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Abstract

Compound sums arise frequently in insurance (total claim size in a portfolio)
and in accountancy (total error amount in audit populations). As the normal
approximation for compound sums usually performs very badly, one may look
for belter methods for approximating the distribution of a compound sum, e.g.
the bootstrap or empirical Edgeworth / saddlepoint approimations. We sketch
sonre recent developments and indicate their relevance in finance. Second, we
propos and investigate a simple estimator of the probability of ruin in the
Poisson risk model, for tbe special case where the claim sizes zue assumed to be
exponentially distributed.

Introduction

In this survey paper we will sketch some recent developments on compound sums and
their statistical applications in finance. First we briefly discuss statistical estinratiolr
of the total claim size I total error anlount in insurance/accountancy applications.
Second. we propose and investigate a simple estimator of the probability of ruin in
the Poisson risk model. for the special case where the claim sizes are assumed to be
exponentiaJly distributed.
Let S, : L?=, Zr, n : 1,2,. . ., denote the partial sums of nonnegative independent
and identically distributed (i. i .d.) random variables (r.v. 's) 21,22,. . ., with common
distribution function (d.f.) fl. In insurance applications .9, can be interpreted ns
the arrival time of claims. That is, St : Zr is the arrival time of the first claim.
Sz = Zt * 22 the arrival time of the second claim, etc. Define the renewal counting
process {A/(r),, 2 0} by

N(r)  :  ma-\ {n :  S,  < t }  (1.1)

i.e. rV(l) is the number of claim anivals in [0,t]. If H(a): I - exp(-Br), e ) 0,
that is the claim inter-arrival times Zt, Zz,. . . are exponentia.lly distributed with
parameter B, then {1/(r),, > 0} is a Poisson process with intensity (rate) 0, 0 > 0.
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This means that the process {N(t),, > 0} has independent increments: the number
of claims that occur in disjoint time intervals are independent, while the number of
claims in any interval of length t is Poisson distributed with mean Bt: f.or all s, t ) 0

P(N( t+s )  -  N(s )  *  r t )  =  
" -o ' r y ,  

tu :0 ,1 , . . . ( 1 . 2 )

Note that (1.2) implies that the Poisson process {N(t),t > 0} has stationary incre-
ments and its mean value is equal to EN(t): Bt.

A compound Poisson process {Sry(r),t > 0} with rate B is given by

N(r)

, s ,v ( r ) :L r r ,  t>o
; -  I

where {N(t),t > 0} is a Poisson process with rate F, and {X,,i2. 1} is a family of
i. i .d. r.v. 's with common d.f. F, also independent of {N(t),t > 0}. For any fixed t,
the random variable S1y11; is called a compound Poisson sum or a random Poisson
sum.

It is well known that

Sy - vtt -9- lg(0, l) , us u 1 @ ( 1 . 4 )
{vw

where .91,,' : SN(r), v : EN(t) - Bt, the expected nunttrer of claims in [0,t], arr<l

LL = I t: dF(r), whercas p2: I12 af61 is a-ssuured to be finite. Here N(0, 1)
denotes a standard normal r.v. Note that in insurance applications ES1y1;: utrt,
denotes the total claim size in a portfolio in [0, tl. We refer to Gnedenko & Korolev

[4] for an excellent account of the general thmry for compound sunts.

As a first statistical application we want to establish a confidence interval for
ESn, - v1t, the total claim size. Let us assume that claim sizes X1, . . . , Xry are ob-
served. An approximate normal based confidence interval for ES,nr, with confidence
level I - a, is given by

( 1 . 3 )

( 1 . 5 )

where uop = iD-1(1 - al2). Here O denotes the standard normal d.f. This is a
simple consequence of (1.4), a central limit theorem for Poisson compound sums.
However, the normal approximation for compound sums usually performs very badly,
because typically the distribution of the X;, that is the claim size distribution F in
insurance applications, is highly skewed to the right. One may look for better
methods for approximating the distribution of a compound sum, e.g. the bootstrap

