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Abstract. In this paper we present approximate solutionsirfarized delay
differential equations using the matrix Lambert diion. The equations arise
from a microbial fermentation process in a metabslstem. The delay term
appears due to the existence of a rate-limiting stehe fermentation pathway.
We find that approximate solutions can be writteradinear combination of the
Lambert function solutions in all branches. Simolas are presented for three
cases of the ratio of the rate of glucose supplthéomaximum reaction rate of
the enzyme that experienced delay. The simulatoasvorked out by taking the
principal branch of the matrix Lambert functionthe most dominant mode. Our
present numerical results show that the zeroth nagmgoach is quite reliable
compared to the results given by classical numegaulations using the
Runge-Kutta method.

Keywords. Cuckoo Search algorithm; linearized delay differential system; microbial
fermentation process; the Lambert function; the zeroth mode.

1 Introduction

A delay process in a metabolic system may representime necessary for a
certain enzyme to actively start getting involvedai kinetic reaction. In our

previous work [1], a mathematical model of the athdermentation process by
a single yeast cell was derived that took into meration the effect of a delay
in a certain reaction process and led to a sysfetelay differential equations.

Numerical simulations by means of the Runge-Kuttathod for a delay

differential system were then used to approximiagettansient behavior of the
system. In the present work, we extend our studwagproximate solutions
analytically by using the matrix Lambert functiom simulate the linearized
delay differential system.

The Lambert function method was first applied byightt [2] to analyze a linear
delay differential system. The method was then owpd by other researchers,
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such as Asl and Ulsoy [3], Ulsoy [4], and Nelsenal. [5]. Here, we apply the

method to generate the analytic solution of outesysof which it is extremely

difficult to find its closed form. This is due tdd existence of a special
transcendental equation that has an infinite nurobesots (see Ivanoviene and
Rimas [6]). We also compare our present numerippt@ach to the numerical
Runge-Kutta method.

This paper is organized as follows. First, we idtrce the linearized delay
differential system taken from Kasbawa#t, al. [1]. Next, we derive the
solution using the matrix Lambert method, generatmerical procedures for
the Lambert solution and compare the present seslith our previous results
of the Runge-Kutta method. The paper is closeduoynsaries and concluding
remarks.

2 Linearized Delay Differential System of a Microbial
Fermentation Modél

Ethanol fermentation by a yeast cell is a multiygnatic system that is viewed
as a branched metabolic pathway (see Figure JQuimprevious work [1], we
have constructed equations for the fermentatiooge® and introduced a delay
term in the conversion reaction. The delay termeapgd due to the existence of
a rate-limiting step in the fermentation pathwaget completion was needed
by the enzyme to restore its active site.
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Figurel Reactionr; refers to the rate of glucose supply,refers to the
conversion reaction catalyzed by the following eneg: 2: pyruvate kinase, 3:
pyruvate carboxylase, 4: pyruvate dehydrogenase plexn 5: pyruvate
decarboxylase, 6: alcohol dehydrogenase, 7: aedtadd dehydrogenase, 8:
acetyl-CoA synthetase. TCA cycle is the tricarbaxycid cycle. Single arrows
indicate irreversible reaction while double arroinglicate reversible reaction
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By assuming that a discrete time delay took placthe first reaction kinetic
equation (sek in Figure 1), the dimensionless delay differenéigliations are
given by [1]:

dx, () A v,x, (T-1)

dt G x(t-1)+1

dx, (T) _ vx(T-1) v (T)  vx(T)  vx(T)

dt  x(T-0)+1 x(0)+x, x()+x, x,()+«,
dx, (T) _ v,x,(T)

dt x, (1) +x, -ox (1),

dx, (T) _ v.x,(T) N VX (T) ~ox,(T), (1)

dt  x(T)+«, x(t)+«,
i (T) _ v (T) vk X (T) -varax (T )_ VX (T)
t

dt % (T)+k, Ko ke +hX[(T) +aex,(T) % (T)+k,
dx, (T) _ vex(T)  vx(T)

dt % (T)+4, X (1) +4, -ox(1).

dx, (T) | vekaXs(T) —Vakyx,(T) % (1),

= -0,

dt Ky kg + K% (T) + 64 %,(T)

with dimensionless variable and dimensionless time=s /K, t=t/r,

dimensionless time delay 7 =1, and dimensionless parameters
(Oi=1---,4,j=1;--,7),

= 'VJ L ' st P! 5b: i’a-i:JiT'
K K K K K"

The nomenclature is shown in Table 1. The readerfind detailed information
concerning the model in Kasbawatial. [1].

