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Abstract. The locating-chromatic number of a graph G can be defined as the
cardinality of a minimum resolving partition of the vertex set V(G) such that all
vertices have distinct coordinates with respect to this partition and every two
adjacent vertices in G are not contained in the same partition class. In this case,
the coordinate of a vertex v in G is expressed in terms of the distances of v to all
partition classes. This concept is a special case of the graph partition dimension
notion. Previous authors have characterized all graphs of order n with locating-
chromatic number either n or n — 1. They also proved that there exists a tree of
order n, n =5, having locating-chromatic number k if and only if k €
{3,4,..,n—2,n}. In this paper, we characterize all trees of order n with
locating-chromatic number n — t, for any integers n and t, where n > ¢ + 3 and
2<t<z
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1 Introduction

The topic of locating-chromatic number was introduced by Chartrand, et al. [1]
in 2002. They determined the locating-chromatic numbers of paths, cycles, and
double stars. Inspired by Chartrand, et al., other authors have determined the
locating-chromatic numbers of some well known classes of graphs, i.e.
amalgamation of stars and firecrackers by Asmiati, et al. [2,3], Kneser graphs
by Behtoei and Omoomi [4], Halin graphs by Purwasih, et al. [5], Cartesian
product of graphs and joint product graphs by Behtoei and Omoomi [6] and
Behtoei [7], and homogeneous lobster graphs by Syofyan, et al. [8].

Let G = (V,E) be a connected graph. We define the distance as the minimum
length of path connecting vertices u and v in G, denoted by d(u,v). A k-
coloring of G is a function c:V(G) = {1,2, ..., k} where c(u) # c(v) for any
two adjacent vertices u and v in G. Thus, the coloring c induces a partition IT of
V(G) into k color classes (independent sets) Cy, Cs, ..., C;, where C; is the set of
all vertices colored by i for 1 < i < k. The color code c(v) of a vertex v in G
is defined as the k-vector (d(v,C;),d(v,C,),...,d(v,C)) where d(v,C;) =
min{d(v,x) | x € C;} for 1 <i < k. The k —coloring ¢ of G such that all
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vertices have different color codes is called a locating coloring of G. The least
integer k is such that there is a locating coloring in G that is called the locating-
chromatic number of G, denoted by x, (G).

Chartrand, et al. in [1] have determined all graphs of order n with locating-
chromatic number n, namely a complete multipartite graph of n vertices.
Furthermore in Chatrand, et al. [9], all graphs of order n with locating-
chromatic number n — 1 were characterized. Chartrand, et al. [1] also proved
that there exists a tree of order n, n = 5, having locating-chromatic number k if
and only if k € {3,4,...,n — 2,n}. Recently, Baskoro and Asmiati [10] have
characterized all trees with locating-chromatic number 3. In this investigation,
we have characterized all trees of order n with locating-chromatic number n —

t, for any integers n and t, wheren >t +3and 2 <t < g

The following results were proved in Chartrand, et al. [1].

Lemma 1. Let G be a simple, connected and non directed graph. Let function ¢
be a locating coloring of G and u,v € V (G). If d(u,w) = d(v,w) for every
w €V (G)\{u, v}, then c(u) # c(v).

Corollary 1. If G is a connected graph containing a vertex that is adjacent to k
leaves of G, then y,(G) = k + 1.

2 Main Results

In the following theorem, we provide a method to construct a tree T of order n
from any tree of smaller order t +1 where n >5 and 2 <t < %, such that

x.(T) =n—t. A vertex v of degree > 2 in a tree T is called a stem if it is
adjacent to a leaf.

Theorem 1. For any integer n and t, wheren >t+3and2 <t < g ,let Teyq

be any tree of order t + 1. Let T,, be a tree of order n obtained by joining
n —t — 1 new vertices to a vertex x € V(T;,,), where x is not a stem. Then,

XL(Tn) =n-—t.

