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Abstract. For simple graphs 𝐺 and 𝐻, the size multipartite Ramsey number 
𝑚 𝐺, 𝐻  is the smallest natural number t such that any arbitrary red-blue 
coloring on the edges of 𝐾  contains a red 𝐺 or a blue 𝐻 as a subgraph. We 
studied the size tripartite Ramsey numbers 𝑚 𝐺, 𝐻 , where 𝐺 𝑚𝐾 ,  and 
𝐻 𝑃 . In this paper, we generalize this result. We determine 𝑚 𝐺, 𝐻 , where 
𝐺 is a star forest, namely a disjoint union of heterogeneous stars, and 𝐻 𝑃 . 
Moreover, we also determine 𝑚 𝐺, 𝐻  for this pair of graphs 𝐺 and 𝐻.  
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1 Introduction 

Given two simple graphs 𝐺 and 𝐻. We use the notation 𝐹 ⟶ 𝐺, 𝐻  when for 
any red-blue coloring of the edges of a graph 𝐹 we always have a red subgraph 
𝐺 or a blue subgraph 𝐻. The Ramsey number 𝑟 𝐺, 𝐻  is defined as the smallest 
positive integer n such that 𝐾 ⟶ 𝐺, 𝐻 , where 𝐾  is the complete graph on n 
vertices. Some values of the Ramsey number for a combination of a star and a 
path were determined by Parsons [1]. One year before, the multicolor Ramsey 
number for stars was determined by Burr and Roberts [2]. Then, the concept of 
Ramsey numbers evolved to the bipartite Ramsey number 𝑏 𝐺, 𝐻 , which is 
defined as the smallest positive integer n such that 𝐾 , ⟶ 𝐺, 𝐻 . In 1998, the 
bipartite Ramsey number for a star and a path was completed by Hattingh and 
Henning [3]. 

Furthermore, in 2004 Burger and Vuuren [4] generalized the concept of 
bipartite Ramsey numbers to the size multipartite Ramsey numbers as follows. 
Let j, l, n, r and s be natural numbers with 𝑛, 𝑟 2. The size multipartite 
Ramsey number 𝑚 𝐾 , 𝐾  is the smallest natural number t such that an 
arbitrary red-blue coloring of the edges of 𝐾 , where 𝐾  is the complete 
multipartite graph having j partite sets with t vertices per each partite set, 
necessarily forces a red 𝐾  or a blue 𝐾  as a subgraph. They also gave some 
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properties of the size multipartite Ramsey numbers and determined the exact 
values of 𝑚 𝐾 , 𝐾 , for 𝑗 2. For the bounds of the size multipartite 
Ramsey numbers they gave a direct lower bound, a probabilistic lower bound, 
and a diagonal bipartite upper bound.  

Syafrizal, et al. [5] generalized this concept by removing the completeness 
requirement. Thus, the size multipartite Ramsey number, 𝑚 𝐺, 𝐻 , is defined 
as the smallest positive integer t such that 𝐾 ⟶ 𝐺, 𝐻 . They also determined 
the size multipartite Ramsey numbers for paths and other graphs [5,6], 
especially the size multipartite Ramsey numbers for 𝑃  and stars [7]. Then, 
Surahmat and Syafrizal [8] gave the size tripartite Ramsey numbers for paths 𝑃  
and stars, for 3 𝑛 6. Meanwhile, the size multipartite Ramsey numbers for 
stars and cycles have been investigated by Lusiani, et al. [9]. They also 
provided the size tripartite Ramsey numbers for 𝑃  and a disjoint union of 
homogeneous stars [10] and the size tripartite Ramsey numbers for stars with 
paths and cycles [11]. Recently, Jayawardene and Samarasekara [12] 
determined the size multipartite Ramsey numbers for 𝐶  and all graphs up to 4 
vertices, including the star of order 4. However, the multipartite Ramsey 
numbers for 𝑃  and a disjoint union of heterogeneous stars have not been 
determined. 

Here, the generalized concept of the size multipartite Ramsey numbers for a star 
forest and 𝑃  is used. The star forest is a disjoint union of heterogeneous stars. 
In this paper, we determine the size multipartite Ramsey numbers 
𝑚 ⋃ 𝐾 , , 𝑃 ,  for j = 2, 3,  where ⋃ 𝐾 ,  is  a  star  forest, for 
𝑛 1, 𝑘 2 and 𝑃  is a path on 3 vertices. For 𝑘 1, Hattingh and Henning 
[3] determined 𝑚 𝐾 , , 𝑃 , for 𝑟, 𝑠 2.  

For some terms in graph theory used in this paper, we refer to Chartrand [13]. 
Let 𝐺 be a finite and simple graph. The vertex and edge sets of graph 𝐺 are 
denoted by 𝑉 𝐺  and 𝐸 𝐺 , respectively. A matching of a graph 𝐺 is defined as 
the set of edges without a common vertex. Let 𝑒 𝑢~𝑣 be an edge in 𝐺, then u 
is called adjacent to v. The neighborhood 𝑁 𝑣  of a vertex v is the set of 
vertices adjacent to v in 𝐺. The degree 𝑑 𝑣  of a vertex v is |𝑁 𝑣 |. The 
maximum degree of 𝐺 is denoted by ∆ 𝐺 , where ∆ 𝐺 max 𝑑 𝑣 |𝑣 ∈
𝑉 𝐺 . The minimum degree of 𝐺 is denoted by 𝛿 𝐺 , where 𝛿 𝐺
max 𝑑 𝑣 |𝑣 ∈ 𝑉 𝐺 . A star 𝐾 ,  is the graph on 𝑛 1 vertices with one 
vertex of degree n, called the center of this star, and n vertices of degree 1, 
called the leaves. Any red-blue coloring of graph 𝐾  is represented by 
𝐾 𝐹 ⊕ 𝐹  or 𝐾 𝐺 ⊕ 𝐺 , where 𝐹  and 𝐺  are the red graphs and 
𝐹  and 𝐺  are the blue graphs. 



