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Abstract. For simple graphs G and H, the size multipartite Ramsey number
m;(G,H) is the smallest natural number t such that any arbitrary red-blue
coloring on the edges of Kj,; contains a red G or a blue H as a subgraph. We
studied the size tripartite Ramsey numbers m3(G, H), where G = mK, ,, and
H = P;. In this paper, we generalize this result. We determine m;(G, H), where
G is a star forest, namely a disjoint union of heterogeneous stars, and H = P;.
Moreover, we also determine m, (G, H) for this pair of graphs G and H.
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1 Introduction

Given two simple graphs G and H. We use the notation F — (G, H) when for
any red-blue coloring of the edges of a graph F we always have a red subgraph
G or a blue subgraph H. The Ramsey number r(G, H) is defined as the smallest
positive integer n such that K,, — (G, H), where K,, is the complete graph on n
vertices. Some values of the Ramsey number for a combination of a star and a
path were determined by Parsons [1]. One year before, the multicolor Ramsey
number for stars was determined by Burr and Roberts [2]. Then, the concept of
Ramsey numbers evolved to the bipartite Ramsey number b(G, H), which is
defined as the smallest positive integer n such that K,, ,, — (G, H). In 1998, the
bipartite Ramsey number for a star and a path was completed by Hattingh and
Henning [3].

Furthermore, in 2004 Burger and Vuuren [4] generalized the concept of
bipartite Ramsey numbers to the size multipartite Ramsey numbers as follows.
Let j, I, n, r and s be natural numbers with n,r > 2. The size multipartite
Ramsey number m;(Kyx;, Krxs) is the smallest natural number t such that an
arbitrary red-blue coloring of the edges of Kj.;, where Kj,; is the complete
multipartite graph having j partite sets with t vertices per each partite set,
necessarily forces a red K,,; or a blue K., as a subgraph. They also gave some
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properties of the size multipartite Ramsey numbers and determined the exact
values of m;(Kyxz, K3x1), for j = 2. For the bounds of the size multipartite
Ramsey numbers they gave a direct lower bound, a probabilistic lower bound,
and a diagonal bipartite upper bound.

Syafrizal, et al. [5] generalized this concept by removing the completeness
requirement. Thus, the size multipartite Ramsey number, m;(G, H), is defined
as the smallest positive integer t such that K;,, — (G, H). They also determined
the size multipartite Ramsey numbers for paths and other graphs [5,6],
especially the size multipartite Ramsey numbers for P; and stars [7]. Then,
Surahmat and Syafrizal [8] gave the size tripartite Ramsey numbers for paths P,
and stars, for 3 < n < 6. Meanwhile, the size multipartite Ramsey numbers for
stars and cycles have been investigated by Lusiani, et al. [9]. They also
provided the size tripartite Ramsey numbers for P; and a disjoint union of
homogeneous stars [10] and the size tripartite Ramsey numbers for stars with
paths and cycles [11]. Recently, Jayawardene and Samarasekara [12]
determined the size multipartite Ramsey numbers for C; and all graphs up to 4
vertices, including the star of order 4. However, the multipartite Ramsey
numbers for P; and a disjoint union of heterogeneous stars have not been
determined.

Here, the generalized concept of the size multipartite Ramsey numbers for a star
forest and P; is used. The star forest is a disjoint union of heterogeneous stars.
In this paper, we determine the size multipartite Ramsey numbers
mj(U‘é‘:1 Ky, ,P3), for j = 2, 3, where Uﬁ‘leLni is a star forest, for
n; = 1,k = 2 and P; is a path on 3 vertices. For k = 1, Hattingh and Henning
[3] determined m, (Kl,r: Ps), forr,s = 2.