Proof. Let V(T,) ={x,y;,z|l1<i<n—-t—11<j<t}, where x is
adjacent to n — t — 1 leaves, y; are the leaves adjacent to x, and z; are other
vertices in T,. Define a (n—t) —coloring c:V(T,) = {1,2,..,n—t} as
follows:

1. c(x)=n-—t,
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2. cyp) =iforl<i<n-—-t-—1,
3. c(z))=jforl<j<t.

Next, we show that the color codes of all vertices under the coloring ¢ are
distinct. We only consider pairs of vertices with the same color. The
possibilities are for the pairs of vertices y; and z; for some i,j. If z; is adjacent
to x, then cn(y;) # cn(z;) because cp(y;) contains exactly one entry 1, while
cn(z;) contains at least two entries 1. If z; is not adjacent to x then c(y;) #
cn(z;) because cp(y;) contains entry 1 in the (n — t)t" ordinate, while cy (Zj)

does not contain entry 1 in the (n — t)*" ordinate. Since every vertex of T,, has
distinct color codes, c is a locating coloring of T,. So, x;(T,,) < n —t.

Now, since T,, contains a vertex x that is adjacent to n —t — 1 leaves, then by
Corollary 1, y;(T,,) = n —t. Hence, y.(T,) =n—t.0O

In the following theorem, we give a necessary condition of a tree of order n
whose locating-chromatic number is n — t, where 2 <t < %

Theorem 2. For any integer n and t, wheren >t +3and2 <t < % let T;, be

a tree of order n. If y,(T,,) = n —t, then T,, has exactly one stem withn — t —
1 leaves.

Proof. Since y, (T,) = n —t, every stem of T, is adjacent to at mostn —t — 1
leaves. Suppose that there is no stem of T;, having n — t — 1 leaves. Then every
stem of T, is adjacent to at most n —t — 2 leaves. Furthermore, we have a
locating coloring for T;, by using n — t — 1 colors as follows.

Let there be b stems in T,,. First, we denote all stems of T,, by s;, for 1 < i < b,
the leaves of T, adjacent to s; by [;j, for 1 <i<band1<j<n-—t—2,and
the remaining vertices by vy, for 0 < k <n —4. Let N(s;) be the set of
neighbors of s;, for 1 < i < b. For a coloring ¢ of V(T},), define c(N(s;)) =
{c(x)]x € N(s;)}. Now, define a (n—t—1) —coloring ¢ of T, with the
following steps :

1. For all stems s;, define c(s;) = 1 or 2 such that if there are at least two
stems adjacent to the same v, for some k, then two of these stems receive
different colors.

2. For all vertices v, adjacent to a stem, assign c(vy) = a, for some a €
{3,4,5, ...,n — t — 1} such that c(vy) # c(v;) for k # L.
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3. For all vertices v, not adjacent to a stem, define c(vy) = a, for some
a € {3,4,5,...,n —t — 1} such that c(vy) # c(v;) if d(vy, C;) = d(v, (;)
fori =1,2.

4. For all leaves [;}, define c(l;j) = a, for some a € {1,2,...,n —t — 1} such
that all vertices (including leaves) adjacent to stems s; and s, satisfy
c(N(sp)) # c(N(sp)) forany i # p.
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Figure 1 Trees Hy, H,, H3, Hy, Hs, Hg.

Observe that, with the exception of the six trees depicted in Figure 1, the
coloring ¢ can always be done for any tree T,,, n = 6. Meanwhile, for all trees
in Figure 1 we cannot use the coloring ¢ because the number of colors is smaller
than the number of vertices v, adjacent to a stem. However, we can define
another coloring for T,, in Figure 1 by n—t —1 colors such that if n =
8,9,10,11,13 then t = 3,4,4,5, 6, respectively.