 On Size Tripartite and Bipartite Ramsey Numbers 3 
 

 

2 Bipartite Ramsey Numbers 

In this section, we discuss the size bipartite Ramsey number 
𝑚 ⋃ 𝐾 , , 𝑃 , for 𝑘 2 and 𝑛 1. We compute the formula of this 
Ramsey number for any 𝑘 2 and 𝑛 1. In particular, for 𝑛 1, for all 𝑖, we 
obtain the value of 𝑚 𝑘𝐾 , , 𝑃 𝑚 𝑘𝑃 , 𝑃 , correcting the previous result 

given by Christou, et al. [14]. They showed that 𝑚 𝑘𝑃 , 𝐾 , 𝑛 , for 

𝑘 2 and 𝑛 1. For 𝑛 2, they had 𝑚 𝑘𝑃 , 𝑃 2 , which is not 

correct for 𝑘 4. 

Lemma 2.1   𝑚 𝑘𝑃 , 𝑃
2,    𝑓𝑜𝑟 𝑘 1
𝑘,   𝑓𝑜𝑟 𝑘 2  

Proof. Let 𝑡
2,    𝑓𝑜𝑟 𝑘 1
𝑘,   𝑓𝑜𝑟 𝑘 2  

We consider the coloring of 𝐾 𝐹 ⊕ 𝐹 , such that 𝐹  does not contain 
𝑃 . So, ∆ 𝐹 1. This is trivial for 𝑘 1 since 𝐹 𝐾  and 𝐹  is an empty 
graph. For 𝑘 2, we choose 𝐹 𝑘 1 𝑃 . In this case, we will have no 𝑘𝑃  
in 𝐹  and 𝐹 ⊉ 𝑃 . So, 𝑚 𝑘𝑃 , 𝑃 𝑡. 

Now, we show that 𝑚 𝑘𝑃 , 𝑃 𝑡. We consider any coloring of 𝐾
𝐺 ⊕ 𝐺 , such that 𝐺  does not contain a blue 𝑃 , so ∆ 𝐺 1. For 𝑘 1, we 
have 𝐾 𝐺 ⊕ 𝐺 . So, 𝐺  is either a matching graph or an empty graph 
and 𝐺  is either 2𝑃 , 𝑃  or 𝐶 , which implies 𝐺  ⊇ 2𝑃 . For 𝑘 2, we have 
𝐾 𝐺 ⊕ 𝐺 . Let 𝑈 𝑢 , 𝑢 , … , 𝑢  and 𝑉 𝑣 , 𝑣 , … , 𝑣  be two 
partite sets in 𝐾 . If 𝐺  is a matching graph, then every vertex in 𝐾  is 
relabeled such that 𝑢 ∼ 𝑣  in 𝐺 , for every 𝑖 1, 2, … , 𝑘. We consider a cycle 
in 𝐾 , namely 𝐶 𝑢 𝑣 𝑢 𝑣 𝑢 𝑣 … 𝑢 𝑣 𝑢 . So, 𝐸 𝐶 𝐸 𝐺  contains a 
red 𝑘𝑃 . Therefore, 𝐺  contains a red 𝑘𝑃 .  

In Lemma 2.1 we obtain the size bipartite Ramsey number, 𝑚 ⋃ 𝐾 , , 𝑃 , 
for 𝑛 1, for all 𝑖. So, in Theorems 2.2, 2.4 and 2.5, we determine the size 
bipartite Ramsey numbers 𝑚 ⋃ 𝐾 , , 𝑃 , for all 𝑛 1, for 2 𝑘 4. 
For a combination of two stars and 𝑃 , we show this case in Theorem 2.2. 

Theorem 2.2   Let 𝑛  and 𝑛  be positive integers. Then, 𝑚 𝐾 , ∪
𝐾 , , 𝑃 max 𝑛 , 𝑛 1. 

Proof. Let 𝑛 𝑛 1, so we have max 𝑛 , 𝑛 1 𝑛 1. To show that 
𝑚 𝐾 , ∪ 𝐾 , , 𝑃 𝑛 1, we consider the coloring of 𝐾 𝐹 ⊕
𝐹 ,  such that FB does not contain 𝑃 .  So, ∆(FB) ≤ 1.  We can choose FB = 
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n1P2.  Let 𝑈 𝑢 , 𝑢 , … , 𝑢  and 𝑉 𝑣 , 𝑣 , … , 𝑣  be two partite sets in 
𝐾 . Every vertex in 𝐾  is relabeled such that 𝑢 ∼ 𝑣  in 𝐹 , for every 
𝑖 1, 2, … , 𝑛 . Since 𝑢 ∼ 𝑣  in 𝐹 , for 𝑖 𝑗, so 𝐹  does not contain 𝐾 , . 

Therefore, 𝑚 𝐾 , ∪ 𝐾 , , 𝑃 𝑛 1. 

 

Figure 1 (a). 𝐺 𝑝𝐾 , for 1 ≤ p ≤ n + 1   (b). 2𝐾 , ⊆ 𝐺 ⊆ 𝐾 . 

Now, we show that 𝑚 𝐾 , ∪ 𝐾 , , 𝑃 𝑛 1. We consider any coloring 
of 𝐾 𝐺 ⊕ 𝐺 , such that 𝐺  does not contain a blue 𝑃 , so ∆ 𝐺
1. Let 𝑈 𝑢 , 𝑢 , … , 𝑢  and 𝑉 𝑣 , 𝑣 , … , 𝑣  be two partite sets in 
𝐾 . If 𝐺  is a matching graph, then every vertex in 𝐾  is 
relabeled such that 𝑢 ∼ 𝑣  in 𝐹 , for any 𝑖 1, 2, … , 𝑛 1, see Figure 1(a). 
Since 𝑢 ∼ 𝑣  and 𝑣 ∼ 𝑢  in 𝐺 , for 2 𝑖, 𝑗 𝑛 1, we find a disjoint union 
of stars 2𝐾 ,  in 𝐺 , see Figure 1(b).  

