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Abstract. This paper reconsiders the properties of Hawking radiation in the 
inner horizon of a Reissner-Nordström black hole. Through the correlation 
between temperature and surface gravity, it is concluded that the temperature of 
the inner horizon is always negative and that of the outer horizon is always 
positive. Since negative temperature is hotter than any positive temperature, it is 
predicted that particle radiation from the inner horizon will move toward the 
outer horizon. However, unlike temperature, entropy in both horizons remains 
positive. Following the definition of negative temperature in the inner horizon, it 
is assured that the entropy of a black hole within a closed system can never 
decrease. By analyzing the conditions of an extremal black hole, the third law of 
black hole thermodynamics can be extended to multi-horizon black holes. 
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1 Introduction 

In the classical general theory of relativity, a black hole is defined as a space-
time region that exhibits such powerful and massive gravitational effects that 
nothing, not even light, can escape it. Therefore, if a black hole is analyzed as a 
thermodynamical object, it can be considered a dead thermodynamical object: it 
has neither temperature nor entropy. However, in the 1970s, using quantum 
field theory, Hawking proposed that a black hole is “not actually black”. Black 
holes can radiate particles, a process similar to that in black-body radiation; in 
other words, they possess both temperature and entropy [1,2]. Through the 
analogy between black hole mechanics and the laws of thermodynamics, the 
temperature of a static black hole in connection with its surface gravity is 
expressed as: 

 
2

T



  (1) 

Furthermore, the zeroth law of black hole thermodynamics suggests that for a 
static black hole, the surface gravity must be constant [3]. 
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One way to understand Hawking radiation is by examining the creation of 
particle-antiparticle pairs near a black hole’s event horizon. According to 
Heisenberg’s uncertainty principle, the production of particle-antiparticle pairs 
occurs spontaneously and instantaneously, and after a very short time, these 
pairs will be annihilated. However, near the event horizon there is a possibility 
that either half of a pair passes through it before annihilation happens, making 
the other half escape the black hole. For Schwarzschild black holes this process 
can be illustrated using a conformal diagram as shown in Figure 1(a). There are 
several methods to calculate the temperature of a black hole, such as the 
Damour-Ruffini method [4], the Teukolsky perturbation [5], second 
quantization [6], the radial null geodesic [7], and the complex path method (the 
Hamilton-Jacobi method) [8]. In the complex path method, the temperature of 
the Hawking radiation is correlated with the probability of particle emission in 
which the radiation’s spectral distribution is similar to that of black-body 
radiation. 

The mechanism of Hawking radiation on a single-horizon black hole is 
reasonably simple. However, for multi-horizon black holes, such as the 
Reissner-Nordström black hole, a number of questions arise. Does the inner 
horizon also radiate particles? If the outer horizon radiates particles in a similar 
way as that of a Schwarzschild black hole does, does the inner horizon possess a 
similar mechanism? Using a conformal diagram as shown in Figure 1(b), 
Peltola and Makela [9] explained the mechanism of radiation in the inner 
horizon of a Reissner-Nordström black hole. Hawking radiation in the inner 
horizon occurs due to the production of particle-antiparticle pairs in the regions 
V' and VI', which are close to the inner horizon. When either half of the pair is 
swallowed into the inner horizon and the other half escapes and remains in the 
region V', the inner horizon is said to be emitting particles. However, since the 
inner horizon is located inside (deeper than) the event horizon, detailed 
information about this radiation in the inner horizon remains difficult to clarify: 
where does the particle radiation in the inner horizon drift to? 

Similar to the behavior of particle radiation in the inner horizon, the temperature 
of the inner horizon has not yet been defined clearly. Wu [10] proposed that the 
inner horizon’s temperature is negative because of its negative surface gravity. 
However, since this idea is considered contradictory to several laws of black 
hole thermodynamics, some other calculations define the inner horizon’s 
temperature as minus its surface gravity so as to retain the positive value of the 
temperature [9]. 

