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Abstract. For a graph , , a partition Ω , , … ,  of the vertex 
set  is called a resolving partition if every pair of vertices , ∈  have 
distinct representations under Ω. The partition dimension of  is the minimum 
integer  such that  has a resolving -partition. Many results in determining the 
partition dimension of graphs have been obtained. However, the known results 
are limited to connected graphs. In this study, the notion of the partition 
dimension of a graph is extended so that it can be applied to disconnected graphs 
as well. Some lower and upper bounds for the partition dimension of a 
disconnected graph are determined (if they are finite). In this paper, also the 
partition dimensions for some classes of disconnected graphs are given. 
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1 Introduction 

Chartrand, et al. [1] in 1998 introduced the idea for the partition dimension of 
connected graphs. This concept is a variant of the metric dimension of a graph 
described independently by Slater [2] in 1975 and by Harary & Melter [3] in 
1976. Given a connected graph , , ∈  and ⊆ 	 . The 
distance ,  between  and  is min , :	 ∈ , where	 ,  
denotes the distance between vertices  and  in . For an ordered -partition 
Ω , , … ,  of , the representation |Ω  of a vertex ∈  
with respect to Ω is the -vector , , , , ⋯ , , . The partition 
Ω with  classes is called a resolving partition if |Ω |Ω  for any two 
distinct vertices , ∈ . The partition dimension of , denoted by , 
is the minimum number of classes of a resolving partition Ω of . 

In [4], Chartrand, et al. established a relation between the partition dimension 
and the metric dimension of a graph. They also proved that the only graph of 
order 2 with the partition dimension two is a path , while the only graph 
with the partition dimension  is a complete graph . Furthermore, they 
characterized all graphs of order 3 with the partition dimension 1, 
namely , 	,  and 	 	 ∪ 	 . Tomescu in [5] characterized 
all graphs  of order 9 with  equal to 2. He also gave some 
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examples of graphs with a small partition dimension but having infinite metric 
dimension. These graphs are planar 4-regular ,  and planar 8-regular 

, . The first graph has partition dimension 3 and the second one has 
partition dimension 4, but their metric dimensions are infinite. 

The partition dimensions for various classes of connected graphs have been 
obtained. For instance, Tomescu, et al. [6] gave the upper bounds of the order of 
some wheel-related graphs, namely the gear, helm, sunflower and friendship 
graph, with a given partition dimension. Fehr, et al. [7] showed that the partition 
dimension of a Cayley digraph of a dihedral group of order 2 , 3 with a 
minimum generator is three. The partition dimensions of complete multipartite 
graphs, windmills and caterpillars have been obtained by Darmaji, et al. [8]. In 
2014, Rodríguez-Velázquez, et al. [9] derived some upper bounds of the 
partition dimension of trees and Grigorious, et al. [10] gave the partition 
dimension of a class of circulant graphs. Recently, in 2015, Javaid, et al. [11] 
investigated the minimum connected resolving partitions in unicyclic graphs. 

Some authors also studied the partition dimension of a graph obtained from 
some graph operations. Darmaji, et al. [12,13] and Rodríguez-Velázquez, et al. 
[14] gave the partition dimension for some corona graphs. The partition 
dimension of Cartesian product graphs and strong product graphs have been 
determined by Yero, et al. [15,16]. 

However, all results mentioned above are only for connected graphs. In this 
study, the notion of the partition dimension is generalized so that it can also be 
applied to disconnected graphs. Some lower and upper bounds for the partition 
dimension of disconnected graphs are determined (if they are finite). In this 
paper, also the partition dimensions for some classes of disconnected graphs are 
given.  