For some terms in graph theory used in this paper, we refer to Chartrand [13].
Let G be a finite and simple graph. The vertex and edge sets of graph G are
denoted by V(G) and E(G), respectively. A matching of a graph G is defined as
the set of edges without a common vertex. Let e = u~v be an edge in G, then u
is called adjacent to v. The neighborhood N(v) of a vertex Vv is the set of
vertices adjacent to v in G. The degree d(v) of a vertex v is |[N(v)|. The
maximum degree of G is denoted by A(G), where A(G) = max{d(v)|v €
V(G)}. The minimum degree of G is denoted by &(G), where §(G) =
max{d(v)|v € V(G)}. A star K;, is the graph on n + 1 vertices with one
vertex of degree n, called the center of this star, and n vertices of degree 1,
called the leaves. Any red-blue coloring of graph Kj. is represented by
Kjxs = Fr @ Fg or Kj; = Gg © G, where Fr and Gy are the red graphs and
Fg and Gg are the blue graphs.
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2 Bipartite Ramsey Numbers

In this section, we discuss the size bipartite Ramsey number
mz(U{LlKLni,P_g), for k = 2 and n; = 1. We compute the formula of this
Ramsey number for any k = 2 and n; = 1. In particular, for n; = 1, for all {, we
obtain the value of m, (kK 1, P;) = m,(kP,, P3), correcting the previous result

given by Christou, et al. [14]. They showed that m, (sz, Kl‘n) =n+ l%J, for
k > 2 and n = 1. For n = 2, they had m,(kP,,P;) = 2 + I%J, which is not

correct for k = 4.

2, fork=1

Lemma 2.1 m,(kP,,P;) = {k fork =2

2, fork=1

Proof. Lett = {k, fork =2

We consider the coloring of Ky ;1) = Fr @D Fp, such that Fg does not contain
P;. So, A(Fg) < 1. This is trivial for k = 1 since Fgz = K, and Fy is an empty
graph. For k > 2, we choose Fg = (k — 1)P,. In this case, we will have no kP,
in Fg and Fg 2 P;. So, my(kP,, P3) > t.

Now, we show that m,(kP,, P;) < t. We consider any coloring of K,y; =
Gr @ Gg, such that Gg does not contain a blue Pz, so A(Gg) < 1. Fork = 1, we
have K,y = G @ Gg. So, Gg is either a matching graph or an empty graph
and Gy is either 2P,, P, or C,, which implies G 2 2P,. For k > 2, we have
Kowyp = Gr @ Gg. Let U ={uq,uy,...,ux} and V ={v,,v,,...,v,} be two
partite sets in K,4. If G is a matching graph, then every vertex in K,y is
relabeled such that u; ~ v; in Gp, for every i = 1,2, ..., k. We consider a cycle
in Ky, namely C, = uyv1UyVoU3V5 ... U Vi Uy S0, E(Cy) — E(Gp) contains a
red kP,. Therefore, Gy contains a red kP,.

In Lemma 2.1 we obtain the size bipartite Ramsey number, mz(U{;l Kip,, P3),
for n; = 1, for all i. So, in Theorems 2.2, 2.4 and 2.5, we determine the size
bipartite Ramsey numbers mz(U’i;l Kllni,P3), for all n; = 1, for 2 <k < 4.
For a combination of two stars and P;, we show this case in Theorem 2.2.

Theorem 2.2 Let n; and n, be positive integers. Then, m, (Kl,n Y
Kl,nz'PS) = maX{nl,nz} + 1.

Proof. Let n; = n, > 1, so we have max{n,,n,} + 1 = n; + 1. To show that
m, (Kl,n1 U Kl,n2'P3) =n; + 1, we consider the coloring of Kx,, = Fr ©
Fg, such that Fz does not contain P;. So, A(Fg) < 1. We can choose Fp =
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nP,. Let U = {uy,u,, ...,unl} and V = {v,v,, ...,vnl} be two partite sets in
Kyxn,- Every vertex in Ky, is relabeled such that u; ~ v; in Fp, for every
i=1,2,..,ny. Since u; ~ v; in Fy, for i # j, so Fr does not contain Kjp .
Therefore, m, (Kl,n1 U Kl_nz,P3) =>ny + 1.

(b)

Figure1 (a). Gz = pK,,for1<p<n+1 (b). 2Kipn, € Gr S Koxny+1)-

Now, we show that m, (Kl,n1 U K, P3) < nq + 1. We consider any coloring
of Kyx(n,+1) = Gr @ Gp, such that Gg does not contain a blue Pz, so A(Gg) <
1. Let U = {uq, Uy, ..., Up, 41} and V = {v, vy, ..., U 41} be two partite sets in
Kyxn,+1)- If Gp is a matching graph, then every vertex in Ky, 4+1) 18
relabeled such that u; ~ v; in Fg, for any i = 1,2, ...,ny + 1, see Figure 1(a).
Since u; ~ v; and v; ~ u; in Gg, for 2 < i,j < n; + 1, we find a disjoint union
of stars 2K; ,,  in Gg, see Figure 1(b).

