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Abstract. For GSTAR models, the least squares estimation method is commonly 
used since errors are assumed be uncorrelated. However, this method is not 
appropriate when errors are correlated, either in time or spatially. For these 
cases, the generalized least squares (GLS) method can be applied. GLS is more 
powerful since it has an error parameter that can act as a controller of the model 
to produce an efficient estimator. In this study, R Software was used to estimate 
GSTAR parameters. The resulted model was applied to real data, i.e. the 
monthly tea production of five plantations in West Java, Indonesia. The best 
model for forecasting was the GSTAR(1;1) model with temporally correlated 
error assumption. 

Keywords: autoregressive parameters; correlated error; forecasting; least squares; 
space-time series. 

1 Introduction 

The Generalized Space Time Autoregressive (GSTAR) model can be used to 
forecast several locations simultaneously with a sequence of observations based 
on time. For example, the exchange rate of the dollar against a number of 
currencies in a region. The research development of this model is attractive, 
either for mathematical modeling or for applications. In GSTAR modeling, the 
error assumption must be considered, since it can influence the estimation of the 
model parameters. It is common to assume that the errors are independent with 
identically normal distribution, as is often the case in time-series modeling. 
More challenging in modeling space-time observations is forecasting future 
values in unobserved locations. This can be done by combining GSTAR and 
kriging modeling, which gives better results than combining time-series and 
kriging modeling [1].  

If spatial dependence among locations exists, then involving this dependence as 
early as possible is better. Furthermore, there is a chance that dependence not 
only exists between observations temporally or spatially but also between 
errors. Because of this, the independent error assumption is not always 
satisfactory for data that have a dependency in errors in time and/or space.  
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Several researchers have done work in the field of error assumption. Nurhayati 
[2] has developed a spatially correlated error assumption for the GSTAR(1;1) 
model, while Fadlilah, et al. [3] defined the martingale difference process as a 
cross product of two consecutive errors. Both assumptions maintain the linear 
model form of the GSTAR(1;1) process, so that the ‘family’ of least squares 
estimation can still be applied. GSTAR models have been widely applied in 
various fields. Nurhayati, et al. [4] applied GSTAR(1;1) to GDP data of 
European countries. Mukhaiyar and Pasaribu [5] identified the GSTAR(2;3,0) 
model for the monthly tea  production of a number of plantations in West Java 
through the new Inverse of Autocovariance Matrix (IAcM) approach. Fadlilah, 
et al. [3] applied GSTAR(1;1) to weekly red-chili prices in traditional markets 
in Bandung. The first two applications considered an independent and normal 
distribution of errors, while the last one considered temporally correlated errors.  

This paper is divided into six sections. Section 2 briefly explains GSTAR as 
well as the different ways of selecting spatial weights. Section 3 examines 
GSTAR with various errors assumptions, from an independent (uncorrelated) 
identical normal distribution of errors to dependence of errors, both temporally 
and spatially correlated. Our simulation study is discussed in Section 4. 
Application of this model with each of the assumptions is discussed in Section 
5. Conclusions and remarks are put forward in Section 6.  

2 GSTAR  

GSTAR is a special form of the vector autoregressive (VAR) model. A process 
vector at time t, 1 2( ) ( ( ), ( ),..., ( )) 'Nt Y t Y t Y tY , which involves N spatial 

locations, follows the GSTAR process p-time order and spatial order 1 2, ,..., p  

, written as GSTAR  1 2; , ,..., pp     [6]  if 
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with   
k  : autoregressive time order k = 1, 2, ..., p  
ℓ : spatial autoregressive/location order ℓ ൌ 0, 1, 2, … ,    ௞ߣ
   ሻ : errors  at time t on location iݐ௜ሺߝ

௜௝ݓ
ሺ௜ሻ : spatial weight location j related to location i in the ℓ-th spatial order 

∅௞ℓ
ሺ௜ሻ : autoregressive parameters for k-time order and the ℓ-th spatial order  
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The GSTAR modeling follows Box-Jenkins’ three stages of time-series 
analysis. These are: model identification, parameter estimation and diagnostic 
checking. Identifying the space-time model is carried out with the STARMA 
model by Pfeifer and Deutsch [7], which uses the space-time autocorrelation 
function (STACF) and the space-time partial autocorrelation function 
(STPACF). In time-series analysis both of these functions are similar to the 
autocorrelation function (ACF) and the partial autocorrelation function (PACF).  

