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Abstract. Global approaches for estimating geophysical model parameters have 
been proposed by several authors, including their application for gravity 
interpretation, which is currently limited to simple and fixed geometrical 
problems. This paper proposes implementation of Very Fast Simulated 
Annealing (VFSA) in two-dimensional gravity interpretation problems, which 
are still rarely addressed. The modeling domain was divided into smaller sub-
domains and gravity anomaly calculation was carried out based on the Talwani 
formulation.  To improve the uniqueness of the solution of under-determined 
problems, specific constraints were added in addition to the assumed known 
symmetry axes. The inversion of VFSA was tested on synthetic data generated 
by simple models and on previously published real data to evaluate the 
applicability of the proposed approach to the interpretation of field data. 
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1 Introduction 

The main challenge in all geophysical methods, including gravity modeling, is 
reconstruction of the subsurface distribution of physical parameters based on 
data observed on the surface. Gravity inversion is aimed at obtaining 
information for creating a subsurface model of the density distribution using a 
measured gravity acceleration, called the gravity anomaly. The gravity 
inversion method has been used for example to identify fracture zones [1], to 
monitor magma chamber deformations [2], and to perform data interpretation in 
ore exploration [3-8]. Due to its inherent ambiguity, underdetermined algebraic 
formulation and sensitivity to measurement errors, gravity inversion has the 
potential of producing non-unique and ill-posed solutions. To overcome these 
drawbacks, a prior information is often imposed on the inversion scheme to 
obtain feasible solutions.  

In a two-dimensional (2D) domain, with the restriction that the shape and size 
of each cell comprising the domain are kept constant and with the assumption 
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that the density of each cell is also constant, the associated inverse problem is 
linear. 

Compact gravity inversion [7,9] is regarded by many as a milestone in the 
development of gravity interpretation. It is a stable iterative inversion that 
maximizes the compactness of the causative body or minimizes the volume.  
This method is classified as a linear inversion method, where the imposed 
weights are changed while the iteration is in process. Barbosa and Silva [10] 
improved the compact inversion scheme into a generalized compact gravity 
inversion to allow the compactness to be distributed along symmetry axes using 
Tikhonov’s regulation, invoking the Guillen and Menichetti method [11] to 
ensure the minimum moment of inertia condition for the source. The 
generalized compact gravity inversion is a linear inversion with the addition of 
model updating and weights to the data.  

Silva and Barbosa [12] proposed the so-called interactive inversion, which 
modifies the minimum moment of inertia requirement by adding information of 
the symmetry axis of the anomaly. The algorithm of interactive inversion uses 
the solution of under-determined cases with addition of a damping factor (λ). 
Ekinci [13] performed gravity inversion using the compact method employing 
Talwani equation [1] based forward modeling with addition of a condition to 
stop the iteration process.  

To overcome the ill-posed linear gravity inversion problem, an L-curve 
approach to estimate the regularization parameter and a generalized cross 
validation (GCV) method have been suggested by Vatankhah, et al. [3]. 
Applications of minimum distance, smoothness, and compactness constraints 
were performed by Vatankhah, et al. [14]. Also, Grandis and Dahrin [15] 
proposed minimization of the moment inertia of the causal anomalous object 
with respect to the axes of mass concentration. 

Non-linear inversion of gravity data using a global approach has been done, but 
the causative models are still limited to simple and fixed geometries such as 
dykes, spheres, cylinders, and thin sheets [5,16,17], where the number of model 
parameters is usually smaller than 10, i.e. lower than the number of data (over-
determined problem). In this study, we propose a linear inversion of gravity data 
using a global approach in the form of Very Fast Simulated Annealing (VFSA) 
for under-determined problems where there are more model parameters than 
observed data.  
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2 Forward Modeling and Inversion 

2.1 Forward Modeling 

The forward modeling formulation to calculate gravity anomalies caused by a 
discretized two-dimensional continuous body used in this study is based on the 
work of Talwani, et al. [1] as modified by Blakely [18]:  
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where g is the gravity anomaly at an observation point,  is the gravity constant  
(6.673 x 10-11 Nm2kg-2),  is the density of the rocks, and n is the angle 
between rn (the line from the observation point to a point source) and the 
horizontal (see Figure 1). n and n are geometry factors that are expressed by: 
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and  

 x zn n n n    (3) 

where xn and zn are the horizontal and vertical distance from the observation 
point to the source point, respectively. 