For the proofs of Theorems 2.4 and 2.5, we use Lemma 2.3, which is stated as
follows. Note that we previously defined sum(4) =3Y¥  n;, for A=
{ny,n,, ...,ng}.

Lemma 2.3 Let N = {n;,ny,..,n; }, for k >2 and ny > ny, > > n, > 1.
For 1 <i < 2% let A € P(N), where A; # Aj, for i # j. Let B; = N — A;, and
L; = max{sum(4;) + |B|,sum(B;) + |A|}. There exists p € {1,2,3,...,2%},
where A, or B, is not empty (or A, or B, is not N), such that L, =
min{L;|1 < i < 2¥}.

Proof. Let A, =@ and B, =N, for any r € {1,2,3,...,2%}. Then L, =
max{sum(4,) + |B,|,sum(B,.) + |4, |} = sum(N). Let us consider A, where
|As] =1 and B; = N — A, where |Bg| = 1. We assume that |[Ag| =t > 1.
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Then Lg = max{sum (45) + k —t,sum (B;) +t}. Note that sum(N) =
sum(Ag) + sum(B) = sum(A,) + k—t and sum(N) = sum(4;) +
sum(B;) =t + sum(B;). So, if A; = {1}, then L; = L,. Otherwise, L; < L,.
Then, L = min(Lg) < L,. Therefore, L is minimum when A and B are not
empty.

Theorem 2.4 Let N = {ny,n,,n3} be the set of the number of leaves of three
stars Ky 5, K1 n, and Ky ., respectively. If L = {max{sum(4) + |B|, sum(B) +
|AI}JA,B S N,AUB = N,ANB = ¢}, then my(U{_, Ky n,, P3) = min(L).

Proof. Let n; = n, = n3 = 1. We have L = {n; + n, + nz, max{n; + 2,n, +
ny +1},ny + n, + 1,n; + n3 + 1}. By Lemma 2.2, L = {max{n; +2,n, +
ns +1},n; + n, + 1,ny + ng + 1}. Therefore, min(L) = max{n, + 2,n, +
ny + 1}.

Let t = max{n; + 2,n, + nz + 1}. To show that m,(U}_; Ky ,,P3) = t, we
consider the coloring of K,y ;—1) = Fg € Fp, such that Fg does not contain a
blue P;, so A(Fg) <1. We can choose that Fg = (t —1)P,. Let U =
{us, Uy, o, U1} and V = {vy,v,,...,v,_1} be two partite sets in Kjy(—1).
Every vertex in Ky (_1) is relabeled such that w; ~ v; in Fp, for any i =
1,2,...,t — 1. We have the following two possibilities for the values of t — 1:

I. Fort—1=n,+1.
Since u; ~ vy, for 2 < j <ny + 1 in Fy, the star Ky ,, can be constructed
by these vertices. Since v; ~u;, for 2<i<n, +1<n; +1 in Fg, the
star K; 5, can be constructed by vertices vy, Uy, U3, ..., Up, +1. However, we
cannot construct the star Kj, , since we cannot choose any of the
remaining vertices as its center.

2. For t—1=n,+n;.
Since u; ~v;, for ny, +1<n, +n3 in Fg, the star K;,, can be
constructed by these vertices. Since uy,, 41 ~ vj, for 1 < j < n, in Fy, the
star K;,, can be constructed by these vertices. However, we cannot
construct the star K; , since we cannot choose any of the remaining
vertices as its center.