N N

(S* - r,,1., (lx!l/2, Sr * u,/2 (Lx?)'/ ')
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or empirical Edgeworth/saddlepoint approximations. To obtain a more accurate
confidence interval for the total claim size ES1,' than the normal-based interval (1.5)
one has to consider a Studentized Poisson compound sum

S x - u H

iJ;EJ,,V
instead of (S1' - vp.)luru1t2 (see (1.4)), and establish an Edgeworth
the d. f .  o f  (1.6) :

(  1 . 6 )

expansiorr for

p(  s ! - ' t '  
s , )  :a ( r )+*#erz+ l )Oe)+oOlJD.  ( l7 )'  \ (DL  X?) t t z  -  * ) ' ' * '  6 , / f ,  r , f ; i

as rz -) oo. Here pl3 = EX?, and @ denotes the standard nornral density. Irr
addition to the standard normal limiting distribution O for a Studentized conr-
pound surn, we correct for skewness by rneans ofa term oforder llJi in the Edge-
worth expansion. With the aid of the expansion (1.7) one calr obtain an improved
Iidgeworth-bzused confidencc intcrval for ES,^,,. For statistical trpplications otte itas

to relrl irce the skewness coefficient u-ttzrr1,r)/ ') in (1.7) by its enrpirical courttcr-
part ![, Xi l(Dy=, X2)3/2 . Another possibility would be to ernploy the bootstrap
and/or use ernpirical saddlepoint approximations. This is work itt progress (see [7]
and [10]) .

Our secorrd application arises in statistical auditing (see [6]), wherc one atterlpts
to check the validity of financial staternents of a firm or a goverlrrlrent agency. Corn-
pouncl sunrs like St, naturally show up in this context ru well. In these accourrtalcy
applications,Sly dcnotes ti le "total error amount" irt a randotn sample of stze rt
drawn without replacement frorn an audit population of "book artounts"; the Xi,
I < i <.^y', are the nonzero errors observed by the accountant in n recorded "book
valucs"; N is the rarrdom nuurbcr of book values irr the sanrplc of size rr with error.
In typical applications errors are rare, that is the probability that the errors are
non zero is close to zero, and the Poisson approxirnation for N works well. Clearly

f,S,.v is arr unbia^sed estirnator of the total error ar)ount in an audit populatiorr
of size T. In [6] a new upper confidence lirnit for the total error anrount in an
audit population - or for $8.91. : Trp - is obtaine<i. The rrrethod involves art
empirical Cornish-Fisher expansiort in the first stage; in the second stage we enrploy
the bootstrap to calibrate the coverage probability of the resulting interval estirnate.

Next we will briefly describe the Poisson risk nrodel, which is a sinrple model for
the risk in arr irrsurance portfolio based on tlte conrpourtd Poisson process {Slurl,l 2
0) and discuss (see section 2) the statistical estimation of ruirr probabilities in this
nrodel. The risk can be described as

risk : initial capital * income - outflow ,
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and the risk reserve process up to tinre I can be modelled as

R(u, t )  :  u*  c t -  Sr , r ( r ) ,  t  )  0 (  1 .8 )

where u > 0 is the initial capital and c ) 0 is the premium rate; rrote that for any
fixed l, ^9rv(r) : DI(i) X, is a poisson compound sum. By ruin we mean the everrt
{Slrtr) > u*ctl: the incorne u}ct at t ime t of the insurance cornpany is slnaller
than the total claim S1,,11y to be paid to the custolners.
Note that we assume that premium incomc is linear in tirne with rate c ) 0 and
we do not take into account neither the interest income for the accurnulated re-
serve nor the expenses, taxes and dividends etc. s,,r(r) : DI(i) x, is the total
claim size (or aggregate clainr amount) up to time t. If N(l) : b,iufin" S.nr(r) :0.
This model is also known as the classical Cramer-Lundberg model for insurance risk.

