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Abstract. A linear code over a finite field is called Hermitian self-dual if the 

code is self-dual under the Hermitian inner-product. The Hermitian self-dual 

code is called MDS or near-MDS if the code attains or almost attains the 

Singleton bound. In this paper we construct new Hermitian self-dual MDS or 

near-MDS codes over (9),GF (25),GF  and (121)GF  of length up to 14. 
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1 Introduction 

A linear[ , ]n k  code C  over ( )GF q  is a k  -dimensional subspace of ( ) ,nGF q  

where ( )GF q  is the Galois field with q  elements.  The value n  is called 

length of C  and every element of C  is called codeword of .C  The weight

( )wt c  of a codeword c C  is the number of nonzero components of .c  The 

minimum weight d  of all nonzero codewords in C  is called minimum weight 

of .C   An [ , , ]n k d  code is an [ , ]n k  code with minimum weight .d  The 

weight enumerator W  of C   is given by 

0

(y) ,
n

k

k

k

W A y


  

where kA  denotes the number of codewords of weight k  in .C  

The space ( )nGF q  is equipped by Hermitian inner-product defined by  
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for two vectors 1 2( , , , )nx x x x  and 1 2( , , , )ny y y y  in ( ) ,nGF q  where 

,
q

k ky y  and ,mq p  for a prime number p  and an even .m  

The Hermitian dual codeC
 of C  is defined as  

 
 ( ) :[ , ] 0, C .nC x GF q x c c       

A code C  is called Hermitian self-dual if .C C  From now on, what we 

mean by self-dual is Hermitian self-dual. 

A linear [ , , ]n k d code over ( )GF q  satisfies the Singleton bound 1d n k    

(see, e.g., [1]).  If the equality is attained then the code is called MDS code.  The 

[ , , ]n k n k  code is called almost MDS code [2].  An [ , , ]n k n k  almost MDS 

code for which the dual code is also an almost MDS is called near-MDS code 

[3].    

MDS codes are important in Mathematics since they are equivalent to geometric 

objects called n-arcs [1, p. 326] and also to combinatorial objects called 

orthogonal arrays [1, p. 326].  Moreover, very recently, Dodunekov [4] and 

Zhou, et al. [5] announced the importance of self-dual near-MDS codes in 

Cryptography, in particular in secret sharing schemes.  Hence there is a great 

interest in the construction of MDS or near-MDS self-dual codes over finite 

fields (see, e.g., [6-10]). 

Kim and his co-authors ([8,10]) used a construction method, called the building-

up method,  to construct self-dual MDS or near-MDS codes.  They also showed 

that every self-dual codes over certain fields can be obtained by their building-

up method.  In particular, [8] provided three examples, one example, of self-

dual near-MDS codes of length 12 over (9),GF (25),GF respectively. Recently, 

Gulliver, et al. [10] gave an example of self-dual MDS code of length 14 and 

stated that they also found many self-dual near-MDS codes of length 16 over 

(121).GF  From the generator matrix of self-dual near-MDS of length 14 above, 

they [10] found one self-dual MDS code of length 12, 10, 8, 6, 4, and 2, 

respectively. 

The purpose of this paper is to provide some more examples of MDS or near-

MDS self-dual codes.  We obtained several new MDS or near-MDS self-dual 

codes of length 10 and 12 over (9),GF 10, 12, and 14 over (25),GF  and 4, 6, 8, 

and 10 over the field (121)GF  which were unknown to exist before. 
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2 Construction Method 

We use the following building-up construction given in [8].   

Theorem 2.1 Let 
0

( | ) ( | )
i i

G L R l r   be a generator matrix of a self-dual code

0
C  over 

2
( )GF q  of length 2 ,n  where il and ir  are the rows of the matrices L

and R respectively,for1 .i n  Let 
1 1 2

( ,..., , ,..., )
n n n

x x x x x


  be a vector in 

2 2
( )

n
GF q  with [ , ] 1x x    in 

2
( ).GF q   Set 

1 1 2
[( ,..., , ,..., ), ( | )]

i n n n i i
y x x x x l r


  

for 1 ,i n   and 

1

2

q

c 



  for 
2

( 1)q  -th root of unity   in 
2

( )GF q  (and 

hence 1cc   ).  Then the matrix  

 

1 1 2

1 1

1 0
n n n

n n

x x x x

y cy

L R

y cy







 
 
 
 
 
 

 

generates a self-dual code C  over 
2

( )GF q  of length 2 2.n  

The key point of the above theorem in constructing new self-dual codes is to 

supply generator matrices of self-dual codes of length 2 shorter than the length 

of codes we want to construct. The more we supply generator matrices of length 

2n  the bigger the chance to obtain new codes of length 2 2.n  

Let C  be a self-dual code of length 2 2,n  and let G  be its generator matrix. 