In space-time analysis, the spatial weights of the model greatly affect the 
parameter estimation, which distinguishes it from time-series analysis. Until 
now, the selection of spatial weights is subjective, depending on the researcher. 
There are several ways of selecting the weights to be used: with uniform, binary 
and non-uniform weight [5], based on the distance matrix and the inference of 
cross correlation [8], where weighting of locations can be done by 
normalization of the cross correlation magnitudes between locations during the 
corresponding process. In addition, by defining the spatial weights, the level of 
geographical adjacency between two locations is quantified, which is a major 
feature of the space-time model. This spatial weighting then establishes a well-
defined weight matrix for each observed spatial lag. The spatial weight value 
starts from zero and goes to one. Zero indicates the loosest relationship between 
two observed locations, while one indicates the closest relationship. 

For simplicity, a uniform weight was chosen for the GSTAR modeling in this 
study. Location grouping at uniform weight was carried out by order of the 
distance between two locations. The weight was determined based on the 
numbers of neighbor locations within a certain spatial lag for a certain location. 

This is expressed as  
 
1

ij

i

w
n


 , where i is a neighbor of j and zero in all other 

cases, where  
in 

 is the number of the nearest neighbors of location i  in the 

same spatial lag  . 

3 Estimation of GSTAR Model Parameters 

One of the most important stages in modeling is the parameter estimation. The 
general procedure of space-time modeling is shown in Figure 1. This procedure 
was taken from Mukhaiyar and Pasaribu [5] and slightly modified regarding 
parameter estimation. The least squares method is commonly used in the 
estimation stage but it is only effective for GSTAR with independent error 
assumption. Correlated error assumption, both temporal and spatial, requires 
another method, such as the generalized least squares (GLS) method. 
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Figure 1 Procedure of space-time modeling. This procedure adopts Box-
Jenkins’ three iterative stages of time-series analysis. 

3.1 Uncorrelated Errors (Independent Errors) 

GSTAR parameter estimation with error independence assumption can be 
conducted using the least squares (LS) method. This method is widely used for 
linear models. LS  estimators obtained by minimizing the sum of squares of 
errors are commonly used in regression models and have been proven in the 
GSTAR(1;1) model [2]. 

There are several assumptions regarding errors that need to be considered when 
using LS. Independent errors with zero mean and constant variance are the main 
assumptions used, beside normal distribution. From Eq. (1), where 11,  1p  
, the GSTAR(1;1) model can be derived as: 
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where 0i  and 1i  are autoregressive parameters of zero and first spatial lag, 

respectively, for the first time lag in location i. Furthermore, ijw  implies the 
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influence of location j on location i at the first spatial lag.  The model expressed 
in Eq. (2) can be seen as a multiple linear regression model with random 
covariates 

 = +Y X εΦ  (3) 

with 
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Since ( )i t , the model is assumed to be identical, independent and normally 

distributed with zero mean and constant variance 2 , such that the vector of 
errors is  2, NT  0 I .  The LS estimator for vector   is  

   1
' '  X X X Y  (4) 

This estimator is unbiased and has the smallest variance among the other 
unbiased linear estimators.  

Theorem 1. [6] Estimation vector LS   as defined in Eq. (4) is an unbiased 
estimator and has the smallest variance in the set of unbiased linear estimators. 

Proof.  Let    1
' '  X X X Y

 
be an LS estimator. Since  2, NTε 0 I , we 

can write   0E   . Given that the error vector ( )tε does not correlate with the 

observation vectors in the past, as gathered in the explanatory matrix X, the 

conditional expectation error vector  |E ε X 0 . We can write  

   1| ( ' ) ' |E E    
 X X X X ε X 0 . 