Figure 1 shows a realization of a risk reserve process (1.g): we see that both the
third claim which occurs at time r : Zrl Zz+ zs and. the fourth claim at time
Tt : T * Za yield a value of the risk reserye process below zero. Hence, r denotes
the first time that ruin occurs; r is a defective r.v. and p(r ( oo) denotes the
probability that ruin will happen at lea^st once; ttre event {r: m} corresponds to
the case that ,R(2, t) is nonnegative for any t ) 0: no zero crossing of the risk reserve
process will occur in (0, m).

X" ,/:
, / :

Figure I Onc realization of the risk resen)e process R(u,t)

It is clear that, for any fixed u, the process .R(u, t) increases linearly with slope c
until a claim occurs, at which point the process has a downward jump, since the
value of ,91,,11; increases at these points.
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Def fn i t i on  Fo ranyu )0  and  0<?<  oo ,  t hep robab i l i t y  o f  rw inh r . , , f i , n i t e t i r ne
horizon" [0, 

"] 
is giuen bg

V(u,T)  :  P(R(u, t )  < 0 for  sonte t  < T) .

The probability of ruin in "infinite time horizon" is defined as llr(u, oo) = limr-_ V(a, T);
or in other words:

W(u )  :  i l r ( u ,oo )  :  P (R(u , t )  <  0  f o r some I  )  0 ) ,  z  >  0 , ( l . s )

that is, W(u) : P(r < m). In section 2 we wil l focus on the statistical estimation of
the probabil ity of ruin V(u) for the special case that the claim sizes X,, 1 < t < N,
are i. i.d. with exponential distribution with mean ), ) > 0. That is, p isexp( l/,\).
In this very special ctrse the probability of ruin *(u) has a sirnple fornr: for arry
u > 0 ,

(  *  " ^ r ( - , ( i - € ) )  ; i t ) < t ' lB
V(u )  :  {  t r . r g )

I  I  ; o t h e r w i s c .

For practical applications in insurance, statistical estimation of V(u,T), for
? = l0 years, say, is perhaps rnore interesting; in the present paper we focus orr
a sirnpler problenr of estirnating \Ir(z). Note that V(u) > !tr(u,T), for any ? > 0;
typically the error we rnake in replacing v(u,?) by w(u) is quite small. In this
conrrection we want to ntention that as early as in lg55 H. Crarrr6r slrowed that if
u + oo, ? - oo andu2fT + 0, then q(") - rlr(t,Z) gets exponentially srrrall (see
Jensen (1995) [12] page 300, for details).

The condition ), < clB is krown as the net profit condition, and also as the
positive safety loading p condition where I -f p : cl {JA. To verify (1.10) we recall the
well-known general formula for the probability of ruin under the net profit conditiorr
\ < c / { J a n d u > 0 :

\ , J  F  \

v(u)  :  l -N) t t fy  ( r -G{ ' )1, , ; ; ,
f '  u  I '

where G(c) : i"ff(t - F(i l)du and G(') denotes the r-fold convolution of G with
itself; V(u) = I if ) > cl?. We refer to Asmussen [l] page 63, or Rolski et al. [14]
page 164, as well as Embrechts et al. [3] page 29. In the importarrt special ca^se t|at
F(r) : P(X Sz) : I - 

"-"/\, 
C reduces to

G(u): * Ir"  r-  ( l  -  
"-v/^))du = 

lo'  l "-ut^da: r  -  e-u/^

This means that not only P but also G \s exp(11\, and consequently G(') is
Gamrna(r, l/,\). By a standard argument) the formula for !Ir(u) in (1.11) can norv

( l . l l )
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be simplified as follows:
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v(,,) : o-Yt E,T,' (r- l,"t-t+*f:,,)

t " : * * " ,  a n d

.\0.,
- t

40,
; t

)0,,
; )

.\0,
c

^ -p

( 1 -

\ r  
-

( r  -

( r  -

l (  l /

^p
c

o":#fr,,
where N is the number of observed claims, provided at least one claim is observed
in I4z. If N : N(W) : 0, no claims have occurred in W - our data set is empty -

and statisticalestimation (of V(u)) is clearly impossible. Note that N : N I N > 1,

exp(-u(t / . \  -  91, ' ))  ,

which is precisely (1.10).