Without loss of generality we may assume that ( | ) ( | ),
n i i

G I A e a   where ie  

and ia  are the rows of the identity matrix nI  and ,A  respectively for 1 .i n   

Let c  be in ( )GF q  such that 
2 1c    in ( ).GF q  Then C  has also the 

following generator matrix  

 

1 2 1 2

2 2

'

3 3

|

|

: .|

|

|
n n

e ce a ca

ce ca

G e a

e a

 

 



 
 
 
 
 
 
 
 
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Deleting the first two columns and the second row of 
'G  we obtain an 

( 1) 2n n   matrix of the form  

 

1 2

3

0

2

0 0 |

|
: .

|

|

n

n

a ca

a
G

I

a







 
 
 
 
 
 

 

We claim that 0G  is a generator matrix of some self-dual code 0C  of length 

2 .n  It suffices to show that any two rows of 0G  are orthogonal to each other.  

The inner-product of the first row of 0G  with itself equals  

 
2

1 2 1 2[ , ] ( 1) 0.a ca a ca c       

For 3 ,i n   the inner-product of the i-th row of 0G  with itself equals  

 
1 [ , ] 0.i ia a   

For 3 ,i n   the inner-product of the first row of 0G  with the i-th row is equal 

to 

 1 2 1 2[ , ] [ , ] [ , ] 0.i i ia ca a a a ca a     

For 3 , ,i j n  with ,i j  the inner-product of the i-th row with the j-th row is 

equal to  

 
0 [ , ] 0.i ja a   

Hence we have the following proposition.  

Proposition 2.2  Let ( | ) ( | ),n i iG I A e a   where ie  and ia  are the rows of 

the identity matrix nI  and ,A  respectively for 1 ,i n   be a generator matrix 

of a self-dual code C  of length 2 2.n  Then 

 

1 2

3

0

2

0 0 |

|
:
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|

n

n

a ca

a
G
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





 
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 
 
 
 

 

is generator matrix of a self-dual code of length 2 .n  
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Remark 2.3 Proposition 2.2 above is nothing but the restatement of Proposition 

3.2 in [8]. 

2.1 Construction Algorithm 

The method we use here to construct new codes is a combination of subtraction 

method and building-up method. Subtraction as well as building-up 

construction method are well known in Coding Theory. Kim’s method 

(Theorem 2.1) is basically a building-up method: it is possible to construct a 

self-dual [2 2, 1, 2]n n d   code from a self-dual [2 , , ]n n d code. Subtraction 

method (Proposition 2.2) is a reverse of the building-up method: it is possible to 

construct a self-dual[2 , , ]n n d  code from a self-dual[2 2, 1, 2]n n d   code. 

Our key step to create new codes is to supply known generator matrices 0G of 

self-dual[2 , , ]n n d codes as many as possible, and to use all possible vectors

2( ),x GF q for each matrix 0.G  The algorithm is given in the Table 1 (c.f. 

[11]). 

Table 1 An algorithm to construct MDS or near-MDS self-dual codes by 

combination of building-up and subtraction method. 

Input: '

2 2 ,nC 
 a known [2 2, 1, ]n n d   self-dual code (not necessarily (near-) MDS). 

Output: 
2 2 ,nC 

the set of new[2 2, 1, ]n n d  self-dual codes, with d n or 1.n  

1. Construct a self-dual[2 , , ]n n d  code
2 ,1nC from a given self-dual[2 2, 1, ]n n d  code '

2 2nC 

by subtraction method (Proposition 2.2). 

