

Trees with Certain Locating-Chromatic Number

Dian Kastika Syofyan, Edy Tri Baskoro & Hilda Assiyatun

Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia. E-mail: diankastika@students.itb.ac.id

Abstract. The locating-chromatic number of a graph *G* can be defined as the cardinality of a minimum resolving partition of the vertex set V(G) such that all vertices have distinct coordinates with respect to this partition and every two adjacent vertices in *G* are not contained in the same partition class. In this case, the coordinate of a vertex v in *G* is expressed in terms of the distances of v to all partition classes. This concept is a special case of the graph partition dimension notion. Previous authors have characterized all graphs of order n with locating-chromatic number either n or n - 1. They also proved that there exists a tree of order n, $n \ge 5$, having locating-chromatic number k if and only if $k \in \{3,4,...,n-2,n\}$. In this paper, we characterize all trees of order n with locating-chromatic number n - t, for any integers n and t, where n > t + 3 and $2 \le t < \frac{n}{2}$.

Keywords: *color code; leaves; locating-chromatic number; stem; tree.*

1 Introduction

The topic of locating-chromatic number was introduced by Chartrand, *et al.* [1] in 2002. They determined the locating-chromatic numbers of paths, cycles, and double stars. Inspired by Chartrand, *et al.*, other authors have determined the locating-chromatic numbers of some well known classes of graphs, i.e. amalgamation of stars and firecrackers by Asmiati, *et al.* [2,3], Kneser graphs by Behtoei and Omoomi [4], Halin graphs by Purwasih, *et al.* [5], Cartesian product of graphs and joint product graphs by Behtoei and Omoomi [6] and Behtoei [7], and homogeneous lobster graphs by Syofyan, *et al.* [8].

Let G = (V, E) be a connected graph. We define the *distance* as the minimum length of path connecting vertices u and v in G, denoted by d(u, v). A *kcoloring* of G is a function $c:V(G) \rightarrow \{1, 2, ..., k\}$ where $c(u) \neq c(v)$ for any two adjacent vertices u and v in G. Thus, the coloring c induces a partition Π of V(G) into k color classes (independent sets) $C_1, C_2, ..., C_k$ where C_i is the set of all vertices colored by i for $1 \leq i \leq k$. The *color code* $c_{\Pi}(v)$ of a vertex v in Gis defined as the *k*-vector $(d(v, C_1), d(v, C_2), ..., d(v, C_k))$ where $d(v, C_i) =$ $\min\{d(v, x) \mid x \in C_i\}$ for $1 \leq i \leq k$. The *k*-coloring c of G such that all

Received June 10th, 2015, 1st Revision September 9th, 2015, 2nd Revision October 28th, 2015, Accepted for publication November 15th, 2015.

Copyright © 2016 Published by ITB Journal Publisher, ISSN: 2337-5760, DOI: 10.5614/j.math.fund.sci.2016.48.1.4

vertices have different color codes is called a *locating coloring* of G. The least integer k is such that there is a locating coloring in G that is called the *locating-chromatic number* of G, denoted by $\chi_L(G)$.

Chartrand, *et al.* in [1] have determined all graphs of order n with locatingchromatic number n, namely a complete multipartite graph of n vertices. Furthermore in Chatrand, *et al.* [9], all graphs of order n with locatingchromatic number n - 1 were characterized. Chartrand, *et al.* [1] also proved that there exists a tree of order $n, n \ge 5$, having locating-chromatic number k if and only if $k \in \{3,4, ..., n-2, n\}$. Recently, Baskoro and Asmiati [10] have characterized all trees with locating-chromatic number 3. In this investigation, we have characterized all trees of order n with locating-chromatic number n - t, for any integers n and t, where n > t + 3 and $2 \le t < \frac{n}{2}$.

The following results were proved in Chartrand, et al. [1].

Lemma 1. Let G be a simple, connected and non directed graph. Let function c be a locating coloring of G and $u, v \in V(G)$. If d(u, w) = d(v, w) for every $w \in V(G) \setminus \{u, v\}$, then $c(u) \neq c(v)$.