2 Main Results 

Given a general (connected or disconnected) graph , . For each vertex 
∈  and a set ⊆ , define the distance ,  between  and  to 

be min , :	 ∈ . For an ordered partition Ω O , O ,… , O  of the 
vertices of , if , ∞ for every ∈  and ∈ 1, , then we can 
define the representation |Ω  of  with respect to the partition Ω as the -
vector , , , , ⋯ , , . The partition Ω is called a resolving 
partition if r |Ω |Ω  for any two distinct vertices , ∈ . The 
partition dimension of , denoted by  if  is connected or  if  is 
disconnected, is the least integer  (if any) such that  admits a resolving 
partition with  classes. Otherwise, we define ∞. 
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As an illustration of this concept, we consider a disconnected graph ∪
 as depicted in Figure 1. Since 3 and 2, then by using 

the definition of the partition dimension of a disconnected graph,  has a finite 
partition dimension if both  and  have a resolving 3-partition. In fact 

3, since we can define a resolving partition Ω , ,  with 
, , , ,  and , , , . However, ∪

, ∞ since there exists no integer  so that ∪ ,  has a resolving -
partition. 

 
Figure 1 Graph ∪ . 

Now, for 2 and the connected graphs , we consider a disconnected graph 
⋃ 	having a finite partition dimension. Let Ω be a minimum resolving 

-partition of . Then by the definition of partition dimension of a disconnected 
graph, Ω is also a resolving -partition of  for every ∈ 1, . It follows that 

 for every . Thus, max : ∈ 1, . Furthermore, since 
Ω is a resolving -partition of , then | | for every . Therefore, 

min | |: ∈ 1. . So, we have the following theorem. 

Theorem 1. For integer 2, let ⋃  and let  be a connected graph 
for every ∈ 1, . If ∞, then max :	1 	 	
	 min | |:	1 	 	 . □ 

For a connected graph , if ⋃  containing a component consisting of 
a complete graph of order 1 or 2, then the following result shows that the 
partition dimension of  is finite if and only if 1. 

Proposition 1. Let ⋃  where 1,  connected for each ∈ 1, , 
and there exists ∈ 1,  such that ≅  for some ∈ 1,2 . Then 

 if 1. Otherwise, ∞.  

Proof. For 1, we have  for some ∈ 1,2 . Therefore 
. For 2 and 1, it is easy to see that ∞. Now we assume 

that 2 and 2. Then, G contains  as its component. Suppose for the 
contrary that 2 and Ω ,  be any partition of . Then, each 
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component of  must contain exactly two partition classes. Therefore, each 
component must be a path. But, there are ∈  and ∈  in  such 
that |Ω 0,1 |Ω , a contradiction. □ 

Corollary 1. Let  be a path with  vertices. For every 2, 3
 if and only if 3. 

Proof. For 2, let  and 3. By Theorem 1, we have 
. Now we will show that 3. We assume for the contrary that 

2. Then there are two vertices , ∈  such that |Ω
0,1 |Ω  for any partition Ω in , a contradiction. □ 

2.1 t	-Distance Vertex and Connected Partition  

For a partition Ω , ,… ,  of a graph  and ∈ , we define a vertex 
∈  as a -distance vertex if , 0 or  for any ∈ Ω. The next 

theorem gives the condition for a graph ⋃  containing a component 
consisting of a complete graph  where 3 such that  is finite. 

Theorem 2. For 1, let ⋃  and  be a connected graph for every 
∈ 1, . If ∞ and there exists ∈ 1,  such that ≅  where 

3, then  and every component of ∖  has at least  vertices 
having no 1-distance vertex. 

Proof. Let ⋃  and suppose that there exists  such that ≅  for 
some 3. Since ∞ and for any graph  of order ,  if 
and only if ≅ , then . Let Ω be any resolving -partition of . 
Then Ω is also a resolving -partition of  for any . It follows that | |

 for every . Since every ∈  is adjacent with the remaining vertices of 
, those vertices are 1-distance. Therefore, other components must not contain 

a 1-distance vertex under Ω.  

For a disconnected graph ⋃  where  are connected for all ∈ 1, , 
the partition Ω , , … ,  of  is called a connected partition if every 
subgraph induced by ∩  for every 1  and 1  is 
connected. From now on, consider ⋃  and ,  denotes the  vertex 
in the  component of . For any resolving 3-partition of the  component of 

, we define a left partition class  or a right partition class  as the partition 
class containing ,  or , , respectively, while the remaining partition classes 
with no end-vertices are defined as a middle partition class . 
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In the following results, we give some properties of -distance vertex in . 