Fg does not contain all stars K, ,K;,, and K;,,, so Fr does not contain
3
Ui=1 Kl.ni-

Now, we show that mZ(U?:1 Kl,ni'P3) < t. We consider any coloring of
K,«: = Gg @ Gg, such that Gz does not contain a blue P3, so A(Gg) < 1. Then
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Gp is a matching graph. Let U = {uq,u,, ..., u;} and V = {v, v,, ..., v} be two
partite sets in K. Every vertex in Ky, is relabeled such that u; ~ v; in Gg,
for some i = j. We have the following two possibilities for the values of ¢:

1. Fort=n;+2
Since uy ~ v;, for 3 < j < ny + 2 in G, the star Ky, can be constructed
by these vertices. Since v; ~ u, and v,,v, are both adjacent to u; for
3<i<n;+2 in Gg, the star K;,, can be constructed by vertices
V1, Up, Uz, -, Un,41, and the star K;,. can be constructed by vertices
V2, Un,+2) Uny+3s -+ Ung4ny+1-

2. Fort=n,+nz+1
Since uy ~vj, for 3<j<n,+nzg+1 in Gg, the star K;, can be
constructed by vertices uq, V3, Uy, -.., Un, 42. Since v; ~ u, and vy, v, are
both adjacent to u; for 3 <i <n, +n3z+ 1 in Gg, the star K, ,, can be
constructed by vertices vy,Uy, Uz, ..., Un,+1 and the star K;,, can be
constructed by vertices v,, Up, 12, Un, 43, ) Ung+n,+1-

Therefore, Gy contains U>_, Kipn;-

Theorem 2.5 Let N = {n,,n,, ns,n,} be the set of the number of leaves of
three stars Kqp ,Kin, Kin, and Ki,,, respectively. If L = {max{sum(4) +
|B|,sum(B) + |A|}|]4,B € N,AUB = N,AN B = @}, then

mz(U?z1 Kl,ni'PS) = min(L).

Proof. Let ny >n,>nz3>=n,>1. We have L={n +n,+n;+
ng,max{n, +3,n, +ny+ny, +1},ny +ny, +2,ng +n, + 2, ny +n, +
ny +1,ny + ny, + ny + 1,0y + n3 + ny + 1, max{n, + n, + 2,n, + ny + 2}}.

By Lemma 2.2,

L={max{n, +3,n,+ng+n, +1},ny +n, +2,ng+n, +2,ny +n, +nz3 + 1,n,
+n, +n, +1,n +ng+n, + 1, max{n; +n, + 2, n, + nz + 2}}.

Therefore,

min( L) = min{max{n; + 3,n, + n; + n, + 1}, max{n, + n, + 2, n, + ny + 2}}.

Then, we have three following possibilities for min( L):

1. Ifn; > n, + ng, then min(L) = min(L") = max{n, + 3,n, + nz + n, + 1}.
2. Ifn; < n, + ng, then min(L) = min(L") = max{n, + n, + 2, n, + nz + 2}.
3. Ifny = n, + ng, then min(L) = min( L") or min( L) = min(L").

Let t = min(L). To show that m, (U;Ll Kin,, P3) = t we consider the coloring
of Ky (¢t-1) = Fr @ Fp, such that Fg does not contain a blue P3, so A(Fg) < 1.
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We can choose that Fp = (t —1)P,. Let Let U = {uy,uy,...,u;_q1} and

V =

{v1, V3, ..., Vt_1} be two partite sets in Ky (¢—1). Every vertex in Kjy -1y is

relabeled such that u; ~ v; in Fg, for every i = 1,2, ...,t — 1. We have four
possibilities for the values of t — 1, as follows:

1.

Fort —1=min(L)—1=n, +2

Since uy ~ v}, for 2 < j <n; + 1 in Fp, the star K; ,, can be constructed
by these vertices. Since vy ~u;, forn, +2<i<n,+nz+1<n;+1
in Fg, the star K;,, and K;,, can be constructed by vertices
V1, Up, Uz, vy Unyq1 ANA Uy 4o, Upo 40, Up,yi3, o) Ungan, 41, TESPECtively.
However, we cannot construct the star K , " since we cannot choose any
of the remaining vertices as its center.

For t =1 =min(L") —1=mn, +nz+n,

Since uy ~ vj, for 2 < j < mn, + 1 in Fp, the star K; ,, can be constructed
by these vertices. Since u, ~ vj, forn, +2 <j<n, +nz + 1 in Fg, the
star K, ,, can be constructed by these vertices. Since uz ~ v, for j =1
and ny+nz+2<j<n,+nz+n, in Fgp the star K;,, can be
constructed by these vertices. However, we cannot construct the star Ky ,, ,
since we cannot choose any of the remaining vertices as its center.

