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Abstract. In this article, a new linear differential operator ,  is 
defined by using the Hadamard product of the q-hypergeometric function and a 
function related to the Hurwitz-Lerch zeta function. By using this linear 
differential operator, a new subclass ,

,∗ , ; , ,  of meromorphic 
functions is defined. Some properties and characteristics of this subclass are 
considered. These include the coefficient inequalities, the growth and distortion 
properties and the radii of meromorphic starlikeness and meromorphic 
convexity. Finally, closure theorems and extreme points are introduced. 
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1 Introduction 

Let Σ be the class  normalized by:  

 
1

1
( ) n

n
n

f z a z ,
z





   (1) 

which are analytic in the punctured unit disk 

 ∗ : ∈ 	and	0 | | 1 ,  

	 	 being (as usual) the set of complex numbers. We denote by ∑ ∗  and 
	 0

 
the subclasses of Σ consisting of all meromorphic functions, 

which are, respectively, starlike of order  and convex of order  in ∗ (see 
also the recent works [1,2]). 

A function f of the form Eq. (1) is in the class of meromorphic starlike of order 
 if: 
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and is in the class of meromorphic convex of order φ, if: 
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For functions  (j=1,2) defined by: 
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   , 

we denote the Hadamard product (or convolution) of   and  by: 
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Let  and  two analytic functions in the unit disk . We say that  is 
subordinate to  if there exists an analytic function  with 0 1 
∈  such that F . 

We denote by  ≺  this subordination. 

For real parameters , , 1,2, … , , 1,2, … , , ∊ , ∊
0, 1, 2, … 	the q-hypergeometric function  is defined by: 
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  (2) 

with 2  where 0 when 1, , ∈ ∪ 0 ; ∈

. 

The q-shifted factorial is defined for , ∈  as a product of  n factors by: 

 ; 		
1 1 … 1 					 ∈
1																																																															 0

 (3) 

and in terms of basic analogue of the gamma function 
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It is of interest to note that lim →
,

1 …

1 	is the familiar Pochhammer symbol and that: 

 1
1 1

0 1

( ) ( )
( )

( ) ( )

n

n l n
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... z
,..., ; ,..., ; z :

... n!

 
    

 





  . (5) 

Now, for ∈ , 0 | | 1 and 1, the basic hypergeometric function 
defined in Eq. (2) takes the following form: 

 1
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  (6) 

which converges absolutely in the open unit disk . 

Corresponding to the function 1 1( )l m l m,..., ; ,..., ;q, z     for meromorphic 

functions ∈ Σ consisting functions of the form Eq. (1), Aldweby and Darus 
[3] and Murugusundaramoorthy and Janani [4] have recently introduced the q 
analogue of the Liu-Srivastava operator as follows: 

1 1 1 1
( ) ( ) = ( ) ( )

l m l m l m l m
,..., ; ,..., ; q, z f z ,..., ; ,..., ; q, z * f z            
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  (7)  

Recently, Ghanim [5,6] has introduced the function , , defined by: 
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  (8) 

Also, the function , ,  is the well-known Hurwitz-Lerch zeta function 
defined by (see, e.g. [[7], p. 121 et seq.]; see also [[8-11], p. 194 et seq.]): 

0
0

( ) ( when | | 1 ( ) 1 when | | 1)
( )

n

s
n

z
z,s,a : a ; s z ; s z .

n a
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Corresponding to the functions ,  and using the Hadamard product for 
∈  we define a new linear differential operator ,  on Σ by the 

following series: 

 1 1( ) ( ) ( ) ( ) ( )a
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where, for convenience: 
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 (11) 

The meromorphic functions with the generalized hypergeometric functions have 
been considered recently by several authors; see, for example see [12-18]. 

For a function ∈ , we define: 

 0 ( ) ( )) ( ) ( )a a

s l m s l mI L ( , f z L , f z ,     

 1 2
( ( ) ( )) (1 )( ( ) ( )) ( ) ( ))a a a
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and in general: 
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where:    1Γ l mn ,a,s ,   is given by Eq. (11). 

We note that kI  was studied by Ghanim and Darus [13,19], Challab and Darus 
[20] and El-Ashwah, Aouf and El-Deeb [21]. 