For the proofs of Theorems 2.4 and 2.5, we use Lemma 2.3, which is stated as 
follows. Note that we previously defined sum 𝐴 ∑ 𝑛 , for 𝐴
𝑛 , 𝑛 , … , 𝑛 .  

Lemma 2.3 Let 𝑁 𝑛 , 𝑛 , … , 𝑛 , for 𝑘 2 and 𝑛  𝑛 , ⋯  𝑛 1. 
For 1 𝑖 2 , let 𝐴 ∈ 𝒫 𝑁 , where 𝐴 𝐴 , for 𝑖 𝑗. Let 𝐵 𝑁 𝐴 , and 
𝐿 max sum 𝐴 |𝐵|, sum 𝐵 |𝐴| . There exists 𝑝 ∈ 1,2,3, … , 2 ,  
where 𝐴  or 𝐵  is not empty (or 𝐴  or 𝐵  is not 𝑁), such that 𝐿
min 𝐿 |1 𝑖 2 . 

Proof. Let 𝐴 ∅ and 𝐵 𝑁, for any 𝑟 ∈ 1,2,3, … , 2 . Then 𝐿
max sum 𝐴 |𝐵 |, sum 𝐵 |𝐴 | sum 𝑁 . Let us consider 𝐴 , where 
|𝐴 | 1 and 𝐵 𝑁 𝐴 , where |𝐵 | 1. We assume that |𝐴 | 𝑡 1. 
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Then 𝐿 max sum 𝐴 𝑘 𝑡, sum 𝐵 𝑡 . Note that sum 𝑁
sum 𝐴 sum 𝐵 sum 𝐴 𝑘 𝑡 and sum 𝑁 sum 𝐴
sum 𝐵 𝑡 sum 𝐵 . So, if 𝐴 1 , then 𝐿 𝐿 . Otherwise, 𝐿 𝐿 . 
Then, 𝐿 min 𝐿 𝐿 . Therefore, 𝐿 is minimum when 𝐴 and 𝐵 are not 
empty.  

Theorem 2.4   Let 𝑁 𝑛 , 𝑛 , 𝑛  be the set of the number of leaves of three 
stars 𝐾 , , 𝐾 ,  and 𝐾 , , respectively. If 𝐿 max sum 𝐴 |𝐵|, sum 𝐵
|𝐴| |𝐴, 𝐵 ⊆ 𝑁, 𝐴 ∪ 𝐵 𝑁, 𝐴 ∩ 𝐵 ∅ , then 𝑚 ⋃ 𝐾 , , 𝑃 min 𝐿 . 

Proof. Let 𝑛 𝑛 𝑛 1. We have 𝐿 𝑛 𝑛 𝑛 , max 𝑛 2, 𝑛
𝑛 1 , 𝑛 𝑛 1, 𝑛 𝑛 1 . By Lemma 2.2,  𝐿 max 𝑛 2, 𝑛
𝑛 1 , 𝑛 𝑛 1, 𝑛 𝑛 1 . Therefore, min 𝐿 max 𝑛 2, 𝑛
𝑛 1 . 

Let 𝑡 max 𝑛 2, 𝑛 𝑛 1 . To show that 𝑚 ⋃ 𝐾 , , 𝑃 𝑡, we 
consider the coloring of 𝐾 𝐹 ⊕ 𝐹 , such that 𝐹  does not contain a 
blue 𝑃 , so ∆ 𝐹 1. We can choose that 𝐹 𝑡 1 𝑃 . Let 𝑈
𝑢 , 𝑢 , … , 𝑢  and 𝑉 𝑣 , 𝑣 , … , 𝑣  be two partite sets in 𝐾 . 

Every vertex in 𝐾  is relabeled such that 𝑢 ∼ 𝑣  in 𝐹 , for any 𝑖
1, 2, … , 𝑡 1. We have the following two possibilities for the values of 𝑡 1: 

1. For  𝑡 1 𝑛 1.  
Since 𝑢 ∼ 𝑣 , for 2 𝑗 𝑛 1 in 𝐹 , the star 𝐾 ,  can be constructed 
by these vertices. Since 𝑣 ∼ 𝑢 , for 2 𝑖 𝑛 1 𝑛 1 in 𝐹 , the 
star 𝐾 ,  can be constructed by vertices 𝑣 , 𝑢 , 𝑢 , … , 𝑢 . However, we 
cannot construct the star 𝐾 , , since we cannot choose any of the 
remaining vertices as its center. 

2. For  𝑡 1 𝑛 𝑛 . 
Since 𝑢 ∼ 𝑣 , for 𝑛 1 𝑛 𝑛  in 𝐹 , the star 𝐾 ,  can be 
constructed by these vertices. Since 𝑢 ∼ 𝑣 , for 1 𝑗 𝑛  in 𝐹 , the 
star 𝐾 ,  can be constructed by these vertices. However, we cannot 
construct the star 𝐾 , , since we cannot choose any of the remaining 
vertices as its center. 

𝐹  does not contain all stars 𝐾 , , 𝐾 ,  and 𝐾 , , so 𝐹  does not contain 
⋃ 𝐾 , . 