For t—1=min(L")—1=n;+n,+1

Since uy ~ vy, for 2 < j <ny + 1 in Fp, the star K; ,, can be constructed
by these vertices. Since u, ~ vj, for n; + 2 <j <n; + ny + 1 in Fg, the
star K; ,, can be constructed by these vertices. Since vy ~ u;, for 3 <i <
n, + 2 in Fy, the star K; ,, can be constructed by these vertices. However,
we cannot construct the star K ,,, since we cannot choose any of the
remaining vertices as its center.

For t—1=min(L")—1=n,+n3+1

Since uy ~ vj, for 2 < j <mn, + 1 in Fy, the star Ky ,,, can be constructed
by these vertices. Since u, ~ vj, forn, + 2 < j <n, +nz + 1 in Fy, the
star K; ,, can be constructed by these vertices. Since vy ~ u;, for 3 < i <
ny + 2 in F, the star K; 5, can be constructed by these vertices. However,
we cannot construct the star K ,, since we cannot choose any of the
remaining vertices as its center.

Since Fp does not contain all stars Ky, , K1 4,, Kin, and Ky ,,, therefore Fpg
4
does not contain U= Ky ;-

Now we show that mz(U‘i*:1 Kin;» P3) < t. We consider any coloring of
K,«+ = Ggr @D Gg, such that Gz does not contain a blue P, so A(Gg) < 1. Then
Gp is a matching graph. Let U = {uq,u,, ..., u;} and V = {vy, v,, ..., v} be two
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partite sets in K,,;. Every vertex in K,y; is relabeled such that u; ~ v; in Gp,
forany i = 1,2, ..., t. There are four possibilities for the values of t, as follows.

1.

For t = min(L') =n; + 3

Since uy ~ v}, for 2 < j < ny + 1 in G, the star K; ,,, can be constructed
by these vertices. Since v; ~ u; forj = 1,ny +2,ny +3and2 < i <n, +
1 in Gg, the star Ky, , Ky, and K;,, can be constructed by vertices
{vl’ uz’ u3’ B un2+1}’ {vn1+2' un2+2’ un2+3’ B un2+n3+1} and

{vn1+3: Un,+ng+2) Uny+ng+3s -+ Uny+ng +n4+1}r respectlvely.

For t = min(L’) =n, + ny+n, +1

Since vy ~ w;, for 4 < i <ny + 3 in G, the star Ky ,, can be constructed
by these vertices. Since v; ~ u; fori =1,2,3and2 <j <n; + nz +n, +
1 in Gg, the star Ky, K15, and K;,, can be constructed by vertices
{ul' U2, V3, ---'vn2+1}' {uZ'vn2+2' Un,+3» ---Jvn2+n3+1} and

{u?ﬂ vnz +Tl3+2’ vnz +n3+3’ "t vl’lz +Tl3+n4+1}’ respeCtiveIY‘

For t = min(L") =n; +n, + 2

Since u; ~vj, for i = 1,2 and 2 < j <n; +ny + 1 in G, the star Ky,
and K;,, can be constructed by vertices uy,V,,V3,..., V5,41 and
Uy, Vny 425 Vny 430 0 Vny4n,+1- Since vj ~ y;, for 3 < i <n, + n3 + 2 and
j=1,ny +n,+ 2 in G, the star K; ,, and K, 5, can be constructed by
vertices {vn1+n4+2,u3,u4, ...,un2+2} and {vl,un2+3,un2+4, ...,un2+n3+2},
respectively.

For t = min(L") =n, +nz + 2

Since u; ~v;, for i = 1,2 and 2 < j <n, +ng + 1 in Gy, the star Ky,
and K;,, can be constructed by vertices uy,V;,V3,...,Vn,41 and
Uy, Vn,42) Vny43s s Unyang+1- SlCE Vj ~ u;, for 3 < i <n; +ny + 2and
j=1,n,;+n3+2 in Gg, the star K; ,, and K;,, can be constructed by
vertices {vn2+n3+2,u3,u4, ...,un1+2} and {vl,un1+3,un1+4, ...,un1+n4+2},
respectively.