 
Figure 1 Illustration of the subsurface model and notations used for calculating 
the gravity anomaly at the surface. 

Eq. (1) can be expressed in matrix notation as: 

 Gm d  (4) 
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where d is an N x 1 data matrix, m is an M x 1 model parameter matrix, and G is 
an N x M kernel matrix or the forward operators that explicitly control the 
relation between d and m. N is the total number of data and M is the total 
number of model parameters. 

Generally, the root mean squared error (RMSE) is used as a fitness measure 
between observed data and calculated data: 
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where i is the standard data deviation of the i-th element of the data. The 
stopping criteria for inversion are the RMSE minimum value and the maximum 
iteration number. In our VFSA inversion, the RMSE expressed by Eq. (5) is 
regarded as the objective function to be minimized during the iteration process. 

2.2 Very Fast Simulated Annealing Inversion 

An example of a global method is simulated annealing (SA). SA inversion is 
analogous to the thermodynamic process of crystalline formation of a substance. 
At high temperatures, a liquid substance undergoes a slow cooling process 
causing the formation of crystals associated with a minimum energy system. 
From the point of view of geophysical inversion, the cooling process of 
temperature represents an iteration process, the substance represents a model, 
and the energy of the system represents an objective function. During iteration, 
the model will continue to converge toward a solution whose objective function 
is minimum.  

The SA method incorporates the Boltzmann probability distribution. The 
distribution describes the relationship between the probability of a model m at 
temperature T whose energy is  

 E: 
( )

( ) exp( )
E m

P m
kT

   (6) 

where k is Boltzmann’s constant and the system configuration is expressed in M 
parameters (m1, m2, …, mM).  

In the inversion problem, m in Eq. (6) is the model parameter, E is the objective 
function or misfit to be minimized, and T is a fixed control factor, commonly 
referred to as the iterative process controller. Since k is a constant, we can 
always set its value to 1 without loss of generality. Model perturbation is an 
important aspect in SA. It is intended to explore the model space using a 
directed random search.  
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Very Fast Simulated Annealing (VFSA) was first introduced by Ingber [19,20]. 
It is a modification of the SA method that was done for several reasons [21]: 
firstly, in an M dimension model space, each model parameter has a different 
range of variations and each model parameter can affect the function of misfit or 
energy in different ways. Therefore, each of them must have different levels of 
interference from their current position. Secondly, although the SA method was 
a breakthrough in global approaches, its algorithm is not sufficiently precise and 
fast to calculate if the number of Cauchy random numbers is the same as the 
number of model parameters. The effort of determining an M-dimensional 
Cauchy distribution can be averted by using the M-product of one-dimensional 
Cauchy distributions. Ingber [20] has proposed a new probability distribution 
for generating new models that depends on temperature changes.    

The procedure for choosing the best model in the VSFA method can be 
described as follows. The first step is to generate a random initial model (mk) 
that ranges from the minimum to the maximum model according to:  

 min max min( )k
i i i i im m r m m    (7) 

where ir  is a random value between 0 and 1 and min max .k
i i im m m   The next 

step is searching for the updated model using the following rule [19]: 

 1 max min( )k k
i i i i im m y m m     (8) 

where yi is given by: 
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with . 

The last step is implementation of the rule for temperature cooling, which 
follows  

  1
1 exp ,M

k k kT T c k    (10) 

where Tk is the temperature at the k-th iteration, Tk+1 is the temperature at the 
k+1-th iteration and ck is the parameter controlling the decrease of temperature. 
In this study, ck = 1; T0 = 1; the temperature change is taken every 20 iterations 
[16]. The initial model is determined using a constraint applied to the linear 
inversion scheme proposed by Mendonca and Silva [22,23]: 

 1[ ]T Tm G D DGG D I Dd    (11) 

where λ = 0.1 and is an N x N diagonal normalization matrix:  

 1,0iu
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As stated above, the objective function to be minimized in this study is given by 
Eq. (5). The RMSE is slightly different from the functions previously used by 
other authors, for example Biswas [5]. This objective function was chosen 
because of its practicality from an interpretation point of view since it is directly 
expressed in terms of fraction or percentage. 

3 Results and Discussion 

The modeling domain is discretized into 20 x 10 blocks (M = 200). The size of 
each block is 50 x 50 meter. The number of data points generated by the 
forward modeling scheme is 20.  