In other words, this shows that   is an unbiased estimator for . Furthermore, 

we may obtain that   has the smallest variance in the set of unbiased linear 
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estimators. Suppose that 
*

  is an unbiased estimated estimator for   then 
* |E    
 X 0 . We take  
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for the U function matrix of X, so we have  
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Since each of the diagonal entries of 'UU  have a quadratic form, it is a positive 

semi-definite matrix. This implies  *cov( | ) cov( | )  X X . This shows that 

  has the smallest variance in the set of unbiased linear estimators. 

3.2 Temporally Correlated Errors (Martingale Difference 
Process) 

In fact, the independent error assumption is usually difficult to satisfy, 
especially when associated with spatial independence. This assumption provides 
facility in data processing as well as when investigating the behavior of the 
parameter estimators, particularly in terms of convergence, since the central 
limit theorem and weak law of large numbers can be easily applied. However, if 
the independent error assumption is removed, then some laws cannot be easily 
applied and the convergence of LS estimators also needs to be reviewed.  

Consider the vector of errors  1 2 N( ) ( ), ( ),..., ( ) 't t t t  ε  as a multivariate and 

normally distributed  2, N 0 I . It is admitted that independence between 
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locations will be very difficult to satisfy, since the characteristics (behavior) of 
the different locations will affect each other in line with time. Its errors will be 
assumed to follow a martingale process (over time). A martingale process gives 
weaker conditions than independent conditions, yet is stronger than uncorrelated 
conditions. As a result, the least squares estimated parameters will not 
automatically approach a multivariate normal distribution (the central limit 
theorem does not automatically apply). 

Suppose  , , P   declares the probability space, and filtration 

 ( ), 1, 2, ...t t   is the increasing monotonous sequence of field   contained in 

 . If it is associated with the time series, filtration ( )t  is built up by all 
information occurring until time t, while for a new time t, the old information 
will be contained in a new filtration. Therefore this is called an increasing 
monotone sequence. 

The process ( )t  of filtration ( )t  is said to be a martingale process if the 

mean  | ( ) |E t    and the conditional expectation  ( 1)( ) | ( 1).E t t t    

Meanwhile, the process ( )t  of filtration ( )t  is said to be a martingale 
difference process if the mean is zero and the unconditional expectation is also 
zero. 

Suppose ( )t  is a martingale process and ( )t  are defined as  

( ) ( ) ( 1)t t t      , and if ( 1)t   is the filtration, so ( )t  and ( )t  measure

( )t , then ( )t  is a martingale difference process since its mean is 

 [ ( )] [ ( )] [ ( 1)] 0E t E t E t       (5)  

and its conditional expectation is 

   ( ) | ( )( 1) (| ( 1)1 0.)E t E t tt t         

This shows that ( )t  follows a martingale difference process. 

Now, if we define 
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then X in Eq.(3) 

can be written as ' [ (0) (1) ( 1)]
i i i i i

Y Y Y T X U  . 

Furthermore, it can be written as 
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   ' Y(0) Y(1) Y( -1)T X U I   (6) 

with  1 2( , , ..., )NdiagU U U U . The Kronecker delta operator of A B  to a 

matrix N NA  and N TB  represents the matrix block, so that matrix A B  has a 

size of 2N NT . 

It is obtained that 

 ' '( ) ' '       X X X X X X X  

where X and ε  have the same structures as in Eq. (2). 
Then, 

  ' '   X X X  

 ' ' X X X  (7) 

which has a solution if the matrix 'X X  is a non-singular matrix. From Eq. (7), 
this can be written as 

 
1

' Y(t-1)Y'(t-1) '
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t
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 
 

X X U I U  

 
1

' (Y( 1) ( ) ')
T

t

vec t t


  
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 
X ε U ε  (8) 

The operator 2(.)vec  is the vectorization operation of a matrix, i.e. the 

transformation of a matrix  N N  into vector  2 1N  . Vector ε  in Eq. (8) is 

called the vector time correlated error (TCE) and   is the TCE parameter, 
defined as 

 ( ) ( 1) ( )i i it t t      (9) 

The statement in Eq. (9) results in TCE vector ( )t  being a process that is 
independent in location but temporally correlated. A linear representation of the 
GSTAR(1:1) model with TCE is shown in Proposition 2. 

