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Abstract. The computation time in adiabatic quantum computing (AQC) is 
determined by the time limit of the adiabatic evolution, which in turn depends on 
the evolution path. In this research we have used the variational method to find 
an optimized path. For the simplest case involving a single qubit and for the most 
general path involving one or more independent interpolating functions, the 
result is path independent. This result does not change when there is an extra 
Hamiltonian term. We have also applied these two scenarios in AQC to a 
Hadamard gate. Adding an extra Hamiltonian gives a non-trivial result compared 
to the normal AQC, however it does not result in a speed-up. Moreover, we show 
that in these two scenarios we can choose an arbitrary path provided that it 
satisfies the boundary conditions. 

Keywords: adiabatic quantum computation; extra Hamiltonian; Hadamard gate; 
nonlinear interpolation; time complexity; variational principle. 

1 Introduction 

Quantum computing is one of the most promising developments in computer 
science. It involves the application of the quantum mechanics paradigm to 
computation and it is believed to have the power to solve problems that are 
unsolvable in classical computing. In computer science, one class of these 
problems is known as NP-complete problems. There are many problems which 
belong to the class of NP-complete problems, e.g. k -SAT, travelling salesman 
problems, factoring, etc. A classical computer will have difficulties solving 
these problems because the computation is performed serially. Quantum 
mechanics solves problems by the superposition principle, which allows the 
calculation to be done in parallel naturally. This feature makes quantum 
computing more powerful [1]. 

One way to perform quantum computing is to use the quantum adiabatic 
theorem. This approach, known as adiabatic quantum computing (AQC), was 
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proposed by Farhi [2] to solve 3 -SAT problems. Some progress in AQC has 
been made to solve NP-complete problems, such as finding low-energy 
conformations of lattice protein models [3], search engine ranking [4], random 
SAT [5], quantum search [6-9], and the famous travelling salesman problems 
[10]. If in conventional quantum computing [2], one uses a sequence of 
quantum gates, in AQC one uses the adiabatic evolution of an initial 
Hamiltonian to a final Hamiltonian that encodes the solution of the problem. 

Some researchers [11] have also realized Hamiltonians to implement universal 
adiabatic quantum computers. In addition, other researchers [12,13] also have 
shown that AQC is equivalent to standard quantum computing. Besides the 
effort in developing time-dependent Hamiltonians encoding the solution of the 
problems, there is a growing interest in analysing and improving the 
computation time in adiabatic computation. There are some ways to speed up 
computation time in AQC, such as adding an extra piece of Hamiltonian [14-
16], modifying the Hamiltonian [17], or choosing suitable interpolation 
functions [18,19]. 

From the researches mentioned above, we can conclude that there are two major 
research problems in AQC: firstly, dealing with the problem of how to develop 
a Hamiltonian that can encode the solution of a given problem, and secondly, 
finding a way to speed up computation, e.g. by choosing suitable interpolation 
functions. As mentioned before, the objective of choosing a suitable 
interpolation function is to optimize or minimize the computation time. This 
interpolation function is called ‘time functional’ because it depends on the 
scaled time [19,20]. The time functional depends on the energy gap between the 
two lowest energy levels as well as on the rate of change of the time-dependent 

Hamiltonian ( ) ( ) ( )m n

d s
s s

ds
Φ Φ

H
. In [2] this second part is assumed to be 

bounded ( ) ( ) ( )0 < 1m n

d s
s s

ds
Φ Φ ≤

H . In [20] this latter part is expressed in a 

Hilbert-Schmidt (or Frobenius) norm, and it is known that it is very hard to 
evaluate and compute this expression for a general Hamiltonian, even 
numerically [19]. 

In general, one can formulate the problem as a variational optimization problem 
that can be solved using the standard Euler-Lagrange equation. In this work we 
have computed the evolution paths for the original ACQ problem as well as for 
the problem with additional Hamiltonian. Specifically, we have implemented 
this for the case of a Hadamard gate. 
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This paper is organized as follows: in Section 2 we review the basic idea of 
AQC and in Section 3 reformulate the time functional in its original form. In 
Section 4 we calculate the paths for various problems as mentioned above. The 
conclusion is given in Section 5. 