2. Construct self-dual[2 2, 1, ]n n d  codes
2 2nC 

from a self-dual[2 , , ]n n d  code
2 ,1nC by 

the building-up method (Theorem 2.1). Supply all possible values for vector .x  

3. Check the equivalence of new self-dual codes 
2 2nC 

from Step 2. Let say, we get l 

inequivalent self-dual[2 2, 1, ]n n d  codes
2 2,1 2 2,2 2 2,, ,..., .n n n lC C C  

 

4. For each self-dual code obtained in Step 3, return to Step 1. Denote a new self-dual [2 , , ]n n d

code by
2 ,2.nC  

3 Results 

In this section, we apply the above method to construct some new Hermitian 

self-dual MDS or near-MDS codes over (9),GF (25),GF  and (121).GF  All 

computer calculations were done by MAGMA [12] and MATLAB.  
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3.1 Self-dual Near-MDS Codes Over (9)GF  

Let w  be a root of a primitive polynomial 
2

2 2 (3)[ ]x x GF x    and 
2

:c w  

be the element defined as in Theorem 2.1. 

3.2 Length 10 

Kim and Lee [8] constructed a self-dual near-MDS [10,5,5]  with the following 

generator matrix  

 

5

5 2

2 7 5 2

5 2 7 6

3 2 7 3 6 3

1 0 1 1 1 1 1

1 0 0 1 1 1 1 1

.1 0 1 1 1

1 1 0 1 1

1 1 1

w w w

w w

w w w w w

w w w w w

w w w w w w w

 
 
 
 
 
 
 
 

 

By the building-up method (Theorem 2.1) continues with the subtraction 

method (Proposition 2.2), we obtained three self-dual near-MDS [10,5,5]  with 

generator matrices given below: 

 

4 3 2 2

5 6 4 5

4 3 7 2 4

10,1

7 3 3 6

4 5

0 0 0 0

1 0 0 0 0

,0 1 0 0 1

0 0 1 0 1 0

0 0 0 1

w w w w w w

w w w w w

C w w w w w

w w w w

w w w w w w



 
 
 
 
 
 
 
 

 

 

4 3 2 2

4 6 4

2 5 5 4

10,2

3 5 3 7 4

4 5

0 0 0 0

1 0 0 0 1 0 1

,0 1 0 0 1 1

0 0 1 0

0 0 0 1

w w w w w w

w w w

C w w w w

w w w w w w

w w w w w w



 
 
 
 
 
 
 
 

 

and 

 

4 3 2 2

2 2 7 3

5 7 6 6 3

10,3

5 4 5 7

5 3 2 5 5 3

0 0 0 0

1 0 0 0 0

.0 1 0 0 0

0 0 1 0 1 0

0 0 0 1

w w w w w w

w w w w w

C w w w w w

w w w w

w w w w w w



 
 
 
 
 
 
 
 

 

Weight enumerator of the above codes is 
10,1 10,2

( ) ( )W y W y

5 6
1 128 1040 ,y y     and 

5 6

10,3
( ) 1 160 952 ,W y y y     respectively. 



68 Djoko Suprijanto, et al. 

Since the two self-dual near-MDS [10,5,5] codes constructed by Kim and Lee 

[7] has weight enumerator 
5 6 7

(y) 1 128y 1040 4160W y y     and  

5 6
(y) 1 144 y 960 ,W y     respectively, then we obtained at least one new 

self-dual near-MDS [10,5,5]  code, namely the code 
10,3

.C  

3.3 Length 12 

Kim and Lee [8] have constructed three self-dual near-MDS [12,6,6]  codes. 

From the above near-MDS [10,5,5]  codes, we applied the building-up method 

(Theorem 2.1) to construct self-dual codes of length 12. We obtained 9 self-dual 

near-MDS [12,6,6] codes which are not equivalent with the ones constructed 

by Kim and Lee [8] (see Table 2). 

Table 2 Self-dual near-MDS [12,6,6] codes over GF(9). 

No Vector x in Generator Matrix 6 ,A
7A  

1 7 7 7 7 7 5 5 5 6(w ,w ,w ,w ,w ,w ,0,w ,w ,w )  480, 3456 

2 7 7 7 7 7 6 3 5 5(w , w , w , w , w , w , w , w ,0, w )  480, 3456 

3 7 7 7 7 7 6 6 4(w , w , w , w , w , w , w , w ,0,1)  496, 3360 

4 7 7 7 7 7 6 4 6 4(w , w , w , w , w , w , w , w , w ,0)  544, 3072 

5 7 7 7 7 7 6 4 4(w , w , w , w , w , w , w ,1, w ,0)  544, 3072 

6 7 7 7 7 7 4 6 6 3(w , w , w , w , w , w , w , w , w, w )  544, 3072 

7 7 7 7 7 7 7 7 3 4(w , w , w , w , w , w , w , w ,0, w )  624, 2592 

8 7 7 7 7 7 6 7 5(w , w , w , w , w , w ,0, w, w , w )  624, 2592 

9 7 7 7 7 7 2 6 6 5(w , w , w , w , w , w , w , w, w , w )  736, 1920 

3.4 Self-dual MDS or Near-MDS Codes Over (25)GF  

Let w be a root of primitive polynomial 
2

4 2 (25)[ ]x x GF x    and 
2

:c w  be 

the element defined as in Theorem 2.1.   

