 + n_3 + 2\} \}.$

Therefore,

 $\min(L) = \min\{\max\{n_1 + 3, n_2 + n_3 + n_4 + 1\}, \max\{n_1 + n_4 + 2, n_2 + n_3 + 2\}\}.$ Then, we have three following possibilities for $\min(L)$:

- 1. If $n_1 > n_2 + n_3$, then min(L) = min(L') = max{ $n_1 + 3, n_2 + n_3 + n_4 + 1$ }.
- 2. If $n_1 < n_2 + n_3$, then min(L) = min(L") = max{ $n_1 + n_4 + 2, n_2 + n_3 + 2$ }.
- 3. If $n_1 = n_2 + n_3$, then min(L) = min(L') or min(L) = min(L'').

Let $t = \min(L)$. To show that $m_2(\bigcup_{i=1}^4 K_{1,n_i}, P_3) \ge t$ we consider the coloring of $K_{2\times(t-1)} = F_R \bigoplus F_B$, such that F_B does not contain a blue P_3 , so $\Delta(F_B) \le 1$.

We can choose that $F_B = (t-1)P_2$. Let Let $U = \{u_1, u_2, ..., u_{t-1}\}$ and $V = \{v_1, v_2, ..., v_{t-1}\}$ be two partite sets in $K_{2\times(t-1)}$. Every vertex in $K_{2\times(t-1)}$ is relabeled such that $u_i \sim v_i$ in F_B , for every i = 1, 2, ..., t - 1. We have four possibilities for the values of t - 1, as follows:

1. For $t - 1 = \min(L') - 1 = n_1 + 2$

Since $u_1 \sim v_j$, for $2 \leq j \leq n_1 + 1$ in F_R , the star K_{1,n_1} can be constructed by these vertices. Since $v_1 \sim u_i$, for $n_2 + 2 \leq i \leq n_2 + n_3 + 1 \leq n_1 + 1$ in F_R , the star K_{1,n_2} and K_{1,n_3} can be constructed by vertices $v_1, u_2, u_3, \dots, u_{n_2+1}$ and $v_{n_1+2}, u_{n_2+2}, u_{n_2+3}, \dots, u_{n_3+n_2+1}$, respectively. However, we cannot construct the star K_{1,n_4} , since we cannot choose any of the remaining vertices as its center.

- 2. For $t-1 = \min(L') 1 = n_2 + n_3 + n_4$ Since $u_1 \sim v_j$, for $2 \leq j \leq n_2 + 1$ in F_R , the star K_{1,n_2} can be constructed by these vertices. Since $u_2 \sim v_j$, for $n_2 + 2 \leq j \leq n_2 + n_3 + 1$ in F_R , the star K_{1,n_3} can be constructed by these vertices. Since $u_3 \sim v_j$, for j = 1and $n_2 + n_3 + 2 \leq j \leq n_2 + n_3 + n_4$ in F_R , the star K_{1,n_4} can be constructed by these vertices. However, we cannot construct the star K_{1,n_1} , since we cannot choose any of the remaining vertices as its center.
- 3. For $t 1 = \min(L'') 1 = n_1 + n_4 + 1$

Since $u_1 \sim v_j$, for $2 \leq j \leq n_1 + 1$ in F_R , the star K_{1,n_1} can be constructed by these vertices. Since $u_2 \sim v_j$, for $n_1 + 2 \leq j \leq n_1 + n_4 + 1$ in F_R , the star K_{1,n_4} can be constructed by these vertices. Since $v_1 \sim u_i$, for $3 \leq i \leq$ $n_2 + 2$ in F_R , the star K_{1,n_2} can be constructed by these vertices. However, we cannot construct the star K_{1,n_3} , since we cannot choose any of the remaining vertices as its center.