Lemma 1. Let  be a path of order 3. If there exists a -distance vertex in 
 for some 1, then a resolving partition of  has cardinality 2 or 3. 

Proof. For 3, let Ω , ,… ,  be a resolving partition of  and 
∈  be a -distance vertex for some , 1. Then for any vertex  in  

with , 1, we have ∈ . Since deg 2, then there are at 
most two vertices at distance  from . These vertices must be in  where 
. Therefore, 2 or 3.  

Lemma 2. For some 1 and 3, if there exists a -distance vertex under a 

resolving -partition of , then 1 for 2, or  for 3. 

Proof. Let Ω , , … ,  be a resolving partition of  where 3, and 
 be a -distance vertex in . By Lemma 1 we have 2 or 3. If 2, 

then max , : 	 ∉ diam 1. Thus, 1. If 3, 
then  must be at the middle position in  to have a maximum distance to two 

other partition classes  not containing . Thus, .  

Lemma 3. For 3 and 1 , there exists a resolving 3-partition of 

3  such that every component has a -distance vertex. 

Proof. Let 3  where 3, , 	: 1 3, 1  and 

, , 	: 1 3, 1 1 . By Corollary 1, then 

3. For any ∈ 1,  and ∈ 1,3 , let ,  be a -distance vertex of the  

component of  where 1 . Let Ω , ,  be a partition 
of  induced by the function ∶ 	 → 1, 2, 3 , as follows. 

, 	
	mod	3,							 1, 2, … , ,																																						
1	mod	3, 1, 2, … , 1,

	 2	mod	3, otherwise.																																																	
 

Note that  means that ∈ . Thus, for any ∈ 1, , ∈
1, 1  and ∈ , , we have 

 , , 	
0,																							 	mod	3,								

1 , 1	mod	3,
	 ,								 otherwise,											
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 , , 	
0,																							 1	mod	3,

,							 	mod	3,								
	 ,								 otherwise,											

 

 , , 	
0,																						 2	mod	3,

,							 	mod	3,								
	 1, otherwise.												

 

Let us consider any two vertices , ∈ . If ,  and ,  for some 
, ,  where ∈ 1,3 , 1 , then , 	 	 1

1 , 	 	 . If ,  and ,  where 
1 1 or  then , 	 	

, 	 	 . If ,  and ,  where  and , 
then , ,  for some . Therefore, for any different vertices 
, ∈  we have |Ω |Ω , so Ω is a resolving partition of . □ 

Corollary 2. For 3 and 2, if every component of  has a -distance 

vertex, then 3 .  

Proof. By Corollary 1, Lemmas 1 and 2, if 2 and every component of  

has a -distance vertex, then we can immediately have 3 .  

In the next lemmas, we give the condition of a disconnected graph  containing 
paths as components with an even cardinality of middle partition classes. 

Lemma 4. For 2 and 4, let ⋃  and 3. If there 
exists ∈ 1,  where the cardinality of the middle partition class  is 2 , 

then . 

Proof. Let Ω , ,  be a resolving partition of ⋃ . Assume 
there exists a middle partition class  in the  component of  such that 
| | 2 . Without loss of generality, assume that ⊂ . If  is even, then 

| | 2. Thus, . Otherwise, | | 3 and 

.  

Lemma 5. For 4 and ∈ 1, , there exists a resolving 3-partition of 

3  such that 2  for all ∈ 1,3 .  



24 Debi Oktia Haryeni, et al. 

Proof. Let 3  where 4, , : 1 3, 1  and 

, , : 1 3, 1 1 . For every ∈ 1, , we 

define a partition Ω , ,  induced by the function :	 → 1, 2, 3 , 
as follows. 

