On Size Bipartite and Tripartite Ramsey Numbers for The Star Forest and Path on 3 Vertices

Anie Lusiani ${ }^{1 *}$, Edy Tri Baskoro ${ }^{2}$ \& Suhadi Wido Saputro ${ }^{2}$
${ }^{1}$ Politeknik Negeri Bandung, Jalan Gegerkalong Hilir, Ciwaruga, Kabupaten Bandung Barat 40559, Indonesia
${ }^{2}$ Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
*E-mail: anie.lusiani@polban.ac.id

Abstract

For simple graphs G and H, the size multipartite Ramsey number $m_{j}(G, H)$ is the smallest natural number t such that any arbitrary red-blue coloring on the edges of $K_{j \times t}$ contains a red G or a blue H as a subgraph. We studied the size tripartite Ramsey numbers $m_{3}(G, H)$, where $G=m K_{1, n}$ and $H=P_{3}$. In this paper, we generalize this result. We determine $m_{3}(G, H)$, where G is a star forest, namely a disjoint union of heterogeneous stars, and $H=P_{3}$. Moreover, we also determine $m_{2}(G, H)$ for this pair of graphs G and H.

Keywords: path; size multipartite Ramsey number; star forest.

1 Introduction

Given two simple graphs G and H. We use the notation $F \rightarrow(G, H)$ when for any red-blue coloring of the edges of a graph F we always have a red subgraph G or a blue subgraph H. The Ramsey number $r(G, H)$ is defined as the smallest positive integer n such that $K_{n} \rightarrow(G, H)$, where K_{n} is the complete graph on n vertices. Some values of the Ramsey number for a combination of a star and a path were determined by Parsons [1]. One year before, the multicolor Ramsey number for stars was determined by Burr and Roberts [2]. Then, the concept of Ramsey numbers evolved to the bipartite Ramsey number $b(G, H)$, which is defined as the smallest positive integer n such that $K_{n, n} \longrightarrow(G, H)$. In 1998, the bipartite Ramsey number for a star and a path was completed by Hattingh and Henning [3].

Furthermore, in 2004 Burger and Vuuren [4] generalized the concept of bipartite Ramsey numbers to the size multipartite Ramsey numbers as follows. Let j, l, n, r and s be natural numbers with $n, r \geq 2$. The size multipartite Ramsey number $m_{j}\left(K_{n \times l}, K_{r \times s}\right)$ is the smallest natural number t such that an arbitrary red-blue coloring of the edges of $K_{j \times t}$, where $K_{j \times t}$ is the complete multipartite graph having j partite sets with t vertices per each partite set, necessarily forces a red $K_{n \times l}$ or a blue $K_{r \times s}$ as a subgraph. They also gave some
properties of the size multipartite Ramsey numbers and determined the exact values of $m_{j}\left(K_{2 \times 2}, K_{3 \times 1}\right)$, for $j \geq 2$. For the bounds of the size multipartite Ramsey numbers they gave a direct lower bound, a probabilistic lower bound, and a diagonal bipartite upper bound.

Syafrizal, et al. [5] generalized this concept by removing the completeness requirement. Thus, the size multipartite Ramsey number, $m_{j}(G, H)$, is defined as the smallest positive integer t such that $K_{j \times t} \rightarrow(G, H)$. They also determined the size multipartite Ramsey numbers for paths and other graphs [5,6], especially the size multipartite Ramsey numbers for P_{3} and stars [7]. Then, Surahmat and Syafrizal [8] gave the size tripartite Ramsey numbers for paths P_{n} and stars, for $3 \leq n \leq 6$. Meanwhile, the size multipartite Ramsey numbers for stars and cycles have been investigated by Lusiani, et al. [9]. They also provided the size tripartite Ramsey numbers for P_{3} and a disjoint union of homogeneous stars [10] and the size tripartite Ramsey numbers for stars with paths and cycles [11]. Recently, Jayawardene and Samarasekara [12] determined the size multipartite Ramsey numbers for C_{3} and all graphs up to 4 vertices, including the star of order 4. However, the multipartite Ramsey numbers for P_{3} and a disjoint union of heterogeneous stars have not been determined.

Here, the generalized concept of the size multipartite Ramsey numbers for a star forest and P_{3} is used. The star forest is a disjoint union of heterogeneous stars. In this paper, we determine the size multipartite Ramsey numbers $m_{j}\left(\mathrm{U}_{i=1}^{k} K_{1, n_{i}}, P_{3}\right)$, for $\mathrm{j}=2,3$, where $\mathrm{U}_{i=1}^{k} K_{1, n_{i}}$ is a star forest, for $n_{i} \geq 1, k \geq 2$ and P_{3} is a path on 3 vertices. For $k=1$, Hattingh and Henning [3] determined $m_{2}\left(K_{1, r}, P_{s}\right)$, for $r, s \geq 2$.

For some terms in graph theory used in this paper, we refer to Chartrand [13]. Let G be a finite and simple graph. The vertex and edge sets of graph G are denoted by $V(G)$ and $E(G)$, respectively. A matching of a graph G is defined as the set of edges without a common vertex. Let $e=u \sim v$ be an edge in G, then u is called adjacent to v. The neighborhood $N(v)$ of a vertex v is the set of vertices adjacent to v in G. The degree $d(v)$ of a vertex v is $|N(v)|$. The maximum degree of G is denoted by $\Delta(G)$, where $\Delta(G)=\max \{d(v) \mid v \in$ $V(G)\}$. The minimum degree of G is denoted by $\delta(G)$, where $\delta(G)=$ $\max \{d(v) \mid v \in V(G)\}$. A star $K_{1, n}$ is the graph on $n+1$ vertices with one vertex of degree n, called the center of this star, and n vertices of degree 1 , called the leaves. Any red-blue coloring of graph $K_{j \times t}$ is represented by $K_{j \times t}=F_{R} \oplus F_{B}$ or $K_{j \times t}=G_{R} \oplus G_{B}$, where F_{R} and G_{R} are the red graphs and F_{B} and G_{B} are the blue graphs.

2 Bipartite Ramsey Numbers

In this section, we discuss the size bipartite Ramsey number $m_{2}\left(\mathrm{U}_{i=1}^{k} K_{1, n_{i}}, P_{3}\right)$, for $k \geq 2$ and $n_{i} \geq 1$. We compute the formula of this Ramsey number for any $k \geq 2$ and $n_{i} \geq 1$. In particular, for $n_{i}=1$, for all i, we obtain the value of $m_{2}\left(k K_{1,1}, P_{3}\right)=m_{2}\left(k P_{2}, P_{3}\right)$, correcting the previous result given by Christou, et al. [14]. They showed that $m_{2}\left(k P_{2}, K_{1, n}\right)=n+\left\lfloor\frac{k-1}{2}\right\rfloor$, for $k \geq 2$ and $n \geq 1$. For $n=2$, they had $m_{2}\left(k P_{2}, P_{3}\right)=2+\left\lfloor\frac{k-1}{2}\right\rfloor$, which is not correct for $k \geq 4$.
Lemma $2.1 m_{2}\left(k P_{2}, P_{3}\right)= \begin{cases}2, & \text { for } k=1 \\ k, & \text { for } k \geq 2\end{cases}$
Proof. Let $t=\left\{\begin{array}{l}2, \text { for } k=1 \\ k, \\ \text { for } k \geq 2\end{array}\right.$
We consider the coloring of $K_{2 \times(t-1)}=F_{R} \oplus F_{B}$, such that F_{B} does not contain P_{3}. So, $\Delta\left(F_{B}\right) \leq 1$. This is trivial for $k=1$ since $F_{B}=K_{2}$ and F_{R} is an empty graph. For $k \geq 2$, we choose $F_{B}=(k-1) P_{2}$. In this case, we will have no $k P_{2}$ in F_{R} and $F_{B} \nsupseteq P_{3}$. So, $m_{2}\left(k P_{2}, P_{3}\right) \geq t$.