Proposition 2. Let the GSTAR(1;1) model in Eq. (2) have an error vector ( )t  

that satisfies TCE as Eq. (9). Then the model can be expressed as a linear 
model of 
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 *Y  X υ  

with the response vector *,  * ( (0),* (1), , ( 1)) 'i i iY T      Y ε ε  , matrix 

explanatory X, and error vector  
1
, , '

N
 υ   with vector 

 (1), , (T) '
i i i

    . Meanwhile, vector Y and matrix X are defined as in Eq. 

(3).  

Proof.  Let the GSTAR(1;1) model in Eq. (1) have an error vector ( )t  that 

satisfies TCE as Eq. (9).  Then we can write the error vector ( )t  that satisfies 
TCE as  

 

*

*





 

  

ε ε υ

υ ε ε
 

where * ( (0), (1), ..., ( 1)) '
i i i

T   ε . Then we substitute into Eq. (3) and we 

obtain 

 *   Y X ε υ  

 *    Y ε X υ  

Then, we have linear model *Y  X υ . 

3.3 Spatially Correlated Errors 

Nurhayati [2] found that the LS estimator in the case of a spatially correlated 
error (SCE) is unbiased but less efficient (no minimum variance), so it is 
necessary to find an alternative method that is more effective and efficient. The 
method used to estimate the parameters with correlated error assumption is the 
generalized least squares (GLS) method. Another name for this method is the 
seemingly unrelated regression (SUR) method, as used by Iriany, et al. [9]. 

The GSTAR modeling procedure with spatially correlated error assumption is 
generally the same as the GSTAR modeling procedure with independent error 
assumption. The difference is that GLS is used for parameter estimation. The 
GSTAR(1;1) model with SCE can be defined as a linear model of Eq. (1) with 
errors 

 
J

( ) ( ) ( )i ij j i
j

t w t t   


   (10)                                               
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Where ρ refers to the SCE parameter, with a value that is a scalar form between 
-1 and 1, and error ( )i t  is an independent random process, with zero mean and 

constant variance, 2   . 

Error ( )t  in Eq. (10) can also be expressed in vector form as  

 ( ) ( ) ( )t t t    W   or   ( ) ( )
N

t t   I W  

with vector  
1

( ) ( ), , ( ) '
N

t t t     is an independent random process with zero 

mean and covariance 2

N
 I . 

Furthermore, matrix  
N

I W  is called the spatial operator, vector ( )t  is 

called the SCE vector, and vector ( )t  is called the error vector. If the spatial 

operator is assumed to be nonsingular, then SCE vector ( )t  can be expressed 

linearly in vector form ( )t  as  

   1
( ) ( )

N
t t  
 I W  (11) 

The statement in Eq. (11) results in SCE vector ( )t  being a process that is 
independent in time but spatially correlated. A linear model representation of 
GSTAR(1:1) with SCE is shown in Proposition 3. 

Proposition 3. [2] Let the GSTAR (1; 1) model in Eq. (1) have an error vector 

( )t  that satisfies SCE as in Eq. (11). Define matrix  =
T ij T

w A W I I  so that 

matrix  
NT

I A  is nonsingular. Then the model can be expressed as a linear 

model of 

 * *Y = X + η  

with response vector  *

NT
 Y I A Y , matrix explanatory  *

NT
 X I A X  

and error vector  
1
, , '

N
     with vector  (1), , ( ) '

i i i
T    . While vector 

Y and matrix X are defined the same as in Eq. (3). 