Now, we show that 𝑚 ⋃ 𝐾 , , 𝑃 𝑡. We consider any coloring of 
𝐾 𝐺 ⊕ 𝐺 , such that 𝐺  does not contain a blue 𝑃 , so ∆ 𝐺 1. Then 



6 Anie Lusiani, et al. 

 

𝐺  is a matching graph. Let 𝑈 𝑢 , 𝑢 , … , 𝑢  and 𝑉 𝑣 , 𝑣 , … , 𝑣  be two 
partite sets in 𝐾 . Every vertex in 𝐾  is relabeled such that 𝑢 ∼ 𝑣  in 𝐺 , 
for some 𝑖 𝑗. We have the following two possibilities for the values of 𝑡: 

1. For 𝑡 𝑛 2  
Since 𝑢 ∼ 𝑣 , for 3 𝑗 𝑛 2 in 𝐺 , the star 𝐾 ,  can be constructed 
by these vertices. Since 𝑣 ∼ 𝑢  and 𝑣 , 𝑣  are both adjacent to 𝑢  for 
3 𝑖 𝑛 2 in 𝐺 , the star 𝐾 ,  can be constructed by vertices 
𝑣 , 𝑢 , 𝑢 , … , 𝑢 , and the star 𝐾 ,  can be constructed by vertices 
𝑣 , 𝑢 , 𝑢 , … , 𝑢 . 

2. For  𝑡 𝑛 𝑛 1 
Since 𝑢 ∼ 𝑣 , for 3 𝑗 𝑛 𝑛 1 in 𝐺 , the star 𝐾 ,  can be 
constructed by vertices 𝑢 , 𝑣 , 𝑣 , … , 𝑣 . Since 𝑣 ∼ 𝑢  and 𝑣 , 𝑣  are 
both adjacent to 𝑢  for 3 𝑖 𝑛 𝑛 1 in 𝐺 , the star 𝐾 ,  can be 
constructed by vertices 𝑣 , 𝑢 , 𝑢 , … , 𝑢  and the star 𝐾 ,  can be 
constructed by vertices 𝑣 , 𝑢 , 𝑢 , … , 𝑢 . 

Therefore, 𝐺  contains ⋃ 𝐾 , .  

Theorem 2.5   Let 𝑁 𝑛 , 𝑛 , 𝑛 , 𝑛  be the set of the number of leaves of 
three stars 𝐾 , , 𝐾 , , 𝐾 ,  and 𝐾 , , respectively. If 𝐿 max sum 𝐴
|𝐵|, sum 𝐵 |𝐴| |𝐴, 𝐵 ⊆ 𝑁, 𝐴 ∪ 𝐵 𝑁, 𝐴 ∩ 𝐵 ∅ , then 
𝑚 ⋃ 𝐾 , , 𝑃 min 𝐿 . 

Proof. Let 𝑛 𝑛 𝑛 𝑛 1. We have  𝐿 𝑛 𝑛 𝑛
𝑛 , max 𝑛 3, 𝑛 𝑛 𝑛 1 , 𝑛 𝑛 2, 𝑛 𝑛 2, 𝑛 𝑛
𝑛 1, 𝑛 𝑛 𝑛 1, 𝑛 𝑛 𝑛 1, max 𝑛 𝑛 2, 𝑛 𝑛 2 . 

By Lemma 2.2,  

𝐿 max 𝑛 3, 𝑛 𝑛 𝑛 1 , 𝑛 𝑛 2, 𝑛 𝑛 2, 𝑛 𝑛 𝑛 1, 𝑛
𝑛 𝑛 1, 𝑛 𝑛 𝑛 1, max 𝑛 𝑛 2,  𝑛 𝑛 2 . 

Therefore, 
 min 𝐿 min max 𝑛 3, 𝑛 𝑛 𝑛 1 , max 𝑛 𝑛 2,  𝑛 𝑛 2 . 
Then, we have three following possibilities for min 𝐿 : 

1. If 𝑛 𝑛 𝑛 , then min 𝐿 min 𝐿′ max 𝑛 3, 𝑛 𝑛 𝑛 1 . 
2. If 𝑛 𝑛 𝑛 , then min 𝐿 min 𝐿" max 𝑛 𝑛 2,  𝑛 𝑛 2 . 
3. If 𝑛 𝑛 𝑛 , then min 𝐿 min 𝐿′  or min 𝐿 min 𝐿" . 

Let 𝑡 min 𝐿 . To show that 𝑚 ⋃ 𝐾 , , 𝑃 𝑡 we consider the coloring 
of 𝐾 𝐹 ⊕ 𝐹 , such that 𝐹  does not contain a blue 𝑃 , so ∆ 𝐹 1. 



 On Size Tripartite and Bipartite Ramsey Numbers 7 
 

 

We can choose that 𝐹 𝑡 1 𝑃 . Let Let 𝑈 𝑢 , 𝑢 , … , 𝑢  and 
𝑉 𝑣 , 𝑣 , … , 𝑣  be two partite sets in 𝐾 . Every vertex in 𝐾  is 
relabeled such that 𝑢 ∼ 𝑣  in 𝐹 , for every 𝑖 1, 2, … , 𝑡 1. We have four 
possibilities for the values of 𝑡 1, as follows:                                     

1. For 𝑡 1 min 𝐿′ 1 𝑛 2 
Since 𝑢 ∼ 𝑣 , for 2 𝑗 𝑛 1 in 𝐹 , the star 𝐾 ,  can be constructed 
by these vertices. Since 𝑣 ∼ 𝑢 , for 𝑛 2 𝑖 𝑛 𝑛 1 𝑛 1 
in 𝐹 , the star 𝐾 ,  and 𝐾 ,  can be constructed by vertices 
𝑣 , 𝑢 , 𝑢 , … , 𝑢  and 𝑣 , 𝑢 , 𝑢 , … , 𝑢 , respectively. 
However, we cannot construct the star 𝐾 , , since we cannot choose any 
of the remaining vertices as its center. 