Corollary 1. If G is a connected graph containing a vertex that is adjacent to k leaves of G, then $\chi_L(G) \ge k + 1$.

2 Main Results

In the following theorem, we provide a method to construct a tree T of order n from any tree of smaller order t + 1 where n > 5 and $2 \le t < \frac{n}{2}$, such that $\chi_L(T) = n - t$. A vertex v of degree ≥ 2 in a tree T is called a *stem* if it is adjacent to a leaf.

Theorem 1. For any integer n and t, where n > t + 3 and $2 \le t < \frac{n}{2}$, let T_{t+1} be any tree of order t + 1. Let T_n be a tree of order n obtained by joining n - t - 1 new vertices to a vertex $x \in V(T_{t+1})$, where x is not a stem. Then, $\chi_L(T_n) = n - t$.

Proof. Let $V(T_n) = \{x, y_i, z_j | 1 \le i \le n - t - 1, 1 \le j \le t\}$, where x is adjacent to n - t - 1 leaves, y_i are the leaves adjacent to x, and z_j are other vertices in T_n . Define a (n - t)-coloring $c: V(T_n) \rightarrow \{1, 2, ..., n - t\}$ as follows:

$$1. \quad c(x) = n - t,$$

2.
$$c(y_i) = i \text{ for } 1 \le i \le n - t - 1,$$

3. $c(z_j) = j \text{ for } 1 \le j \le t.$

Next, we show that the color codes of all vertices under the coloring c are distinct. We only consider pairs of vertices with the same color. The possibilities are for the pairs of vertices y_i and z_j for some i, j. If z_j is adjacent to x, then $c_{\Pi}(y_i) \neq c_{\Pi}(z_j)$ because $c_{\Pi}(y_i)$ contains exactly one entry 1, while $c_{\Pi}(z_j)$ contains at least two entries 1. If z_j is not adjacent to x then $c_{\Pi}(y_i) \neq c_{\Pi}(z_j)$ contains entry 1 in the $(n - t)^{th}$ ordinate, while $c_{\Pi}(z_j)$ does not contain entry 1 in the $(n - t)^{th}$ ordinate. Since every vertex of T_n has distinct color codes, c is a locating coloring of T_n . So, $\chi_L(T_n) \leq n - t$.

Now, since T_n contains a vertex x that is adjacent to n - t - 1 leaves, then by Corollary 1, $\chi_L(T_n) \ge n - t$. Hence, $\chi_L(T_n) = n - t$. \Box

In the following theorem, we give a necessary condition of a tree of order n whose locating-chromatic number is n - t, where $2 \le t < \frac{n}{2}$.

Theorem 2. For any integer n and t, where n > t + 3 and $2 \le t < \frac{n}{2}$, let T_n be a tree of order n. If $\chi_L(T_n) = n - t$, then T_n has exactly one stem with n - t - 1 leaves.

Proof. Since $\chi_L(T_n) = n - t$, every stem of T_n is adjacent to at most n - t - 1 leaves. Suppose that there is no stem of T_n having n - t - 1 leaves. Then every stem of T_n is adjacent to at most n - t - 2 leaves. Furthermore, we have a locating coloring for T_n by using n - t - 1 colors as follows.

Let there be *b* stems in T_n . First, we denote all stems of T_n by s_i , for $1 \le i \le b$, the leaves of T_n adjacent to s_i by l_{ij} , for $1 \le i \le b$ and $1 \le j \le n - t - 2$, and the remaining vertices by v_k , for $0 \le k \le n - 4$. Let $N(s_i)$ be the set of neighbors of s_i , for $1 \le i \le b$. For a coloring *c* of $V(T_n)$, define $c(N(s_i)) = \{c(x) | x \in N(s_i)\}$. Now, define a (n - t - 1)-coloring *c* of T_n with the following steps :

- 1. For all stems s_i , define $c(s_i) = 1$ or 2 such that if there are at least two stems adjacent to the same v_k for some k, then two of these stems receive different colors.
- 2. For all vertices v_k adjacent to a stem, assign $c(v_k) = a$, for some $a \in \{3,4,5, \dots, n-t-1\}$ such that $c(v_k) \neq c(v_l)$ for $k \neq l$.