Eq. (1) has only one steady state solution, defineas
xE=(xi,x;,x;,x;,x;,x;,x;),With
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where x,, x;, and x,, respectively, are the roots of the cubic and catad

polynomials (see [1]). Steady state,will be positive if the following
conditions are fulfilled:

Gy <v,i=2

'”"4’ V4 <Ve < (/6+V5f )' K6<K5 '

Tablel Definitions of the normalized variables and pararet

Symbol Definition

S Concentration of metabolites (see Figure 1), g/l.

o) Specific rate of product outflow, 1/h.

G Rate of glucose supply, g/lh.

Vv, Maximum reaction rate of enzymes, g/lh.

K, Michaelis constant of the enzymes (see Figure hichwreact irreversibly,
gll.

K/ Michaelis constant of forward reaction of alcohehgdrogenase, which
reacts reversibly, g/l.

KS Michaelis constant of backward reaction of alcalethydrogenase, g/l.

T Length of time required by enzyme pyruvate kinaseanvert

phosphoenolpyruvates| into pyruvate $,).

Linearizing Eq. (1) at equilibriunx, , we obtain

with &(T) =(x(t)-x.). &(1-1) =(x(t-9) -x.) .3, =

§(1)=3,8()+3,&(T-1).

} [ v -Gy
(v, -G) 0
0 0 v,
S VK v -G)?
hd A, = v.-G
= (X HK) v,
V,K, B 0 0
(X +K,) a |

0

2)
A, O
’ ‘]2 = ’
J>5
V3K3 ]
- ;- 0
(X, +x,)
V,K,
: ; 0
(X, +x,)
0 0 0
0 0 0]
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-0 0 Ve 0
’ (X +&,)
V._K
0 - *5—52 +A, 0 A,
D= ()(5 + /(5) ,
V5K5 V5K6 + 0. O
(S +K,) X +h)y
0 A, 0 -(8, +0,)

N {m(mvf +xlv, +vb1>j1 A {m(mvb +x[v, +v)) j

(Kb/(f +Kbx; +fo;)2 (Kb/(f +Kbx; +fo;)2

3 Solving the Linearized System Using the Lambert Function
Consider the linearized Eq. (2). Let the solutienaritten as

g(T)=¢"s,. 3)
whereSis a7x 7 matrix and§, is a7x1 constant vector. Substituting Eq. (3)
into Eq. (2) yields

SeSTé —J psfé - Zes(Y—l)‘: ,=0,

se’'e, -3, - 3,6, =0,

(5-3,-3,°)€%%, =0.
Sincee®'¢, # 0, then for any arbitrarg, # 0, we have

(S-J,)=J,e". (4)
Multiplying both sides of Eq. (4) bg’e™ gives

(S-3,)e%e "t =J,e™ .

®)
SinceJ J, #J,J,, thenSJ, #J.S. Therefore we have
(S-J,)e’e £ (S-J,)e" 7. (6)

By considering Eqg. (5) and Inequality (6), we imlwee an unknown matriéQ
to obtain the following equation

(S_Jl)e(s—h) = ‘JzQ_ (7)
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Next, we define a matrix Lambert functiov as [7],
W(H)e"™ =H,

with a complex argumeri. Considering that function, Eq. (7) can be rewritt
as

(5-J,)=W(J.Q).
or
S=W(@J,Q)+J,. (8)

Since matrix LambeV has infinite solutions [7], then Eq. (8) can batten
as

Sk :Wk(JZQk)+Jl' (9)

Eq. (9) refers to the solution of matrix LambeW, at thek-th branch.

Substituting Eq. (9) into Eq. (5), and then muitipy both sides by matrie’
we get

W, (3,Q,)e" 020 =3, (10)

This result indicates that matri@x defined in Eq. (7) refers to the solution of Eq.
(10) that should be determined in order to sdbyen Eq. (9).