Discussion on negative temperature has long been something familiar in 
physics. Using the definition of entropy, Ramsey [11], Purcell and Pound [12] 
suggested in the 1950s that negative temperature is derived from the negative 
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slope of an entropy change curve as an energy function. Extra energy in a 
system at a positive temperature increases entropy, while in a system at a 
negative temperature the opposite happens. Of course, some researchers, such 
as Hilbert and Dunkel [13,14], disagree with this definition of negative 
temperature. However, others take issue with their conclusion, advocating the 
existence of negative temperature and its consistency with the laws of 
thermodynamics [15,16]. Moreover, several experiments in ultracold atom 
systems have proved the existence of negative temperatures as proposed by 
Ramsey [17]. Thus, for the sake of this paper, without overlooking other 
definitions, Ramsey’s definition will be considered the most suitable concept of 
negative temperature up to this point. 

 

 
(a) (b) 

Figure 1 Mechanism of black hole radiation in: (a) conformal diagram of the 
maximally extended Schwarzschild space-time, and (b) conformal diagram of 
the maximally extended Reissner-Nordström space-time. 

This paper re-discusses the temperature of the inner horizon of a Reissner-
Nordström black hole. However, it should be kept in mind that what is 
discussed here may also be relevant to multi-horizon black holes. Using 
Ramsey’s definition of negative temperature as the point of departure, the 
implications of negative temperature of the inner horizon are analyzed, which 
include the directions of particle radiation in the inner horizon, the entropy, the 
characteristics of extremal black holes, and the extension of black hole 
thermodynamics. 
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2 Reissner-Nordström Black Hole 

A Reissner-Nordström black hole is a static black hole with mass and electric 
charge but no spin. The space-time metric of a Reissner-Nordström is defined 
as: 

     12 2 2 2 2ds f r dt f r dr r d
      (2) 

where ݂ሺݎሻ ൌ 1 െ
ଶெ

௥
൅

ொమ

௥మ
. In the equation above M and Q correspond to the 

mass and charge of the Reissner-Nordström black hole, respectively. The metric 
indicates that the Reissner-Nordström black hole has two horizons that satisfy 

00 0g  , hence 

 2 2r M M Q     (3) 

in which ݎା and ିݎ  correspond to the outer horizon and the inner horizon 
respectively. Therefore, it appears that the radius of the outer horizon is greater 
than that of the inner horizon. Performing metric transformation on Eq. (2) into 
the ingoing Eddington-Finkelstein coordinate, we obtain the metric of the 
Reissner-Nordström black hole as follows: 

 
 2 2 2 2

2
2

h r
ds d d dr r d

r
       (4) 

where ݄ሺݎሻ ൌ ሺݎ െ ݎାሻሺݎ െ ݎି ሻ.The Reissner-Nordström solution is static, so in 
in the ingoing Eddington-Finkelstein coordinate, the stationary Killing vector 

field is ݇ ൌ
డ

డ௩
. At ݎ ൌ ሻݎേ we will have ݄ሺݎ ൌ 0, so ݇௔ሺ݀ݎሻ௔, which is normal 

to the null hypersurfaces  , r r . Herein, Latin indices are used to denote 
tensor equations, i.e. equations that are valid in any basis. Hence, these surfaces 

are the Killing horizons. The surface gravity is defined by   2b
a b ak k k  


 

and can be calculated as: 

 
22

r r

r
  





    (5) 

while the area of the Reissner-Nordström satisfies the definition 24A r   and 
is expressed as: 

  2
2 24A M M Q     (6) 
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3 Temperature of the Inner Horizon 

In a static black hole, the temperature of the horizon is related to the horizon’s 
surface gravity as expressed in Eq. (1). Hence, for a Reissner-Nordström black 
hole with two horizons, the temperature of both horizons is defined as: 