3.4.1 Length 10 

First, the [8] provided a self-dual MDS [10,5,6] code 
'

10 :C  

 

13

5 19 22

' 19 9 3 17 4

10

13 3 11 3

18 8 3 17 18 8 19 9 2

1 0 1 1 1 1 1 0

1 0 1 1 1 1 1

.1 0 1 1 1

0 0 1 0 1

1

w w

w w w

C w w w w w

w w w w w

w w w w w w w w w



 
 
 
 
 
 
 
 

 

By subtraction method (Proposition 2.2) we obtained a self-dual [8,4] code 8 :C  
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2 10 21 17 7

10 22 3

8 9 13 16 5

16 5 18 22 19

0 0 0

1 0 0 1
.

0 1 0

0 0 1

w w w w w

w w w w
C

w w w w w

w w w w w



 
 
 
 
 
 

 

Next, by the building-up method (Theorem 2.1) we obtained 13 new 

(inequivalent) self-dual MDS [10,5,6] codes with the same weight enumerator  

 
6 7 8 9 10

( ) 1 5040 54720 508680 2704560 6492624 .W y y y y y y       

The (generator of) new codes are listed in the Table 3 below.  

Table 3 Self-dual MDS [10,5,6] codes over GF(25). 

No Vector x in Generator Matrix 

1 7 22 21(1,1,1,1,1, w , w , w )  

2 15 5 2(1,1,1,1,1,w ,w ,w )  

3 17 16 16(1,1,1,1,1,w ,w ,w )  

4 20 13 12(1,1,1,1,1,w ,w ,w )  

5 13(1,1,1,1,w,1,w ,0)  

6 4(1,1,1,1, w, w,0, w )  

7 14 22(1,1,1,1,w,w ,w ,0)  

8 15 20 2(1,1,1,1,w,w ,w ,w )  

9 17(1,1,1,1, w, w ,1,0)  

10 2 13 19 20(1,1,1,1,w ,w ,w ,w )  

11 3 20(1,1,1,1, w ,1, w ,0)  

12 4 8 2 10(1,1,1,1,w ,w ,w ,w )  

13 5 6 11 20(1,1,1,1, w , w , w , w )  

Moreover, we also obtained over 30 (inequivalent) near-MDS [10,5,5] codes, 

some of them are given in Table 4 below. 

Table 4 Self-dual near-MDS [10,5,5] codes over GF(25) 

No Vector x in Generator Matrix 5 ,A 6 ,A
7A  

1 6 12(0,0,0,0, ,w ,w,w )w  48, 4800, 55200 

2 4(0,0,0,0,1,1,w ,1)  96, 4560, 55680 

3 12(0,0,0,0,1,1,1,w )  144, 4320, 56160 

4 8(0,0,0,0,1,1,1,w )  192, 4080, 56640 

5 2 23(0,0,0,0,1,1,w ,w )  240, 3840, 57120 

6 6 3(0,0,0,0,1,1,w ,w )  288, 3600, 57600 

7 7 14(0,0,0,0,1,1,,w ,w )  336, 3360, 58080 



70 Djoko Suprijanto, et al. 

3.4.2 Length 12 

For length 12, we obtained many (inequivalent) self-dual near-MDS codes.  

Some of them are listed below.   

Table 5 Self-dual near-MDS [12,6,6] codes over GF(25). 