4. For $t-1 = \min(L'') - 1 = n_2 + n_3 + 1$ Since $u_1 \sim v_j$, for $2 \leq j \leq n_2 + 1$ in F_R , the star K_{1,n_2} can be constructed by these vertices. Since $u_2 \sim v_j$, for $n_2 + 2 \leq j \leq n_2 + n_3 + 1$ in F_R , the star K_{1,n_3} can be constructed by these vertices. Since $v_1 \sim u_i$, for $3 \leq i \leq$ $n_1 + 2$ in F_R , the star K_{1,n_1} can be constructed by these vertices. However, we cannot construct the star K_{1,n_4} , since we cannot choose any of the remaining vertices as its center.

Since F_R does not contain all stars $K_{1,n_1}, K_{1,n_2}, K_{1,n_3}$ and K_{1,n_4} , therefore F_R does not contain $\bigcup_{i=1}^4 K_{1,n_i}$.

Now we show that $m_2(\bigcup_{i=1}^4 K_{1,n_i}, P_3) \leq t$. We consider any coloring of $K_{2\times t} = G_R \bigoplus G_B$, such that G_B does not contain a blue P_3 , so $\Delta(G_B) \leq 1$. Then G_B is a matching graph. Let $U = \{u_1, u_2, ..., u_t\}$ and $V = \{v_1, v_2, ..., v_t\}$ be two

partite sets in $K_{2\times t}$. Every vertex in $K_{2\times t}$ is relabeled such that $u_i \sim v_i$ in G_B , for any i = 1, 2, ..., t. There are four possibilities for the values of t, as follows.

- 1. For $t = \min(L') = n_1 + 3$ Since $u_1 \sim v_j$, for $2 \le j \le n_1 + 1$ in G_R , the star K_{1,n_1} can be constructed by these vertices. Since $v_j \sim u_i$ for $j = 1, n_1 + 2, n_1 + 3$ and $2 \le i \le n_2 + 1$ 1 in G_R , the star K_{1,n_2}, K_{1,n_3} and K_{1,n_4} can be constructed by vertices $\{v_1, u_2, u_3, \dots, u_{n_2+1}\}, \{v_{n_1+2}, u_{n_2+2}, u_{n_2+3}, \dots, u_{n_2+n_3+1}\}$ and $\{v_{n_1+3}, u_{n_2+n_3+2}, u_{n_2+n_3+3}, \dots, u_{n_2+n_3+n_4+1}\}$, respectively.
- 2. For $t = \min(L') = n_2 + n_3 + n_4 + 1$ Since $v_1 \sim u_i$, for $4 \le i \le n_1 + 3$ in G_R , the star K_{1,n_1} can be constructed by these vertices. Since $v_j \sim u_i$ for i = 1, 2, 3 and $2 \le j \le n_2 + n_3 + n_4 + 1$ 1 in G_R , the star K_{1,n_2} , K_{1,n_3} and K_{1,n_4} can be constructed by vertices $\{u_1, v_2, v_3, \dots, v_{n_2+1}\}, \{u_2, v_{n_2+2}, v_{n_2+3}, \dots, v_{n_2+n_3+1}\}$ and $\{u_3, v_{n_2+n_3+2}, v_{n_2+n_3+3}, \dots, v_{n_2+n_3+n_4+1}\}$, respectively.
- 3. For $t = \min(L^{"}) = n_1 + n_4 + 2$ Since $u_i \sim v_j$, for i = 1,2 and $2 \le j \le n_1 + n_4 + 1$ in G_R , the star K_{1,n_1} and K_{1,n_4} can be constructed by vertices $u_1, v_2, v_3, ..., v_{n_1+1}$ and $u_2, v_{n_1+2}, v_{n_1+3}, ..., v_{n_1+n_4+1}$. Since $v_j \sim u_i$, for $3 \le i \le n_2 + n_3 + 2$ and $j = 1, n_1 + n_4 + 2$ in G_R , the star K_{1,n_2} and K_{1,n_3} can be constructed by vertices $\{v_{n_1+n_4+2}, u_3, u_4, ..., u_{n_2+2}\}$ and $\{v_1, u_{n_2+3}, u_{n_2+4}, ..., u_{n_2+n_3+2}\}$, respectively.
- 4. For $t = \min(L'') = n_2 + n_3 + 2$

