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Abstract. This study targets a specific class of meromorphic univalent functions 

 f z
 

defined by the linear operator    ,L a b f z . This paper aims to 

demonstrate some properties for the class  ,
,

k
a b h

 
to satisfy a certain 

subordination. 
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1 Introduction 

Let   denote the class of meromorphic functions  f z  normalized by 
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which are analytic in the punctured unit disk 
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For functions    1,2kf z k   given by 
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we denote the Hadamard product (or convolution) of  1f z  and  2f z  by 
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Let the function  , ;a b z  be defined by 
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for 0, 1, 2,...,b    and  \ 0a . 

Here, and in the remainder of this paper,    ,


     denotes the general 

Pochhammer symbol defined, in terms of the gamma function, by 
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Corresponding to the function  , ;a b z , using the Hadamard product for 

  ,f z   we define a new linear operator  ,L a b  on   by 

          
 

1

1 1

1
, , ; .nn

n
n n

a
L a b f z a b z f z a z

z b





 

     (6) 

The generalized and Gaussian hypergeometric functions together with the 
meromorphic functions were studied recently by several authors [1-9]. 

We define the following operator for the function    ,f L a b f z  by 

         0 , ,D L a b f z L a b f z  

and for k = 1,2,3,..., 
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    (7) 

The above differential operator kD  was studied by Ghanim and Darus [10-12]. 

In addition, we derive from the Eq. (6) and Eq. (7) 

               , 1, 1 , .z L a b f z aL a b f z a L a b f z      (8) 

and 

               , 1, 1 , .k k kz D L a b f z aD L a b f z a D L a b f z       (9) 
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respectively. 

Let   be the class of all analytic, convex and univalent functions in the open 
unit disk and let  h z   satisfy  0 1h  , with 

    0, 1.h z z    (10) 

For two functions ,f g , we say that f  is subordinate to g  or g  is 

superordinate to f  in   and write , ,f g z  if there exists a Schwarz 

function  , analytic in   with  0 0   and   1z   when z  such that 

    , .f z g z z   Furthermore, if function g  is univalent in  , then we 

have the following equivalence: 

        0 0f z g z f g    and      , .f g z     

Definition. If a function f   satisfies the following subordination condition 

              21 , ,k kz D L a b f z z D L a b f z h z       (11) 

then f  is in the class  ,
,

k
a b h , where   is a complex number and  h z  . 

Let A be a class of functions of the form 
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which are analytic in  . 

A function ∈  is in the class of starlike functions ∗  of order   in  , 
if 
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A function ∈  is in the class of prestarlike function  of order   in  
Δ, if 
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(see for example [13-15]).  f z is convex univalent in  and ∗  if 

and only if    0 .f z R  

2 Preliminary Results 

Lemma 1. [16] Let  g z  and  h z  are two analytic functions in  .  h z is 

convex univalent with    0 0h g . If 

      1
g z zg z h z


   (13) 

where 0   and 0  , then 

         1

0

z
g z h z z t h t dt h z       

and   h z  is the best dominant of Eq. (13). 

Lemma 2. [13] If 0a   and 0a  , then, 
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Lemma 3. [13] If      ,
, ,k

a bf z h g z   and     1
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2
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then, 
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3 Main Results 

Theorem 1. Let    ,
,

k
a bf z h . Then  F z  is the function defined by 
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and in the class  ,
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k
a b h , where 
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         1 2

0
1 .

z
h z z t h t dt h z        

Proof. For  f z   and 1  , we can obtain from (14) that  F z   and 

          1 , .f z F z zF z F z       (15) 

Define  H z  by 

              21 , , .k kH z z D L a b F z z D L a b F z      (16) 

From Eq. (15) and Eq. (16) it follows that: 

            21 , ,k kz D L a b f z z D L a b f z     
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Let    ,
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a bf z h . Then, by Eq. (17) 
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and hence we obtain from Lemma 1: 
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Thus, Lemma 2 contributes to 
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Theorem 2. Let  F z  be defined as in Eq. (14) and  f z  . If 

               1 , , 0 ,k kz D L a b F z z D L a b f z h z      (18) 
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Proof. Let us define the analytic function  H z  in   as follows: 

       ,kH z z D L a b F z  (19) 

with  0 1H  , and 

         2 , .kzH z H z z D L a b F z     (20) 

By using Eq. (15), Eq. (18), Eq. (19) and Eq. (20), we conclude that: 

            1 , ,k kz D L a b F z z D L a b f z    
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for 1   and 0  . 

Therefore, an application of Lemma 1 asserts Theorem 2. 

Theorem 3. Let    ,
, .k

a bf z h  If  F z  is the function given by 
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consequently, bound   is sharp. 
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Proof. For    ,
,

k
a bF z h , we could verify that:    
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Then, using Eq. (21), we obtain: 
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Now, we prove that: 
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where      is given by Eq. (22). Setting 
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By Eq. (25) and Eq. (27) with 1  , we have: 

       2 22
2 1 cos 2cos 1

1
zg z R R  


      

 

        2
2 2 2 2 21

1 1 1 1 1
1

R r R r R


          
 

       
2 2

2 22 2 2 2 21 1 1 1 1 1 1 1
1 1

R R
R r r r r 

 
                     

 

  
2

21 2 1.
1

R
r r 


      

 



      Inclusion Properties on a Class of Meromorphic Functions 283 
 

This would eventually give Eq. (26) and hence 
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For  h z defined by Eq. (23), function  F z   is given by: 
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 1 .  By using Eq. (29), Eq. (16) and Eq. (17), we obtain the following: 

            21 , ,k kz D L a b f z z D L a b f z     

    1 1
1 1

1 1 1

z z z

z z
   



           
 

 
    

  
 

2

2

1 2 1 1
.

1 1

z z
z

z

  
  



    
    

 
 

Hence, for each  1    the bound      cannot be increased. 
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