2. For  𝑡 1 min 𝐿′ 1 𝑛 𝑛 𝑛  
Since 𝑢 ∼ 𝑣 , for 2 𝑗 𝑛 1 in 𝐹 , the star 𝐾 ,  can be constructed 
by these vertices. Since 𝑢 ∼ 𝑣 , for 𝑛 2 𝑗 𝑛 𝑛 1 in 𝐹 , the 
star 𝐾 ,  can be constructed by these vertices. Since 𝑢 ∼ 𝑣 , for 𝑗 1 
and 𝑛 𝑛 2 𝑗 𝑛 𝑛 𝑛  in 𝐹 , the star 𝐾 ,  can be 
constructed by these vertices. However, we cannot construct the star 𝐾 , , 
since we cannot choose any of the remaining vertices as its center.  

3. For  𝑡 1 min 𝐿" 1 𝑛 𝑛 1 
Since 𝑢 ∼ 𝑣 , for 2 𝑗 𝑛 1 in 𝐹 , the star 𝐾 ,  can be constructed 
by these vertices. Since 𝑢 ∼ 𝑣 , for 𝑛 2 𝑗 𝑛 𝑛 1 in 𝐹 , the 
star 𝐾 ,  can be constructed by these vertices. Since 𝑣 ∼ 𝑢 , for 3 𝑖
𝑛 2 in 𝐹 , the star 𝐾 ,  can be constructed by these vertices. However, 
we cannot construct the star 𝐾 , , since we cannot choose any of the 
remaining vertices as its center.  

4. For  𝑡 1 min 𝐿" 1 𝑛 𝑛 1 
Since 𝑢 ∼ 𝑣 , for 2 𝑗 𝑛 1 in 𝐹 , the star 𝐾 ,  can be constructed 
by these vertices. Since 𝑢 ∼ 𝑣 , for 𝑛 2 𝑗 𝑛 𝑛 1 in 𝐹 , the 
star 𝐾 ,  can be constructed by these vertices. Since 𝑣 ∼ 𝑢 , for 3 𝑖
𝑛 2 in 𝐹 , the star 𝐾 ,  can be constructed by these vertices. However, 
we cannot construct the star 𝐾 , , since we cannot choose any of the 
remaining vertices as its center.  

Since 𝐹  does not contain all stars  𝐾 , , 𝐾 , , 𝐾 ,  and 𝐾 , , therefore 𝐹  
does not contain ⋃ 𝐾 , . 

Now we show that 𝑚 ⋃ 𝐾 , , 𝑃 𝑡. We consider any coloring of 
𝐾 𝐺 ⊕ 𝐺 , such that 𝐺  does not contain a blue 𝑃 , so ∆ 𝐺 1. Then 
𝐺  is a matching graph. Let 𝑈 𝑢 , 𝑢 , … , 𝑢  and 𝑉 𝑣 , 𝑣 , … , 𝑣  be two 
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partite sets in 𝐾 . Every vertex in 𝐾  is relabeled such that 𝑢 ∼ 𝑣  in 𝐺 , 
for any 𝑖 1,2, … , 𝑡. There are four possibilities for the values of 𝑡, as follows. 

1. For  𝑡 min 𝐿 𝑛 3 
Since 𝑢 ∼ 𝑣 , for 2 𝑗 𝑛 1 in 𝐺 , the star 𝐾 ,  can be constructed 
by these vertices. Since 𝑣 ∼ 𝑢  for 𝑗 1, 𝑛 2, 𝑛 3 and 2 𝑖 𝑛
1 in 𝐺 , the star 𝐾 , , 𝐾 ,   and 𝐾 ,  can be constructed by vertices 

𝑣 , 𝑢 , 𝑢 , … , 𝑢 , 𝑣 , 𝑢 , 𝑢 , … , 𝑢  and 

𝑣 , 𝑢 , 𝑢 , … , 𝑢 , respectively.  
2. For  𝑡 min 𝐿 𝑛 𝑛 𝑛 1 

Since 𝑣 ∼ 𝑢 , for 4 𝑖 𝑛 3 in 𝐺 , the star 𝐾 ,  can be constructed 

by these vertices. Since 𝑣 ∼ 𝑢  for 𝑖 1, 2,3 and 2 𝑗 𝑛 𝑛 𝑛
1 in 𝐺 , the star 𝐾 , ,  𝐾 ,   and 𝐾 ,  can be constructed by vertices 

𝑢 , 𝑣 , 𝑣 , … , 𝑣 , 𝑢2, 𝑣 2 , 𝑣 3, … , 𝑣  and 

𝑢3, 𝑣 , 𝑣 , … , 𝑣 , respectively.  
3. For  𝑡 min 𝐿" 𝑛 𝑛 2 

Since 𝑢 ∼ 𝑣 , for 𝑖 1,2 and 2 𝑗 𝑛 𝑛 1 in 𝐺 , the star 𝐾 ,  
and 𝐾 ,  can be constructed by vertices 𝑢 , 𝑣 , 𝑣 , … , 𝑣  and 
𝑢 , 𝑣 , 𝑣 , … , 𝑣 . Since 𝑣 ∼ 𝑢 , for 3 𝑖 𝑛 𝑛 2 and 

𝑗 1, 𝑛 𝑛4 2 in 𝐺 , the star 𝐾 ,  and 𝐾 , 3 can be constructed by 

vertices 𝑣 1 4 2, 𝑢3, 𝑢4, … , 𝑢 2  and 𝑣1, 𝑢 3, 𝑢 4, … , 𝑢 2 , 
respectively.  