Now, we show that $m_{2}\left(k P_{2}, P_{3}\right) \leq t$. We consider any coloring of $K_{2 \times t}=$ $G_{R} \oplus G_{B}$, such that G_{B} does not contain a blue P_{3}, so $\Delta\left(G_{B}\right) \leq 1$. For $k=1$, we have $K_{2 \times 2}=G_{R} \oplus G_{B}$. So, G_{B} is either a matching graph or an empty graph and G_{R} is either $2 P_{2}, P_{4}$ or C_{4}, which implies $G_{R} \supseteq 2 P_{2}$. For $k \geq 2$, we have $K_{2 \times k}=G_{R} \oplus G_{B}$. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ and $V=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be two partite sets in $K_{2 \times k}$. If G_{B} is a matching graph, then every vertex in $K_{2 \times k}$ is relabeled such that $u_{i} \sim v_{i}$ in G_{B}, for every $i=1,2, \ldots, k$. We consider a cycle in $K_{2 \times k}$, namely $C_{k}^{\prime}=u_{1} v_{1} u_{2} v_{2} u_{3} v_{3} \ldots u_{k} v_{k} u_{1}$. So, $E\left(C_{k}^{\prime}\right)-E\left(G_{B}\right)$ contains a red $k P_{2}$. Therefore, G_{R} contains a red $k P_{2}$.

In Lemma 2.1 we obtain the size bipartite Ramsey number, $m_{2}\left(\bigcup_{i=1}^{k} K_{1, n_{i}}, P_{3}\right)$, for $n_{i}=1$, for all i. So, in Theorems 2.2, 2.4 and 2.5, we determine the size bipartite Ramsey numbers $m_{2}\left(\cup_{i=1}^{k} K_{1, n_{i}}, P_{3}\right)$, for all $n_{i} \geq 1$, for $2 \leq k \leq 4$. For a combination of two stars and P_{3}, we show this case in Theorem 2.2.

Theorem 2.2 Let n_{1} and n_{2} be positive integers. Then, $m_{2}\left(K_{1, n_{1}} \cup\right.$ $\left.K_{1, n_{2}}, P_{3}\right)=\max \left\{n_{1}, n_{2}\right\}+1$.
Proof. Let $n_{1} \geq n_{2} \geq 1$, so we have $\max \left\{n_{1}, n_{2}\right\}+1=n_{1}+1$. To show that $m_{2}\left(K_{1, n_{1}} \cup K_{1, n_{2}}, P_{3}\right) \geq n_{1}+1$, we consider the coloring of $K_{2 \times n_{1}}=F_{R} \oplus$ F_{B}, such that F_{B} does not contain P_{3}. So, $\Delta\left(\mathrm{F}_{\mathrm{B}}\right) \leq 1$. We can choose $\mathrm{F}_{\mathrm{B}}=$
$\mathrm{n}_{1} \mathrm{P}_{2}$. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n_{1}}\right\}$ and $V=\left\{v_{1}, v_{2}, \ldots, v_{n_{1}}\right\}$ be two partite sets in $K_{2 \times n_{1}}$. Every vertex in $K_{2 \times n_{1}}$ is relabeled such that $u_{i} \sim v_{i}$ in F_{B}, for every $i=1,2, \ldots, n_{1}$. Since $u_{i} \sim v_{j}$ in F_{R}, for $i \neq j$, so F_{R} does not contain $K_{1, n_{1}}$. Therefore, $m_{2}\left(K_{1, n_{1}} \cup K_{1, n_{2}}, P_{3}\right) \geq n_{1}+1$.

Figure 1 (a). $G_{B}=p K_{2}$, for $1 \leq \mathrm{p} \leq \mathrm{n}+1$
(b). $2 K_{1, n_{1}} \subseteq G_{R} \subseteq K_{2 \times\left(n_{1}+1\right)}$.

Now, we show that $m_{2}\left(K_{1, n_{1}} \cup K_{1, n_{2}}, P_{3}\right) \leq n_{1}+1$. We consider any coloring of $K_{2 \times\left(n_{1}+1\right)}=G_{R} \oplus G_{B}$, such that G_{B} does not contain a blue P_{3}, so $\Delta\left(G_{B}\right) \leq$ 1. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n_{1}+1}\right\}$ and $V=\left\{v_{1}, v_{2}, \ldots, v_{n_{1}+1}\right\}$ be two partite sets in $K_{2 \times\left(n_{1}+1\right)}$. If G_{B} is a matching graph, then every vertex in $K_{2 \times\left(n_{1}+1\right)}$ is relabeled such that $u_{i} \sim v_{i}$ in F_{B}, for any $i=1,2, \ldots, n_{1}+1$, see Figure 1(a). Since $u_{1} \sim v_{j}$ and $v_{1} \sim u_{j}$ in G_{R}, for $2 \leq i, j \leq n_{1}+1$, we find a disjoint union of stars $2 K_{1, n_{1}}$ in G_{R}, see Figure 1(b).

For the proofs of Theorems 2.4 and 2.5, we use Lemma 2.3, which is stated as follows. Note that we previously defined $\operatorname{sum}(A)=\sum_{i-1}^{k} n_{i}$, for $A=$ $\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}$.

Lemma 2.3 Let $N=\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}$, for $k \geq 2$ and $n_{1} \geq n_{2}, \geq \cdots \geq n_{k} \geq 1$. For $1 \leq i \leq 2^{k}$, let $A \in \mathcal{P}(N)$, where $A_{i} \neq A_{j}$, for $i \neq j$. Let $B_{i}=N-A_{i}$, and $L_{i}=\max \left\{\operatorname{sum}\left(A_{i}\right)+|B|, \operatorname{sum}\left(B_{i}\right)+|A|\right\}$. There exists $p \in\left\{1,2,3, \ldots, 2^{k}\right\}$, where A_{p} or B_{p} is not empty (or A_{p} or B_{p} is not N), such that $L_{k}=$ $\min \left\{L_{i} \mid 1 \leq i \leq 2^{k}\right\}$.

Proof. Let $A_{r}=\emptyset$ and $B_{r}=N$, for any $r \in\left\{1,2,3, \ldots, 2^{k}\right\}$. Then $L_{r}=$ $\max \left\{\operatorname{sum}\left(A_{r}\right)+\left|B_{r}\right|, \operatorname{sum}\left(B_{r}\right)+\left|A_{r}\right|\right\}=\operatorname{sum}(N)$. Let us consider A_{s}, where $\left|A_{s}\right| \geq 1$ and $B_{s}=N-A_{s}$, where $\left|B_{s}\right| \geq 1$. We assume that $\left|A_{s}\right|=t \geq 1$.

Then $L_{s}=\max \left\{\operatorname{sum}\left(A_{s}\right)+k-t\right.$, $\left.\operatorname{sum}\left(B_{s}\right)+t\right\}$. Note that $\operatorname{sum}(N)=$ $\operatorname{sum}\left(A_{s}\right)+\operatorname{sum}\left(B_{s}\right) \geq \operatorname{sum}\left(A_{s}\right)+k-t \quad$ and $\quad \operatorname{sum}(N)=\operatorname{sum}\left(A_{s}\right)+$ $\operatorname{sum}\left(B_{s}\right) \geq t+\operatorname{sum}\left(B_{s}\right)$. So, if $A_{s}=\{1\}$, then $L_{s}=L_{r}$. Otherwise, $L_{s}<L_{r}$. Then, $L=\min \left(L_{s}\right)<L_{r}$. Therefore, L is minimum when A and B are not empty.