 ,

	mod	3,							 1, 2, … , ,																										
	 1	mod	3, 1, 2, … , 2 ,
	 2	mod	3, otherwise,																															

 

for some 1 2 1 where  means that ∈ . For any 
∈ 1, , ∈ 1, 2  and ∈ 2 1, , then  

 , , 	
0,																									 	mod	3,									

1 ,									 1	mod	3,
	 2 1 , otherwise,												

 

 , , 	
0,																									 1	mod	3,

,																	 	mod	3,								
	 2 1 , otherwise,												

 

 , , 	
0,																						 2	mod	3,

,															 	mod	3,								
	 2 ,						 otherwise.												

 

Now, consider two vertices , ∈  in  for some ∈ 1,3 . If ,  
and ,  where 1 , then , 	 	 1
1 , 	 	 . If ,  and ,  where 1
2  or 2 1  then , 	 	

, 	 	 . If ,  and ,  where  and , then ,
,  for some . Thus, |Ω |Ω  for any two different vertices 

, ∈ , so Ω is a resolving partition of . □ 

By Lemmas 4 and 5, it is easy to verify this consequence. 

Corollary 3. For 4, if 3 and the cardinality of every 

component in the middle partition class is even, then 3 . 

In the following lemma, we give the necessary condition for two components of 
a graph  with resolving 3-partition such that the cardinality of their middle 
partition classes are just different in one vertex. 

Lemma 6. Let ⋃  and 3. If there are two components of  
having a connected partition such that the difference between both cardinalities 
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of the two middle partition classes is one, then these middle partition classes 
must be contained in the same partition class. 

Proof. Let Ω , ,  be a resolving partition of ⋃ . Assume 
there exist two components  and  of  having a connected partition of Ω. 

Let  and  be the middle partition classes of  and , respectively, and 

| | | | 1. Without loss of generality, assume that ⊂ , ⊂  

and ⊂ . Let ∩  and ∩ . Then , Ω
0,1, 1 , , Ω 1,0, , , Ω , 0,1  and 

, Ω 1,1,0 . Now we consider the partition in . We assume 

that | | 1 or | | 1. If ⊂ , then we can check easily that 
|Ω |Ω  for any , ∈ ∪ . Otherwise, we assume 

⊂  or ⊂ . 

1. If ⊂  where | | 1 or | | 1, then |Ω 1,0,

, Ω  for some ∈  in  or |Ω 0,1, 1

, Ω  for some ∈  in , respectively, a contradiction.  

2. If ⊂  where | | 1 or | | 1, then |Ω , 0,1

, Ω  for some	 ∈  in  or |Ω 1,1,0

, Ω  for some	 ∈  in , respectively, a contradiction.  

 
Therefore,  and  must be in the same partition class.	  

2.2 Linear Forest  

The following theorem gives the necessary and sufficient conditions for a 
homogenous linear forest  such that the partition dimension of  is 
equal to 3. 

Theorem 3. For 3, 3 if and only if 2 3 . 

Proof. Let  where , : 1 , 1 , 

, , : 1 3, 1 1  and 2 3 . By Corollary 1, 

then 3. Let Ω , ,  be a partition of  induced by the 
function : → 1, 2, 3 , as follows. 
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 , 	

	mod	3,							 1,																				

1	mod	3, 2, 3, … , 2 ,

	 2	mod	3, otherwise.											

 

Note that  means that ∈ . The vertex 
,

 is an -distance 

vertex in each  component of , by the definition of the function . Then we 
have  

 , , 	

0,							 	mod	3,								
1,							 1	mod	3,

2 , otherwise.											
 (1) 

For ∈ 2, 2  and ∈ 2 1, , then  

 , , 	

0,																							 1	mod	3,
1,															 	mod	3,								

2 1 , otherwise,											
 (2) 

 , , 	

0,															 							 2	mod	3,
1,							 							 	mod	3,								

	 2 , 							otherwise.												
 (3) 

Let us consider any two vertices , ∈  for some ∈ 1,3 . If ,  and 

,  for some ∈ 1, , then , ∈ 	 	 	or , ∈ 	 	 . Note 
that for , we obtain that , 	 	 1 1 , 	 	 . 
Therefore, |Ω |Ω . Now, we assume that ,  and ,  where 

. Since the connected partition induced by  is symmetrical, without loss of 
generality we can assume that , ∈ . Denote by ,  and  the left 
partition class, the middle partition class and the right partition class in the  
component of , respectively. Now, we distinguish three cases. 