Since $u_i \sim v_j$, for i = 1,2 and $2 \le j \le n_2 + n_3 + 1$ in G_R , the star K_{1,n_2} and K_{1,n_3} can be constructed by vertices $u_1, v_2, v_3, ..., v_{n_2+1}$ and $u_2, v_{n_2+2}, v_{n_2+3}, ..., v_{n_2+n_3+1}$. Since $v_j \sim u_i$, for $3 \le i \le n_1 + n_4 + 2$ and $j = 1, n_2 + n_3 + 2$ in G_R , the star K_{1,n_1} and K_{1,n_4} can be constructed by vertices $\{v_{n_2+n_3+2}, u_3, u_4, ..., u_{n_1+2}\}$ and $\{v_1, u_{n_1+3}, u_{n_1+4}, ..., u_{n_1+n_4+2}\}$, respectively.

Therefore, G_R contains $\bigcup_{i=1}^4 K_{1,n_i}$.

From Theorems 2.4 and 2.5, we obtain $m_2(\bigcup_{i=1}^k K_{1,n_i}, P_3) = \min(L)$ for $k \in \{2, 3, 4\}$. For $k \ge 5$, it seems that the bipartite Ramsey number for a pair of $\bigcup_{i=1}^k K_{1,n_i}$ and P_3 is $\min(L)$. For example, it is easy to see the bipartite Ramsey number for a pair of $2K_{1,6} \cup 2K_{1,5} \cup K_{1,4} \cup K_{1,3} \cup K_{1,2}$ and P_3 . In this case, we calculate that $\min(L) = 19$. Then, $m_2(2K_{1,6} \cup 2K_{1,5} \cup K_{1,4} \cup K_{1,3} \cup K_{1,2} \cup K_{1,4} \cup K_{1,3} \cup K_{1,2} \cup K_{1,4} \cup K_{1,3} \cup K_{1,2}, P_3) = 19$, see Figure 2.

Figure 2 A disjoint union of stars $2K_{1,6} \cup 2K_{1,5} \cup K_{1,4} \cup K_{1,3} \cup K_{1,2}$ in $K_{2\times 19}$.

Now, we consider another extremal example in Figure 3. Since 100 is too large compared to other numbers of leaves, 100 and the other numbers of leaves are in a different partite set. We calculate that $\min(L) = 109$. Then, $m_2(K_{1,100} \cup K_{1,55} \cup 8K_{1,1}, P_3) = 109$. Therefore, we present the following conjecture.

Figure 3 A disjoint union of stars $K_{1,100} \cup K_{1,55} \cup 8K_{1,1}$ in $G_R \subseteq K_{2 \times 109}$.

Conjecture 2.1 Let $N = \{n_1, n_2, n_3, ..., n_k\}$ be the set of the number of leaves of stars K_{1,n_i} , for $n_i \ge 1$, $1 \le i \le k$ and $k \ge 2$, respectively. If $L = \{\max\{\operatorname{sum}(A) + |B|, \operatorname{sum}(B) + |A|\}|A, B \subseteq N, A \cup B = N, A \cap B = \emptyset\}$, then $m_2(\bigcup_{i=1}^k K_{1,n_i}, P_3) = \min(L)$.

3 Tripartite Ramsey Numbers

In this section, the size tripartite Ramsey numbers for a star forest and P_3 is investigated.

Theorem 3.1 Let $n_1 \ge n_2 \ge 1$ be positive integers. Let $A = \left[\frac{2+n_1+n_2}{3}\right]$ and $B = \left[\frac{n_1+1}{2}\right]$. Then, $m_3(K_{1,n_1} \cup K_{1,n_2}, P_3) = \max\{A, B\}$.