Theorem 2.4 Let $N=\left\{n_{1}, n_{2}, n_{3}\right\}$ be the set of the number of leaves of three stars $K_{1, n_{1}}, K_{1, n_{2}}$ and $K_{1, n_{3}}$, respectively. If $L=\{\max \{\operatorname{sum}(A)+|B|$, $\operatorname{sum}(B)+$ $|A|\} \mid A, B \subseteq N, A \cup B=N, A \cap B=\emptyset\}$, then $m_{2}\left(\cup_{i=1}^{3} K_{1, n_{i}}, P_{3}\right)=\min (L)$.

Proof. Let $n_{1} \geq n_{2} \geq n_{3} \geq 1$. We have $L=\left\{n_{1}+n_{2}+n_{3}\right.$, $\max \left\{n_{1}+2, n_{2}+\right.$ $\left.\left.n_{3}+1\right\}, n_{1}+n_{2}+1, n_{1}+n_{3}+1\right\}$. By Lemma 2.2, $L=\left\{\max \left\{n_{1}+2, n_{2}+\right.\right.$ $\left.\left.n_{3}+1\right\}, n_{1}+n_{2}+1, n_{1}+n_{3}+1\right\}$. Therefore, $\min (L)=\max \left\{n_{1}+2, n_{2}+\right.$ $\left.n_{3}+1\right\}$.

Let $t=\max \left\{n_{1}+2, n_{2}+n_{3}+1\right\}$. To show that $m_{2}\left(\mathrm{U}_{i=1}^{3} K_{1, n_{i}}, P_{3}\right) \geq t$, we consider the coloring of $K_{2 \times(t-1)}=F_{R} \oplus F_{B}$, such that F_{B} does not contain a blue P_{3}, so $\Delta\left(F_{B}\right) \leq 1$. We can choose that $F_{B}=(t-1) P_{2}$. Let $U=$ $\left\{u_{1}, u_{2}, \ldots, u_{t-1}\right\}$ and $V=\left\{v_{1}, v_{2}, \ldots, v_{t-1}\right\}$ be two partite sets in $K_{2 \times(t-1)}$. Every vertex in $K_{2 \times(t-1)}$ is relabeled such that $u_{i} \sim v_{i}$ in F_{B}, for any $i=$ $1,2, \ldots, t-1$. We have the following two possibilities for the values of $t-1$:

1. For $t-1=n_{1}+1$.

Since $u_{1} \sim v_{j}$, for $2 \leq j \leq n_{1}+1$ in F_{R}, the star $K_{1, n_{1}}$ can be constructed by these vertices. Since $v_{1} \sim u_{i}$, for $2 \leq i \leq n_{2}+1 \leq n_{1}+1$ in F_{R}, the star $K_{1, n_{2}}$ can be constructed by vertices $v_{1}, u_{2}, u_{3}, \ldots, u_{\mathrm{n}_{2}+1}$. However, we cannot construct the star $K_{1, n_{3}}$, since we cannot choose any of the remaining vertices as its center.
2. For $t-1=n_{2}+n_{3}$.

Since $u_{1} \sim v_{j}$, for $n_{2}+1 \leq n_{2}+n_{3}$ in F_{R}, the star $K_{1, n_{3}}$ can be constructed by these vertices. Since $u_{n_{2}+1} \sim v_{j}$, for $1 \leq j \leq n_{2}$ in F_{R}, the star $K_{1, n_{2}}$ can be constructed by these vertices. However, we cannot construct the star $K_{1, n_{1}}$, since we cannot choose any of the remaining vertices as its center.
F_{R} does not contain all stars $K_{1, n_{1}}, K_{1, n_{2}}$ and $K_{1, n_{3}}$, so F_{R} does not contain $\bigcup_{i=1}^{3} K_{1, n_{i}}$.

Now, we show that $m_{2}\left(\mathrm{U}_{i=1}^{3} K_{1, n_{i}}, P_{3}\right) \leq t$. We consider any coloring of $K_{2 \times t}=G_{R} \oplus G_{B}$, such that G_{B} does not contain a blue P_{3}, so $\Delta\left(G_{B}\right) \leq 1$. Then
G_{B} is a matching graph. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}$ and $V=\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$ be two partite sets in $K_{2 \times t}$. Every vertex in $K_{2 \times t}$ is relabeled such that $u_{i} \sim v_{j}$ in G_{B}, for some $i=j$. We have the following two possibilities for the values of t :

1. For $t=n_{1}+2$

Since $u_{1} \sim v_{j}$, for $3 \leq j \leq n_{1}+2$ in G_{R}, the star $K_{1, n_{1}}$ can be constructed by these vertices. Since $v_{1} \sim u_{2}$ and v_{1}, v_{2} are both adjacent to u_{i} for $3 \leq i \leq n_{1}+2$ in G_{R}, the star $K_{1, n_{2}}$ can be constructed by vertices $v_{1}, u_{2}, u_{3}, \ldots, u_{\mathrm{n}_{2}+1}$, and the star $K_{1, n_{3}}$ can be constructed by vertices $v_{2}, u_{n_{2}+2}, u_{n_{2}+3}, \ldots, u_{n_{3}+n_{2}+1}$.
2. For $t=n_{2}+n_{3}+1$

Since $u_{1} \sim v_{j}$, for $3 \leq j \leq n_{2}+n_{3}+1$ in G_{R}, the star $K_{1, n_{1}}$ can be constructed by vertices $u_{1}, v_{3}, v_{4}, \ldots, v_{\mathrm{n}_{1}+2}$. Since $v_{1} \sim u_{2}$ and v_{1}, v_{2} are both adjacent to u_{i} for $3 \leq i \leq n_{2}+n_{3}+1$ in G_{R}, the star $K_{1, n_{2}}$ can be constructed by vertices $v_{1}, u_{2}, u_{3}, \ldots, u_{\mathrm{n}_{2}+1}$ and the star $K_{1, n_{3}}$ can be constructed by vertices $v_{2}, u_{n_{2}+2}, u_{n_{2}+3}, \ldots, u_{n_{3}+n_{2}+1}$.
Therefore, G_{R} contains $\cup_{i=1}^{3} K_{1, n_{i}}$.
Theorem 2.5 Let $N=\left\{n_{1}, n_{2}, n_{3}, n_{4}\right\}$ be the set of the number of leaves of three stars $K_{1, n_{1}}, K_{1, n_{2}}, K_{1, n_{3}}$ and $K_{1, n_{4}}$, respectively. If $L=\{\max \{\operatorname{sum}(A)+$ $|B|, \operatorname{sum}(B)+|A|\} \mid A, B \subseteq N, A \cup B=N, A \cap B=\emptyset\}$, then $m_{2}\left(\cup_{i=1}^{4} K_{1, n_{i}}, P_{3}\right)=\min (L)$.

Proof. Let $n_{1} \geq n_{2} \geq n_{3} \geq n_{4} \geq 1$. We have $L=\left\{n_{1}+n_{2}+n_{3}+\right.$ $n_{4}, \max \left\{n_{1}+3, n_{2}+n_{3}+n_{4}+1\right\}, n_{1}+n_{2}+2, n_{3}+n_{4}+2, n_{1}+n_{2}+$ $\left.n_{3}+1, n_{1}+n_{2}+n_{4}+1, n_{1}+n_{3}+n_{4}+1, \max \left\{n_{1}+n_{4}+2, n_{2}+n_{3}+2\right\}\right\}$.