 
2 r

T





   (7) 

in which ାܶ refers to the temperature of the outer horizon, while ܶି  refers to 
that of the inner horizon. In accordance with the definitions of surface gravity in 
Eq. (5) and of its horizon in Eq. (3), the temperature of each horizon is obtained 
through the following derivations: 

 

 
2 2

2
2 2

1

2

M Q
T

M M Q




 
 (8) 

 

 
2 2

2
2 2

1

2

M Q
T

M M Q


 

 
 (9) 

In a regular Reissner-Nordström black hole, the mass ሺܯሻ is always greater 
than the charge ሺܳሻ. If the black hole is in a condition in which ܯ ൌ ܳ, it is 
called an extremal black hole. Eqs. (8) and (9) clearly show that the 
temperatures of both horizons in an extremal black hole are zero. However, for 
regular Reissner-Nordström black holes, since ܯ ൐ ܳ, it is concluded that the 
temperature of the outer horizon is always positive, while that of the inner 
horizon is always negative. 

As clarified above, to solve the problem caused by negative temperature, 
Ramsey’s definition is taken into account. In his study, he suggests that 
negative temperature is a slope of entropy change on energy change. Hence, 

 
S

T
U





  (10) 

In other words, a system at a positive temperature will increase in entropy when 
energy is added to the system. Meanwhile, a system at a negative temperature 
will decrease in entropy when energy is added to the system. Based on the 
relationship between energy levels or energy states and temperature, which is 
studied in statistical mechanics, the sequence of temperature from colder to 
hotter is +0, ..., 300, ..., + ∞, ..., -∞,. .., -300, ..., -0. Therefore it is obvious that 
negative temperatures are hotter than any positive temperatures. If a contact 
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occurs between two systems that have positive temperature and negative 
temperature respectively, the energy will flow from the negative temperature 
system to the other. 

The existence of temperature allows us to study a black hole the way we study 
black body radiation. Black holes radiate particles due to quantum fluctuations 
in the proximity of the horizon (either the inner horizon or the outer horizon), 
which are caused by its powerful gravitational field [18]. Since the inner 
horizon has a negative temperature, while the outer horizon has a positive 
temperature, the temperature of the inner horizon is higher than that of the outer 
horizon. Consequently, if the movement of particle radiation corresponds to the 
energy flow from negative temperature to positive temperature, the particle 
radiation from the inner horizon will definitely travel towards the outer horizon. 

4 Entropy of Reissner-Nordström Black Hole 

Entropy is a thermodynamic quantity frequently taken into calculation in 
Hawking radiation. While a black hole’s temperature is associated with its 
surface gravity, the entropy is related to its area, i.e. the horizon’s area: 

 
4

A
S 
   (11) 

The plus-minus sign denotes either the outer or the inner horizon. Using the 
definition of the Reissner-Nordström black hole’s area in Eq. (6), the entropies 
of the inner and the outer horizons can be expressed as: 

  2
2 2S M M Q     (12) 

  2
2 2S M M Q     (13) 

It appears that the entropy value of the outer horizon is greater than that of the 
inner horizon. In a regular black hole, since ܯ ൐ ܳ, the entropies of both 
horizons will always be positive. As a result, the product of multiplication 
between the temperature and the entropy of the inner horizon, ܶି ܵି, is always 
negative, while that of the outer horizon, ାܶܵା, is always positive. These 
conclusions confirm the results obtained by Wei [19] in his extension of the first 
law of black hole thermodynamics, which is valid for multi-horizon black holes. 

As stated before, since the temperatures of the outer and the inner horizons are 
different, there will be some energy transfer between them. If we assume the 
black hole to be a closed system, the scheme of such energy transfer can be 
represented as in Figure 2. Temperature always flows from higher temperature 
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to lower temperature. So if the direction of the temperature flow is equal to the 
direction of the particle emission from the inner horizon (because the inner 
horizon has negative temperature that is always higher than the temperature of 
the outer horizon), it can be assumed that the emitted particles will move toward 
the outer horizon. 

