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Abstract. Vertical electrical sounding (VES) data are usually interpreted in 
terms of a 1D resistivity model using linearized inversion. The local approach of 
a non-linear inverse problem has fundamental limitations, i.e. the necessity of a 
starting model close to the solution and possible convergence to a local rather 
than a global minimum solution. We studied the application of a global search 
approach for non-linear inversion using the guided random search method to 
model VES data. A quasi-2D resistivity model can be created by stitching 1D 
models obtained from VES data along a profile. Both vertical and lateral 
resistivity variations are minimized to incorporate a 2D smoothness constraint. 
The proposed method was applied to invert synthetic VES data as well as field 
data from a sedimentary environment. Both synthetic and field data inversions 
resulted in models that correlated well with the known synthetic model and with 
the geology of the study area, respectively. 

Keywords: 2D model; DC resistivity; global search; Monte Carlo method; non-linear 
inversion. 

1 0BIntroduction 
In geophysics, the so-called direct current (DC) geo-electrical method can be 
used to infer the resistivity structure of the subsurface. A pair of electrodes is 
employed to inject an electrical current into the ground after which the potential 
difference at another pair of electrodes is measured. The electrode array is 
generally set up along a certain linear configuration for meaningful results and 
simplicity in interpretation of the data. In the resistivity sounding technique, 
measured parameters are apparent resistivities as a function of electrode 
spacings that represent resistivity variations with depth. Resistivity is an 
important physical property of the subsurface that can be related to the existence 
of ground-water bearing formations, variations in agricultural soil moisture, 
underground contamination plumes having conductive or resistive anomalies, or 
in general to the lithology of rock formations [1]. 
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Improvements in the geo-electrical method include both instrumentation for 
data acquisition and software development for modeling the data. The use of a 
multi-electrode data acquisition system with digital multi-channel recording has 
become the standard for efficient and cost-effective 2D resistivity imaging [2,3]. 
However, 2D resistivity imaging is mostly applied in investigations with 
relatively shallow depth targets, such as in geotechnical and environmental 
studies [4-6], archaeology [7] and agriculture [8]. Although it is also possible to 
image deeper sections of the subsurface with a multi-electrode system, this is 
less efficient due to the long multi-core wires and the large amount of electrodes 
required. Logistics are also more demanding and in most cases more powerful 
and specially designed instruments are necessary [9,10].  

To probe deeper parts of the subsurface, the vertical electrical sounding (VES) 
technique is considered more practical, especially in areas with difficult access 
(e.g. rough topography, dense vegetation, etc.) [11,12]. With the Schlumberger 
electrode configuration, only the distance of the outer (i.e. current) electrodes 
has to be increased to achieve a greater investigation depth. VES data are 
commonly interpreted using a 1D model in which resistivity varies only with 
depth [13,14]. A quasi-2D resistivity model can be constructed by correlating 
the layered earth model at a VES site along a profile [15,16]. The full 2D 
resistivity modeling may also be applied to VES data [17,18]. Riss, et al. [19] 
have proposed to interpolate VES data and used 2D modeling software to 
interpret the data. In all cases, the non-linear inverse problems are solved by 
using linearization or a local search approach. 

The inverse problem of VES data is highly non-linear, even for a simple 1D 
model. The common practice is to linearize the misfit function at the vicinity of 
a starting model and then update the model iteratively until a convergence to an 
optimum solution is reached [13,14]. In this study, we developed our algorithm 
[20] to simultaneously invert the VES data sets distributed along a profile. To 
obtain a quasi-2D resistivity model, the algorithm minimizes the misfit as well 
as vertical and lateral resistivity variations of the model. The inclusion of lateral 
smoothness constraint modifies the original Markov Chain Monte Carlo 
(MCMC) algorithm. Therefore, we call our method a guided random search 
algorithm.  

2 Inversion Algorithm 
A geo-electrical 1D model is defined by a number of layers with different 
thicknesses and resistivities. We use a large number of “thin” layers with 
thickness increasing logarithmically with depth to represent the decreasing 
resolution with depth. The thicknesses are fixed during inversion, such that the 
model parameters to be estimated are the layers’ resistivities m = [mj]; j = 1, 2, 
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..., NL, where NL is the number of layers. Resistivity variation with depth is 
represented by changes of resistivity from layer to layer. The observed VES 
data are apparent resistivities d = [di]; i = 1, 2, ..., ND, where ND is the number 
of data associated with the number of electrode spacings (AB/2). The misfit 
E(m) is expressed by  

 2

1
( ) ( ( ))

ND

i i
i

E d g
=

= −∑m m  (1) 

where g = [gi(m)] is the 1D model response calculated by using the well-known 
Gosh-Koefoed filters for the Schlumberger array [14,21]. Basically, resolving 
an inverse problem means finding models associated with the minimum of the 
misfit or the objective function. 