4. For  𝑡 min 𝐿" 𝑛 𝑛 2 
Since 𝑢 ∼ 𝑣 , for 𝑖 1,2 and 2 𝑗 𝑛 𝑛 1 in 𝐺 , the star 𝐾 ,  
and 𝐾 ,  can be constructed by vertices 𝑢 , 𝑣 , 𝑣 , … , 𝑣  and 
𝑢 , 𝑣 , 𝑣 , … , 𝑣 . Since 𝑣 ∼ 𝑢 , for 3 𝑖 𝑛 𝑛 2 and 
𝑗 1, 𝑛 𝑛 2 in 𝐺 , the star 𝐾 ,  and 𝐾 ,  can be constructed by 

vertices 𝑣 , 𝑢 , 𝑢 , … , 𝑢  and 𝑣 , 𝑢 , 𝑢 , … , 𝑢 , 
respectively.  

Therefore, 𝐺  contains ⋃ 𝐾 , .  

From Theorems 2.4 and 2.5, we obtain 𝑚 ⋃ 𝐾 , , 𝑃 min 𝐿  for 
𝑘 ∈ 2, 3, 4 . For 𝑘 5, it seems that the bipartite Ramsey number for a pair of 
⋃ 𝐾 ,  and 𝑃  is min 𝐿 . For example, it is easy to see the bipartite Ramsey 
number for a pair of 2𝐾 , ∪ 2𝐾 , ∪ 𝐾 , ∪ 𝐾 , ∪ 𝐾 ,  and 𝑃 . In this case, we 
calculate that min 𝐿 19. Then, 𝑚 2𝐾 , ∪ 2𝐾 , ∪ 𝐾 , ∪ 𝐾 , ∪
𝐾 , , 𝑃 19, see Figure 2. 
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Figure 2 A disjoint union of stars 2𝐾 , ∪ 2𝐾 , ∪ 𝐾 , ∪ 𝐾 , ∪ 𝐾 ,  in  𝐾 . 

Now, we consider another extremal example in Figure 3. Since 100 is too large 
compared to other numbers of leaves, 100 and the other numbers of leaves are 
in a different partite set. We calculate that min 𝐿 109. Then, 𝑚 𝐾 , ∪
𝐾 , ∪ 8𝐾 , , 𝑃 109. Therefore, we present the following conjecture. 

 

Figure 3 A disjoint union of stars 𝐾 , ∪ 𝐾 , ∪ 8𝐾 ,  in 𝐺 ⊆ 𝐾 . 

Conjecture 2.1   Let 𝑁 𝑛 , 𝑛 , 𝑛 , … , 𝑛  be the set of the number of leaves 
of stars 𝐾 , , for 𝑛 1, 1 𝑖 𝑘 and 𝑘 2, respectively. If 𝐿
max sum 𝐴 |𝐵|, sum 𝐵 |𝐴| |𝐴, 𝐵 ⊆ 𝑁, 𝐴 ∪ 𝐵 𝑁, 𝐴 ∩ 𝐵 ∅ , then 

𝑚 ⋃ 𝐾 , , 𝑃 min 𝐿 . 

3 Tripartite Ramsey Numbers 

In this section, the size tripartite Ramsey numbers for a star forest and 𝑃  is 
investigated.   

Theorem 3.1   Let 𝑛 𝑛 1 be positive integers. Let 𝐴  and    

𝐵 . Then, 𝑚 𝐾 , ∪  𝐾 , , 𝑃 max 𝐴, 𝐵 . 
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Proof. Let 𝑡 max 𝐴, 𝐵 . To show that 𝑚 𝐾 , ∪  𝐾 , , 𝑃 𝑡, we 
consider the two following possibilities for the value of 𝑡: 

1. If 𝐴 𝐵, then 𝑡 . We make the edges of graph 𝐾  red. 

Since  𝑉 𝐾 3𝑡 3 3 3 2 𝑛 𝑛

𝑉 𝐾 , ∪  𝐾 , , 𝑉 𝐾  contains neither a blue 𝑃  nor the red 
𝐾 , ∪  𝐾 , .  

2. If 𝐴 𝐵, then 𝑡 . Suppose that 𝑚 𝐾 , ∪  𝐾 , , 𝑃 𝑡. Then, 

𝑛 2 𝑡 1 1 2 ,  which is a contradiction. 

Therefore, 𝑚 𝐾 , ∪  𝐾 , , 𝑃 𝑡. 

Now, we show that 𝑚 𝐾 , ∪  𝐾 , , 𝑃 𝑡. We consider any coloring of 
𝐾 𝐺 ⊕ 𝐺  such that 𝐺  does not contain a blue 𝑃 . Thus, ∆ 𝐺 1 and 
𝐺  is a matching graph. We consider any two endpoints of a 𝑃  in 𝐺 , say 𝑢 and 
𝑣. We know that 𝑑 𝑢 𝑑 𝑣 2𝑡 1. If 𝑛 2𝑡 1 𝑠, for some 

nonnegative integers 𝑠 , then 𝑛 𝑡 1 𝑠. Then we always have a 

disjoint union of two stars 𝐾 , ∪  𝐾 ,  in 𝐺  with 𝑢 and 𝑣 as their centers, 
respectively, and all vertices that are in the same partite set with 𝑣 being the 
leaves of 𝐾 , .  

Theorem 3.2   Let 𝑛 𝑛 𝑛 1 be positive integers. Let 𝐴

 and 𝐵 . Then, 𝑚 ⋃ 𝐾 , , 𝑃 max 𝐴, 𝐵 . 

Proof. Let 𝑡 max 𝐴, 𝐵 . To show that 𝑚 ⋃ 𝐾 , , 𝑃 𝑡, we consider 
the following two possibilities for the value of 𝑡: 

1. If 𝐴 𝐵, then 𝑡 . We make the edges of graph 𝐾  red. 

Since  𝑉 𝐾 3𝑡 3 3 3 3 𝑛 𝑛

𝑛 𝑉 ⋃ 𝐾 , , 𝑉 𝐾  contains neither a blue 𝑃  nor the red 

⋃ 𝐾 , .  