- 3. For all vertices v_k not adjacent to a stem, define $c(v_k) = a$, for some $a \in \{3,4,5,\ldots, n-t-1\}$ such that $c(v_k) \neq c(v_l)$ if $d(v_k, C_i) = d(v_l, C_i)$ for i = 1, 2.
- 4. For all leaves l_{ij}, define c(l_{ij}) = a, for some a ∈ {1,2,...,n-t-1} such that all vertices (including leaves) adjacent to stems s_i and s_p satisfy c(N(s_i)) ≠ c(N(s_p)) for any i ≠ p.

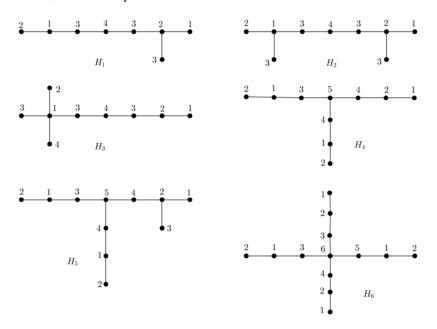


Figure 1 Trees $H_1, H_2, H_3, H_4, H_5, H_6$.

Observe that, with the exception of the six trees depicted in Figure 1, the coloring c can always be done for any tree T_n , $n \ge 6$. Meanwhile, for all trees in Figure 1 we cannot use the coloring c because the number of colors is smaller than the number of vertices v_k adjacent to a stem. However, we can define another coloring for T_n in Figure 1 by n - t - 1 colors such that if n = 8, 9, 10, 11, 13 then t = 3, 4, 4, 5, 6, respectively.

Next, we show that c is a locating coloring of T_n . Let x and y be two vertices of T_n such that c(x) = c(y). We distinguish five cases:

Case 1. $x = s_i$ and $y = s_j$, for $i \neq j$. Since $c(N(s_i)) \neq c(N(s_j))$ for $i \neq j$ (from Step (4)), we obtain that $c_{\Pi}(x) \neq c_{\Pi}(y)$. **Case 2.** $x = v_k$ and $y = v_l$, for $k \neq l$. If v_k is adjacent to a stem s_i and v_l is not adjacent to any stem, then $c_{\Pi}(v_k) \neq c_{\Pi}(v_l)$ because $c_{\Pi}(v_k)$ contains entry 1 in the first or second ordinate, while $c_{\Pi}(v_l)$ does not contain entry 1 in the first and second ordinate (from Step (1), (2) and (3)).

- **Case 3.** $x = l_{ij}$ and $y = l_{pq}$, for $i \neq p$. Since $c(N(s_i)) \neq c(N(s_p))$ for $i \neq p$ (from step (4)), we obtain that $c_{\Pi}(x) \neq c_{\Pi}(y)$.
- Case 4. $x = s_i$ and $y = l_{pq}$. Since $c(N(s_i)) \neq c(N(s_i))$

Since $c(N(s_i)) \neq c(N(s_p))$ for $i \neq p$ (from step (4)), we obtain that $c_{\Pi}(x) \neq c_{\Pi}(y)$.

Case 5. $x = v_k$ and $y = l_{ij}$.

Then there are two possibilities for this case:

- i) If v_k is adjacent to a stem, then $c_{\Pi}(v_k) \neq c_{\Pi}(l_{ij})$ because $c_{\Pi}(v_k)$ contains at least two entries 1, while $c_{\Pi}(l_{ij})$ contains exactly one entry 1 (from Step (1),(2),(4)).
- ii) If v_k is not adjacent to any stem, then c_Π(v_k) ≠ c_Π(l_{ij}) because c_Π(v_k) does not contain entry 1 in the first and second ordinate, while c_Π(l_{ij}) contains entry 1 in the first or second ordinate (from Step (1),(3),(4)).