Proof. Let $t = \max\{A, B\}$. To show that $m_3(K_{1,n_1} \cup K_{1,n_2}, P_3) \ge t$, we consider the two following possibilities for the value of t:

- 1. If $A \ge B$, then $t = \left[\frac{2+n_1+n_2}{3}\right]$. We make the edges of graph $K_{3\times(t-1)}$ red. Since $|V(K_{3\times(t-1)})| = 3t - 3 = 3\left[\frac{2+n_1+n_2}{3}\right] - 3 < 2 + n_1 + n_2 = |V(K_{1,n_1} \cup K_{1,n_2})|$, $V(K_{3\times(t-1)})$ contains neither a blue P_3 nor the red $K_{1,n_1} \cup K_{1,n_2}$.
- 2. If A < B, then $t = \left\lfloor \frac{n_1+1}{2} \right\rfloor$. Suppose that $m_3(K_{1,n_1} \cup K_{1,n_2}, P_3) < t$. Then, $n_1 \le 2(t-1) - 1 = 2 \left\lfloor \frac{n_1+1}{2} \right\rfloor$, which is a contradiction.

Therefore, $m_3(K_{1,n_1} \cup K_{1,n_2}, P_3) \ge t$.

Now, we show that $m_3(K_{1,n_1} \cup K_{1,n_2}, P_3) \leq t$. We consider any coloring of $K_{3\times t} = G_R \bigoplus G_B$ such that G_B does not contain a blue P_3 . Thus, $\Delta(G_B) \leq 1$ and G_B is a matching graph. We consider any two endpoints of a P_2 in G_B , say u and v. We know that $d_{G_R}(u) = d_{G_R}(v) = 2t - 1$. If $n_1 = 2t - 1 - s$, for some nonnegative integers $s \leq \frac{t}{2}$, then $n_2 \leq t - 1 + s$. Then we always have a disjoint union of two stars $K_{1,n_1} \cup K_{1,n_2}$ in G_R with u and v as their centers, respectively, and all vertices that are in the same partite set with v being the leaves of K_{1,n_1} .

Theorem 3.2 Let $n_1 \ge n_2 \ge n_3 \ge 1$ be positive integers. Let $A = \left\lfloor \frac{3+n_1+n_2+n_3}{3} \right\rfloor$ and $B = \left\lfloor \frac{n_1+2}{2} \right\rfloor$. Then, $m_3 \left(\bigcup_{i=1}^3 K_{1,n_i}, P_3 \right) = \max\{A, B\}$.

Proof. Let $t = \max\{A, B\}$. To show that $m_3(\bigcup_{i=1}^3 K_{1,n_i}, P_3) \ge t$, we consider the following two possibilities for the value of t:

- 1. If $A \ge B$, then $t = \left[\frac{3+n_1+n_2+n_3}{3}\right]$. We make the edges of graph $K_{3\times(t-1)}$ red. Since $|V(K_{3\times(t-1)})| = 3t - 3 = 3\left[\frac{3+n_1+n_2+n_3}{3}\right] - 3 < 3 + n_1 + n_2 + n_3 = |V(\bigcup_{i=1}^3 K_{1,n_i})|$, $V(K_{3\times(t-1)})$ contains neither a blue P_3 nor the red $\bigcup_{i=1}^3 K_{1,n_i}$.
- 2. If A < B, then $t = \left\lfloor \frac{n_1+2}{2} \right\rfloor$. Suppose that $m_3\left(\bigcup_{i=1}^3 K_{1,n_i}, P_3\right) < t$. Then, $n_1 \le 2(t-1) - 2 = 2\left\lfloor \frac{n_1+2}{2} \right\rfloor - 4 < n_1$, which is a contradiction.

Therefore, $m_3(\bigcup_{i=1}^3 K_{1,n_i}, P_3) \ge t$.