Entropy of a closed system can be defined as S T  , so using a similar 
definition, the entropies of the outer and the inner horizons can be expressed 
respectively as: 

 and S S
T T

 
 

 

 
    (14) 

According to the definition of entropy and temperature in Eqs. (12)-(13) and 
Eqs. (8)-(9),   and   satisfy condition       . However, since the 
temperature of the inner horizon is higher than that of the outer horizon, the heat 
energy will flow from ܶି  to ାܶ. In other words, the entropy change (or the total 
entropy) for the system is: 

 
1 1

S
T T 

 
    

 
 (15) 

According to Eqs. (8)-(9), it can be concluded that ܶ൅ is always positive and 
ܶെ	is always negative. However, because ܶ൅ corresponds to denominator  

ቀܯ ൅ ඥܯଶ െ ܳଶቁ
ଶ
and ܶെ corresponds to denominator ቀܯ െ ඥܯଶ െ ܳଶቁ

ଶ
, 

the denominator of ܶ൅ always has a value that is greater than the denominator 
of ܶെ. Thus, from the result it can be concluded that the total entropy of a 
Reissner-Nordström (multi-horizon) black hole, due to temperature differences 
between its horizons, will stay positive in any condition, or ∆ܵ ൐ 0. This result 
satisfies both the second law of general thermodynamics and the second law of 
black hole thermodynamics, i.e. in a closed system the entropy of a black hole 
can never decrease. This conclusion ensures that the second law of black hole 
thermodynamics can be extended and is always valid for multi-horizon black 
holes. This is because the total entropy remains positive, even though the 
temperature of the inner horizon in multi-horizon black holes is negative. 

The lowest value of entropy change is achieved when the temperature of the 
outer horizon equals that of the inner horizon, which can only happen in an 
extremal black hole. The relationship between the black hole’s entropy and area 
will also take us to another conclusion: such condition also occurs when the 
areas of the inner and the outer horizons coincide. 
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Figure 2 Temperature flow in a Reissner-Nordström black hole. 

Taking the first law of black hole thermodynamics for a Reissner-Nordström 
black hole, 

 
8

dM dA dQ dJ



    (16) 

the relationship between the black hole’s entropy and its mass can be calculated. 
The first term of the above equation correponds to the temperature and the 
entropy of the black hole. In the first law of thermodynamics, the relation 
between entropy, temperature, and heat is given by ݀߆ ൌ ܶ݀ܵ. In the black hole 
thermodynamics, heat is related to the black hole’s mass. Thus, using the 
definition of surface gravity in Eq. (1) and that of area in Eq. (11), we obtain: 

 
1 S

T M 





 (17) 

This relation can be easily checked according to a comparison between Eq. (12) 
and Eq. (13) for the black hole’s entropy and Eq. (8) and Eq. (9), which 
describe the temperature. Because the outer horizon has positive temperature, 
adding more mass to the Reissner-Nordström black hole will cause entropy to 
increase. This fact can be understood using the relationship between entropy 

and area. Since ܣା ൌ ߨ4 ቀܯ ൅ ඥܯଶ െ ܳଶቁ
ଶ
 it is apparent that the area of the 

outer horizon is directly proportional to the black hole’s mass. As for the 
entropy of the inner horizon, since the temperature is negative, the entropy will 
be forced to decrease as the black hole’s mass increases. Connecting this to the 

area of the inner horizon confirms that ିܣ ൌ ߨ4 ቀܯ െ ඥܯଶ െ ܳଶቁ
ଶ
, which 

leads us to the following conclusion: the greater the mass, the smaller the area 
of the inner horizon. The relationship between the black hole’s mass and its own 
entropy in both the outer and the inner horizons is described in Figure 3 below. 
From Figure 3, it can be seen that the entropy in both horizons depends on the 
black hole’s mass. In the inner horizon the increase in mass will be followed by 
an increase in entropy, while in the outer horizon the increase in mass will be 
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followed by a decrease in entropy. This happens because the entropy of a black 
hole is closely related to its area, where entropy is directly proportional to area. 
Furthermore, as for a Reissner-Nordström black hole that satisfies the condition 
ܯ ≫ ܳ, the area of each horizon is given by: 