2. If 𝐴 𝐵, then 𝑡 . Suppose that 𝑚 ⋃ 𝐾 , , 𝑃 𝑡. Then, 

𝑛 2 𝑡 1 2 2 4 𝑛 ,  which is a contradiction. 

Therefore, 𝑚 ⋃ 𝐾 , , 𝑃 𝑡. 
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Now, we show that 𝑚 ⋃ 𝐾 , , 𝑃 𝑡. We consider any coloring of 
𝐾 𝐺 ⊕ 𝐺 , such that 𝐺  does not contain a blue 𝑃 . Thus, ∆ 𝐺 1 
and 𝐺  is a matching graph. Let 𝑈 𝑢 , 𝑢 , … , 𝑢 , 𝑉 𝑣 , 𝑣 , … , 𝑣   and 
𝑊 𝑤 , 𝑤 , … , 𝑤  be the three partite sets of graph 𝐾 . Let 𝐸 𝐺 ⊇
𝐸 𝑈𝑉 ∪ 𝐸 𝑉𝑊 ∪ 𝐸 𝑈𝑊 , where 𝐸 𝑈𝑉 𝑢 𝑣 , 𝑢 𝑣 , … , 𝑢 𝑣 ,
𝐸 𝑉𝑊 𝑣 𝑤 , 𝑣 𝑤 , … , 𝑣 𝑤  and 
𝐸 𝑈𝑊 𝑢 𝑤 , 𝑢 𝑤 , … , 𝑢 𝑤 . Note that 𝑝 𝑞 𝑡, 𝑞 𝑟
𝑡 and 𝑝 𝑟 𝑡. For the values of 𝑝, 𝑞 and 𝑟, we have four matching 
possibilities in 𝐺 :  

1. 𝑝 1, 𝑞 𝑟 0, see Figure 4(a). 
2. 𝑝 1, 𝑞 0, 𝑟 1, see Figure 4(b) or 𝑝 1, 𝑞 1, 𝑟 0, see Figure 

4(c).   
3. 𝑝 1, 𝑞 1, 𝑟 1, see Figure 5.  

 

Figure 4 Three matching possibilities in 𝐺 . 

 

Figure 5 A matching in 𝐺 , if 𝑝 1, 𝑞 1, 𝑟 1. 
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To show the three stars in 𝐺 , we choose the centers of stars 𝐾 , , 𝐾 ,  and 
𝐾 ,  are 𝑢 , 𝑣  and either 𝑣  if 𝑝 𝑡  or 𝑤  if 𝑝 𝑡 , respectively. If 

𝑡 𝐴, then 𝑡 1 𝑛 . If 𝑡 𝐵, then 𝑡

𝑛 1. Therefore, 𝑡 1 𝑛 , for all 𝑛 , 𝑛  and 𝑛 . Then, 𝑡 1 𝑛 2𝑡
2. Let 𝑠 𝑛 𝑡 2 1, so 𝑣 , 𝑣 , … , 𝑣 , 𝑣 , … , 𝑣 , 𝑣 , … , 𝑣 , 
𝑤 , 𝑤 , 𝑤 , … , 𝑤  are the leaves of 𝐾 , . We have the following two 
possibilities to obtain the stars 𝐾 ,  and 𝐾 , : 

1. If 𝑛 𝑡 𝑠 , then 𝑤 , 𝑤 , … , 𝑤  are the leaves of 𝐾 , . Since 
𝑛 𝑛 𝑡 𝑠 𝑡 1, we have 𝑢 , 𝑢 , … , 𝑢  are the leaves of 
𝐾 , , see Figure 6. 

 

Figure 6 A disjoint union of stars ⋃ 𝐾 ,  in 𝐺 , if 𝑝 𝑡. 

2. If 𝑡 𝑠 𝑛 𝑛  and let 𝑠 𝑛 𝑡 𝑠 1, then 𝑤 , 𝑤 , 
 … , 𝑤 , 𝑢 , 𝑢 , … , 𝑢  are the leaves of 𝐾 , . Since 𝑛 𝑛 2𝑡 2
𝑠 ,   so 𝑛 𝑡 𝑠 1. Then, 𝑢 , 𝑢 , … , 𝑢  are the leaves of 
𝐾 , . 

Therefore, we have a disjoint union of stars ⋃ 𝐾 ,  in 𝐺 , where 𝑢 , 𝑣  and 
𝑣  are their centers.                  

Theorem 3.3   Let 𝑛 𝑛 𝑛 𝑛 1 be positive integers. Let 𝐴

 and 𝐵 . Then, 𝑚 ⋃ 𝐾 , , 𝑃 max 𝐴, 𝐵 . 

 
Proof. Let 𝑡 max 𝐴, 𝐵 . To show that 𝑚 ⋃ 𝐾 , , 𝑃 𝑡, we consider 
the following two possibilities for the value of 𝑡: 
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1. If 𝐴 𝐵, then 𝑡 . We make the edges of graph 𝐾  

red. Since  𝑉 𝐾 3𝑡 3 3 3 4 𝑛

𝑛 𝑛 𝑛 𝑉 ⋃ 𝐾 , , 𝑉 𝐾  contains neither a blue 𝑃  
nor the red ⋃ 𝐾 , .  

2. If 𝐴 𝐵, then 𝑡 . Suppose that 𝑚 ⋃ 𝐾 , , 𝑃 𝑡. Then, 

𝑛 2 𝑡 1 3 2 5 𝑛 ,  which is a contradiction. 

Therefore, 𝑚 ⋃ 𝐾 , , 𝑃 𝑡. 