Now, we show that $m_3(\bigcup_{i=1}^3 K_{1,n_i}, P_3) \leq t$. We consider any coloring of $K_{3\times t} = G_R \bigoplus G_B$, such that G_B does not contain a blue P_3 . Thus, $\Delta(G_B) \leq 1$ and G_B is a matching graph. Let $U = \{u_1, u_2, \dots, u_t\}, V = \{v_1, v_2, \dots, v_t\}$ and $W = \{w_1, w_2, \dots, w_t\}$ be the three partite sets of graph $K_{3\times t}$. Let $E(G_B) \supseteq E(UV) \cup E(VW) \cup E(UW)$, where $E(UV) = \{u_1v_1, u_2v_2, \dots, u_pv_p\}, E(VW) = \{v_{p+1}w_1, v_{p+2}w_2, \dots, v_{p+q}w_q\}$ and $E(UW) = \{u_{p+1}w_{q+1}, u_{p+2}w_{q+2}, \dots, u_{p+r}w_{q+r}\}$. Note that $p + q \leq t, q + r \leq t$ and $p + r \leq t$. For the values of p, q and r, we have four matching

1. $p \ge 1, q = r = 0$, see Figure 4(a).

possibilities in G_B :

- 2. $p \ge 1, q = 0, r \ge 1$, see Figure 4(b) or $p \ge 1, q \ge 1, r = 0$, see Figure 4(c).
- 3. $p \ge 1, q \ge 1, r \ge 1$, see Figure 5.

Figure 4 Three matching possibilities in G_B .

Figure 5 A matching in G_B , if $p \ge 1, q \ge 1, r \ge 1$.

To show the three stars in G_R , we choose the centers of stars K_{1,n_1}, K_{1,n_2} and K_{1,n_3} are u_1, v_1 and either v_{p+1} (if p < t) or w_1 (if p = t), respectively. If t = A, then $t = \left\lfloor \frac{3+n_1+n_2+n_3}{3} \right\rfloor \le \left\lfloor \frac{3+3n_1}{3} \right\rfloor = 1 + n_1$. If t = B, then $t = \left\lfloor \frac{n_1+2}{2} \right\rfloor \le n_1 + 1$. Therefore, $t - 1 = n_1$, for all n_1, n_2 and n_3 . Then, $t - 1 \le n_1 \le 2t - 2$. Let $s_1 = n_1 - (t-2) \ge 1$, so $v_2, v_3, \dots, v_p, v_{p+2}, \dots, v_{p+q}, v_{p+q+1}, \dots, v_t, w_1, w_2, w_3, \dots, w_{s_1}$ are the leaves of K_{1,n_1} . We have the following two possibilities to obtain the stars K_{1,n_2} and K_{1,n_3} :

1. If $n_2 \leq t - s_1$, then $w_{s_1+1}, w_{s_1+2}, \dots, w_{s_1+n_2}$ are the leaves of K_{1,n_2} . Since $n_3 \leq n_2 \leq t - s_1 \leq t - 1$, we have $u_2, u_3, \dots, u_{n_3+1}$ are the leaves of K_{1,n_2} , see Figure 6.

Figure 6 A disjoint union of stars $\bigcup_{i=1}^{3} K_{1,n_i}$ in G_R , if p < t.

2. If $t - s_1 \le n_2 \le n_1$ and let $s_2 = n_2 - (t - s_1) \ge 1$, then $w_{s_1+1}, w_{s_1+2}, \dots, w_t, u_2, u_3, \dots, u_{s_2+1}$ are the leaves of K_{1,n_2} . Since $n_1 + n_2 = 2t - 2 + s_2$, so $n_3 \le t - s_2 - 1$. Then, $u_{s_2+2}, u_{s_2+3}, \dots, u_{n_3+s_2+1}$ are the leaves of K_{1,n_3} .

Therefore, we have a disjoint union of stars $\bigcup_{i=1}^{3} K_{1,n_i}$ in G_R , where u_1, v_1 and v_{p+1} are their centers.

Theorem 3.3 Let $n_1 \ge n_2 \ge n_3 \ge n_4 \ge 1$ be positive integers. Let $A = \left[\frac{4+n_1+n_2+n_3+n_4}{3}\right]$ and $B = \left[\frac{n_1+3}{2}\right]$. Then, $m_3(\bigcup_{i=1}^4 K_{1,n_i}, P_3) = \max\{A, B\}$.