By Lemma 2.2,

$$
\begin{array}{r}
L=\left\{\max \left\{n_{1}+3, n_{2}+n_{3}+n_{4}+1\right\}, n_{1}+n_{2}+2, n_{3}+n_{4}+2, n_{1}+n_{2}+n_{3}+1, n_{1}\right. \\
\left.+n_{2}+n_{4}+1, n_{1}+n_{3}+n_{4}+1, \max \left\{n_{1}+n_{4}+2, n_{2}+n_{3}+2\right\}\right\} .
\end{array}
$$

Therefore,
$\min (L)=\min \left\{\max \left\{n_{1}+3, n_{2}+n_{3}+n_{4}+1\right\}, \max \left\{n_{1}+n_{4}+2, n_{2}+n_{3}+2\right\}\right\}$.
Then, we have three following possibilities for $\min (L)$:

1. If $n_{1}>n_{2}+n_{3}$, then $\min (L)=\min \left(L^{\prime}\right)=\max \left\{n_{1}+3, n_{2}+n_{3}+n_{4}+1\right\}$.
2. If $n_{1}<n_{2}+n_{3}$, then $\min (L)=\min \left(L^{\prime \prime}\right)=\max \left\{n_{1}+n_{4}+2, n_{2}+n_{3}+2\right\}$.
3. If $n_{1}=n_{2}+n_{3}$, then $\min (L)=\min \left(L^{\prime}\right)$ or $\min (L)=\min \left(L^{\prime \prime}\right)$.

Let $t=\min (L)$. To show that $m_{2}\left(\cup_{i=1}^{4} K_{1, n_{i}}, P_{3}\right) \geq t$ we consider the coloring of $K_{2 \times(t-1)}=F_{R} \oplus F_{B}$, such that F_{B} does not contain a blue P_{3}, so $\Delta\left(F_{B}\right) \leq 1$.

We can choose that $F_{B}=(t-1) P_{2}$. Let Let $U=\left\{u_{1}, u_{2}, \ldots, u_{t-1}\right\}$ and $V=\left\{v_{1}, v_{2}, \ldots, v_{t-1}\right\}$ be two partite sets in $K_{2 \times(t-1)}$. Every vertex in $K_{2 \times(t-1)}$ is relabeled such that $u_{i} \sim v_{i}$ in F_{B}, for every $i=1,2, \ldots, t-1$. We have four possibilities for the values of $t-1$, as follows:

1. For $t-1=\min \left(L^{\prime}\right)-1=n_{1}+2$

Since $u_{1} \sim v_{j}$, for $2 \leq j \leq n_{1}+1$ in F_{R}, the star $K_{1, n_{1}}$ can be constructed by these vertices. Since $v_{1} \sim u_{i}$, for $n_{2}+2 \leq i \leq n_{2}+n_{3}+1 \leq n_{1}+1$ in F_{R}, the star $K_{1, n_{2}}$ and $K_{1, n_{3}}$ can be constructed by vertices $v_{1}, u_{2}, u_{3}, \ldots, u_{\mathrm{n}_{2}+1}$ and $v_{n_{1}+2}, u_{n_{2}+2}, u_{n_{2}+3}, \ldots, u_{n_{3}+\mathrm{n}_{2}+1}$, respectively. However, we cannot construct the star $K_{1, n_{4}}$, since we cannot choose any of the remaining vertices as its center.
2. For $t-1=\min \left(L^{\prime}\right)-1=n_{2}+n_{3}+n_{4}$ Since $u_{1} \sim v_{j}$, for $2 \leq j \leq n_{2}+1$ in F_{R}, the star $K_{1, n_{2}}$ can be constructed by these vertices. Since $u_{2} \sim v_{j}$, for $n_{2}+2 \leq j \leq n_{2}+n_{3}+1$ in F_{R}, the star $K_{1, n_{3}}$ can be constructed by these vertices. Since $u_{3} \sim v_{j}$, for $j=1$ and $n_{2}+n_{3}+2 \leq j \leq n_{2}+n_{3}+n_{4}$ in F_{R}, the star $K_{1, n_{4}}$ can be constructed by these vertices. However, we cannot construct the star $K_{1, n_{1}}$, since we cannot choose any of the remaining vertices as its center.
3. For $t-1=\min \left(L^{\prime \prime}\right)-1=n_{1}+n_{4}+1$

Since $u_{1} \sim v_{j}$, for $2 \leq j \leq n_{1}+1$ in F_{R}, the star $K_{1, n_{1}}$ can be constructed by these vertices. Since $u_{2} \sim v_{j}$, for $n_{1}+2 \leq j \leq n_{1}+n_{4}+1$ in F_{R}, the star $K_{1, n_{4}}$ can be constructed by these vertices. Since $v_{1} \sim u_{i}$, for $3 \leq i \leq$ $n_{2}+2$ in F_{R}, the star $K_{1, n_{2}}$ can be constructed by these vertices. However, we cannot construct the star $K_{1, n_{3}}$, since we cannot choose any of the remaining vertices as its center.
4. For $t-1=\min \left(L^{\prime \prime}\right)-1=n_{2}+n_{3}+1$

Since $u_{1} \sim v_{j}$, for $2 \leq j \leq n_{2}+1$ in F_{R}, the star $K_{1, n_{2}}$ can be constructed by these vertices. Since $u_{2} \sim v_{j}$, for $n_{2}+2 \leq j \leq n_{2}+n_{3}+1$ in F_{R}, the star $K_{1, n_{3}}$ can be constructed by these vertices. Since $v_{1} \sim u_{i}$, for $3 \leq i \leq$ $n_{1}+2$ in F_{R}, the star $K_{1, n_{1}}$ can be constructed by these vertices. However, we cannot construct the star $K_{1, n_{4}}$, since we cannot choose any of the remaining vertices as its center.
Since F_{R} does not contain all stars $K_{1, n_{1}}, K_{1, n_{2}}, K_{1, n_{3}}$ and $K_{1, n_{4}}$, therefore F_{R} does not contain $\mathrm{U}_{i=1}^{4} K_{1, n_{i}}$.

Now we show that $m_{2}\left(\mathrm{U}_{i=1}^{4} K_{1, n_{i}}, P_{3}\right) \leq t$. We consider any coloring of $K_{2 \times t}=G_{R} \oplus G_{B}$, such that G_{B} does not contain a blue P_{3}, so $\Delta\left(G_{B}\right) \leq 1$. Then G_{B} is a matching graph. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}$ and $V=\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$ be two
partite sets in $K_{2 \times t}$. Every vertex in $K_{2 \times t}$ is relabeled such that $u_{i} \sim v_{i}$ in G_{B}, for any $i=1,2, \ldots, t$. There are four possibilities for the values of t, as follows.