Two simple test models were used. The first was a horizontal anomalous body 
whose contrast density was 1 gr/cm3 embedded in a background host whose 
contrast density is 0 g/cm3. The second test model was a vertical model whose 
contrast density values were the same as those of the first. These models were 
the same as the models used by Grandis and Dahrin [15] in their work on 
constraining a 2D gravity inversion by using the explicit positions of the axes of 
an anomalous body. The geometry of the test models is depicted by the dashed 
rectangular in Figures 2 and 3. Ten percent random noise was added to the 
generated synthetic data from both test models. The VFSA inversion for the 
first model imposed the assumed axis of symmetry at x = 500 m and for the 
second model at y = 250 m. The range of the minimum and maximum initial 
models was bounded between 0 and 0.5 g/cm3. The minimum-maximum range 
was known from the execution of Eq. (11). When the models were located 
around the assumed axis, then mmin = 0 g/cm3 and mmax = 1 g/cm3, and when they 
were far from the axis, then mmin = 0 g/cm3 and mmax = 0.5 g/cm3.  

Although both of these inversions were given some constraints, the inversion 
solution still did not exhibit the same results as the actual models (see Figures. 2 
and 3). To improve the fitness between the test models and the inverted models, 
specific constraints were added to the inversion schemes. For the first model, 
the vertical axis was kept between x = 200 m and x = 750 m, while the 
horizontal axis was kept at y = 250 m. In a real situation, these values may 
represent the constraints from a geological study. For the second model, the 
vertical axis was kept at x = 500 m and the horizontal axis was bounded 
between y = 50 m and y = 450 m. For areas within the specific constraints, 
models were sought between mmin = 0.35 g/cm3 and mmax = 1.5 g/cm3, while for 
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areas outside the constraints they were sought between mmin = 0 g/cm3 and mmax 

= 0.5 g/cm3.  

 
Figure 2 VFSA inversion for synthetic data generated by the first (horizontal) 
model. The dashed red box shows the actual test model. 

 
Figure 3 VFSA inversion for synthetic data generated by the second (vertical) 
model. The dashed red box shows the actual test model. 
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The advantages of VFSA inversion are its capability to give a solution that 
indicates the presence of the causative body and its robustness to noise 
embedded in the data, as can be seen from the inverted models (see Figures. 2, 
3, 4(a) and 4(b)).  

 
Figure 4 VFSA inversion with specific constraints for (a) the first model and (b) 
the second model. 
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However, the VFSA inversion still does not reveal geometrical constraints that 
are very close to those of the test models. Other examples of inversion results in 
which the test models cannot be fully recovered using a global approach can be 
found in Jin and Tao [24], who tried to address a linear 2D geomagnetic inverse 
problem. Nevertheless, their results indicated better recovery of the test models 
since they used fewer model parameters compared to this study. A seemingly 
better recovery of the test models for another linear 2D geomagnetic inversion 
using a global approach was achieved by Liu, et al. [25] using K-means 
clustering for constraining the model parameters. 

The number of model parameters is far higher than the number of data. This 
affects the stability of model parameter randomness and the ambiguity of the 
revealed model for the given constraints in the inversion. Furthermore, the 
VFSA inversion requires long computational time because of the slow decrease 
of minimum temperature. Nevertheless, it has low possibility to be trapped in a 
local minimum, as can be observed from the continuously decreasing RMSE as 
the iteration progressed (Figure 5). The maximum iteration numbers for 
inversion of the horizontal and the vertical model were 3000 and 4000 
respectively. 

Figures 5(a) and 5(b) depict the values of RMSE and temperature of the 
horizontal and the vertical model for cases without application of the specific 
constraints where the RMSE values decrease rapidly after the 100th iteration and 
reach values below 0.02 and 0.04 respectively at the 3000th iteration. On the 
other hand, incorporation of specific constraints to the inversion scheme yields a 
better closeness between the test models and the inverted ones (Figures 4(a) and 
4(b)). However, the RMSE values for the latter cases are constricted to higher 
values (about 0.16 for the first model and 0.18 for the second model), as can be 
seen from Figures. 5(c) and 5(d). 