 
 
 

2
2 2 2

2
2 2

lim lim 4 16

lim lim 4 0

M Q M Q

M Q M Q

A M M Q M

A M M Q

 




 


 

   

   
 (18) 

This reveals that when ܯ ≫ ܳ, the area of the inner horizon is zero and that of 
the outer horizon is reduced to the area of the Schwarzschild black hole. 
Consequently, it is concluded that in such condition, the black hole will behave 
much like a Schwarzschild black hole, which has only a single horizon: the 
event horizon. As for an extremal black hole, the areas of the outer and the inner 
horizons have coinciding sizes, 4ܯߨଶ, hence leading to the assumption that for 
an extremal black hole, ∆ܵ ൌ ܵା െ ܵି ൌ 0. 

 

Figure 3 The relationship between mass and entropy ሺܳ ൌ 1ሻ in the outer 
horizon (dashed line) and the inner horizon (solid line). 

Concerning the relationship between temperature and mass, we can refer to Eq. 
(8) for the outer horizon and to Eq. (9) for the inner horizon. In Figure 4, it 
appears that in the outer horizon the temperature is inversely proportional to the 
black hole’s mass and for extremely immense masses the temperature will fall 
to zero. However, both results imply that in both horizons, a greater mass of the 
black hole causes the temperature in each horizon to decrease. In the inner 
horizon, a greater mass will cause the temperature to drop towards െ∞. If we 
use the temperature sequence as described previously, it is noticeable that െ∞ 
is the boundary between positive and negative temperature. In an extremal black 
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hole it also appears that the temperature of the outer horizon is +0 and that of 
the inner horizon is -0. If we take the third law of thermodynamics into account 
(which can accommodate negative temperature as proposed by Ramsey), which 
states that “it is impossible by any procedure in a finite number of operations to 
reduce any system to the absolute zero of positive temperature or to raise any 
system to the absolute zero of negative temperature”, we can extend the third 
law of black hole thermodynamics for multi-horizon black holes, where “it is 
impossible by any procedure to reduce a black hole’s temperature to the 
absolute zero of positive temperature (the outer horizon) or to raise any system 
to the absolute zero of negative temperature (the inner horizon)”. In other 
words, a non-extremal black hole cannot develop into an extremal black hole.  

 

Figure 4 The relationship between mass and temperature ሺܳ ൌ 1ሻ in the outer 
horizon (dashed line, ×100) and the inner horizon (solid line). 

5 Conclusions 

Using the relationship between temperature and surface gravity, we can derive 
the equations for the temperatures of the outer and inner horizons in a Reissner-
Nordström black hole. The temperature of the outer horizon will always stay 
positive, while that of the inner horizon will always be negative. If temperature 
is defined as a slope between entropy and energy in a system, it can be 
concluded that the temperature in the inner horizon is higher than any 
temperature in the outer horizon. Consequently, on the assumption that the 
direction of particle radiation is analogous with the direction of temperature 
flow, then the particle radiation from the inner horizon will move towards the 
outer horizon. In addition, the entropy in a closed-system black hole is always 
positive, confirming that the second law of thermodynamics remains valid even 
though the temperature of the inner horizon stays negative. As for an extremal 
black hole, the temperatures of both horizons are absolute zero: -0 in the inner 
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horizon and +0 in the outer horizon. Since the absolute zeros (-0 and +0) are the 
coldest and the hottest temperatures, the third law of black hole 
thermodynamics can be extended for both the inner and the outer horizons. 
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