No Vector x in Generator Matrix 6 ,A
7A  

1 13 13 13 13 13 14 14 9 17 22(w ,w ,w ,w ,w ,w ,w ,w ,w ,w )  456, 16272 

2 13 19 20(1,1,1,1,1,1,w,w ,w ,w )  480, 16128 

3 4 4 4 4 4 4 4 11 15(w ,w ,w ,w ,w ,w ,w ,w ,w ,1)  504, 15984 

4 15 16(1,1,1,1,1,1,w,w ,w,w )  528, 15840 

5 4 4 4 4 4 12 13 15 3(w ,w ,w ,w ,w ,w ,w ,w ,w ,0)  552, 15696 

6 4 4 4 4 4 12 14 13(w ,w ,w ,w ,w ,w ,w ,w ,1,1)  600, 15408 

7 13 13 13 13 13 13 13 13 13 16(w ,w ,w ,w ,w ,w ,w ,w ,w ,w )  624, 15264 

8 4 4 4 4 4 12 14 13 21(w ,w ,w ,w ,w ,w ,w ,w ,0,w )  648, 15120 

9 13 13 13 13 13 13 13 13 17 12(w ,w ,w ,w ,w ,w ,w ,w ,w ,w )  672, 14976 

10 13 13 13 13 13 13 13 14 2(w ,w ,w ,w ,w ,w ,w ,w ,w ,w)  696, 15432 

11 2 8 19 8(1,1,1,1,1,w ,w ,w ,w ,0)  720, 14688 

12 13 13 13 13 13 13 13 14 13 2(w ,w ,w ,w ,w ,w ,w ,w ,w ,w )  744, 15144 

13 13 13 13 13 13 14 23 20 5 18(w ,w ,w ,w ,w ,w ,w ,w ,w ,w )  768, 14400 

14 7 17 12 20(1,1,1,1,1,w ,w ,w,w ,w )  792, 14856 

15 19 19 19 19 19 23 17 12 4 19(w ,w ,w ,w ,w ,w ,w ,w ,w ,w )  816, 14112 

16 7 17 2 3 9(1,1,1,1,1,w ,w ,w ,w ,w )  840, 14568 

17 2 17(1,1,1,1,1,1,1,1,w ,w )  864, 13824 

18 7 17 2 3 21(1,1,1,1,1,w ,w ,w ,w ,w )  888, 14280 

19 16(1,1,1,1,1,1,1,1,w ,0)  912, 13536 

20 13 13 13 13 13 13 13 15 5 18(w ,w ,w ,w ,w ,w ,w ,w ,w ,w )  936, 13992 

21 13 13 13 13 13 13 13 13 20 17(w ,w ,w ,w ,w ,w ,w ,w ,w ,w )  960, 13248 

22 7 17 4 21 20(1,1,1,1,1,w ,w ,w ,w ,w )  984, 14904 

23 4 4 4 4 4 12 14 15 18 17(w ,w ,w ,w ,w ,w ,w ,w ,w ,w )  1004, 14184 

24 19 19 19 19 19 19 20 8 22(w ,w ,w ,w ,w ,w ,w ,0,w ,w )  1008, 12960 

25 13 13 13 13 13 13 13 18 2 21(w ,w ,w ,w ,w ,w ,w ,w ,w ,w )  1032, 14016 

26 19 19 19 19 19 23 17 15 15 3(w ,w ,w ,w ,w ,w ,w ,w ,w ,w )  1056, 12672 

27 7 19 8 20 16(1,1,1,1,1,w ,w ,w ,w ,w )  1080, 13728 

28 21 12 14(1,1,1,1,1,1,1,w ,w ,w )  1104, 12384 

29 16 15 11(1,1,1,1,1,1,1,w ,w ,w )  1152, 12096 

30 8 14 23 21 2(1,1,1,1,1,w ,w ,w ,w ,w )  1200, 11808 

3.4.3 Length 14 

Again, from self-dual codes of length 12, by the building-up method, we 

obtained over 20 (inequivalent) self-dual near-MDS [14,7,7] codes. The codes 

as well as their weight enumerators are listed below. 
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Table 6 Self-dual near-MDS [14,7,7] codes over GF(25). 