Proof. Let GSTAR (1; 1) in Eq. (1) have an error vector ( )t  that satisfies SCE 

as Eq. (11). Define matrix  =
T ij T

w A W I I  so that the matrix  
NT

I A  is 

nonsingular. Then we can write the error vector ( )t  that satisfies SCE as  

 
( )

NT

   
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 

 

A

I A
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Since matrix  
NT

I A  is nonsingular, then   1

NT
  
 I A . By substituting 

into Eq. (3) we obtain, 

   1

NT
  

  Y X I A  

Furthermore, through multiplication   1

NT
 

I A  of each term in this equation 

we get linear model * *  Y X .□  

As mentioned above, SCE has method for estimating GSTAR parameters that is 

similar to SUR [9]. If in GSTAR with SCE we define  *

NT
 Y I A Y , in 

SUR it is defined * TY  I , which   is the variance covariance matrix of 

the residuals. 

4 Simulation Study 

In this section, we discuss simulations for GSTAR(1;1) with correlated and 
uncorrelated error assumption. We conducted three experiments, by setting 

100T  , 3N   and using a uniform weight matrix. We set 

 0.3,0.4,0.1,0.3,0.1,0.3ij  , since this gives a medium stationary process 

(based on the eigen values of its parameter matrix). Each experiment involved 
250 data sets, constructed as follows: 

(a) generate errors that follow a martingale difference process in Eq. (5) from 
an independent standard multivariate normal distribution, 

(b) generate values of observations that follow the GSTAR(1;1) model, 
(c) estimate ij  

by using the least squares method. 

Table 1 Mean Squares Errors of Estimated of GSTAR Parameters for Three 
Error Assumptions using Least Squares (LS) Method of 250 Simulated Data 
Sets. 

GSTAR Parameter 

ij  

Error Assumption 
Independent 

Errors 
Temporally Correlated  

Errors 
Spatially Correlated 

Errors 
∅଴ଵ ൌ 0.3 0.2791 -0.3634 0.3900 
∅ଵଵ ൌ 0.4 0.1200 0.0347 0.0820 
∅଴ଶ ൌ 0.1 0.0086 -0.4300 -0.0452 
∅ଵଶ ൌ 0.3 0.3062 0.4761 0.3280 
∅଴ଷ ൌ 0.1 0.1330 -0.4552 0.1382 
∅ଵଷ ൌ 0.3 0.3492 0.1158 0.2788 
MSE(10-2) 1.5123 20.4589 2.2164 

Note: The smallest MSE is given by GSTAR(1;1) with independent error assumption. 
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From the simulation results in Table 1 it can be seen that the estimated value of 
the GSTAR parameters with temporally correlated error assumption follows a 
martingale process, i.e. Eq. (5) produces a high MSE value when compared to 
independent and spatially correlated error assumption. Each of these 
assumptions uses the conventional least squares method in estimating 
parameters.  

Next, a simulation of temporally correlated errors that follow the martingale 
difference process in Eq. (5) was conducted and estimation was carried out 
using Proposition 2. The simulation results in Figure 2(a) show that the 
temporally correlated error with the correlation value 0.9    produced the 
smallest MSE value in estimating the GSTAR parameters.  

If we note the relation between Table 1 and Figure 2(a), then we obtain the 
GSTAR parameters using the LS method (independent errors) for λ = 0. For  
the spatially correlated errors in Figure 2(b), the correlation  value ρ = 0.4 
produced the smallest MSE value using the GLS method. The same as with the 
temporally correlated error assumption, if we choose ρ = 0, we obtain the 
GSTAR parameter estimation using the LS method shown in Table 1. 

(a) (b) 
Figure 2 (a) Simulation of temporally correlated errors following a martingale 
difference process using generalized least squares (Proposition 2). It can be seen 
that if λ = 0 then the MSE value is the same as with the conventional LS method 
in Table 1. (b) Simulation of spatially correlated errors using generalized least 
squares (Proposition 3). If ρ = 0 then the MSE value is the same as with the 
conventional LS method in Table 1. 