Now, we show that 𝑚 ⋃ 𝐾 , , 𝑃 𝑡. We consider any coloring of 
𝐾 𝐺 ⊕ 𝐺  such that 𝐺  does not contain a blue 𝑃 , so ∆ 𝐺 1. Then, 
𝐺  is a matching graph, see Figures 4 and 5. The centers of stars 
𝐾 , , 𝐾 , , 𝐾 ,  and 𝐾 ,  are 𝑢 , 𝑣 , 𝑣  and 𝑤 , respectively. We have the 
following two possibilities to obtain 𝐾 ,  and 𝐾 , : 

1. If 𝑛 𝑡 2, then 𝑣 , 𝑣 , … , 𝑣 , 𝑣 , … , 𝑣 , … , 𝑣   are the leaves 
of 𝐾 , . Since 𝑛 𝑛 𝑡 2, we have 𝑤 , … , 𝑤  are the leaves of 
𝐾 , . There are 𝑡 𝑛 1 1 vertices in 𝑊 𝑤 ,𝑤 , … , 𝑤 . We 
have the following two possibilities to obtain 𝐾 ,  and 𝐾 , : 
a) If 𝑛 𝑡 𝑛 1 , then 𝑤 , 𝑤 , … , 𝑤  and 𝑢 , 𝑢 , …,  

𝑢  are the leaves of 𝐾 ,  and 𝐾 , , respectively. 
b) If 𝑡 𝑛 1 𝑛 𝑛 , let 𝑠 𝑛 𝑡 𝑛 1 1, then 

𝑤 , 𝑤 , … , 𝑤 , 𝑢 , 𝑢 , … , 𝑢  are the leaves of 𝐾 , . Since 
𝑛 𝑛 𝑛 2𝑡 3 𝑠 , 𝑛 𝑡 𝑠 1. Then, 𝑢 , 𝑢 , …,   
𝑢  are the leaves of 𝐾 , .  

2. If 𝑡 1 𝑛 2𝑡 3 and let 𝑠 𝑛 𝑡 2 1, then 
𝑣 , 𝑣 , … , 𝑣 , 𝑣 , … , 𝑣 , 𝑣 , … , 𝑣 , 𝑤 , 𝑤 , 𝑤  are the leaves of  
𝐾 , . We have three possibilities:  
a. If 𝑛 𝑡 𝑠 1  and let 𝑠 𝑛 𝑛 𝑠 1 𝑡 1, then 

𝑤 , 𝑤 , … , 𝑤  are the leaves of 𝐾 ,  and we have two 
possibilities: 
i. If 𝑛 𝑡 𝑛 𝑠 1 , then 𝑤 , 𝑤 , …,  

𝑤  are the leaves of 𝐾 , . Since 𝑛 𝑛 , so 
𝑢 , 𝑢 , … , 𝑢  are the leaves of 𝐾 , . 

ii. If 𝑡 𝑛 𝑠 1 𝑛 𝑛 , then 𝑤 , 𝑤 , … , 𝑤 , 𝑢 ,    
𝑢 , … , 𝑢  are the leaves of 𝐾 , . Since 𝑛 𝑛 𝑛 2𝑡 3
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𝑠 , so 𝑛 𝑡 1 𝑠 . Then, 𝑢 , 𝑢 , … , 𝑢  are the 
leaves of 𝐾 , . 

b. If n t s 1 , then w , w , … , w  are the leaves of K , .    
Since n n 2t 3 s , so n n t 1 s . Then, 
u , u , …,  u  and u , u , … , u  are the leaves of K ,  
and K , , respectively. 

c. If t s 1 n n  and let s n s 1 t 1, then 
w , w , … , w , u , u , … , u  are the leaves of K , . Since 
n n 2t 3 s , so n n t 1 s . Then, u , u , …, 
u  and u , u , … , u  are the leaves of 
K ,  and K , , respectively. 

Therefore, we find a disjoint union of stars ⋃ 𝐾 ,  in 𝐺 , where 𝑢 , 𝑣 , 𝑣  
and 𝑤  are their centers. 

From Theorems 3.1, 3.2 and 3.3 we obtain that 𝑚 ⋃ 𝐾 , , 𝑃

max 𝐴, 𝐵 , where 𝐴
⋯

 and 𝐵 ,  for  𝑘 2, 3, 4.  For 

𝑘 5, it seems that the tripartite Ramsey number of ⋃ 𝐾 ,  and 𝑃  is also 

max 𝐴, 𝐵 . For example, 𝑚 2𝐾 , ∪ 2𝐾 , ∪ 𝐾 , ∪ 𝐾 , ∪ 𝐾 , , 𝑃

max , 13 and  𝑚 𝐾 , ∪ 𝐾 , ∪ 8𝐾 , , 𝑃

max , 58, which can be seen in 

Figures 7 and 8, respectively. 

 

Figure 7 A disjoint union of stars 2𝐾 , ∪ 2𝐾 , ∪ 𝐾 , ∪ 𝐾 , ∪ 𝐾 ,  in 𝐾 . 
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Figure 8 A disjoint union of stars 𝐾 , ∪ 𝐾 , ∪ 8𝐾 ,  in 𝐾 . 

Note that from these figures, we may have a different way to choose the stars 
than as mentioned in the proof of Theorem 3.3. Moreover, to obtain 𝑚 2𝐾 , ∪
2𝐾 , ∪ 𝐾 , ∪ 𝐾 , ∪ 𝐾 , , 𝑃  and 𝑚 𝐾 , ∪ 𝐾 , ∪ 8𝐾 , , 𝑃  we cannot 
use the technique for choosing stars in the proof of Theorem 3.3. So, we would 
need to develop a new technique to prove the following conjecture. 

Conjecture 3.1  Let 𝑛 𝑛 ⋯ 𝑛 1 be positive integers. Let 𝐴
⋯

 and 𝐵 . Then, 𝑚 ⋃ 𝐾 , , 𝑃 max 𝐴, 𝐵 . 
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