A set of possible values [ρk]; k = 1, 2, ..., NP is proposed for the layers’ 
resistivities, where NP is the number of a priori resistivity values. The relative 
probability of resistivity values for a layer mj can be written as 

 ( ) exp( ( | ))k j kP E mρ ρ= − =m ;  k = 1, 2, ..., NP (2) 

where E(m | mj = ρk) is the misfit related to a model m in which mj = ρk; k = 1, 
2, ..., NP, while other layers (ml; l ≠ j) are fixed at their current resistivity 
values. Starting with an arbitrary resistivity value for all layers, iterative 
refinement of the model proceeds by choosing the resistivity for each layer from 
the a priori resistivity values with their relative probabilities in Eq. (2) used as 
weight. A resistivity value for a particular layer mj has a higher probability to be 
chosen if it is associated with a lower misfit, and vice versa. With a large 
number of iterations, the resulting models will converge and vary slightly 
around an optimum model. The solution of the inverse problem is obtained by 
averaging the models after convergence. 

Due to equivalence problems where there are different models with almost 
identical misfits, the data cannot adequately constrain the model in the inversion 
process [20]. Therefore, we include smoothness constraints, such that the spatial 
resistivity variations are minimized both vertically and laterally. The vertical 
smoothness constraint is justified to obtain a meaningful model from the VES 
data at an individual station, while the lateral smoothness constraint is used to 
facilitate the correlation of the resistivity models from station to station along a 
traverse line. The result is a quasi-2D resistivity model where the resistivity 
variations are smooth [22], similar to laterally constrained inversion (LCI) as 
proposed by Auken, et al. [15,23] using a linearized inversion approach. 

The modified relative probability for the a priori resistivities can be expressed 
by 
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 ( ) exp( ( | ) )k j kP E m V Lρ ρ α β= − = − −m ;  k = 1, 2, ..., NP (3) 

where α V and β L are terms associated with the vertical and lateral smoothness 
constraints respectively. In order to have a higher relative probability, the 
resistivity values for the j-th layer that minimizes the misfit E(m | mj = ρk) 
should also minimize the resistivity differences between the j-th layer and the 
layers above and below it, i.e.  

 2 2
1 1(log log ) (log log )i i i i

j j j jV m m m m− += − + −  (4) 

where i
jm  is the resistivity of the j-th layer at the i-th sounding point. In 

addition, the resistivity values for the j-th layer should also minimize the 
resistivity differences between the same j-th layers at three adjacent sounding 
sites, i.e. the i-th site and its surrounding area such that,  

 1 2 1 2(log log ) (log log )i i i i
j j j jL m m m m− += − + −  (5) 

The relative weights of the smoothness constraint (α and β) are determined by 
trial and error. Terms in Eq. (3) can be normalized to become more or less 
equivalent in magnitude such that α and β can be chosen in the interval between 
1 to 20. In a quasi-2D model, the choice of the vertical smoothness factor α is 
less critical than the lateral smoothness factor β. 

3 Synthetic Data 
A relatively simple synthetic 2D model representing a sedimentary environment 
without topographic variation is presented in Figure 1(a). The model response 
was calculated using the 2D forward modeling scheme [18] and 5% noise with 
Gaussian distribution was added. The pseudo-section in Figure 1(b) presents the 
apparent resistivity data at 12 VES sites with 200 m spacing for AB/2, which 
varies from 50 to 2500 m. Qualitatively, the pseudo-section shows only a 
gradual variation of resistivities from shallow (more than 100 Ohm.m) to deeper 
parts of the section (less than 25 Ohm.m). The faulted layers appear only as a 
lateral thickness variation of the superficial layers. 

We divided a priori resistivity values between 1 and 1000 Ohm.m into 20 
discrete values homogeneously separated in the logarithmic scale. The 1D 
model under each VES station was limited in the interval between 0 to 1000 m 
depth and was divided into 20 layers with homogeneous intervals in the 
logarithmic scale. Inversion of the synthetic data from each VES site was 
performed with up to 50 iterations, where the models from the 10 last iterations 
were averaged. All VES data were inverted sequentially with up to 100 
iterations from which the final model was obtained by averaging only the 25 
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last iterations. A pseudo-section of the inverse model response with an overall 
misfit of 11.8% is shown in Figure 2(a). The quasi-2D resistivity model (Figure 
2(b)) was produced by contouring the resistivity values of the 1D models 
obtained from inversion of each VES synthetic data set.  

 
 

 
Figure 1 (a) 2D synthetic model used to generate the synthetic VES data at 12 
sounding sites with 200 m spacing (shown as inverted triangles). (b) Apparent 
resistivity pseudo-section associated with the synthetic model, 5% Gaussian 
noise added to simulate real data.  