Therefore, Gy contains Ui, Kin;-

From Theorems 2.4 and 2.5, we obtain m,(Uf, Kin, P;) = min(L) for
k € {2,3,4}. For k = 5, it seems that the bipartite Ramsey number for a pair of
Uk, K1, and P3 is min(L). For example, it is easy to see the bipartite Ramsey
number for a pair of 2K; 4 U 2K; 5 U K; 4 UK; 3 UK, and P3. In this case, we
calculate  that min(L) =19. Then, my(2K;6VU2K;5UK;4 UKy 3U
Kl_Z,P3) = 19, see Figure 2.
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Figure 2 A disjoint union of stars 2K; ¢ U 2K; s UK 4 U K; 3 U K5 in Kjpyqo.

Now, we consider another extremal example in Figure 3. Since 100 is too large
compared to other numbers of leaves, 100 and the other numbers of leaves are

in a different partite set. We calculate that min(L) = 109. Then, m,(Ky 100 U
K; 55 U8BK, 4, P3) = 109. Therefore, we present the following conjecture.

Figure 3 A disjoint union of stars K; 199 U K; 55 U 8K ; in Gg € K;x100.
Conjecture 2.1 Let N = {n,,n,, ns, ..., Ny} be the set of the number of leaves
of stars Kj,, for n; =1, 1<i<k and k=2, respectively. If L=
{max{sum(A4) + |B|,sum(B) + |A|}|]A,B € N,AUB = N,AN B = @}, then
my(Ufy Kin,» P3) = min(L).

3 Tripartite Ramsey Numbers
In this section, the size tripartite Ramsey numbers for a star forest and P; is

investigated.

Theorem 3.1 Let n; >n, > 1 be positive integers. Let A = [m%] and

B = [n12+1]_ Then, m3(K1'n1 U Kl,TLZ'P?,) = max{A’ B}
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Proof. Let t = max{A4,B}. To show that ms (1’(1,711 u Kl,ner3) >t we
consider the two following possibilities for the value of ¢t:

1. fA=B,thent= [m%] We make the edges of graph Kzy;_q) red.

Since V(Ksue-n)| =3t =3 =3[ —3 <24 ny +n, =
|V(K1_n1 U Kl,nz)l' V(K3X(t_1)) contains neither a blue P; nor the red
Kin, U Kip,.

2. IfA<B, thent = "1“
n1<2(t—1)—1—2[n1+1

U Kl,nZ'P3) < t. Then,

], which is a contradiction.

Therefore, m; (K1,n1 U Kin,, P, 3) 2t

Now, we show that mg (Kl,n1 U Kl’nZ,P3) < t. We consider any coloring of
Ksy; = Ggr @ Gp such that Gg does not contain a blue P;. Thus, A(Gg) < 1 and
Gp is a matching graph. We consider any two endpoints of a P, in G, say u and
v. We know that ch(u) =dg,(v) =2t —1. If n; =2t — 1 —s, for some
nonnegative integers s < E then n, <t —1+s. Then we always have a
disjoint union of two stars K; ,, U Ky, in Gg with u and v as their centers,
respectively, and all vertices that are in the same partite set with v being the
leaves of Ky 4, .

Theorem 3.2 Let n; =2n, >n3 =1 be positive integers. Let A =
[F ] and B = [*22]. Then, my (U3, Ky, P3) = max{4, B).

Proof. Let t = max{4, B}. To show that m3(U?:1K1,nl.,P3) > t, we consider
the following two possibilities for the value of t:

1.IfA>=B,thent =
Since  |V(Kgu(e-n)| =3t =3 =3 3<3+n, +n,+
= |V(Ul=1 Kl.ni)l' V(K3X(t_1)) contains nelther a blue P; nor the red
U1'3=1K1,ni-
2. If A<B, then t=|™t
n1<2(t—1)—2—2[n1+2

[3 +ni+n, +n3]

We make the edges of graph K3y —1) red.

3+n1 +n, +n3]

1 K1,ni.P3) < t. Then,

] 4 < ny, which is a contradiction.

Therefore, m3(U?-; K1 p,, P3) = t.
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Now, we show that m3(U?=1 Kllni,P3) < t. We consider any coloring of
Ksy: = Gg @ Gg, such that Gz does not contain a blue P;. Thus, A(Gg) <1
and Gg is a matching graph. Let U = {uy,uy, ..., u},V = {vy,v,, ..., v} and
W = {wy,w,, ...,w;} be the three partite sets of graph Ksy;. Let E(Gg) 2
E(UV)UEWVW) UEUW), where E(UV) = {uyvy, upv5, ..., up¥p},
E(VW) = {Vp41W1, Vp42W2, .., VpyqWq} and

E(UW) = {up+1wq+1,up+zwq+2, ...,up+rwq+r}. Note that p+q <t,q+r <
t and p+r <t. For the values of p,q and r, we have four matching
possibilities in Gg:

1. p=1,q=r=0,seeFigure 4(a).