Matrix Lambert W (J,Q,) in Eq. (10) can be decomposed into several
matrices in the following way. To simplify notatiotet H, =J,Q, . This
matrix can be written in the Jordan canonical foBp as H, =V DV, ",
where V, is the invertible matrix. Matrix D, can be written
asD, =diag{D,, (A),"--,D,,(A,)}, where D, (A) is an mxm Jordan block
matrix, A is the eigenvalue oH, , and m is the multiplicity ofd . Using the

properties ofH, , matrix LambertW, (H,) can be written as follows [8],
W (H,) =V diag{W (D, (4)),--- W (D, (A))}V' (11)
with H, =J,Q, and
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Wk (/]i) Wk' ()Ii) (m11)! Wk(m_l)(/‘i)
W(/]I) ml 'W(m_Z)(Ai)
Wk(Dk,-(/],- )): k: . (m-2)! k
0 0o - W, (A)

whereW is a Lambert function. Therefore we get the sotutdf the linearized
Eq. (2) as a linear combination of all branch sohg of the Lambert function
W,,ie.

g(f)=Y e, , 0T2-1, (12)

with S =J, +V, diag{W, (D,,(4)), - W, O, A, )}V, . This result shows that
the stability of the linearized Eq. (2) is deteredrby the eigenvalues of matrix
S, at allk-branches.

Next, to quantifyg(f) in Eqg. (12), we have to determine coefficiegjs. The

coefficients can be computed by using a histofficattion defined for Eq. (2).
Supposed (T) is a historical function for Eq. (2) that fulfillsolution Eq. (12),
ie.

0(t)= > e*'e, , 0 TO[-1,0]. (13)

The series Eq. (12) and Eq. (13) will be truncaipdo and including N terms
to approximate the functiori(t) and0(t), i.e.

g, (t)= ZN: e*g, , 0t=-1 (14)
and
0,(t)= i e*'g, , 0t0[-1,0]. (15)

By dividing the time interval [-1,0] into 2N divish, we get
0=QX%
with
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- 6(0) | [ @ L en@ ] gO(fN)
0(-3) e W e" ) g°(—N+1)
0=0(-%)| Q= e&N(’TZN) e g™ R |, = go(,,w)
0(-1 S\ (-1) Sn (1)
L ( )_ _eN SRR = ] _go(N)

For a nonsingular matri€2 , vector £ can be written as
Z=Q*(N)O(N).
As N - oo, we get

g, =lm{QN) @N)} , . (16)

Using Eq. (16), a particular solution of Eq. (2) fastorical functiond (T) can
be determined.

4 Numerical Results

In this section we present numerical simulationglie non-normalized Eq. (2).
We approximate solution Eq. (14) by takifd =0 (the zeroth mode of the
Lambert solution) and then we compare the resaoltld results of delay Eq. (2)
by using the Runge-Kutta method (see [9] and [X)] details about this
method). The kinetic parameters used in this sitimdacan be found in [1]. Our
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Figure2 Bifurcation diagram for critical delay” with respect to r (taken from
Kasbawatigt al. [1]).
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simulations are presented for three cases of tfie ra=G/V, of the rate of

glucose supply @) and the maximum reaction rat®,;) of the first delay
experienced by the enzyme (see Figure 2)0.3,r = 0.4, and = 0.5 for fixed

T =4.4. The parameter =7V,/K, is a critical delay for which the system

generates a periodic solution in the neighborhobdteady statex, (Hopf
bifurcation parameter).

To find matrix Qkin Eqg. (10), an optimization procedure was cons¢ai@s
follows. Let us writ€, =[q,]. Since J,in Eq. (2) only has two nonzero
entries, therg, can be defined as follows,

_ pj’ izl,j:].,"',7,
%= 0, otherwise,
with constants P; that have to be determined. The objective functanthe

optimization problem of finding matri®Q, is defined as

min|W, (3,Q,)e" " = 3., (17)

where | is a Euclid normp=(p,,---,p,) are the optimization variables,

W, (J,Q,) is the matrix Lambert function defined in Eq. (lahd J,, J, are
matrices defined in Eq. (2).