2 Statistical estimation of the probability of ruin

We consider the Poisson risk model for the special case that the claim size d.f. .P
is exp(1/)), with /r dF(r) = ), so that the infinite time probabil ity of ruin has
the simple form given in (1.10). Let rc denotes the expected inter-claim arrival tirne
E21. Clearly n: l/F.

Let us suppose that a single realization (past data) of the compound Poisson

process with rate I f n, S 1,1111 = I-tq) Xi, is observecl in a bourrded window (interval)
[4/, which expands in time. That is, weobserve the inter-arrival tirnes {Z;} and the
cla inr  s izes {X;}  occurr ing in  17.  Let  u:  EN(W):  / lwl :  lWl ln denotes the
expected number of claim arrivals in W; lWl denotes the size or Lebesque r)ea.sure
of l/ and y can be viewed as the expected sample size of our data set. Ftom a single
realization Slo(,), I e W, one can compute

( 2 . 1 )
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i.e. .M is a zero truncated Poisson r.v. Clearly EN-l - oo, while it can be checked
that,8.&-l - u-r, or more accurately (see [8])

EN-r  :  v- |  + u-2 r2u-3 L 6v-a + o(u-a) ,  as, /  + oo I '  D \

Asymptotic expansions like (2.2) cnable us to obtain asymptollic approimations
for the central moments of the empirical mean of claim sizes ,\p and inter-clainr
arrival times tig (c.f. (2.1)). In practice the exact times of the claim arrivals may
not be known to the insurance company, that is, the Zi's were not observed, only
the total number of clairus .lUiW; in l,I/ is observed. In this situation ft6 cannot
be computed; instead onc may cstimate K by llyl/N(W). Note that (2.2) dircctly
y ic lds that  E( lwl lN(W)) :  nr( r ' |  +  O(v-2))  :  n*  O(v- t ) ,  as z -  oo.

We estirrtate the probability of ruin V(u) with its plug-in estimate, which is
obtained by slmply rcplacing tbe unknown parametcrs ,\ and n by their empirical
counterparts )7i' and Rii':

f i  . , *p (  
" ( *  -h ) )  ; i f  ip  (c i ry

(2.3)

; otherwise .

Throughout this paper we will assumc that both the initial capital u and the pr+'
mium rate c are known to the insurance company. One can check that the estimate.s
lp and f;p have the (weak) consistency propt:rty: as u - m, then frV l-, ,\ otr.l
A,v 3 rc. Asyrnptotic rrorrrrality of &p(u) can also bc establishcd, whcnevcr ) < cr".

Theorem For any rtx"d u, as u + (n,

/7  (Q;1"1-v(" ) )  -L  ry(0, '2)

uhere 12 :  r2(u)  :  [V(")12 [ (1+ u l \2 + (1 + u l@n))2| ,  l twuided that  )  < cn.
Iuloreo'uet', if ) > ca, then os L,t + 6,

S,v(" )  e3 t .

ln fact, if ,\ > crc, thc much stronger assertion f(Q"1u) : 1) : 1 - P(lN <
ci") : t - O(e-d"), as t'/ - oo, for somc constant d > 0, also holds truc (c.f

Lerrrrrra). In the border case ) : cK a non-normal weak limit for @(0p12; - f)
appears. We refcr to [9] for details.