Proof. Let $t = \max\{A, B\}$. To show that $m_3(\bigcup_{i=1}^4 K_{1,n_i}, P_3) \ge t$, we consider the following two possibilities for the value of t:

- 1. If $A \ge B$, then $t = \left[\frac{4+n_1+n_2+n_3+n_4}{3}\right]$. We make the edges of graph $K_{3\times(t-1)}$ red. Since $|V(K_{3\times(t-1)})| = 3t - 3 = 3\left[\frac{4+n_1+n_2+n_3+n_4}{3}\right] - 3 < 4 + n_1 + n_2 + n_3 + n_4 = |V(\bigcup_{i=1}^4 K_{1,n_i})|$, $V(K_{3\times(t-1)})$ contains neither a blue P_3 nor the red $\bigcup_{i=1}^4 K_{1,n_i}$.
- 2. If A < B, then $t = \left\lceil \frac{n_1+3}{2} \right\rceil$. Suppose that $m_3 \left(\bigcup_{i=1}^4 K_{1,n_i}, P_3 \right) < t$. Then, $n_1 \le 2(t-1) - 3 = 2 \left\lceil \frac{n_1+3}{2} \right\rceil - 5 < n_1$, which is a contradiction.

Therefore, $m_3(\bigcup_{i=1}^4 K_{1,n_i}, P_3) \ge t$.

Now, we show that $m_3(\bigcup_{i=1}^4 K_{1,n_i}, P_3) \leq t$. We consider any coloring of $K_{3\times t} = G_R \bigoplus G_B$ such that G_B does not contain a blue P_3 , so $\Delta(G_B) \leq 1$. Then, G_B is a matching graph, see Figures 4 and 5. The centers of stars $K_{1,n_1}, K_{1,n_2}, K_{1,n_3}$ and K_{1,n_4} are u_1, v_1, v_{p+1} and w_1 , respectively. We have the following two possibilities to obtain K_{1,n_1} and K_{1,n_2} :

- 1. If $n_1 \leq t-2$, then $v_2, v_3, ..., v_p, v_{p+2}, ..., v_{p+q+1}, ..., v_{n_1+2}$ are the leaves of K_{1,n_1} . Since $n_2 \leq n_1 \leq t-2$, we have $w_2, ..., w_{n_2+1}$ are the leaves of K_{1,n_2} . There are $t-n_2+1 \geq 1$ vertices in $W - \{w_1, w_2, ..., w_{n_2+1}\}$. We have the following two possibilities to obtain K_{1,n_3} and K_{1,n_4} :
 - a) If $n_3 \le t (n_2 + 1)$, then $w_{n_2+2}, w_{n_2+3}, ..., w_{n_2+n_3+1}$ and $u_2, u_3, ..., u_{n_4+1}$ are the leaves of K_{1,n_3} and K_{1,n_4} , respectively.
 - b) If $t (n_2 + 1) < n_3 \le n_2$, let $s_1 = n_3 (t (n_2 + 1)) \ge 1$, then $w_{n_2+2}, w_{n_2+3}, \dots, w_t, u_2, u_3, \dots, u_{s_1+1}$ are the leaves of K_{1,n_3} . Since $n_1 + n_2 + n_3 \le 2t 3 s_1$, $n_4 \le t s_1 1$. Then, $u_{s_1+2}, u_{s_1+3}, \dots, u_{s_1+n_4+1}$ are the leaves of K_{1,n_4} .
- 2. If $t-1 \le n_1 \le 2t-3$ and let $s_2 = n_1 (t-2) \ge 1$, then $v_2, v_3, ..., v_p, v_{p+2}, ..., v_{p+q}, v_{p+q+1}, ..., v_t, w_2, w_3, w_{s_2+1}$ are the leaves of K_{1,n_1} . We have three possibilities:
 - a. If $n_2 < t (s_2 + 1)$ and let $s_3 = n_3 + n_2 + s_2 + 1 t \ge 1$, then $w_{s_2+2}, w_{s_2+3}, \dots, w_{s_2+n_2+1}$ are the leaves of K_{1,n_2} and we have two possibilities:
 - i. If $n_3 \le t (n_2 + s_2 + 1)$, then $w_{s_2+n_2+2}, w_{s_2+n_2+3}, ..., w_{s_2+n_2+n_3+1}$ are the leaves of K_{1,n_3} . Since $n_4 \le n_3$, so $u_2, u_3, ..., u_{n_4+1}$ are the leaves of K_{1,n_4} .
 - ii. If $t (n_2 + s_2 + 1) < n_3 \le n_2$, then $w_{s_2+n_2+2}, w_{s_2+n_2+3}, \dots, w_t, u_2, u_3, \dots, u_{s_3+1}$ are the leaves of K_{1,n_3} . Since $n_1 + n_2 + n_3 \le 2t 3 + 1$