Making use of the operator     k a

s l mI L , f z  , we say that a function   

∈  is in the class ( )k

s ,a l mL , ; A,B,b 
 if it satisfies the following 

inequality: 
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or, equivalently, to:  
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Let ∗ denote the subclass of   consisting of functions of the form: 

 
1

1
( ) | | n

n
n

f z a z
z





  . (14) 

We now write: 

 ( )= ( ) Σk , k
s ,a l m s ,a l mL , ; A,B,b L , ; A,B,b .       
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2 Some Basic Properties of the Class ( )k ,
s,a l mL , ; A,B,b   

We begin this section by proving the necessary and sufficient condition 

(involving coefficient bounds) for the class ( ).k ,

s ,a l mL , ; A,B,b    

Theorem 1.  Let the function  defined by Eq. (14) be in the class ∗. Then 

the function  belongs to the class ( )k ,

s ,a l mL , ; A,B,b 

 if and only if:   

     ( 1 )
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1 ( 1) ( 1)(1 ) | |( ) Γ | | | |( )
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         (15)  

Proof.  Assuming that the inequality Eq. (15) holds true, then aiming to prove 
Eq. (13), we find that: 
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 *1 ( U )z   (16) 

{ | | 1}z z : z z    U  . Hence, by the maximum modulus theorem, we 

have ( )k ,

s ,a l mf ( z ) L , ; A,B,b  . 

Conversely, suppose that  is in the class ( )k ,

s ,a l mL , ; A,B,b 

 with  of 

the form Eq. (14), then we find from Eq. (13) that: 
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 1.  (17)           

If we choose  to be real must be → 1, we get: 
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         (18) 

which is precisely the assertion Eq. (15) of Theorem 1. 

Corollary 1. Let the function  defined by Eq. (14) be in the class 

( )k ,

s ,a l mL , ; A,B,b .   Then: 
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The result is sharp for the function  given by: 

 1( )f z z  
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. (20) 

Next, we prove the following growth and distortion properties for the class 

( )k ,

s ,a l mL , ; A,B,b . 

 

 Theorem 2. If a function  defined by Eq. (14) is in the class 

( )k ,

s ,a l mL , ; A,B,b , 

 
then for | | 1, we have: 
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The result is sharp for the function  given by:  
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Proof. Let ( ) ( )k ,

s ,a l mf z L , ; A,B,b . 
 Then we find from Theorem 1 that: 
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which yields: 
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Now, by differentiating both sides of Eq. (14) with respect to , we have: 
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  (24) 

and Theorem 2 follows easily from Eq. (23) and Eq. (24), respectively.  

Finally, it is easy to see that the bounds in Eq. (21) are attained for the function 
 given by Eq. (22). 

Next, we determine the radii of meromorphic starlikeness and convexity of 

order φ for functions in the class ( )k ,

s ,a l mL , ; A,B,b  . 

Theorem 3. Let the function  defined by Eq. (14) be in the class 

Ls ,a

k , (l ,m ; A,B,b). Then we have: 

(i)  is meromorphically starlike of order φ in the disc | | , that is: 
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where: 
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(ii)  is meromorphically convex of order  in the disc | |  , that is: 
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where: | |  
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Each of these results is sharp for the function  given by Eq. (20).

 
Proof.  

(i) From the definition Eq. (14), we easily get: 
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Thus, we have the desired inequality:  
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Hence, by Theorem 1, Eq. (31) will be true if: 
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then: 
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  (32) 

The last inequality Eq. (32) leads us immediately to the disc | | , 
where  is given by Eq. (26). 

(ii) In order to prove the second assertion of Theorem 2, we find from 
definition Eq. (14) that: 
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Hence, by Theorem 1, Eq. (35) will be true if: 
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 (36) 

The last inequality Eq. (36) readily yields the disc | | , where  is defined 
by Eq. (28). The proof of Theorem 3 is completed by merely verifying that each 
assertion is sharp for the function  given by Eq. (20). 

3 Closure Theorems  

In this section we first prove: 

Theorem 4. The class ( )k ,

s ,a l mL , ; A,B,b 

 is closed under convex linear 

combinations. 

Proof. Let each of the functions 
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    (37)  

be in the class ( )k ,

s ,a l mL , ; A,B,b .   It is sufficient to show that the function  

defined by: 
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Proof. Let the function  expressed in the form given by Eq. (41), then 
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and for this function, we have:  
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which shows that ( ) ( )k ,

s ,a l mf z L , ; A,B,b  by Theorem 1.    

Conversely, suppose that the function  defined by Eq. (14) belongs to the 
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This completes the proof of Theorem 5. 

4 Conclusion  

This research has introduced a new linear differential operator related to the q-
hypergeometric function and the Hurwitz Lerch zeta function and some 
properties were studied. Accordingly, some results related to closure theorems 
have also been considered, inviting future research for this field of study. 
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