5 Case Study 

For our case study we used data from the monthly tea production of five 
plantation sites (N = 5) in West Java, Indonesia (Parakan Salak, Sinumbra, 
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Rancabali, Rancabolang, and Panyairan) from January 1992 to December 2008 
(T = 200). We executed space-time modeling using R Software and started by 
centering the processes in order to obtain a zero mean. 

5.1 Descriptive Statistics 

The following data are plot and boxplot data of the monthly tea production from 
each of the five locations for the period of January 1992 – August 2008. 

In Figure 3(a) it can be seen that the production data from Parakan Salak, 
Rancabali, and Rancabolang have a fairly constant mean but a variance that is 
not constant. As for the production data from Sinumbra and Panyairan, they are 
seen trending downward and the variance is not constant. In the box-plot 
(Figure 3(b)) all the data have outliers, both top and bottom outliers. Maximum 
and minimum values for each data can be seen in Table 2, while two other 
locations have only bottom outliers. 

 

Figure 3  Line-plot (a) and boxplot (b) of the monthly tea production data from 
five locations from January 1992 – August 2008. In the box-plot all of the data 
have outliers. 

The largest mean production was found in the data from Rancabolang, i.e. 
221.80 tons, and the lowest in the data from Parakan Salak, i.e. 123.70 tons (this 
can be seen in terms of its geographical effect or not). Overall, each location has 
sufficiently symmetrical data. It can be seen that the mean value and median for 
each location are not significantly different, except in Panyairan. However, 
looking more in detail, the median value for any data set is always greater than 
the mean value. Thus, the data display left skewedness. In other words, each 
location has a similar tendency in its characteristics, so the GSTAR model can 
be used to predict future production. 
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Table 2 Statistical summary of monthly tea production in five locations from 
January 1992 to August 2008. 

Statistics Parakan Salak Sinumbra Rancabali Rancabolang Panyairan 
Mean 123.70 175.20 186.70 221.80 174.60 

Median 124.40 176.70 187.40 224.70 182.00 
Q1 102.60 150.40 163.40 191.70 148.30 
Q3 145.70 205.90 213.20 255.70 209.20 

Maximum 264.70 295.90 291.10 347.80 254.50 
Minimum 12.28 55.73 74.87 86.89 47.92 

Stddev 38.56 44.71 40.61 47.93 42.89 
Range 252.38 240.21 216.27 260.87 206.55 

5.2 Model Identification 

Model identification was done using the space-time autoregressive function 
(STACF) and space-time partial autoregressive function (STPACF). From 
Figure 4 it can be seen that the model was identified only at spatial lags of zero 
and one, so we can use the GSTAR(1;1) model. GSTAR(1;1) was modeled as 
follows, 

 
01 11

) ( 1) ( 1( ) )( t tt    I W Y εY Φ Φ  

 
(a) (b) 

Figure 4 Plot of STACF and STPACF price of chili. The first line is a plot of 
STACF (a) and STPACF (b) at a spatial lag of zero, while the second line is a 
plot of STACF (a) and STPACF (b) at a spatial lag of one. 

5.3 Parameter Estimation and Diagnostics Test 

After identifying the model and obtaining the GSTAR(1;1) model, the next step 
was to estimate the parameters. But first the weight matrix that characterized the 
space-time modeling was determined. This study used a uniform weight matrix, 
which was defined based on the distance between locations. Furthermore, in 
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estimating the GSTAR parameters, the LS method was used, for both the 
correlated and the uncorrelated error assumptions. 

The performances of the GSTAR models for each error assumption were 
quantitatively compared in terms of root mean square error (RMSE). RMSE is 
expressed as 
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where iY  and  iY   are the i-th observed and estimated values, respectively; n is 

the number of validation points. 

In this case we used uniform weight matrix W to estimate the GSTAR 
parameters. The uniform weight matrix W is 
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In Section 3.1, performing parameter estimation with the least squares method 
is described. Using the GSTAR(1;1) model with independent error assumption, 
the result as shown in Table 3(a) can be obtained. 