 s_3 , so $n_4 \le t - 1 - s_3$. Then, $u_{s_3+2}, u_{s_3+3}, \dots, u_{s_3+n_4+1}$ are the leaves of K_{1,n_4} .

- b. If $n_2 = t (s_2 + 1)$, then $w_{s_2+2}, w_{s_2+3}, ..., w_t$ are the leaves of K_{1,n_2} . Since $n_1 + n_2 = 2t - 3 + s_4$, so $n_3 + n_4 \le t - 1 - s_4$. Then, $u_2, u_3, ..., u_{n_3+1}$ and $u_{n_3+2}, u_{n_3+3}, ..., u_{n_3+n_4+1}$ are the leaves of K_{1,n_3} and K_{1,n_4} , respectively.
- c. If $t (s_2 + 1) < n_2 \le n_1$ and let $s_4 = n_2 + s_2 + 1 t \le 1$, then $w_{s_2+2}, w_{s_2+3}, ..., w_t, u_2, u_3, ..., u_{s_4+1}$ are the leaves of K_{1,n_2} . Since $n_1 + n_2 = 2t 3 + s_4$, so $n_3 + n_4 \le t 1 s_4$. Then, $u_{s_4+2}, u_{s_4+3}, ..., u_{s_4+n_3+1}$ and $u_{s_4+n_3+2}, u_{s_4+n_3+3}, ..., u_{s_4+n_3+n_4+1}$ are the leaves of K_{1,n_3} and K_{1,n_4} , respectively.

Therefore, we find a disjoint union of stars $\bigcup_{i=1}^{4} K_{1,n_i}$ in G_R , where u_1, v_1, v_{p+1} and w_1 are their centers.

From Theorems 3.1, 3.2 and 3.3 we obtain that $m_3(\bigcup_{i=1}^k K_{1,n_i}, P_3) = \max\{A, B\}$, where $A = \left[\frac{k+n_1+n_2+\dots+n_k}{3}\right]$ and $B = \left[\frac{n_1+k-1}{2}\right]$, for k = 2, 3, 4. For $k \ge 5$, it seems that the tripartite Ramsey number of $\bigcup_{i=1}^k K_{1,n_i}$ and P_3 is also $\max\{A, B\}$. For example, $m_3(2K_{1,6} \cup 2K_{1,5} \cup K_{1,4} \cup K_{1,3} \cup K_{1,2}, P_3) = \max\{\left[\frac{7+6+6+5+5+4+3+2}{3}\right], \left[\frac{6+6}{2}\right]\} = 13$ and $m_3(K_{1,100} \cup K_{1,55} \cup 8K_{1,1}, P_3) = \max\{\left[\frac{10+100+55+1+1+1+1+1+1}{3}\right], \left[\frac{100+9}{2}\right]\} = 58$, which can be seen in Figures 7 and 8, respectively.

Figure 7 A disjoint union of stars $2K_{1,6} \cup 2K_{1,5} \cup K_{1,4} \cup K_{1,3} \cup K_{1,2}$ in $K_{3\times 13}$.

Figure 8 A disjoint union of stars $K_{1,100} \cup K_{1,55} \cup 8K_{1,1}$ in $K_{3\times 58}$.