2 Adiabatic Theorem for Quantum Systems 

The dynamics of a quantum system are described by the time-dependent 
Schrödinger equation  

 ( ) ( ) ( )= .
d

t t i t
dt

Ψ ΨℏH  (1) 

The time-dependent Hamiltonian ( )tH  is a normal operator [21] that is acting 

on a non-degenerate ground state [20] ( )n tΦ  according to  

 ( ) ( ) ( ) ( )= .n n nt t E t tΦ ΦH  (2) 

According to the adiabatic theorem, if the Hamiltonian varies slowly in the 
range [ ]Tt,  and there is a fairly large energy gap between the ground state and 
the first excitation, then the system is guaranteed to stay in the ground state at 
the end of the evolution. If we assume the eigenstates are orthonormal, then the 
fidelity is given as follows [21]  

 ( ) ( ) ( ) 2
= |nF t t TΦ Φ ( ) ( ) 2 2=1 | 1 ,l

l n

t T ε
≠

− Φ Φ = −∑  (3) 

where 1ε << . 

Now, suppose that the solution to the time-dependent Schrödinger equation is  

 
( ) ( ) ( ) ( )0

1

= .
t

i E d
n

n n
n

t c t e t
τ τ′ ′− ∫Ψ Φ∑ ℏ  (4) 

If we substitute this expression into Eq. (1) and then multiply it by ( )m tΦ , we 

get  

 
( ) ( ) ( ) ( )

,|= 0∫ΦΦ
′′

∑
t

dmni

nmn
n

n etttcc
ττω

ɺɺ  (5) 

where 
( ) ( )

ℏ

ττω nm
mn

EE −
= . Meanwhile, after differentiating Eq. (2) and 

multiplying it by ( )tmΦ  we get  
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 ( ) ( ) ( ) ( ) ( )
( ) ( )

| = .m n

m n
m n

t t t
t t

E t E t

Φ Φ
Φ Φ

−

ɺ

ɺ
H

 (6) 

Substitute this equation into Eq. (5) and then integrate with initial condition 
( ) nnc 00 =0 δ  to yield  

 ( ) ( ) ( ) ( ) τττωδ
ττω

dKetcc mnmn

dmni

m

t

nm
nn

t

∫+
′′

≠
∑ 0

0
0=  (7) 

with ( ) ( ) ( )
( ) ( )( )2

= m n

mn

m n

K
E E

τ τ
τ

τ τ

Φ Φ

−

ɺ

ℏ
H

. The first order approximation of nc  gives  

 ( ) ( ) ( ) ( ) .=
0

00
01 0∫

∫ ′′
t

nn

dni

n dKec
t

τττω
ττω

 (8) 

After integrating by parts and then substituting it into Eq.(4) we have  

 ( ) ( ) ( )tetct n
ni

n
n

ΦΨ ∑
θ

=  

 

( ) ( ) ( )
( ) ( )( )

( ) ( )0 0
2

= .
t

i dm n n
n

m n

t t t
i e t

E t E t

ω τ τ′ ′Φ Φ ∫− Φ
−

ɺ

ℏ
H

 (9) 

 
Our calculation leads us to the following simple conclusion: If we prepare a 
quantum system on a ground state (given by Eq.(4)) and we evolve it according 
to Schrödinger Eq. (1) and the eigen Eq. (2), the system will remain in its 
ground state (given by Eq. (9)).  