Next, we show that c is a locating coloring of T;,. Let x and y be two vertices of
T,, such that c(x) = c(y). We distinguish five cases:

Casel.x =s;andy = s;, for i # j.
Since c¢(N(s;)) # c(N(sj)) for i #j (from Step (4)), we obtain that

cn(x) # en(y).
Case2.x =vpandy = v, for k # L.
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If v, is adjacent to a stem s; and v; is not adjacent to any stem, then
cn(vy) # cg(v;) because cp(vy) contains entry 1 in the first or second
ordinate, while cy(v;) does not contain entry 1 in the first and second
ordinate (from Step (1), (2) and (3)).
Case3.x = lj;andy = g, for i # p.
Since c¢(N(s;)) # c(N (sp)) for i # p (from step (4)), we obtain that
cn(x) # en(y).
Cased.x =s;andy = L.
Since c(N(s;)) # c(N(sp)) for i # p (from step (4)), we obtain that
cn(x) # cn(y)-
Case5.x = v andy = [;;.
Then there are two possibilities for this case:
i) If vy is adjacent to a stem, then c(vy) # cn(l;;) because cpy(vy)
contains at least two entries 1, while c(l;;) contains exactly one
entry 1 (from Step (1),(2),(4)).
ii) If vy is not adjacent to any stem, then cp(vy) # cp(l;;) because
cp(vy) does not contain entry 1 in the first and second ordinate,
while ¢p(l;;) contains entry 1 in the first or second ordinate (from

Step (1),(3),(4)).

By the above cases, we prove that c is a locating coloring of T,,. Then y; (T;,) <
n —t — 1, which contradicts y;(T,,) =n —t. Hence, there is a stem of T
having n — t — 1 leaves.

Next, we will show that there is only one stem of T,, having n —t — 1 leaves.
We suppose that there are two stems of T,, adjacent to n —t — 1 leaves. Then,

|[V(T,)| = 2(n—t). Since t < 2, |[V(T,)| = 2(n — t) > n, a contradiction with
[V(T,)| =n.0O

Applying Theorem 1 and Theorem 2, we obtain the following theorem.

Theorem 3. For any integer nand t, wheren >t +3and2 <t < g let T,, be

a tree of order n. Then y,(T,) = n —t if and only if T,, has exactly one stem
withn —t — 1 leaves.

Based on Theorem 3, we can determine all trees T, on n vertices with y; (T;,) =
n —t for any integers n and t, wheren > t+3and 2 <t < % In particular, if
t =2,3, or 4, all trees T,, with y;(T,,) = n —t are the caterpillars shown in
Figures 2, 3, and 4. But for t = 5, there are trees T,, on n vertices other than
caterpillars with y, (T,,) = n — t, for example the cases of t = 5 and 6, all trees
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with y;(T,) =n—5 and x,(T;,) = n — 6 are depicted in Figure 5 and Figure
6, respectively. Therefore, as a special case of Theorem 3, we have the
following corollary.

First, we give the definition of a caterpillar. Let P, = x1X; ... x,,, be a path with
m vertices. A caterpillar C(m;nq,ny, ...,N,y,), is obtained by joining n; new
vertices to every vertex x; inapath B,,n; 20,1 <i <m.

Corollary 2. For any integer n and t, wheren >t + 3 and t = 2,3,4, let T;, be
a tree of order n. Then y,(T,) =n—t if and only if T, is a caterpillar
C(m;ny,ny,..,ny)where 0<n;<n—-t—-1, 2<m<t, n;,n, #0, and
exactly one of n; isequalton —t — 1.

All caterpillars in the Corollary 2 are shown in Figure 2, 3, and 4.

L

n—2 / C(n-3,1)

Figure 2 All trees of order n > 5 with locating chromatic number n — 2.

C(n-4,2)

n—d C(n-5,0,0,1) (1,1,n-5)
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Figure 4 All trees of order n > 7 with locating chromatic number n — 4.
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Figure 4 (continued) All trees of order n > 7 with locating chromatic number
n-—4.

Figure 5 All trees of order n > 8 with locating chromatic number n — 5.
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Figure 6 All trees of order n > 9 with locating chromatic number n — 6.
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