Note that from these figures, we may have a different way to choose the stars than as mentioned in the proof of Theorem 3.3. Moreover, to obtain $m_3(2K_{1,6} \cup 2K_{1,5} \cup K_{1,4} \cup K_{1,3} \cup K_{1,2}, P_3)$ and $m_3(K_{1,100} \cup K_{1,55} \cup 8K_{1,1}, P_3)$ we cannot use the technique for choosing stars in the proof of Theorem 3.3. So, we would need to develop a new technique to prove the following conjecture.

Conjecture 3.1 Let $n_1 \ge n_2 \ge \dots \ge n_k \ge 1$ be positive integers. Let $A = \left[\frac{k+n_1+n_2+\dots+n_k}{3}\right]$ and $B = \left[\frac{n_1+k-1}{2}\right]$. Then, $m_3(\bigcup_{i=1}^k K_{1,n_i}, P_3) = \max\{A, B\}$.

Acknowledgement

This research has been supported by research grant *Program Penelitian*, *Pengabdian Kepada Masyarakat dan Inovasi (P3MI)* ITB and *Penelitian Dasar Unggulan Perguruan Tinggi*, Ministry of Research, Technology and Higher Education, Indonesia.

References

- Parsons, T., Path-star Ramsey Numbers, J. Combin. Theory, Ser. B, 17, pp. 51-58, 1974.
- Burr, S.A. & Roberts, J.A., On Ramsey Numbers for Stars, Utilitas Math.,
 4, pp. 217-220, 1973.
- [3] Hattingh, J.H. & Henning, M.A., *Star-path Bipartite Ramsey Numbers*, Discrete Math. **185**, pp. 255-258, 1998.

- [4] Burger, A. P. & van Vuuren, J.H., Ramsey Numbers in Complete Balanced Multipartite Graphs. Part II: Size Numbers, Discrete Math., 283, pp. 45-49, 2004.
- [5] Syafrizal, Sy., Baskoro, E.T. & Uttunggadewa, S., *The Size Multipartite Ramsey Numbers for Paths*, J. Combin. Math. Combin. Comput. 55, pp. 103-107, 2005.
- [6] Syafrizal, Sy., On Size Multipartite Ramsey Numbers for Paths Versus Cycles of Three or Four Vertices, Far East J. Appl. Math. 44(2), pp. 109-116, 2010.
- [7] Syafrizal, Sy., Baskoro, E.T. & Uttunggadewa, S., *The Size Multipartite Ramsey Numbers for Small Paths Versus other Graphs*, Far East J. Appl. Math. 28(1), pp. 131-138, 2007.
- [8] Surahmat & Syafrizal, Sy., *Star-path Size Multipartite Ramsey Numbers*, Applied Math. Sciences (Bulgaria), **8**(75), pp. 3733-3736, 2014.
- [9] Lusiani, A., Syafrizal, S., Baskoro, E.T. & Jayawardene, C., On Size Multipartite Ramsey Numbers for Stars versus Cycles, Procedia Comput. Sci., 74, pp. 27-31, 2015.
- [10] Lusiani, A., Baskoro, E.T. & Saputro, S.W., On Size Tripartite Ramsey Numbers of P_3 versus $mK_{1,n}$, AIP. Conf. Proc. **1707**, 020010, 2016. DOI:10.1063/1.4940811
- [11] Lusiani, A., Baskoro, E.T. & Saputro, S.W., On Size Multipartite Ramsey Numbers for Stars Versus Paths and Cycles, Electron. J. Graph Theory Appl. 5(1), pp. 43-50, 2017.
- [12] Jayawardene, C. & Samarasekara, L., *The Size Multipartite Ramsey Numbers for* C_3 *versus All Graphs up to 4 Vertices,* J.Natn.Sci. Foundation Sri Lanka **45**(1), pp. 67-72, 2017, DOI:10.4038/jnsfsr. v45i1.8039
- [13] Chartrand, G., Lesniak, L & Zhang, P., *Graphs and Digraphs*, CRC Press, 2016.
- [14] Christou, M., Iliopoulos, C.S. & Miller, M., *Bipartite Ramsey Numbers Involving Stars, Stripes and Trees*, Electron. J. Graph Theory Appl. 1(2), pp. 89-99, 2013.