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Abstract. In this paper, a new hybrid conjugate gradient method for solving 
monotone nonlinear equations is introduced. The scheme is a combination of the 
Fletcher-Reeves (FR) and Polak-Ribiére-Polyak (PRP) conjugate gradient 
methods with the Solodov and Svaiter projection strategy. Using suitable 
assumptions, the global convergence of the scheme with monotone line search is 
provided. Lastly, a numerical experiment was used to enumerate the suitability 
of the proposed scheme for large-scale problems. 
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1 Introduction 

Nonlinear problems are of great interest to engineers, physicists, 
mathematicians and many other scientists. The natural behavior of nonlinear 
systems is described in mathematics by a system nonlinear of equations. 
Consider the nonlinear system  

 ( ) = 0,g x  (1) 

where the function : r ng R R  is a continuously differentiable. The system is 

described as an overdetermined system when >n r , and classified as 
underdetermined when >r n . Moreover, when =n r , then the system is 
referred to as a square nonlinear system. Specifically, the system is considered 
to be monotone whenever  

 ( ( ) ( )) ( ) 0, , .T rg x g s x s x s R      (2) 

The purpose of this hybrid method is to provide an alternative approach for 
globally converging large-scale monotone equations with a smaller 
computational burden and less CPU time consumption without computing the 
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Jacobian matrix. Popular schemes for solving Eq. (1) are the Newton and quasi-
Newton methods [2,4,13,14]. They use the iterate  

 1

1 = ( ( )) ( ), = 0,1, 2, .'

k k k kx x g x g x k
    (3) 

Interesting qualities of these schemes include rapid convergence and easy 
implementation. However, they are generally not much used for solving large-
scale monotone equations because they have to compute and store the Jacobian 
matrix or its approximation at every iteration. Conjugate gradient (CG) methods 
are specifically attractive due to their smaller memory requirement for large-
scale problems. Waziri and Sabi’u [9] developed a CG method for solving 
symmetric nonlinear equations. They demonstrated the global convergence for 
their method with the aid of a non-monotone line search. The numerical 
comparison indicated that their scheme is reliable and competent. In line with 
the literature, Cheng and Li [5] extended the prominent Hager and Zhang non-
monotone line search method [10] to solve large-scale nonlinear systems. 
Furthermore, a significant number of conjugate gradient methods have been 
proposed in the literature, among others [1-3,6,8,16-19]. Comprehensive 
numerical results evidenced that each method is appropriate for large-scale 
problems. This paper presents three-term hybrid Polak-Ribiére-Polyak (PRP) 
and Fletcher-Reeves (FR) CG methods for large-scale monotone equations. It is 
organized as follows: in Section 2 we give the details of our approach followed 
by the convergence result in Section 3. Numerical comparisons can be found in 
Section 4 and the conclusion is given in Section 5. 

2 Details of the Proposed Scheme  

Given a point 𝑥଴, the CG method generates the following iterates:  

 1 1= , = 1,2k k k kx x d k    (4) 

where the term 𝑑௞ is the conjugate gradient direction and 𝛼௞ is the step size to 
be computed using typical line search (Backtracking, Armijo or Wolfe line 
search, and others). Let 𝑣௞ ൌ 𝑥௞ିଵ ൅ 𝛼௞𝑑௞ିଵ. The hyperplane  

  = | ( ) ( ) = 0r T
k k kH x R x v g v   (5) 

strictly separates 𝑥௞ from the solution set of Eq. (1). From this fact Solodov and 
Svaiter in [7] denoted the next iterate 𝑥௞ to be  

 1
1 2

( ) ( )
= ( ).

|| ( ) ||

T

k k k
k k k

k

g v x v
x x g z

g v





  (6) 

In the work of Zhang, et al. [14] the CG direction is given as  
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1 1

, = 0,
=

, 1,
k

k PRP PRP

k k k k k

g for k
d

g d y for k  



   




 (7) 

 where 1

2

1

=
T

PRP k k
k

k

g y

g
 

 
 and 1

2

1

=
T

PRP k k
k

k

g d

g
 

 
. Motivated by the above ideas of 

Zhang et al. [14], we present a hybrid three-term CG direction as:  

Recall that from [1], 
2

2

1

=FR k
k

k

g

g




 
 

 and 1 1

2

1

=
T

FR k k
k

k

d y

g
  

 
. Now we define our 

rigorous direction to be  

 
* *

1 1

, = 0,
=

, 1,
k

k H H

k k k k k

g if k
d

g d y if k  



   




 (8) 

where  

 
 2

1*

2

1

min ,
= ,

T

k k kH

k

k

g y g

g
 



 

 
 and 

 1 1 1*

2

1

min ,
= .