Sketch ol proof. We first consider the case that ) < crc. Write

Ap '/n(Qn@)-v(u))r( ip < "f; iv)
Bp : t /n@ *@)- v(u))r( i ,e > . FF),

,",,,: i
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then 1/7(Q7q(u) - E(u)) : AN * BN. For any fixed u ) 0 one can prove that

Ani4ru(0,12) antl A*-30, as v + m. Then Slutsky's theorem yields the desired
result. The main term ,4N can be analyzed by a Taylor expansion (!I(z) is differ-
entiable in ) and rc) and the remainder ternr Bp can be shown to be negligible by
means of the lemma below. We refer to [9] for a complete proof.
Finallv we corrsider thc ciuse that ) > r:rc. The clairn is that, if ) > r'n:, therr
Onu (") 3 1,,o u + @. To check this we rrotc that 0,v(") 3a, t if 1"7,,R * 2 ), f r:n,
because of (2.3). The latter reqtrirelnent, however, is a sirnple corrsequerrce of t lre
(strorrg) corrsistency propcrty of ,\1u, arrd Rp: a-s u + 6), then ,\1y 9\ ,\ ruul
^ t - ^ .  !

In fact, see also [9], one cart show that the theorem rcrnains valid if not orrly
u + @, but also u - oo, provided u/J, - 0. This is of rnuch irrrportance in
insurance applications, as typically the irritial capital u is large and the probability
of ruin will be quite snrall. If both u and v approach infinity, while ul 1/v - 0, we
obtain

(2 . . 1 )

provided ) < crc. If z is f ixcd, thcrr (2.4) yiclds the cla^ssical ordcr v-l lz f.,r t lrt '
rarrdorrr dcvitrt ions V1y(u)/V(tt) - l. Orr the other^harrd, if u + oo, but 'u: o(Jr),
then thc order crf rnagnitudc of the rclative crror V7q(u)/V(u) - t is of a larger or-
der, namely ul1/v. ln view of (2.4), the quantity uf u2 can be seerr as the order of
rnagnitude (up to a constant factor determined by the scale (currency) of u) of the
"effective sample size" for estirnating V(u), as both y and u get large.

In Figure 2 we sce that indeed very large data sets (that is, a very large value
of ru) seenr to be needed before "asymptotic norrnality" really starts to work. Irr
thc lcft pancl, rrorrnality clcarly fails to hold: thc Q-Q plot shows that the distri-
but i t - r I r  o f  V1y(u)  is  h ighly  skewcd to the r ight .  I r r  th is  c i lsc / :  104,  t t  = 103.  scr
L\aI ulJi: 10. In the other two panels ttre cases y : 106, u : 103, respectively
z : 108, u : 103, nrc displal 'ed, corresporrding, to uly' i = I and l/10 respectivcly.
Clearly the distributiorr of Vry(z) is lnuch closcr to thc rrorrrral in thesc two ciLscs.
We refer to Hipp [11] for some related work.

To conclude this section we present a sinrple and useful lemnra which shows that
in a certain sense our estimator (2.3) tor V(u) behaves as one would hope. The
lemma also serves as an important technical tool in our asymptotic analysis; for
instance, it is used in the proof of the theorem. However, the lernma is more general
in scope, as it will also be useful when investigating estin)ators for the probability
of ruin in the Poisson risk rnodel with general claim size d.f. f', that is, estinrators
of  V(z)  g iverr  by ( l . l l ) .

*(?#- ) 
-4' rs(" i*#)
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Figure 2: Nortnal Q-Q plots of v p(u) based on s000 rcolizations of (L.s) simuloted
inW : [O,xu], wherc u: tO4 (left), v:106 (rniddle), and u: t08 (right); with
rc : 10, ) : 9.5, c : l, u: 1000. The tnte probobil ity of ruin!Ir(u) : 0.00492.

The estimator (2.3) of the probability of ruin ilr(u) will take the value I if and
only if lry ) cf;p. The following lemma tells us that, if ) < crc, this unpleasant
event will happen with exponentially small probability as rz gets large, provided
Bernstein's condition is satisfied. This is confirmed by the simulations for various
large values of ru reported in Figure 2: none of the 15.000 values of C1.;n, were found
to be equal to 1.