1. For $t=\min \left(L^{\prime}\right)=n_{1}+3$

Since $u_{1} \sim v_{j}$, for $2 \leq j \leq n_{1}+1$ in G_{R}, the star $K_{1, n_{1}}$ can be constructed by these vertices. Since $v_{j} \sim u_{i}$ for $j=1, n_{1}+2, n_{1}+3$ and $2 \leq i \leq n_{2}+$ 1 in G_{R}, the star $K_{1, n_{2}}, K_{1, n_{3}}$ and $K_{1, n_{4}}$ can be constructed by vertices $\left\{v_{1}, u_{2}, u_{3}, \ldots, u_{n_{2}+1}\right\},\left\{v_{n_{1}+2}, u_{n_{2}+2}, u_{n_{2}+3}, \ldots, u_{n_{2}+n_{3}+1}\right\}$ and $\left\{v_{n_{1}+3}, u_{n_{2}+n_{3}+2}, u_{n_{2}+n_{3}+3}, \ldots, u_{n_{2}+n_{3}+n_{4}+1}\right\}$, respectively.
2. For $t=\min \left(L^{\prime}\right)=n_{2}+n_{3}+n_{4}+1$

Since $v_{1} \sim u_{i}$, for $4 \leq i \leq n_{1}+3$ in G_{R}, the star $K_{1, n_{1}}$ can be constructed by these vertices. Since $v_{j} \sim u_{i}$ for $i=1,2,3$ and $2 \leq j \leq n_{2}+n_{3}+n_{4}+$ 1 in G_{R}, the star $K_{1, n_{2}}, K_{1, n_{3}}$ and $K_{1, n_{4}}$ can be constructed by vertices $\left\{u_{1}, v_{2}, v_{3}, \ldots, v_{\mathrm{n}_{2}+1}\right\},\left\{u_{2}, v_{n_{2}+2}, v_{n_{2}+3}, \ldots, v_{\mathrm{n}_{2}+n_{3}+1}\right\}$ and $\left\{u_{3}, v_{n_{2}+n_{3}+2}, v_{n_{2}+n_{3}+3}, \ldots, v_{\mathrm{n}_{2}+n_{3}+n_{4}+1}\right\}$, respectively.
3. For $t=\min \left(L^{\prime \prime}\right)=n_{1}+n_{4}+2$

Since $u_{i} \sim v_{j}$, for $i=1,2$ and $2 \leq j \leq n_{1}+n_{4}+1$ in G_{R}, the star $K_{1, n_{1}}$ and $K_{1, n_{4}}$ can be constructed by vertices $u_{1}, v_{2}, v_{3}, \ldots, v_{n_{1}+1}$ and $u_{2}, v_{n_{1}+2}, v_{n_{1}+3}, \ldots, v_{n_{1}+\mathrm{n}_{4}+1}$. Since $v_{j} \sim u_{i}$, for $3 \leq i \leq n_{2}+n_{3}+2$ and $j=1, n_{1}+n_{4}+2$ in G_{R}, the star $K_{1, n_{2}}$ and $K_{1, n_{3}}$ can be constructed by vertices $\left\{v_{n_{1}+n_{4}+2}, u_{3}, u_{4}, \ldots, u_{n_{2}+2}\right\}$ and $\left\{v_{1}, u_{n_{2}+3}, u_{n_{2}+4}, \ldots, u_{n_{2}+n_{3}+2}\right\}$, respectively.
4. For $t=\min \left(L^{\prime \prime}\right)=n_{2}+n_{3}+2$

Since $u_{i} \sim v_{j}$, for $i=1,2$ and $2 \leq j \leq n_{2}+n_{3}+1$ in G_{R}, the star $K_{1, n_{2}}$ and $K_{1, n_{3}}$ can be constructed by vertices $u_{1}, v_{2}, v_{3}, \ldots, v_{\mathrm{n}_{2}+1}$ and $u_{2}, v_{n_{2}+2}, v_{n_{2}+3}, \ldots, v_{n_{2}+n_{3}+1}$. Since $v_{j} \sim u_{i}$, for $3 \leq i \leq n_{1}+n_{4}+2$ and $j=1, n_{2}+n_{3}+2$ in G_{R}, the star $K_{1, n_{1}}$ and $K_{1, n_{4}}$ can be constructed by vertices $\left\{v_{n_{2}+n_{3}+2}, u_{3}, u_{4}, \ldots, u_{n_{1}+2}\right\}$ and $\left\{v_{1}, u_{n_{1}+3}, u_{n_{1}+4}, \ldots, u_{n_{1}+n_{4}+2}\right\}$, respectively.
Therefore, G_{R} contains $\bigcup_{i=1}^{4} K_{1, n_{i}}$.
From Theorems 2.4 and 2.5, we obtain $m_{2}\left(\cup_{i=1}^{k} K_{1, n_{i}}, P_{3}\right)=\min (L)$ for $k \in\{2,3,4\}$. For $k \geq 5$, it seems that the bipartite Ramsey number for a pair of $\bigcup_{i=1}^{k} K_{1, n_{i}}$ and P_{3} is $\min (L)$. For example, it is easy to see the bipartite Ramsey number for a pair of $2 K_{1,6} \cup 2 K_{1,5} \cup K_{1,4} \cup K_{1,3} \cup K_{1,2}$ and P_{3}. In this case, we calculate that $\min (L)=19$. Then, $\quad m_{2}\left(2 K_{1,6} \cup 2 K_{1,5} \cup K_{1,4} \cup K_{1,3} \cup\right.$ $\left.K_{1,2}, P_{3}\right)=19$, see Figure 2.

Figure 2 A disjoint union of stars $2 K_{1,6} \cup 2 K_{1,5} \cup K_{1,4} \cup K_{1,3} \cup K_{1,2}$ in $K_{2 \times 19}$.
Now, we consider another extremal example in Figure 3. Since 100 is too large compared to other numbers of leaves, 100 and the other numbers of leaves are in a different partite set. We calculate that $\min (L)=109$. Then, $m_{2}\left(K_{1,100} \cup\right.$ $\left.K_{1,55} \cup 8 K_{1,1}, P_{3}\right)=109$. Therefore, we present the following conjecture.

Figure 3 A disjoint union of stars $K_{1,100} \cup K_{1,55} \cup 8 K_{1,1}$ in $G_{R} \subseteq K_{2 \times 109}$.
Conjecture 2.1 Let $N=\left\{n_{1}, n_{2}, n_{3}, \ldots, n_{k}\right\}$ be the set of the number of leaves of stars $K_{1, n_{i}}$, for $n_{i} \geq 1,1 \leq i \leq k$ and $k \geq 2$, respectively. If $L=$ $\{\max \{\operatorname{sum}(A)+|B|, \operatorname{sum}(B)+|A|\} \mid A, B \subseteq N, A \cup B=N, A \cap B=\emptyset\}$, then $m_{2}\left(\mathrm{U}_{i=1}^{k} K_{1, n_{i}}, P_{3}\right)=\min (L)$.

3 Tripartite Ramsey Numbers

In this section, the size tripartite Ramsey numbers for a star forest and P_{3} is investigated.

Theorem 3.1 Let $n_{1} \geq n_{2} \geq 1$ be positive integers. Let $A=\left\lceil\frac{2+n_{1}+n_{2}}{3}\right\rceil$ and $B=\left\lceil\frac{n_{1}+1}{2}\right\rceil$. Then, $m_{3}\left(K_{1, n_{1}} \cup K_{1, n_{2}}, P_{3}\right)=\max \{A, B\}$.

Proof. Let $t=\max \{A, B\}$. To show that $m_{3}\left(K_{1, n_{1}} \cup K_{1, n_{2}}, P_{3}\right) \geq t$, we consider the two following possibilities for the value of t :