1. If ∈ , then ≡ 	1	mod	3 and |Ω 0, 1, 2  by Eq. (1). 

i). If ∈ , then ≡ 1	mod	3 and , 2 2 , . 

ii). If ∈ , then ≡ 0	mod	3 and |Ω 0,2 1 , 1  for 

some ∈ 2,2  by Eq. (2). If 2 , then , 2

2 1 , . Otherwise, , 1 2 1

, . 
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iii). If ∈ , then ≡ 2	mod	3 and |Ω 0, 1, 2  for 

some ∈ 2 1,  by Eq. (3). Thus , 1 1

, . 

Therefore, |Ω |Ω .	 

2. If ∈ , then ≡ 0	mod	3 and |Ω 0,2 1 , 1  for 

some ∈ 2,2  by Eq. (2).  

i). If ∈ , then ≡ 0	mod	3 and |Ω 0,2 1 , 1  for 

some ∈ 2,2  by Eq. (2). If , then , 2 1

2 1 , . Otherwise, , 1 1

, . 

ii). If ∈ , then ≡ 2	mod	3 and |Ω 0, 1, 2  for 

some ∈ 2 1,  by Eq. (3). If 2 1, then 

, 2 1 2 2 1 , . 

Otherwise, , 1 	 2 , . 

Therefore, |Ω |Ω . 

3. If ∈ , then ≡ 2	mod	3 and |Ω 0, 1, 2  for some 

∈ 2 1,  by Eq. (3). If ∈ , then ≡ 2	mod	3, hence |Ω

0, 1, 2  for some ∈ 2 1, . If , then ,

	 2 2 	 , . Otherwise, , 	 1

1 , . Therefore, |Ω |Ω . 

This concludes the proof that Ω is a resolving partition of  where 2

3 . 

Now we will show that for 3, if  and 3, then 2

3 . Since  only consists of paths and 3, then 2. Let 

Ω , ,  be a resolving partition of  induced by the function 
: → 1, 2, 3 . If every component of  has a connected partition and the 

cardinality of the middle partition class | | is odd for all ∈ 1, , then 

3  by Corollary 2. Otherwise, let ∪ ∪  where 

, ∈ 1,3 , 0 and , such that: 
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1. All partitions in  and  are connected and the cardinalities of the 
middle partition classes of  and  are odd and even, respectively. 

2. There exists a disconnected partition in every component of . 

Now, we decompose  into new partition Ω′ , ,  induced by 
′: → 1, 2, 3  as follows. 

a) For every ∈ , we define . 

b) If  is the leftmost vertex of  in , then define 
1	mod	3, where  is the left neighbor of . Otherwise, define 

1	mod	3 for every other vertex  in . Note that the cardinality of 
middle partition class  in  with respect to Ω′ is odd for all ∈ 1, . 
By considering Lemma 6, if there exists ∈ 1,  and ∈ 1,  such 
that | | | | 1 where ⊂  and ⊂ , then . 
Therefore, if there exists	 ∈ 1,  and ∈ 1,  such that | | | | 
where ⊂  and ⊂ , then  by the definition of  in . 
Thus we can verify that any two distinct vertices in ∪  have distinct 
representations with respect to Ω′. 

c) Since all partitions in  are not connected, we can define ordered -paths 
, , … ,  in each component of , such that all vertices in  are 

contained in the same partition class of Ω. Since Ω is a resolving 3-
partition, then in each component there will be three consecutive paths 
,  and  in different partition class of Ω for some . Let 

,  or  where , , 1, 2, 3  for all  in ,  or 
, respectively. Now, define a new partition Ω , ,  induced 

by g:	 ∪ ∪ …∪ → 1, 2, 3  for each component of , as follows. 