The VFSA inversion was applied to a profile of residual anomaly gravity in 
order to evaluate the applicability of this scheme to real data. Following Last 
and Kubik [9], data measured by Templeton [26] from the Woodlawn ore body 
situated in southeastern area of New South Wales, Australia were used. A 
gravity profile called Line K was used with the distance between the two 
gravity stations at 30.5 m (Figure 6(a)). The area contains a massive sulphide 
deposit at shallow depths and a copper mineralization deposit at greater depths. 
Briefly, the ore body can be ascribed to a copper-lead-zinc deposit produced by 
volcanic activity rooted in volcanic host rocks [26].  

The modeling domain was discretized into 11 x 11 boxes, with the dimensions 
of each box at 30.5 x 30.5 m2 (Figure 6(a)). The density contrast between the 
anomalous target (sulphide deposit) and the host rock was set to 1000 kg/m3. 
The specific constraints were applied using  = 0.001 after several tests and the 
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number of iterations was set to 2000. The values of the inverted density contrast 
are shown by colors filling the boxes. A box in the i-th row and j-th column is 
indicated as boxi,j. The presence of high density contrasts at box7,1, box8,1 and 
box9,1 are in accordance with the existence of massive sulphide capped by 
gossan at the surface dipping into the subsurface [26], as indicated by the solid 
red lines in Figure 6(a). This result is in accordance with that of the compact 
gravity inversion by Last and Kubik [9]. However, the VFSA inversion also 
revealed high contrast density at box10,1 which may be attributed to the presence 
of an ore body surrounded by rock of lower density.  

 
Figure 5 (a) and (b) are the VFSA inversion parameters (RMSE and temperature) of the 
first and the second models in Figure 2 and Figure 3, respectively, when using no 
specific constraints. Meanwhile, (c) and (d) are the RMSE and temperature of the first 
and the second model in Figure 4(a) and Figure 4(b), respectively, when using the 
specific constraints. 

The appearance of vertical artifacts on the edges of the source body (see Figure 
6(a)) may be caused by improper selection of constraints. The selection of 
vertical and horizontal constraints cannot compact the model in case of a 
dipping model as in Last and Kubik [9]. This is because there are still model 
spaces between the constraints that are free to have any value of density 
contrast.  
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Figure 6 (a) Residual gravity anomaly from Templeton [24] and the subsurface 
modeling domain. The solid red line depicts the area where the presence of 
sulphide ore body was identified by Templeton [18] and by Last and Kubik [9] 
using compact gravity inversion. (b) RMSE variation and temperature decrease 
with respect to number of iterations.  
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The final value of the density contrast depends on the RMSE value of the 
accumulated results of all model parameters, which is a result of the ambiguous 
nature of gravity modeling. When density values are selected on the above 
model spaces that produce the smallest RMSE, then the inverted model that still 
has artifacts can be considered the best model to represent the real model. 
Certainly, this is an example of the weakness of using vertical and horizontal 
constraints for targets with a dipping geometry. 

The variation of RMSE values as the number of iterations progresses is shown 
in Figure 6(b). They reach stability after about 100 iterations. This stability 
reflects the stability of the inverted solution, which also indicates that the global 
optimum is reached at a slow decrease of temperature, as depicted in Figure 
6(b). 

4 Conclusions 

The application of Very Fast Simulated Annealing (VFSA) inversion to a 
continuous two-dimensional gravity problem was implemented. The modeling 
domain was discretized into smaller sub-domains or boxes and a Talwani-based 
formulation was used to calculate the residual gravity response at the stations on 
the surface. This attempt may be regarded as a completion of previously 
reported applications of VFSA for cases of simple and fixed geometries. The 
VFSA scheme was tested by inverting gravity data generated by simple models. 
Ten percent of random noise was added to the data before inversion. Due to 
inherent under-determined nature of the problem and noise in the data, the 
results showed that insertion of a symmetry axis as a constraint is not adequate 
to reveal an inverted model that is close enough to the test model. Addition of 
specific constraints to the problem improves the closeness of the inverted 
models to the test models, even though it cannot provide an exact fit. Within the 
scope of this study, VFSA inversion ensures the stability of the solution, which 
can be attributed to the achievement of a global optimum and robustness against 
noise at the expense of time computation. 

This VFSA scheme was tested also to invert real data measured in a previously 
published massive sulphide complex. The results more or less show reliable 
applicability of this scheme for use in two-dimensional gravity interpretation. 
However, the limitations of this scheme should be borne in mind, particularly 
regarding artifacts that emerge in the inverted density model. 
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