1. If $A \geq B$, then $t=\left\lceil\frac{2+n_{1}+n_{2}}{3}\right\rceil$. We make the edges of graph $K_{3 \times(t-1)}$ red. Since $\quad\left|V\left(K_{3 \times(t-1)}\right)\right|=3 t-3=3\left\lceil\frac{2+n_{1}+n_{2}}{3}\right\rceil-3<2+n_{1}+n_{2}=$ $\left|V\left(K_{1, n_{1}} \cup K_{1, n_{2}}\right)\right|, V\left(K_{3 \times(t-1)}\right)$ contains neither a blue P_{3} nor the red $K_{1, n_{1}} \cup K_{1, n_{2}}$.
2. If $A<B$, then $t=\left\lceil\frac{n_{1}+1}{2}\right\rceil$. Suppose that $m_{3}\left(K_{1, n_{1}} \cup K_{1, n_{2}}, P_{3}\right)<t$. Then, $n_{1} \leq 2(t-1)-1=2\left\lceil\frac{n_{1}+1}{2}\right\rceil$, which is a contradiction.
Therefore, $m_{3}\left(K_{1, n_{1}} \cup K_{1, n_{2}}, P_{3}\right) \geq t$.
Now, we show that $m_{3}\left(K_{1, n_{1}} \cup K_{1, n_{2}}, P_{3}\right) \leq t$. We consider any coloring of $K_{3 \times t}=G_{R} \oplus G_{B}$ such that G_{B} does not contain a blue P_{3}. Thus, $\Delta\left(G_{B}\right) \leq 1$ and G_{B} is a matching graph. We consider any two endpoints of a P_{2} in G_{B}, say u and v. We know that $d_{G_{R}}(u)=d_{G_{R}}(v)=2 t-1$. If $n_{1}=2 t-1-s$, for some nonnegative integers $s \leq \frac{t}{2}$, then $n_{2} \leq t-1+s$. Then we always have a disjoint union of two stars $K_{1, n_{1}} \cup K_{1, n_{2}}$ in G_{R} with u and v as their centers, respectively, and all vertices that are in the same partite set with v being the leaves of $K_{1, n_{1}}$.

Theorem 3.2 Let $n_{1} \geq n_{2} \geq n_{3} \geq 1$ be positive integers. Let $A=$ $\left\lceil\frac{3+n_{1}+n_{2}+n_{3}}{3}\right\rceil$ and $B=\left\lceil\frac{n_{1}+2}{2}\right\rceil$. Then, $m_{3}\left(\cup_{i=1}^{3} K_{1, n_{i}}, P_{3}\right)=\max \{A, B\}$.

Proof. Let $t=\max \{A, B\}$. To show that $m_{3}\left(\mathrm{U}_{i=1}^{3} K_{1, n_{i}}, P_{3}\right) \geq t$, we consider the following two possibilities for the value of t :

1. If $A \geq B$, then $t=\left\lceil\frac{3+n_{1}+n_{2}+n_{3}}{3}\right]$. We make the edges of graph $K_{3 \times(t-1)}$ red. Since $\quad\left|V\left(K_{3 \times(t-1)}\right)\right|=3 t-3=3\left\lceil\frac{3+n_{1}+n_{2}+n_{3}}{3}\right\rceil-3<3+n_{1}+n_{2}+$ $n_{3}=\left|V\left(\mathrm{U}_{i=1}^{3} K_{1, n_{i}}\right)\right|, V\left(K_{3 \times(t-1)}\right)$ contains neither a blue P_{3} nor the red $\mathrm{U}_{i=1}^{3} K_{1, n_{i}}$.
2. If $A<B$, then $t=\left\lceil\frac{n_{1}+2}{2}\right\rceil$. Suppose that $m_{3}\left(\mathrm{U}_{i=1}^{3} K_{1, n_{i}}, P_{3}\right)<t$. Then, $n_{1} \leq 2(t-1)-2=2\left\lceil\frac{n_{1}+2}{2}\right\rceil-4<n_{1}$, which is a contradiction.
Therefore, $m_{3}\left(\mathrm{U}_{i=1}^{3} K_{1, n_{i}}, P_{3}\right) \geq t$.

Now, we show that $m_{3}\left(\bigcup_{i=1}^{3} K_{1, n_{i}}, P_{3}\right) \leq t$. We consider any coloring of $K_{3 \times t}=G_{R} \oplus G_{B}$, such that G_{B} does not contain a blue P_{3}. Thus, $\Delta\left(G_{B}\right) \leq 1$ and G_{B} is a matching graph. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}, V=\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$ and $W=\left\{w_{1}, w_{2}, \ldots, w_{t}\right\}$ be the three partite sets of graph $K_{3 \times t}$. Let $E\left(G_{B}\right) \supseteq$ $E(U V) \cup E(V W) \cup E(U W)$, where $\quad E(U V)=\left\{u_{1} v_{1}, u_{2} v_{2}, \ldots, u_{p} v_{p}\right\}$, $E(V W)=\left\{v_{p+1} w_{1}, v_{p+2} w_{2}, \ldots, v_{p+q} w_{q}\right\}$ and $E(U W)=\left\{u_{p+1} w_{q+1}, u_{p+2} w_{q+2}, \ldots, u_{p+r} w_{q+r}\right\}$. Note that $p+q \leq t, q+r \leq$ t and $p+r \leq t$. For the values of p, q and r, we have four matching possibilities in G_{B} :

1. $p \geq 1, q=r=0$, see Figure 4(a).
2. $p \geq 1, q=0, r \geq 1$, see Figure 4 (b) or $p \geq 1, q \geq 1, r=0$, see Figure 4(c).
3. $p \geq 1, q \geq 1, r \geq 1$, see Figure 5 .

Figure 4 Three matching possibilities in G_{B}.

Figure 5 A matching in G_{B}, if $p \geq 1, q \geq 1, r \geq 1$.

To show the three stars in G_{R}, we choose the centers of stars $K_{1, n_{1}}, K_{1, n_{2}}$ and $K_{1, n_{3}}$ are u_{1}, v_{1} and either $v_{\mathrm{p}+1}$ (if $p<t$) or w_{1} (if $p=t$), respectively. If $t=A$, then $t=\left\lceil\frac{3+n_{1}+n_{2}+n_{3}}{3}\right\rceil \leq\left\lceil\frac{3+3 n_{1}}{3}\right\rceil=1+n_{1}$. If $t=B$, then $t=\left\lceil\frac{n_{1}+2}{2}\right\rceil \leq$ $n_{1}+1$. Therefore, $t-1=n_{1}$, for all n_{1}, n_{2} and n_{3}. Then, $t-1 \leq n_{1} \leq 2 t-$ 2. Let $s_{1}=n_{1}-(t-2) \geq 1$, so $v_{2}, v_{3}, \ldots, v_{p}, v_{p+2}, \ldots, v_{p+q}, v_{p+q+1}, \ldots, v_{t}$, $w_{1}, w_{2}, w_{3}, \ldots, w_{s_{1}}$ are the leaves of $K_{1, n_{1}}$. We have the following two possibilities to obtain the stars $K_{1, n_{2}}$ and $K_{1, n_{3}}$:

1. If $n_{2} \leq t-s_{1}$, then $w_{s_{1}+1}, w_{s_{1}+2}, \ldots, w_{s_{1}+n_{2}}$ are the leaves of $K_{1, n_{2}}$. Since $n_{3} \leq n_{2} \leq t-s_{1} \leq t-1$, we have $u_{2}, u_{3}, \ldots, u_{n_{3}+1}$ are the leaves of $K_{1, n_{3}}$, see Figure 6.

Figure 6 A disjoint union of stars $\bigcup_{i=1}^{3} K_{1, n_{i}}$ in G_{R}, if $p<t$.
2. If $t-s_{1} \leq n_{2} \leq n_{1}$ and let $s_{2}=n_{2}-\left(t-s_{1}\right) \geq 1$, then $w_{s_{1}+1}, w_{s_{1}+2}$, $\ldots, w_{t}, u_{2}, u_{3}, \ldots, u_{s_{2}+1}$ are the leaves of $K_{1, n_{2}}$. Since $n_{1}+n_{2}=2 t-2+$ s_{2}, so $n_{3} \leq t-s_{2}-1$. Then, $u_{s_{2}+2}, u_{s_{2}+3}, \ldots, u_{n_{3}+s_{2}+1}$ are the leaves of $K_{1, n_{3}}$.

Therefore, we have a disjoint union of stars $\bigcup_{i=1}^{3} K_{1, n_{i}}$ in G_{R}, where u_{1}, v_{1} and v_{p+1} are their centers.