In this study, the Cuckoo Search algorithm was usesblve Eq. (17). This is a
heuristic method inspired by the specific behawiothe cuckoo bird’s breeding
habits (see [11,12]). The computational procedue® as follows:

1. Set the branch of the Lambert function, number opypation (nest),
number of iterations, termination criteria, andhability of the eggs being
detected by the host bird (in our simulations wee tarobability 5 equals

0.25).
2. Randomly generate an initial population fgr using the following

equation,
P, =P, + (P, —P,),

wherep, andp, are the lower and upper bound vector of the ogttion
variable p, respectively, andu is a random parameter that is generated
uniformly in the interval [0,1].
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3. Evaluate the objective function given by Eq. (IAnk the solutions, and
find the current best nest.

4. Generate a new population using Levy flight via Mantegna algorithm
(see [11)).

5. Evaluate the objective function in Eq. (17) usihg hew population.

6. Apply selection using random walk and probabilfl/ to avoid the worst

nests, and generate a new generation.
7. Return to step c), unless the termination critaeresatisfied.

The numerical results are depicted in Figures 5 different values of. In
this simulation, the principal branch of the Lambfinction was used as the
most dominant mode. We then compared the matrixbestresults with the
Runge-Kutta results. We point out that the solgtiagenerated from both
methods were quite in agreement for all three cabes
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Figure3 Comparison of Runge-Kutta solutions (dashed linasyl matrix
Lambert solutions (solid lines) for= 0.3 andT = 4.4.
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Figure4 The comparison of Runge-Kutta solutions (dasheés)irand matrix

Lambert solutions (solid lines) for= 0.4 andT = 4.4.

Table2 Eigenvalues of system given by Eq. (2) for Rungét&yl) and

matrix Lambert methods (11).

Eigenvaluesof Eq. (2) for r=0.3, T =4.4

A A, Ay A A A A
I 0.220 + 1.69D -2.623 -1.083 -0.380 -0.251-0.380 -0.380
I 1.550 + 2.18D -2.623 -1.083 -0.380 -0.251-0.380 -0.380
Eigenvaluesof Eq. (2) for r=0.4, T =4.4
A A, Ay A A A A
|  0527x10°-1.570 -2.571 -1.083 -0.380 -0.251-0.380 -0.380
I -3x10*- 9.340 -2571 -1.083 -0.380 -0.251-0.380 -0.380
Eigenvaluesof Eq. (2) for r=0.5, T =4.4
A A A A, A A A
I -0.250 + 1.38D -2.521 -1.083 -0.383 -0.251-0.380 -0.380

-1.530 + 8.25D -2.521 -1.083 -0.383 -0.251-0.380

-0.380
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Figure5 The comparison of Runge-Kutta solutions (dasheés)irmand matrix
Lambert solutions (solid lines) for= 0.5 andT = 4.4.

The eigenvalues of the two methods are given il€T2bWe observe that for
= 0.3, the solutions are unstable, due to the ipitgitof the real part of

eigenvaluel, (see Figure 3). Meanwhile, for= 0.4, the solutions are almost

periodic (see Figure 4). This is indicated by taal part of A which is almost

zero. Forr = 0.5, the solutions are stable with damped osiciia (see Figure
5).

Furthermore, we quantified the mean error of tHetgms generated by both
methods for all three casesrofThe mean error was computed as follows:

IR S RN - <
=20 -0 1ot Le

wheren is the number of time partitiors; (i) and s;' (i) are the solutions of
variablej resulted from using the first and second metheshectively.
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In Figure 6 we observe that for the unstable case((3), the mean error of the
solutions was relatively high (see Figure 6(a)).isThccurred due to the
instability of the solutions. Meanwhile for the Ist casesr(= 0.4 and = 0.5),
the mean error of the solutions was relatively sifsde Figure 6(b) and (c)).
This means that the present approximate methodlisble compared to the
classical Runge-Kutta method, especially for tlablst solutions.

3 , : , 0.025
: 4
0.02]
0015
e 001}

0.005

Figure6 Mean erroeﬁr) of solution§ for: (a)r = 0.3, (b)r =0.4, (c)r = 0.5.

5 Conclusions

In this paper a different approach for generatipgreximate solutions of the
linearized delay differential equation arising francertain metabolic system
has been presented. The closed form of the solwias generated via the
matrix Lambert function written as a linear combioa of the Lambert

function solutions in all branches. Three dynamlmghaviors of the metabolic
system were presented numerically. We observedthigasolutions generated
via the Lambert method of the zeroth mode and tinegR-Kutta method were
quite in agreement for the considered cases.
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