We also solved GSTAR(1;1) with temporally correlated error assumption. 
Hence, the GLS method was used to estimate the GSTAR parameters. In this 
condition, the data errors were assumed to be temporally correlated. The 
estimation was conducted according to the procedure described in Section 3.2 
and the result was as shown in Table 3(b). In the research by Ruhjana et al. 
[10], parameter estimation of GSTAR(1;1) with temporally correlated error 
assumption only used the least square method (LS).  

In the final simulation, we solved the GSTAR(1;1) model with spatially 
correlated error assumption. Parameter estimation was conducted using the 
generalized least squares (GLS) method. This method requires  a spatially 
correlated error (SCE) parameter with values between -1 and 1. By trying some 
values of ρ, the estimated parameter value in Figure 5 was obtained. 
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Table 3 Result of parameter estimation using LS for GSTAR(1;1) model with 
(a) Independent Error Assumption, (b) Temporally Correlated Error Assumption, 
(c) Spatially Correlated Error Assumption and (d) Seemingly Unrelated 
Regression. 

Independent Error 
Assumption 

Temporally Correlated Error  
Assumption 

∅෡૙ ∅෡૚ 
∅෡଴ଵ ൌ െ0.328 ∅෡ଵଵ ൌ 0.030
∅෡଴ଶ ൌ െ0.386 ∅෡ଵଶ ൌ 0.135
∅෡଴ଷ ൌ െ0.604 ∅෡ଵଷ ൌ 0.605
∅෡଴ସ ൌ െ0.414 ∅෡ଵସ ൌ 0.600
∅෡଴ହ ൌ െ0.420 ∅෡ଵହ ൌ 0.116

(a) 
 

∅෡૙ ∅෡૚ 
∅෡଴ଵ ൌ െ0.33 ∅෡ଵଵ ൌ 0.003 

∅෡଴ଶ ൌ െ0.039 ∅෡ଵଶ ൌ 0.014 
∅෡଴ଷ ൌ െ0.060 ∅෡ଵଷ ൌ 0.061 
∅෡଴ସ ൌ െ0.041 ∅෡ଵସ ൌ 0.060 

∅෡଴ହ ൌ െ0.042 ∅෡ଵହ ൌ 0.012 
(b) 

Spatially Correlated Error  
Assumption 

GSTAR SUR 

 

∅෡૙ ∅෡૚
∅෡଴ଵ ൌ െ0.419 ∅෡ଵଵ ൌ 0.080
∅෡଴ଶ ൌ െ0.417 ∅෡ଵଶ ൌ 0.174
∅෡଴ଷ ൌ െ0.545 ∅෡ଵଷ ൌ 0.531
∅෡଴ସ ൌ െ0.349 ∅෡ଵସ ൌ 0.522 
∅෡଴ହ ൌ െ0.441 ∅෡ଵହ ൌ 0.133 

∅෡૙ ∅෡૚
∅෡଴ଵ ൌ െ0.412 ∅෡ଵଵ ൌ 0.076 
∅෡଴ଶ ൌ െ0.474 ∅෡ଵଶ ൌ 0.247 
∅෡଴ଷ ൌ െ0.388 ∅෡ଵଷ ൌ 0.332 
∅෡଴ସ ൌ െ0.558 ∅෡ଵସ ൌ 0.773 
∅෡଴ହ ൌ െ0.442 ∅෡ଵହ ൌ 0.134 

(c) (d) 
 

 
(a) (b) 

Figure 5 Result of parameter estimation of some SCE parameter values to 
GSTAR parameters at spatial lag zero (a) and at spatial lag one (b). For all 

[ 1,1]    the GSTAR parameters are stationary. 