No vector x in generator matrix 7 ,A
8A  

1 13 13 13 13 13 13 13 13 23 13 4 9(w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w )  1920, 58632 

2 13 13 13 13 13 13 13 14 17 21(w ,w ,w ,w ,w ,w ,w ,w ,1,w ,w ,1)  1968, 58296 

3 13 13 13 13 13 13 13 13 17 18 20 4(w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w )  2016, 57960 

4 13 13 13 13 13 13 13 13 15 18 13 2(w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w )  2064, 57624 

5 13 13 13 13 13 13 13 13 15 3 8 4(w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w )  2112, 57288 

6 13 13 13 13 13 13 13 13 15 12 7(w ,w ,w ,w ,w ,w ,w ,w ,w ,1,w ,w )  2160, 56952 

7 13 13 13 13 13 13 13 13 14 16 17(w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,1)  2208, 56616 

8 13 13 13 13 13 13 13 13 14 15 22 21(w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w )  2256, 56280 

9 13 13 13 13 13 13 13 13 14 14 23 21(w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w )  2304, 55944 

10 13 13 13 13 13 13 13 13 14 14 10(w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,1)  2352, 55608 

11 13 13 13 13 13 13 13 13 14 14 8 2(w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w )  2400, 55272 

12 13 13 13 13 13 13 13 13 14 10 6 8(w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w )  2448, 54936 

13 13 13 13 13 13 13 13 13 14 6 9 7(w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w )  2496, 54600 

14 13 13 13 13 13 13 13 13 14 1 11 6(w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w )  2544, 54264 

15 13 13 13 13 13 13 13 13 14 8 9(w ,w ,w ,w ,w ,w ,w ,w ,w ,1,w ,w )  2592, 53928 

16 13 13 13 13 13 13 13 13 13 20 14 4(w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w )  2640, 53592 

17 13 13 13 13 13 13 13 13 13 13 16 7(w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w )  2688, 53256 

18 13 13 13 13 13 13 13 13 14 19 14 21(w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w )  2544, 54264 

19 13 13 13 13 13 13 13 13 15 21 8(w ,w ,w ,w ,w ,w ,w ,w ,w ,w,w ,w )  2784, 52584 

20 13 13 13 13 13 13 13 13 15 13 6 18(w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w )  2832, 52248 

21 13 13 13 13 13 13 13 13 17 3 17 8(w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w )  2880, 51912 

22 13 13 13 13 13 13 13 13 19 4 17(w ,w ,w ,w ,w ,w ,w ,w ,w ,w,w ,w )  2928, 51576 

23 13 13 13 13 13 13 13 13 20 12 15 23(w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w )  2976, 51240 

24 13 13 13 13 13 13 13 13 17 3 9 20(w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w )  3024, 50904 

   

3.5 Self-dual MDS or Near-MDS Codes Over (121)GF  

Let w be a root of primitive polynomal 
2 5 2 (121)[ ]x x GF x    and 

2:c w  

be the element defined in Theorem 2.1.  

3.5.1 Length 4 

From a self-dual code (1 w
5
) of length 2, by the building-up method, we 

obtained a self-dual MDS [4,2,3] code  

 

6

33 98 5

1 0 1

1

w

w w w

 
 
 

 

having weight enumerator
3 41 480 14160 .y y   

We also obtained a self-dual 

near-MDS [4,2,2] code 
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5

65 5

1 0 0

1 1

w

w w

 
 
 

 

having weight enumerator
3 4

1 240 14400 .y y   

3.5.2 Length 6 

From the above MDS code, again by the building-up method, we obtained three 

(inequivalent) self-dual MDS [6,3,4] codes with the same weight enumerator 
4 5 6

1 1800 84240 1685520 .y y y    

Table 7 Self-dual MDS [6,3,4] codes over GF(121). 

No Vector x in Generator Matrix 

1 3(0,1,1, w )  

2 43(0,1,1, w )  

3 63(0,1,1, w )  

We also obtained several (inequivalent) self-dual near-MDS [6,3,3] codes as 

given below. 

Table 8 Self-dual near-MDS [6,3,3] codes over GF(121). 

No Vector x in Generator Matrix 3 ,A 4 ,A 5 ,A
6A  

1 16(0,0,1, w )  120, 1440, 84600, 1685400 

2 53(0,0,w,w )  240, 1080, 84960, 168580 

3 6(0,0, w ,1)  480, 14880, 56640, 1699560 

4 31 47(0,1,w , w )  600, 14520, 57000, 1699440 

3.5.3 Length 8 

Again, from self-dual codes of length 6, by the building-up method, we 

obtained a self-dual MDS [8,4,5] code 

 

9 9 9 9 9 11

37 102 3

7 72 69 14 6

69 14 60 5 33 98 5

1 0

1 0 0 1 1

1 0 1

1

w w w w w w

w w w

w w w w w

w w w w w w w

 
 
 
 
 
 

 

having weight enumerator  

5 6 7 8
( ) 1 6720 389760 13372800 200589600 .W y y y y y      

There are also several (inequivalent) self-dual near-MDS [8,4,4] codes as given 

below. 
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Table 9 Self-dual near-MDS [8,4,4] codes over GF(121). 