Theorem 3.3 Let $n_{1} \geq n_{2} \geq n_{3} \geq n_{4} \geq 1$ be positive integers. Let $A=$ $\left\lceil\frac{4+n_{1}+n_{2}+n_{3}+n_{4}}{3}\right\rceil$ and $B=\left\lceil\frac{n_{1}+3}{2}\right\rceil$. Then, $m_{3}\left(\cup_{i=1}^{4} K_{1, n_{i}}, P_{3}\right)=\max \{A, B\}$.

Proof. Let $t=\max \{A, B\}$. To show that $m_{3}\left(\cup_{i=1}^{4} K_{1, n_{i}}, P_{3}\right) \geq t$, we consider the following two possibilities for the value of t :

1. If $A \geq B$, then $t=\left\lceil\frac{4+n_{1}+n_{2}+n_{3}+n_{4}}{3}\right\rceil$. We make the edges of graph $K_{3 \times(t-1)}$ red. Since $\left|V\left(K_{3 \times(t-1)}\right)\right|=3 t-3=3\left\lceil\frac{4+n_{1}+n_{2}+n_{3}+n_{4}}{3}\right\rceil-3<4+n_{1}+$ $n_{2}+n_{3}+n_{4}=\left|V\left(\cup_{i=1}^{4} K_{1, n_{i}}\right)\right|, V\left(K_{3 \times(t-1)}\right)$ contains neither a blue P_{3} nor the red $\bigcup_{i=1}^{4} K_{1, n_{i}}$.
2. If $A<B$, then $t=\left\lceil\frac{n_{1}+3}{2}\right\rceil$. Suppose that $m_{3}\left(\bigcup_{i=1}^{4} K_{1, n_{i}}, P_{3}\right)<t$. Then, $n_{1} \leq 2(t-1)-3=2\left\lceil\frac{n_{1}+3}{2}\right\rceil-5<n_{1}$, which is a contradiction.

Therefore, $m_{3}\left(\cup_{i=1}^{4} K_{1, n_{i}}, P_{3}\right) \geq t$.
Now, we show that $m_{3}\left(\bigcup_{i=1}^{4} K_{1, n_{i}}, P_{3}\right) \leq t$. We consider any coloring of $K_{3 \times t}=G_{R} \oplus G_{B}$ such that G_{B} does not contain a blue P_{3}, so $\Delta\left(G_{B}\right) \leq 1$. Then, G_{B} is a matching graph, see Figures 4 and 5. The centers of stars $K_{1, n_{1}}, K_{1, n_{2}}, K_{1, n_{3}}$ and $K_{1, n_{4}}$ are u_{1}, v_{1}, v_{p+1} and w_{1}, respectively. We have the following two possibilities to obtain $K_{1, n_{1}}$ and $K_{1, n_{2}}$:

1. If $n_{1} \leq t-2$, then $v_{2}, v_{3}, \ldots, v_{\mathrm{p}}, v_{\mathrm{p}+2}, \ldots, v_{\mathrm{p}+\mathrm{q}+1}, \ldots, v_{\mathrm{n}_{1}+2}$ are the leaves of $K_{1, n_{1}}$. Since $n_{2} \leq n_{1} \leq t-2$, we have $w_{2}, \ldots, w_{n_{2}+1}$ are the leaves of $K_{1, n_{2}}$. There are $t-n_{2}+1 \geq 1$ vertices in $W-\left\{w_{1}, w_{2}, \ldots, w_{n_{2}+1}\right\}$. We have the following two possibilities to obtain $K_{1, n_{3}}$ and $K_{1, n_{4}}$:
a) If $n_{3} \leq t-\left(n_{2}+1\right)$, then $w_{n_{2}+2}, w_{n_{2}+3}, \ldots, w_{n_{2}+n_{3}+1}$ and u_{2}, u_{3}, \ldots, $u_{\mathrm{n}_{4}+1}$ are the leaves of $K_{1, n_{3}}$ and $K_{1, n_{4}}$, respectively.
b) If $t-\left(n_{2}+1\right)<n_{3} \leq n_{2}$, let $s_{1}=n_{3}-\left(t-\left(n_{2}+1\right)\right) \geq 1$, then $w_{n_{2}+2}, w_{n_{2}+3}, \ldots, w_{t}, u_{2}, u_{3}, \ldots, u_{s_{1}+1}$ are the leaves of $K_{1, n_{3}}$. Since $n_{1}+n_{2}+n_{3} \leq 2 t-3-s_{1}, n_{4} \leq t-s_{1}-1$. Then, $u_{s_{1}+2}, u_{s_{1}+3}, \ldots$, $u_{s_{1}+\mathrm{n}_{4}+1}$ are the leaves of $K_{1, n_{4}}$.
2. If $t-1 \leq n_{1} \leq 2 t-3$ and let $s_{2}=n_{1}-(t-2) \geq 1$, then $v_{2}, v_{3}, \ldots, v_{\mathrm{p}}, v_{\mathrm{p}+2}, \ldots, v_{\mathrm{p}+\mathrm{q}}, v_{\mathrm{p}+\mathrm{q}+1}, \ldots, v_{\mathrm{t}}, w_{2}, w_{3}, w_{s_{2}+1}$ are the leaves of $K_{1, n_{1}}$. We have three possibilities:
a. If $n_{2}<t-\left(s_{2}+1\right)$ and let $s_{3}=n_{3}+n_{2}+s_{2}+1-t \geq 1$, then $w_{s_{2}+2}, w_{s_{2}+3}, \ldots, w_{s_{2}+n_{2}+1}$ are the leaves of $K_{1, n_{2}}$ and we have two possibilities:
i. If $n_{3} \leq t-\left(n_{2}+s_{2}+1\right)$, then $w_{s_{2}+n_{2}+2}, w_{s_{2}+n_{2}+3}, \ldots$, $w_{s_{2}+n_{2}+n_{3}+1}$ are the leaves of $K_{1, n_{3}}$. Since $n_{4} \leq n_{3}$, so $u_{2}, u_{3}, \ldots, u_{\mathrm{n}_{4}+1}$ are the leaves of $K_{1, n_{4}}$.
ii. If $t-\left(n_{2}+s_{2}+1\right)<n_{3} \leq n_{2}$, then $w_{s_{2}+n_{2}+2}, w_{s_{2}+n_{2}+3}, \ldots, w_{\mathrm{t}}, u_{2}$, $u_{3}, \ldots, u_{s_{3}+1}$ are the leaves of $K_{1, n_{3}}$. Since $n_{1}+n_{2}+n_{3} \leq 2 t-3+$
s_{3}, so $n_{4} \leq t-1-s_{3}$. Then, $u_{\mathrm{s}_{3}+2}, u_{\mathrm{s}_{3}+3}, \ldots, u_{\mathrm{s}_{3}+\mathrm{n}_{4}+1}$ are the leaves of $K_{1, n_{4}}$.
b. If $n_{2}=t-\left(s_{2}+1\right)$, then $w_{s_{2}+2}, w_{s_{2}+3}, \ldots, w_{t}$ are the leaves of $K_{1, n_{2}}$. Since $n_{1}+n_{2}=2 t-3+s_{4}$, so $n_{3}+n_{4} \leq t-1-s_{4}$. Then, $u_{2}, u_{3}, \ldots, u_{n_{3}+1}$ and $u_{n_{3}+2}, u_{n_{3}+3}, \ldots, u_{n_{3}+n_{4}+1}$ are the leaves of $K_{1, n_{3}}$ and $\mathrm{K}_{1, \mathrm{n}_{4}}$, respectively.
c. If $t-\left(s_{2}+1\right)<n_{2} \leq n_{1}$ and let $s_{4}=n_{2}+s_{2}+1-t \leq 1$, then $w_{s_{2}+2}, w_{s_{2}+3}, \ldots, w_{t}, u_{2}, u_{3}, \ldots, u_{s_{4}+1}$ are the leaves of $K_{1, n_{2}}$. Since $\mathrm{n}_{1}+\mathrm{n}_{2}=2 \mathrm{t}-3+\mathrm{s}_{4}$, so $\mathrm{n}_{3}+\mathrm{n}_{4} \leq \mathrm{t}-1-\mathrm{s}_{4}$. Then, $\mathrm{u}_{\mathrm{s}_{4}+2}, \mathrm{u}_{\mathrm{s}_{4}+3}, \ldots$, $\mathrm{u}_{\mathrm{s}_{4}+\mathrm{n}_{3}+1}$ and $\mathrm{u}_{\mathrm{s}_{4}+\mathrm{n}_{3}+2}, \mathrm{u}_{\mathrm{s}_{4}+\mathrm{n}_{3}+3}, \ldots, \mathrm{u}_{\mathrm{s}_{4}+\mathrm{n}_{3}+\mathrm{n}_{4}+1}$ are the leaves of $\mathrm{K}_{1, \mathrm{n}_{3}}$ and $\mathrm{K}_{1, \mathrm{n}_{4}}$, respectively.