Lemma suppose that the cornmon d,istribution F of the i.i.d. croim sizes X;, i :
L,2, . . . sotbfies Bernstein's condition: for m :2,3,. . . and some positiue cot.stants
K ond R we haue

Ep I Xt - EXr l*< rnlK^-2 R2 lz . (2  5 )

If ) < crc, then there erists a positiue constant d1 (depending on \ and. n) sach that

. o s v + @ (2 .6 )

Sirnilorly, i,J ),> cn, then P()p < c f;t) : O (e-dru), os y + oo.

sketch of proof. The basic probabilistic tool to prove this lemma is a well-known
property of the Poisson process: conditionally given that .ff = n, the arrival time
Li'=, Z, of the nth claim has exactly the same distribution as the distribution of
the maximum of a random sample of size n from the uniform d.f. on ty : (0,7),
where ?:  rcy.  That  is ,  4( f [1  Znl  N -  n) :  L(T [Jnn) ,  wi th { /n,n denotes the

P ( i r v 2 c i " )  =  O ( " - 0 , " )

r(
/

:

I
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maximum of a sample of size n from the Uniform(0, 1) distribution.
In view of the preceding argument we can write

@ n

/ , ( i t  >c i " )  :  f  r ( f  x ,  >  cT IJn , ^ \  t , (N : r r )  .  ( 2 .7 )
3, 

\ z-l "'/

Wesp l i t  t hesumnra t i on  i n  (2 .7 )  i n  twopa r t s :  N  -  I l ) 1 " ,  w i t h  1 :  { n  e  N : l
n - EN l< et/Efi| for some fixed e ) 0. Therr,

n

r,(ip 2 ' ir) < )- p{, I x, t cTrJ,,,\ +- 
7, \+1 "/

The second term in (2.8) can be bounded as follows:

I rlrv : "; . (2.8)
ne 1,,

I "rr 
- rL): p(! -:E: | > .) < := ,,.r(-,-!i n) (2 e)

n e / ,  
\  / L ' 1 V  

-  / - l - t ' - v  ' \ 2 * r / r / v

The latter inequality is nothilrg but an exporrential bound for zero-truncatcd Poisson
r.v.'s, which can be easily established by slightly modifying the proof of a wcll-known
exponential bound for Poisson r.v.'s (see Reiss [ll]] page222).
Taking e : e(v,a) : ar/i for sonte constant a ) 0, it is easy to check from (2.9)
that

)- r1lt, - rt) = {l(r-a"\ , as r/ r oo. (2.10)z - '  - \  
/

r r ( / ,

with rJ : a2 I Q * o) > 0. It rernains to evaluate the first ternr on the right hand side
of (2.8). To chc.ck that this ternr is also of exponentially snrall order one can appeal
to Bernstein's inequality (c.f. (Z.S)). We refer to [9] for cornplete details. !

Note that Bernsteirr's condition (2.5) is easily checked to be valici for the case
that F is exp(l/)), ) > 0. Bernstein's condition also holds true for rnalry other
d.f.'s i', but typically fails for heavy-tailed claim size d.f.'s. An interesting exarnple
of a clainr size d.f. .P for which Bernstein's condition (2.5) fails is the Pa.reto d.f.,
F(r ) :1-  (1 + x)-2,  for  r  )  0 .  For  th is  s imple heavy- ta i le<l  nrodel  we have that

I x dF(r) is f inite, but /12 dF(r): m. A simple calculation based on Theorerrr
2.1.g of Gut [5] shows that, if ) < cx, then in the Pareto model we have that
P(Ilv > r:R") t 0, :rs u + oo, at a ftrirly slow rate, nzrnrcly sliglrtly slowcr tharr
z- I . I{errce, any estirrrator of the probabil ity of ruirr ( l I I ), which would irrvolvc l l i
and f;p will presumably work less well in such heavy-tailed models, then it does in
cases where Bernstein's condition is satisfied. The case that ) and rc are known, but
F (and hence G) is unknowrr and rnust be estimated from the data, was considered
iry Croux & Veraverbeke f2l.
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