2. p=21,q=0,r=>1, see Figure 4(b) or p=>1,q = 1,r =0, see Figure
4(c).

3. p=1,q=1,r =1,see Figure 5.

Figure 5 A matching in G, ifp >1,q > 1,r > 1.
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To show the three stars in Gg, we choose the centers of stars Ky, , Ky », and
Kin, are u;,v; and either vy (if p < t) or wy (if p = t), respectively. If

t=4, then t = [FRttta) < (3] = g oy I ¢ = B, then ¢ = [ <

2
n; + 1. Therefore, t — 1 = ny, for all ny,n, and ns. Then, t — 1 <ny < 2t —
2. Let sy =1y —(t—2) =1, SO Vp,V3, e, Vp, Vpt2s s Vprqs Vpq+1s -1 Vts
W1, Wy, W3, ..., W, are the leaves of K, . We have the following two
possibilities to obtain the stars K; ,,, and Ky

1. Ifny, <t —sq, then Wy 41, Ws 42, ..., Ws 4p, are the leaves of K ,,,. Since
ng<n, <t—s; <t-—1 we have u, us, .., Uy, 41 are the leaves of
Ki n,, see Figure 6.

Figure 6 A disjoint union of stars U3_; K, in Gg, ifp <'t.

2. If t—s;<ny<n; and let s, =n, — (t —s1) =1, then wy 14, Ws 1,
ey We, Up, Us, .., Ug, 41 are the leaves of K, . Since ny +n, = 2t — 2 +
Sy, song <t—s;— 1. Then, ug, 15, Us, 13, -, Un, 45,41 ar€ the leaves of
Kin,.

Therefore, we have a disjoint union of stars Ui3=1 Kipn, in Gg, where uq, v; and
Vp4q are their centers.

Theorem 3.3 Let ny >n, >n3 >n, =1 be positive integers. Let A =
|ttt and g = ["£2|. Then, my (Ut Ky, P5) = max{4, B}.
Proof. Let t = max{4, B}. To show that mg(U?ﬂKLni,Pg) = t, we consider
the following two possibilities for the value of t:
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4+ni+n,+nz+ny

IfA 2B, thent = | :
red. Since |V(K3X(t_1))| =3t—-3= 3[
ny +ng +ny = V(Ui Kin,)
nor the red Ut Ki ;-

n,+3
2

If A<B, then t = [—] Suppose that m3(U?=1K1’ni,P3) < t. Then,

msza—n—3=zﬁj3

]. We make the edges of graph K3y r_1)

44+nq+n, +nz+ny

: |-3<4+n+

, V(K3X(t_1)) contains neither a blue P;

] — 5 < ny, which is a contradiction.

Therefore, m3(Ufzy Kip,» P3) = t.

Now, we show that mg(U‘lLl Kl'ni,Pg) < t. We consider any coloring of
K3t = Ggr @D Gg such that Gz does not contain a blue P, so A(Gg) < 1. Then,
Gp is a matching graph, see Figures 4 and 5. The centers of stars
Kin, Kin, Kin, and K, ,, are uq,v1,vpyq and wy, respectively. We have the
following two possibilities to obtain Ky ,,, and K 5, :

1.

If ny <t —2, then vy, V3, ..., Vp, Vpya, ) Vprqe1s -r Un,+2 are the leaves

of Ky p,. Since n, <ny <t — 2, we have w, ...,w,_ 41 are the leaves of

K, ,. There are t —n, +1 =1 vertices in W — {wy wy ..., Wp_,1}. We

have the following two possibilities to obtain K; ,, and Ky ,,:

a) Ifng <t—(n,+1), then wy,13,Wp, 43, -, Wn,4n,+1 and Uy, Us, ...,
Up, +1 are the leaves of Ky ,,, and K ,,, respectively.

b) If t—(n,+1)<nz<n, let s; =n3—(t—(n, +1)) =1, then
Wi, 42 Wny 43 o0y Wi, Up, Uz, -, Us, 41 are the leaves of Ky, . Since
ny+ny; +n3 <2t —3 -5y, Ny <t —s5;— 1 Then, ug 15, Us 43, -0
Us, +n,+1 are the leaves of K .