Therefore, we find a disjoint union of stars $\bigcup_{i=1}^{4} K_{1, n_{i}}$ in G_{R}, where u_{1}, v_{1}, v_{p+1} and w_{1} are their centers.

From Theorems 3.1, 3.2 and 3.3 we obtain that $m_{3}\left(\cup_{i=1}^{k} K_{1, n_{i}}, P_{3}\right)=$ $\max \{A, B\}$, where $A=\left\lceil\frac{k+n_{1}+n_{2}+\cdots+n_{k}}{3}\right\rceil$ and $B=\left\lceil\frac{n_{1}+k-1}{2}\right\rceil$, for $k=2,3,4$. For $k \geq 5$, it seems that the tripartite Ramsey number of $\bigcup_{i=1}^{k} K_{1, n_{i}}$ and P_{3} is also $\max \{A, B\}$. For example, $\quad m_{3}\left(2 K_{1,6} \cup 2 K_{1,5} \cup K_{1,4} \cup K_{1,3} \cup K_{1,2}, P_{3}\right)=$ $\max \left\{\left[\frac{7+6+6+5+5+4+3+2}{3}\right\rceil,\left\lceil\frac{6+6}{2}\right\rceil\right\}=13$ and $m_{3}\left(K_{1,100} \cup K_{1,55} \cup 8 K_{1,1}, P_{3}\right)=$ $\max \left\{\left[\frac{10+100+55+1+1+1+1+1+1+1+1}{3}\right\rceil,\left\lceil\frac{100+9}{2}\right\rceil\right\}=58$, which can be seen in Figures 7 and 8, respectively.

Figure 7 A disjoint union of stars $2 K_{1,6} \cup 2 K_{1,5} \cup K_{1,4} \cup K_{1,3} \cup K_{1,2}$ in $K_{3 \times 13}$.

Figure 8 A disjoint union of stars $K_{1,100} \cup K_{1,55} \cup 8 K_{1,1}$ in $K_{3 \times 58}$.
Note that from these figures, we may have a different way to choose the stars than as mentioned in the proof of Theorem 3.3. Moreover, to obtain $m_{3}\left(2 K_{1,6} \cup\right.$ $\left.2 K_{1,5} \cup K_{1,4} \cup K_{1,3} \cup K_{1,2}, P_{3}\right)$ and $m_{3}\left(K_{1,100} \cup K_{1,55} \cup 8 K_{1,1}, P_{3}\right)$ we cannot use the technique for choosing stars in the proof of Theorem 3.3. So, we would need to develop a new technique to prove the following conjecture.

Conjecture 3.1 Let $n_{1} \geq n_{2} \geq \cdots \geq n_{k} \geq 1$ be positive integers. Let $A=$ $\left\lceil\frac{k+n_{1}+n_{2}+\cdots+n_{k}}{3}\right\rceil$ and $B=\left\lceil\frac{n_{1}+k-1}{2}\right\rceil$. Then, $m_{3}\left(\bigcup_{i=1}^{k} K_{1, n_{i}}, P_{3}\right)=\max \{A, B\}$.

Acknowledgement

This research has been supported by research grant Program Penelitian, Pengabdian Kepada Masyarakat dan Inovasi (P3MI) ITB and Penelitian Dasar Unggulan Perguruan Tinggi, Ministry of Research, Technology and Higher Education, Indonesia.

References

[1] Parsons, T., Path-star Ramsey Numbers, J. Combin. Theory, Ser. B, 17, pp. 51-58, 1974.
[2] Burr, S.A. \& Roberts, J.A., On Ramsey Numbers for Stars, Utilitas Math., 4, pp. 217-220, 1973.
[3] Hattingh, J.H. \& Henning, M.A., Star-path Bipartite Ramsey Numbers, Discrete Math. 185, pp. 255-258, 1998.
[4] Burger, A. P. \& van Vuuren, J.H., Ramsey Numbers in Complete Balanced Multipartite Graphs. Part II: Size Numbers, Discrete Math., 283, pp. 45-49, 2004.
[5] Syafrizal, Sy., Baskoro, E.T. \& Uttunggadewa, S., The Size Multipartite Ramsey Numbers for Paths, J. Combin. Math. Combin. Comput. 55, pp. 103-107, 2005.
[6] Syafrizal, Sy., On Size Multipartite Ramsey Numbers for Paths Versus Cycles of Three or Four Vertices, Far East J. Appl. Math. 44(2), pp. 109116, 2010.
[7] Syafrizal, Sy., Baskoro, E.T. \& Uttunggadewa, S., The Size Multipartite Ramsey Numbers for Small Paths Versus other Graphs, Far East J. Appl. Math. 28(1), pp. 131-138, 2007.
[8] Surahmat \& Syafrizal, Sy. , Star-path Size Multipartite Ramsey Numbers, Applied Math. Sciences (Bulgaria), 8(75), pp. 3733-3736, 2014.
[9] Lusiani, A., Syafrizal, S., Baskoro, E.T. \& Jayawardene, C., On Size Multipartite Ramsey Numbers for Stars versus Cycles, Procedia Comput. Sci., 74, pp. 27-31, 2015.
[10] Lusiani, A., Baskoro, E.T. \& Saputro, S.W., On Size Tripartite Ramsey Numbers of P_{3} versus $m K_{1, n}$, AIP. Conf. Proc. 1707, 020010, 2016. DOI:10.1063/1.4940811
[11] Lusiani, A., Baskoro, E.T. \& Saputro, S.W., On Size Multipartite Ramsey Numbers for Stars Versus Paths and Cycles, Electron. J. Graph Theory Appl. 5(1), pp. 43-50, 2017.
[12] Jayawardene, C. \& Samarasekara, L., The Size Multipartite Ramsey Numbers for C_{3} versus All Graphs up to 4 Vertices, J.Natn.Sci. Foundation Sri Lanka 45(1), pp. 67-72, 2017, DOI:10.4038/jnsfsr. v45i1.8039
[13] Chartrand, G., Lesniak, L \& Zhang, P., Graphs and Digraphs, CRC Press, 2016.
[14] Christou, M., Iliopoulos, C.S. \& Miller, M., Bipartite Ramsey Numbers Involving Stars, Stripes and Trees, Electron. J. Graph Theory Appl. 1(2), pp. 89-99, 2013.