By the above cases, we prove that c is a locating coloring of T_n . Then $\chi_L(T_n) \le n - t - 1$, which contradicts $\chi_L(T_n) = n - t$. Hence, there is a stem of T having n - t - 1 leaves.

Next, we will show that there is only one stem of T_n having n - t - 1 leaves. We suppose that there are two stems of T_n adjacent to n - t - 1 leaves. Then, $|V(T_n)| \ge 2(n - t)$. Since $t < \frac{n}{2}$, $|V(T_n)| \ge 2(n - t) > n$, a contradiction with $|V(T_n)| = n$. \Box

Applying Theorem 1 and Theorem 2, we obtain the following theorem.

Theorem 3. For any integer n and t, where n > t + 3 and $2 \le t < \frac{n}{2}$, let T_n be a tree of order n. Then $\chi_L(T_n) = n - t$ if and only if T_n has exactly one stem with n - t - 1 leaves.

Based on Theorem 3, we can determine all trees T_n on n vertices with $\chi_L(T_n) = n - t$ for any integers n and t, where n > t + 3 and $2 \le t < \frac{n}{2}$. In particular, if t = 2, 3, or 4, all trees T_n with $\chi_L(T_n) = n - t$ are the caterpillars shown in Figures 2, 3, and 4. But for $t \ge 5$, there are trees T_n on n vertices other than caterpillars with $\chi_L(T_n) = n - t$, for example the cases of t = 5 and 6, all trees

with $\chi_L(T_n) = n - 5$ and $\chi_L(T_n) = n - 6$ are depicted in Figure 5 and Figure 6, respectively. Therefore, as a special case of Theorem 3, we have the following corollary.

First, we give the definition of a caterpillar. Let $P_m = x_1 x_2 \dots x_m$ be a path with m vertices. A caterpillar $C(m; n_1, n_2, \dots, n_m)$, is obtained by joining n_i new vertices to every vertex x_i in a path $P_m, n_i \ge 0, 1 \le i \le m$.

Corollary 2. For any integer n and t, where n > t + 3 and t = 2,3,4, let T_n be a tree of order n. Then $\chi_L(T_n) = n - t$ if and only if T_n is a caterpillar $C(m; n_1, n_2, ..., n_m)$ where $0 \le n_i \le n - t - 1$, $2 \le m \le t$, $n_1, n_m \ne 0$, and exactly one of n_i is equal to n - t - 1.

All caterpillars in the Corollary 2 are shown in Figure 2, 3, and 4.

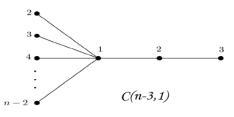


Figure 2 All trees of order n > 5 with locating chromatic number n - 2.

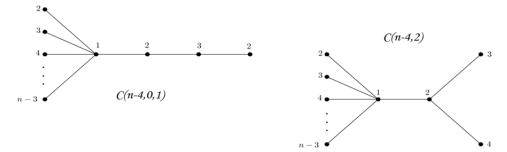


Figure 3 All trees of order n > 6 with locating chromatic number n - 3.



Figure 4 All trees of order n > 7 with locating chromatic number n - 4.

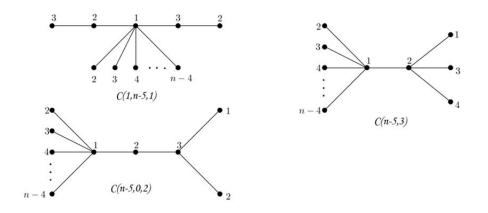


Figure 4 (*continued*) All trees of order n > 7 with locating chromatic number n-4.