If t—1<n;<2t—3 and let s,=n;—(t—2)=1, then
V2, V3, o) Upy Vpg2, «s Vpsqy Vpsqa1s -+ Vo W, W3, Wy, 41 are the leaves of
K1, We have three possibilities:

a. If ny<t—(s;+1) and let s3=nz+n,+s,+1—t>1, then
Wy, 42, Ws, 43, -, W, yn,+1 are the leaves of K;,, and we have two
possibilities:

i If ny<t—(ny,+s,+1), then W, 41,420 Wsy4my 431 o0
Ws,4n,+ns+1 are the leaves of K;,,. Since n, <nz so
Uy, Uz, ..., Uy, 41 are the leaves of Ky, .

ii. Ift — (ny + 5, + 1) <ng < ny, then Wy, 4n, 42, Ws, 4,435 o) We, Uz,
Uz, ..., Ug, 41 are the leaves of Ky .. Since ny +ny + nz <2t —3 +
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S3, 80 ny <t—1—s3. Then, Ug 45, Us 13, ) Us,4n,+1 are the
leaves of Ky 5, -

b. If n, =t— (s, + 1), then wg, 15, Wg, 13, ..., W are the leaves of Ky p,,.
Since n;+n,=2t—3+s,, so nz3+n,<t—1-s,. Then,
Uy, U3, oy Up,4q @0d Uy, 4o, Up, 43, -, Un,4n,+1 are the leaves of Ky,
and Ky ,,,, respectively.

c. If t—(s;+1)<ny;<n; and let s, =n,+s,+1—-t<1, then
Ws,1+2, Ws, 43, -, Wp Up, Ug, ..., Ug, 41 are the leaves of Ky, . Since
n; +n; =2t—3+ sy, s0n3 +ny4 <t—1—s, Then, ug, 4, Ug, 43, -
Us,+nz+1 and Ug,4n 42, Us, 4n 43 - Us,4nz4n,+1 are the leaves of
Ky n, and Ky ,,,, respectively.

Therefore, we find a disjoint union of stars Uf_, Ky, in Gg, where Uy, V4, Vpyq
and w; are their centers.

From Theorems 3.1, 3.2 and 3.3 we obtain that mg(U{-‘=1Kl_ni,P3)=
k+n1+n2+~~+nkl ny+k—-1

max{A, B}, where A = [ and B = [T]’ for k =2,3,4. For

k =5, it seems that the tripartite Ramsey number of U¥_, Ky, and P is also

maX{A, B} For example, m3 (2K1,6 V) 2K1,5 U K1’4 V) K1,3 V) Kl,Z’ P3) =
74+6+6+5+5+4+3+2] [6+6

max{[ ], [_ } = 13 and mg(Kl'loo U K1'55 U 8K1,1,P3) =

3 2
10+100455+1+1+1+1+1+1+14+1] [100+9 . .
max | =58, which can be seen in

3
Figures 7 and 8, respectively.

A—

LA

[]7
N L7
Y A
X7

7
"
A\

A
00
\ )

{7}

v, “
b5

”F
-

Figure 7 A disjoint union of stars 2K; ¢ U 2K; 5 U K; , U K; 3 UKy 5 in K3yq3.
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Figure 8 A disjoint union of stars K; 190 U K; 55 U 8K; ; in K34sg.

Note that from these figures, we may have a different way to choose the stars
than as mentioned in the proof of Theorem 3.3. Moreover, to obtain my (2K1,6 U
2K;5 UK 4, UK 3 U Kl_Z,P3) and mg(Kl,loo UK;s5 UBK, 4, P3) we cannot
use the technique for choosing stars in the proof of Theorem 3.3. So, we would
need to develop a new technique to prove the following conjecture.

Conjecture 3.1 Let ny >n, >-->n, =1 be positive integers. Let A =

[W] and B = [%H] Then, mg(UiF:l Kllni,Pg) = max{A4, B}.
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