 	
, ∈ , ,							
, ∈ ,														

	 , ∈ , 2.
 

By the new partition Ω , we obtain that every component is connected. Now, 
define  in all components in  as follows. If  in the component with odd 
middle partition, then . Otherwise, define  as in case (b) 
above. Therefore, we can have a corresponding partition where all components 

are connected and have an odd middle partition. Thus 3  by Corollary 

2.	  

We give the partition dimension of a graph G consisting of non-homogenous 
paths in the following theorem. 
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Theorem 4. For ∈ , let ⋃  where 3 and  for all 
, ∈ 1, , . Then 2 if 1. Otherwise, 3. 

Proof. If 1, then 2. If 2, then 3 by 
Corollary 1. Let , : 1 , 1  where ⋯

 and Ω , ,  be a partition of  induced by the function 
:	 → 1, 2, 3 , where  means that ∈ , as follows. 

 , 	

	mod	3,							 1,																				

1	mod	3, 2, 3, … , 2 ,

	 2	mod	3, otherwise.											

 

Since the definition of the function  is the same as the definition of  in the 
upper bound proof of Theorem 3, then by using a similar argument, any two 
vertices , ∈  in  for ∈ 1,3  have distinct representations with 
respect to Ω.	  

2.3 ∪ 	 

In the next theorem we give the necessary and sufficient conditions such that for 
a graph  consisting of a complete graph of order 3 and paths of order  we 
have 3. 

Theorem 5. ∪ 3 if and only if 4 and 3 . 

Proof. Let ∪  with the vertex set ∪

: 1 3 ∪ , : 1 , 1 , 4 and 3 . By 

Corollary 1, then 3. Let Ω , ,  be a partition of  induced 
by the function : → 1, 2, 3 , as follows. 

 , for any 1 3 and 

 , 	

	mod	3,							 1,																										

1	mod	3, 2, 3, … ,2 1,

	 2	mod	3, otherwise.																		

 

 

For ∈ 1,3 , ∈ 2,2 1  and ∈ 2 2, , then  

 , 	
0, 								
1, otherwise, 
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 , , 	

0,																			 				 	mod	3,								
1,																			 				 1	mod	3,

2 1,					 				otherwise,											
 (4) 

 , , 	

0,																							 1	mod	3,
1,															 	mod	3,								

2 2 , otherwise,											
 (5) 

 , , 	

0,																						 2	mod	3,
1,														 	mod	3,								

	 2 1, otherwise.												
 (6) 

Now, we consider two distinct vertices , ∈  in the same partition class 
of Ω. If  and , , then , 1 ,  for some . 
Thus we obtain |Ω |Ω  for every 1 3, 1  and 1

. For two vertices , ∈ , we can verify that |Ω |Ω  
similarly as in the proof of Theorem 3. Therefore, Ω is a resolving partition of 

. 

To prove the converse, let ∪  and 3. By Theorem 2, 
since any vertex of  is a 1-distance vertex, while a vertex ∈  is also 

a 1-distance vertex for 3, then 4. To prove that 3 , let 

Ω , ,  be a partition of  induced by the function : →
1, 2, 3 . We consider the components of . If all partitions of  under 
Ω are connected and have an even middle partition in each component, then 

3  by Corollary 3. Otherwise, let ∪	 ∪  where 

, ∈ 1,3 , 0 and , such that: 

1. All partitions in  and  are connected and the cardinalities of the 
middle partition classes of  and  are even and odd, respectively. 

2. There exists a disconnected partition in every component of . 

Now, we decompose  into partition Ω , ,  induced by : →
1, 2, 3  as in the proof of Theorem 3. In this case, by a similar method used in 

the proof of Theorem 3, we can redefine the partition  such that all 
components have a connected partition class with even cardinality of the middle 

partition. Thus, 3 	by Corollary 3. 
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Since every vertex in  is a 1-distance vertex, then we cannot have | | 1 
for any ∈ 1, .	Hence, if we define a partition Ω′ such that | | is odd for all 

∈ 1, , then we obtain that 3 3 3 .	 	
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