3 Evolution Path in AQC 

In the previous section we have discussed the adiabatic theorem of a quantum 
system given by Eq. (9). The transition probability is given by Eq. (9) 

 ( ) ( ) ( ) ( )
( ) ( )( )

( )
0

2

0
2

= .
t

i dm n n

m n

t t t
P t i e

E t E t

ω τ τ′ ′Φ Φ ∫−
−

ɺ

ℏ
H

 (10) 

 In order for the system to remain in the ground state at the end of the evolution, 
( ) 1P t ≪ . This is guaranteed by the value of ℏ , so we have  
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( ) ( ) ( )

( ) ( )( )2
1 .m n

m n

t t t

E t E t

Φ Φ
>>

−

ɺH
 (11) 

Define the evolution time scale as ( ) Ttts /≡ , then Eq. (11) gives the time 
functional  

 
( ) ( ) ( )

( ) ( )( )
1

2
0

= .
m n

m n

d s
s s

dsT ds
E s E s

Φ Φ

−∫

H

 (12) 

The time functional defined in Eq. (12) should be minimized to get the expected 
speed-up in the AQC paradigm, which can be done by solving the Euler-
Lagrange equation  

 
x

L

x

L

ds

d

∂
∂










∂
∂

=
ɺ

 (13) 

with the ‘Lagrangian’ defined as  

 
( ) ( ) ( )

( ) ( )( )2
.

m n

m n

d s
s s

dsL
E s E s

Φ Φ
≡

−

H

 (14) 

It is very hard to solve the Euler-Lagrange equation analytically [19]. One 

attempt in [20] is to write the expectation value of ( ) ( ) ( )m n

d s
s s

ds
Φ Φ

H
 as a 

norm form. If we use the norm form for our case, we cannot find the function 
that minimizes the time functional because the Euler-Lagrange equation always 
vanishes, i.e. the solution is an arbitrary function. In the next section we will 
modify the evolution path by adding an extra Hamiltonian. 

Now, we will compute the AQC interpolation function proposed by [2]. The 
linear interpolation of a time-dependent Hamiltonian proposed by [2]  

 ( ) ( )= 1 ,i fs s s− +H H H  (15) 

can be generalized as follows  

 ( ) ( )( ) ( ) ( ), = ,i ff s g s f s g s+H H H  (16) 

where 1=(1)=(0) gf  and 0=(0)=(1) gf . To simplify the writing later, the 
s  dependence of the interpolation function is not written explicitly. 
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As is well known, the initial and final Hamiltonians can be constructed from the 

orthonormal basis vectors. For example, using two orthonormal states, ξ  and 

ϕ , one can construct 

 ,i ξ ξ φ φ≡ − +H  (17) 

 .f ξ φ φ ξ≡ +H  (18) 

For simplicity, in a one qubit system we have  

 







≡

0

1
=0ξ  (19) 

 .
1

0
=1 








≡ϕ  (20) 

On this basis, the initial and final Hamiltonians are written as  

 
1 0

= ,
0 1i

− 
 
 

H  (21) 

 
0 1

= ,
1 0f

 
 
 

H  (22) 

and the eigenvalues and eigenvectors of the time-dependent Hamiltonian (16) 
are  

 22= gf +±λ  (23) 

 ( ) .
1

=,













−±Φ

g

fsnm
λ  (24) 

Therefore the ‘Lagrangian’ is given by  

 ,
4442

=
2222

2

2 g

ff

g

ff

g

gf
L

ɺɺɺɺ
++−−

λλλ
 (25) 

from which, using Eq. (13), we get the Euler-Lagrange equations for the 
interpolation functions f  and g , respectively,  

 0,=22 gggf ɺɺ +  (26) 

 0.=22 fgff ɺɺ +  (27) 
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Solving these equations subject to the boundary conditions yields 

 .1= gf −  (28) 

The scenario of adding an extra Hamiltonian to modify the evolution path to 
obtain a speed-up in AQC has been discussed in [14-16]. We will use this idea 
to modify the path and choose the extra Hamiltonian to be  

 e fk≡H H  (29) 

where k  is a number taken to be integer for convenience. The time-dependent 
Hamiltonian now becomes  

 ( ) = ,i f es f g h+ +H H H H  (30) 

in which the interpolation function ( )sh  that controls the extra Hamiltonian 

satisfies 0=(1)=(0) hh . The eigenvalues and eigenvectors of this 
Hamiltonian are  

 kghhkgf 2= 2222 +++±λ  (31) 