T T

k k k kH

k

k

d y g d

g
   

 
 (9) 

For the computation of stepsize 𝛼௞, the derivative free line search used in [11] 
is an interesting idea. Let, 𝛼௞ ൌ max ሼ𝑠, 𝑟𝑠, 𝑟ଶ𝑠, … ሽ, satisfying 

 2( ) ( ) .T
k k k k k k k k kg x d d g x d d         (9) 

Algorithm 

Step 1 : Given 𝑥଴, 𝑟, 𝑟𝜔 ∈ ሺ0,1ሻ, set 𝑘 ൌ 0 and 𝑑଴ ൌ െ𝑔଴. 
Step 2  : Verify the stopping conditions. If yes, then stop; else go to Step 3.  
Step 3 : Use Eq. (8) to compute 𝑑௞. 
Step 4  : Determine 𝛼௞ by Eq. (10). 

Step 5 : Compute 1
1 2

( ) ( )
= ( )

|| ( ) ||

T
k k k

k k k
k

g z x z
x x g z

g z





 . 

Step 6  : Allow 𝑘 ൌ 𝑘 ൅ 1 and repeat step 2. 

3 Convergence Result 

For our algorithm to converge globally, we assume that 𝑔 is Lipschitz continous 
and for 𝐿ଵ, 𝐿ଶ ൐ 0 we have  

 1( )g x L   and 2( ) .g v L   (11) 
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Lemma 3.1 Assume 𝑔ሺ𝑥∗ሻ ൌ 0 and ሼ𝑥௞ሽ as obtained by our algorithm. We 

obtain 
* 2 * 2 2

1 1k k k kx x x x x x           . Hence, ሼ𝑥௞ሽ is bounded and 
= 2

1=0
<

k

k kk
x x



     .  

Lemma 3.2 [8] Let ሼ𝑥௞ሽ and ሼ𝑣௞ሽ be computed by the proposed algorithm. We 
obtain  

 
2

*

2
,

, ( )
H k

k k

k k

g
min

L g v d


 






 
 
 

 
  

 (12) 

Where '
1= k k kz x d   . 

Theorem 3.3 Suppose ሼ𝑥௞ሽ is obtained by our algorithm. Let 𝑠௞ ൌ 𝑥௞ െ 𝑥௞ିଵ.  
Then 

 = = 0,lim limk k k
k k

d s
 
     (13) 

Proof.  

 1 1
1

| ( ) ( ) | ( )
=

( ) ( )

T

k k k k k k
k k

k k

g v x v g v x v
x x

g v g v
 



 
 

  
 

   
 (14) 

 = = .k k k kx v d     (15) 

Theorem 3.4 Let ሼ𝑥௞ሽ be generated by our algorithm. Then  

 ( ) = 0.liminf k
k

g x


   (16) 

Proof. Assume Eq. (16) does not hold, i.e.  

 ( ) , 0.kg x k     (17) 

Clearly, k kg d    , which implies  

 , 0.kd k     (18) 

Observe that,  

 1= ( ) ( ) ,k k k ky g x g x L s        (19) 

from the defintion of 𝛽௞
ு∗ we have  
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 * 1

1

min ,
| | ,H k

k

L s L

L
 

 
 (20) 

 Also, for 𝜃௞
ு∗ we get  

 
 * 1

1

min ,
| | .H k

k

L s L

L

 
 

 
 (21) 

Therefore, we let the following inequalities be true for all 𝑘 ൒ 0. We obtain  

 * *

1| | |H H

k k k k k kd g d y          

 
   1 1

1

1 1

min , min ,k kL s L L s L
L

L L

 
  

   
  

 
 1

1

1

min ,
.kL s L

L
L

 
 

  (22) 

 Let 
 * 1

1

1

min ,
= kL s L

M L
L


 

. We get  

 *.kd M   (23) 

This combined with Lemma 3.2 and Eq. (11) and inequalities kd   , 

kg    implies for all k  sufficiently large,  

 
2

*

2
, > 0.