In the inverse model (Figure 2(b)), the resistive (300 Ohm.m or more) 
superficial layer and the shallower part of the conductive layer (5 to 30 Ohm.m) 
are relatively well resolved with their actual thicknesses and depths. The 
resistive near-surface inclusion embedded in the first layer is fairly well 
resolved. The lateral discontinuity of the conductive layer confirms the normal 
fault. The deeper part of the conductive layer is less well resolved due to a 
combination of (i) the screening effect of the conductive layer and (ii) the limit 
of data coverage in terms of maximum electrode spacing (AB/2). However, 
larger electrode spacings would not ensure the resolution of the deeper layers, 
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since there are also averaging effects (both vertically and laterally) of 2D 
resistivity variations contained in data with a large AB/2.  

 
 

 
Figure 2 (a) Calculated theoretical response of the inverse model with an 
overall misfit of 11.8% relative to the synthetic data. (b) Quasi-2D resistivity 
model obtained from inversion of the synthetic data.  

4 Field Data 
The field data consisted of 16 VES sites along a 6.8 km profile with station 
spacing between 400 to 600 m in a sedimentary environment dominated by 
limestone (reef) formations in East Java, Indonesia (Figure 3). The measured 
data up to AB/2 = 1500 m were laterally interpolated to obtain more regular 
VES data at every 200 m along the profile. The field data show a relatively 
smooth resistivity variation from resistive at the surface to conductive at depth. 
The superficial resistive layers become thinner toward the South-Eastern part of 
the profile (Figure 4(a)). Similar inversion parameters as for the inversion of the 
synthetic data were used for the field data, i.e. maximum depth and thickness of 
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layers, a priori resistivity interval and its discretization, number of iterations 
and models for averaging. A calculated pseudo-section of the inverse model is 
presented in Figure 4(b) with 13.3% RMS error, while the averaged inverse 
model is shown in Figure 4(c).  

 
Figure 3 Simplified geological map of the survey area with distribution of VES 
stations along a traverse line. 

The interpreted section of the resistivity model is presented in Figure 5. The 
superficial resistive layers (more than 100 Ohm.m) corresponding to the 
limestone formation become thinner toward the right of the profile (South-East). 
The shallow resistivity inhomogeneities represent fractures mainly due to water 
intrusion observed in the field. The reef formation is underlain by conductive 
layers (less than 10 Ohm.m) that can be associated with clayey formations with 
significant lateral heterogeneities. The lateral discontinuity of the resistivity 
distribution can be interpreted as geological structures (faults). The fault 
reaching the surface between VES stations 4 and 5 is well correlated with the 
surface geology (see Figure 3). The interpreted subsurface faults mostly affect 
the moderate resistivity layer underneath (30-50 Ohm.m). The East-West 
tensional regime responsible for the fault system is likely related to a 
subduction zone South of the area, with a North-South main tectonic stress.  
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Figure 4 (a) Pseudo-section of the field data. (b) Calculated theoretical 
response of the inverse model with 13.3% misfit relative to the observed data. (c) 
Quasi-2D model from inversion representing the resistivity section. Note that all 
contours use the color scale shown at the bottom of the figure.  
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Based on the local geology and the marine seismic data towards the South-
Eastern part of the study area (not shown), the low resistivity clayey layers are 
part (north-western flank) of anticline structures. These conductive layers may 
serve as a “cap” for a relatively shallow hydrocarbon bearing (i.e. carbonate) 
formation as indicated by similar formation in the surrounding area [24]. 

 

Figure 5 Interpreted section of the resistivity model in Figure 4©, with reef 
formations (first and second layers), clayey formation (dashed), carbonate 
formation (small dotted). 

5 Conclusion 
The guided random search algorithm is a computer intensive technique that 
necessitates many forward modeling calculation to estimate misfit and search 
for optimum models [25]. The use of 1D forward modeling in our approach is 
intended to approximate the relative probability of a priori resistivity values for 
a model parameter. The relative probability serves as a sampling probability for 
the model space exploration. The simultaneous inversion of VES data sets along 
a profile with vertical and lateral smoothing constraints does not allow to recast 
our algorithm in the “strict” MCMC context [26]. We focused more on applying 
the method to obtain a quasi-2D resistivity section from 1D models along a 
profile. However, the inversion of synthetic data resulted in optimum models 
that recovered the synthetic model relatively well with a good misfit value. The 
results may be considered an empirical validation of our approach. 

The application of a geo-electrical method was intended to overcome the lack of 
subsurface information from other geological and geophyscal data in this area. 
The limestone cover with high seismic velocity at the surface leads to 
difficulties in applying a seismic method. Although further implications of our 
results for exploration purposes are beyond the scope of this paper, the quasi-2D 
resistivity model from inversion of field data is in good agreement with the 
known local geology of the survey area.  

No Data
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The use of full 2D geo-electrical resistivity forward modeling in the inversion 
algorithm was also investigated to obtain a more reliable resistivity image of the 
subsurface. Such an approach allows to incorporate the variation of the 
topography prevailing in geothermal and volcanic areas. Preliminary results 
were encouraging, although additional (geometry) constraints were necessary to 
further constrain the inversion. The algorithm is able to invert VES data from 
non-sedimentary environments such as geothermal prospects with a rather non-
layered character of the subsurface [22,27]. 
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