Additional to solving the GSTAR(1;1) problem, with uncorrelated, temporally, 
and spatially correlated error assumptions using the LS and GLS method, as 
described in the previous section, we also solved this problem with the SUR 
method to estimate the model parameters. Treating another problem, Iriany, et 
al. [9] solved the GSTAR model using the SUR method. We adopted their 
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technique to solve our data. Hence, the result of solving the GSTAR model 
could be compared with GLS and SUR. The results show that the SCE method 
performs better than the SUR method. A plot of each estimation result is shown 
in Figure 6. In the figure, the red line represents the estimated data and the black 
line represents the real data. The estimated data plots show similar patterns and 
are close to the real observations. 

 
(a)

 
(b)

 
(c)

Figure 6 Plots of estimation results using GSTAR(1;1) with (a) independent 
error, (b) temporally correlated error, (c) spatially correlated error assumption 
compared with the initial data plot. 

Table 4 RMSE Value of GSTAR estimated parameters for each location and 
each error assumption. 

Model 
Parakan 

Salak 
Sinumbra Rancabali Rancabolang Panyairan 

GSTAR(1;1) 
uncorrelated error

11.28 16.68 17.85 22.38 17.60 

GSTAR(1;1) TCE 1.16 1.70 5.15 9.94 7.28 
GSTAR(1;1) SCE 13.93 17.47 16.34 19.79 18.23 
GSTAR(1;1) SUR 13.73 19.05 12.48 28.39 18.27 
   Note: The smallest RMSE is given by GSTAR (1;1) with temporally correlated error. 

The RMSE comparison among independent, temporally, spatially correlated 
error assumptions, and SUR are shown in Table 4. The smallest RMSE was 
given by GSTAR(1;1) with temporally correlated error. 
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In the diagnostic checking stage, we used the correlation error plot at the first 
lag, the Q-Q normal plot and the histogram, as shown in Figure 7. The 
correlation error plot at the first lag shows that the errors are random for all 
methods. The Q-Q normal plot and the histogram show that the normality 
assumption is satisfied. 

 

 

 
(a)  (b) (c) (d) 

Figure 7 Normal probability plot of GSTAR(1;1) errors for each assumption (a) 
uncorrelated errors, (b) TCE, (c) SCE and (d) SUR. 

Table 5 Forecast and errors for four possible error assumptions of GSTAR model. 

 Month 201st 


201Y  

201Y  
Error 

Uncorrela-
ted error 

TCE SCE SUR 
Uncorrela-
ted error 

TCE SCE SUR 

Parakan 
Salak 

137.85 162.51 136.96 137.02 133.63 -4.22 -28.88 -3.33* -3.39 

Sinumbra 107.05 130.98 109.34 113.67 130.72 23.67 -0.26* 21.38 17.05 
Rancabali 131.82 165.22 133.30 137.26 200.98 69.16 35.76* 67.68 63.72 

Rancabolang 154.50 158.06 157.32 148.24 234.75 80.25 76.69* 77.43 86.51 
Panyairan 116.27 146.02 116.37 116.38 100.23 -16.04* -45.79 -16.14 -16.15 

Note: The smallest RMSE is given by GSTAR(1;1) with temporally correlated error assumption. 

For the forecasting stage, the latest available data were prepared, i.e. the 201st 
month. This forecast observation was compared with real observation. Along 
with the RMSE result in Table 4, the forecasting result in Table 5 shows that the 
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temporally correlated error assumption still gives the best result, which is shown 
by the most least errors obtained. The tea production forecast for the next 
month, i.e. September 2008, at each location (for all assumption used) can be 
seen in Table 5.  

6 Conclusion 

Based on the simulation results of the GSTAR model with temporally or 
spatially correlated error assumption, it can be concluded that the generalized 
least squares (GLS) method performs better than the conventional least squares 
method. GLS has an error parameter that can be used as a controller of the 
model. Hence, it produces an efficient estimator. Hence, this method was 
applied to real data of monthly tea production. The RMSE value for all methods 
was obtained (see Table 4). The best model was given by GSTAR(1;1) with 
temporally correlated assumption. In future studies, different SCE parameter 
values for each location will be used. The estimation of the model parameters 
will be tested using the maximum likelihood method for unknown SCE 
parameter values. 
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