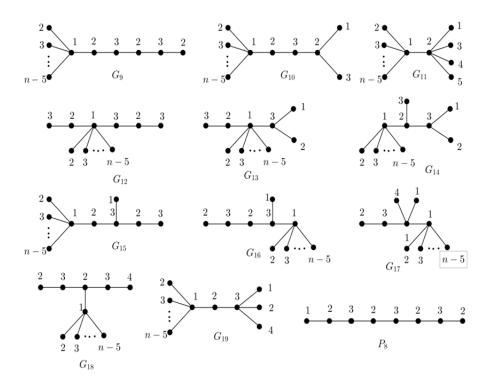


Figure 5 All trees of order n > 8 with locating chromatic number n - 5.

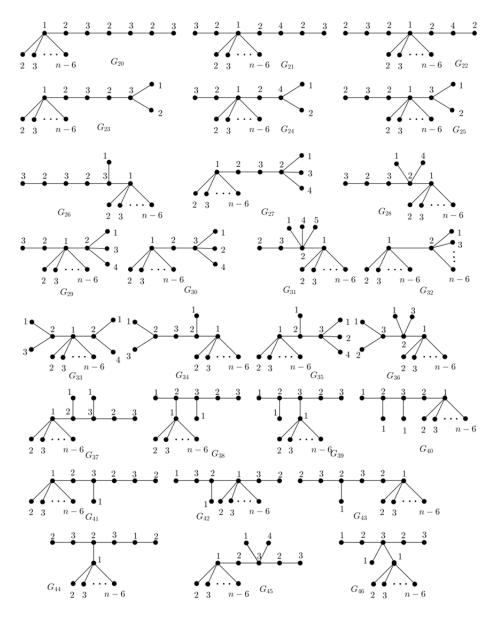


Figure 6 All trees of order n > 9 with locating chromatic number n - 6.

Acknowledgements

This research was supported by Research Grant *Program Riset Unggulan ITB-DIKTI*, Ministry of Research, Technology and Higher Education, Indonesia.

References

- Chartrand, G., Erwin, D., Henning, M.A., Slater, P.J. & Zhang, P., *The Locating-chromatics Number of A Graph*, Bull. Inst. Combin. Appl., 36, pp. 89-101, 2002.
- [2] Asmiati, Assiyatun, H. & Baskoro, E.T., Locating-chromatic Number of Amalgamation of Stars, ITB J. Sci., 43A(1), pp. 1-8, 2011.
- [3] Asmiati, Baskoro, E.T., Assiyatun, H., Suprijanto, D., Simanjuntak, R. & Uttunggadewa, S., *The Locating-Chromatic Number of Firecracker Graphs*, Far East J. Math. Sci., 63(1), pp. 11-23, 2012.
- [4] Behtoei, A. & Omoomi, B., On the Locating Chromatic of Kneser Graphs, Discrete App. Math., **159**, pp. 2214-2221, 2011.
- [5] Purwasih, I.A. & Baskoro, E.T., *The Locating-chromatic Number of Certain Halin Graphs*, AIP Conf Proc., **1450**, pp. 342-345, 2012.
- [6] Behtoei, A. & Omoomi, B., On the Locating Chromatic of Cartesian Product of Graphs, Cornell University Library, http://arxiv.org/abs/ 1106.3453, (9 December 2012).
- [7] Behtoei, A., *The Locating-chromatic Number of the Join of Graphs*, Bull. Iran. Math. Soc., **40**(6), pp. 1491-1504, 2014.
- [8] Syofyan, D.K., Baskoro, E.T. & Assiyatun, H., On the Locatingchromatic Number of Homogeneous Lobster, AKCE Int. J. Graphs Comb., 10(3), pp. 245-252, 2013.
- [9] Chartrand, G., Erwin, D., Henning, M.A., Slater, P.J. & Zhang, P., Graph of Order n with Locating-chromatic Number n-1, Discrete Math., 269(1-3), pp. 65-79, 2003.
- [10] Baskoro, E.T. & Asmiati, *Characterizing All Trees with Locating-chromatic Number 3*, Electronic Journal of Graph Theory and Applications, **1**(2), pp. 109-117, 2013.