, ( )
H k

k k k k

k k

g
d min d

L g v d


 






 
 
 

 
   

  
 (24) 

The last inequality gives a contradiction with Eq. (17). Therefore, Eq. (16) is 
true and hence the proof. 

4 Numerical Experiment 

In this section, our algorithm is compared with the three-term Polak-Ribiére-
Polyak (TPRP) CG method [6]. For both algorithms we set 𝜔 ൌ 10ିସ, 𝑟 ൌ 0.2 
and 𝑠 ൌ 1. The code was implemented in Matlab 7.4 R2010a and run on a 
computer with 4 GB RAM memory capacity and a 1.8 GHz CPU processor. 
Iterations were stopped when the number of iterations was greater than 2000 or 
‖𝑔௞‖ ൑ 10ିସ. Eleven problems were tested to demonstrate the robustness of 
our algorithm compared to the TPRP method.  
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Problem 1  

 ( ) = 1, = 1, 2, ,
x j

jg x e j n    

Problem 2  

 2 2

1 1 1 2( ) = ( ) 1g x x x x    

 
2 2 2

1 1( ) = ( 2 ) 1, = 1, 2, , 1j j j j jg x x x x x j n      

 2

1( ) = ( ).n n n ng x x x x    

Problem 3 For = 1, 2, , / 3,j n   

 
2

3 2 3 2 3 1 3( ) = 1,j j j jg x x x x      

 2 2

3 1 3 2 3 1 3 3 2 3 1( ) = 2,j j j j j jg x x x x x x         

 3 2 3 1
3 ( ) = .

x xj j
jg x e e

     

Problem 4 For = 2, 3, , 1j n    

 
3

1 1 2 1 2 1 2( ) = 3 2 5 sin( ) sin( )g x x x x x x x      

 21

1 1 1 1
( ) = (4 3 ) 2 sin( ) sin( ) 8,

x x
j j

j j j j j j j j j
g x x e x x x x x x x




   
         

1
1

( ) = 4 3.
x x
n n

n n n
g x x e x





     

Problem 5  

 
( )1 2

1
1 1( ) =

cos x x

ng x x e


   

 

1 1

1( ) = , = 2,3, , 1

x x xj j j

n
j jg x x e j n

  

   

 
cos( )1

1( ) = .
x xn n
n

n ng x x e


   

Problem 6  

 2
1 1 1( ) = cos( ) 9 3 8

x
g x x x e  

 

 
1( ) = cos( ) 9 3 8 , = 2,3, ,

x j
j j jg x x x e j n      

Problem 7  

 2( ) = ( 3) log( 3) 9, = 1, 2,3, ,j j j jg x x x x j n      

 
 



            Solving Large-scale Monotone Nonlinear Equations 23 
 

Problem 8  
2 2( ) = ( 1) 2, = 1, 2,3, ,j jg x x j n     

Problem 9  

 

2

1

1
( ) = 4 ( 2 ) , = 1, 2, , 1

3

j

j j j j

x
g x x x x j n




      

 

2

1

1
( ) = 4 ( 2 ) .

3

n

n n n n

x
g x x x x 


     

Problem 10  

 
2 2

2 1
1 1 2
( ) = sin( ) 4

x x

g x x x e
 

    

 
(2 )

1
( ) = sin(2 ) 4 2 2 (2 ) , = 2,3, ,

x
j

j j j i
g x x ex x cos x e j n



          

Problem 11 

 
=1

( ) = ( 2) cos( 2) 1, = 1, 2, 3, ,
n

j j jj
g x x x j n      

From Figures 1 and 2 it can be observe that our proposed algorithm has the 
advantages of using less CPU time and less iterations over TPRP in almost all 
the eleven problems tested in our experiment using Dolan and Moré’s 
performance profile [20].  

 
Figure 1 Performance profile of our algorithm versus the TPRP method [6] for 
number of iterations. 
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Figure 2 Performance profile of our algorithm versus the TPRP method [6] for 
CPU time in seconds. 

5 Conclusion 

This article proposes an effective new hybrid approach for solving monotone 
nonlinear equations with less iterations as well as less CPU time consumption 
without computing the Jacobian matrix. The numerical results show that this 
method is more efficient compared to TPRP [6]. The extension of this method 
to a more general system of smooth and nonsmooth equations will be 
investigated in a future research.  
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