No Vector x in Generator Matrix 4 ,A 5 ,A
6A  

1 9 9 9 9 9 41(w ,w ,w ,w ,w ,w )  240, 5760, 391200 

2 9 9 9 9 10 27(w ,w ,w ,w ,w ,w )  480, 4800, 392640 

3 9 9 9 13 85 87(w ,w ,w ,w ,w ,w )  720, 3840, 394080 

4 9 9 9 12 110 26(w ,w ,w ,w ,w ,w )  960, 2880, 395520 

5 9 9 9 11 25 41(w ,w ,w ,w ,w ,w )  1200, 1920, 396960 

3.5.4 Length 10 

From self-dual codes of length 8, by the building-up method, we obtained a 

self-dual MDS [10,5,6] code  

 

29 29 29 29 29 34 100 97

69 14 9 9 9 9 9 11

100 45 37 102 3

88 33 7 72 69 14 6

14 79 69 14 60 5 33 98 5

1 0

1 0

1 0 0 1 1

1 0 1

1

w w w w w w w w

w w w w w w w w

w w w w w

w w w w w w w

w w w w w w w w w

 
 
 
 
 
 
 
 

 

with weight enumerator  

 
6 7 8(y) 1 25200y 1656000 74601000 .W y y      

There are also several (inequivalent) self-dual near-MDS codes as given below. 

Table 10 Self-dual near-MDS [10,5,5] codes over GF(121). 

No Vector x in Generator Matrix 5 ,A
6 ,A 7A  

1 29 29 29 29 29 34 100 77(w ,w ,w ,w ,w ,w ,w ,w )  240, 24000, 1658400 

2 29 29 29 29 29 34 100 87(w ,w ,w ,w ,w ,w ,w ,w )  480, 22800, 1660800 

3 29 29 29 29 29 34 101 39(w ,w ,w ,w ,w ,w ,w ,w )  720, 21600, 1663200 

4 29 29 29 29 29 34 100 79(w ,w ,w ,w ,w ,w ,w ,w )  960, 20400, 1665600 

5 29 29 29 29 29 35 5 112(w ,w ,w ,w ,w ,w ,w ,w )  1200, 19200, 1668000 

6 29 29 29 29 29 39 25 33(w ,w ,w ,w ,w ,w ,w ,w )  1440, 18000, 16704000 

4 Remark 

Let C  and 
'C  be two linear [ , , ]n k d  codes which have weight distributions  

0 1
( , , , )

n
A A A  and 

' ' '

0 1
( , , , ),

n
A A A  respectively. It is also well known (see 

[13]) that from viewpoint of decoding error probability, the code C  performs 

better than 
'C  if 

' ' '

0 1 0 1
( , , , ) ( , , , ),

n n
A A A A A A  where ≺ means 
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lexicographical ordering. In the above tables, we short the MDS or near-MDS 

codes due to their performance with respect to decoding error probability. 

Moreover, recently Buyuklieva, et al. [14] proved that in binary case self-dual 

codes perform better than non self-dual codes, for the codes with the same 

parameters. It is interesting to know whether the similar situation happens for 

the non-binary case, in particular in the case of Euclidean self-dual or Hermitian 

self-dual (near-) MDS codes, etc. This observation, which is now in preparation, 

will be published elsewhere in a separate paper. 

5 Conclusion 

As mentioned above there are many self-dual (near-) MDS codes over GF(9), 

GF(25), and GF(121) of several small lengths constructed by the building-up 

method as well as our simple algorithm, which combine building-up and 

subtraction method. To our best knowledge it was unnoticed before in any 

scientific publication. We concern also with self-dual near-MDS codes because 

of two reasons: (1) From perspective of capability of error-correcting codes, it is 

well-known fact that self-dual MDS and self-dual near-MDS are not very 

different; (2) From cryptographic application, in particular in secret sharing 

schemes, self-dual near-MDS instead of self-dual MDS codes are important 

(see, e.g., [11],[12]). There is some expectation to obtain many more self-dual 

MDS or near-MDS codes over these fields. It will be very good if someone can 

provide complete classifications of such codes. 
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