 ( ) ,,

1
=,















+
−±Φ
gkh

fsnm
λ  (32) 

and the ‘Lagrangian’ is given by  

 
( )

( ) ( ) ( ) .
4442

= 2222

2

2 gkh

ff

gkh

ff

gkh

ghkf
L

+
++

+
−

+
+−

ɺɺɺɺɺ

λλλ
 (33) 

The Euler-Lagrange equations are (see Appendix for more details)  

 ( )[ ]( ) ( ) 0,=222 ghkgkhgkhf ɺɺ ++++  (34) 

 ( )[ ]( ) 0.=222 fgkhgkhf ɺ+++  (35) 

All solutions to the above equations fail the boundary conditions, which means 
that the performance does not depend on the choice of function )(sh . It will, 
however, depend on the choice of the extra Hamiltonian. 

4 Implementation of Hadamard Gate 

The Hadamard gate is defined as [1, 22]  
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1 11

= ,
1 12

 
 − 

H  (36) 

which transforms =i zσ−H  to =f xσ−H  [22], i.e.  

 
1 0

= ,
0 1i

− 
 
 

H  (37) 

 
 (a)                                        (b) 

 
 (c)                                        (d) 

 
 (e) 

Figure 1 Performing AQC to implement a Hadamard gate with original 
Hamiltonian (black line) and extra Hamiltonian. Blue, red, and green lines for 

= 5k , = 10k  and = 20k  respectively. The yellow line is for the extra 

Hamiltonian of Pauli operator yσ with = 20k . 
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0 1
= .

1 0f

− 
 − 

H  (38) 

It can be easily checked that these initial and final Hamiltonians are the inverses 
of the previous initial and final Hamiltonians, so we would have the same 
results as before. The result of AQC implementation of a Hadamard gate with 

( ) ssg =  is given in Figure 1. 

 
 (a)                                        (b) 

 
 (c)                                        (d) 

 
(e) 

Figure 2 AQC implementation of a Hadamard gate with linear (black line) and 
cubic ( ) 3 2= 3 3g s s s s− +  (blue line) interpolation functions. 

In Figure 1 the black line is for ( ) = 0h s , while the blue, red, and green lines are 
for evolution paths with an extra Hamiltonian. The yellow line is the result for 
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taking Pauli operator yσ as the extra Hamiltonian. The two lowest energy levels 

and their gap are given in Figure 1(a) and (b). The fidelity of the evolving state 
with respect to the ground state is given in Figure 1(c), which becomes unity at 
the end of the evolution as it should. The mixture and transition probabilities of 
the ground state and the first exited states are given in Figure 1(d) and (e), 
respectively. 

 
 (a)                                        (b) 

 
 (c)                                        (d) 

 
(e) 

Figure 3 AQC implementation of a Hadamard gate using a linear interpolation 
function (black line), using a cubic function( ) 3 2= 3 3g s s s s− +  (blue line), using 

extra Hamiltonian = 20e fH H  (red line), using both interpolation function 

( ) 3 2= 3 3g s s s s− +  and extra Hamiltonian = 20e fH H  (green line).  



36 Jusak Kosasih, et al. 

It has been shown that one can use arbitrary interpolation functions, so now we 
choose a cubic form  

 ( ) 3 2= 3 3 .g s s s s− +  (39) 

The result for Hadamard gate without extra Hamiltonian is given in Figure 2; 
the black line is for linear interpolation and blue line is for cubic interpolation. 
Because of the non-linear nature of this cubic function, the general effect is a 
shifting of the curves in the s  axis, as expected. Although it does not improve 
the minimum energy gap, interestingly, it does show a better result for the 
transition probability between the two states. 

The result for AQC implementation of a Hadamard gate with an extra 
Hamiltonian is given in Figure 3. Similar to the previous figure, the black line is 
for linear interpolation and the blue line is for cubic interpolation. The red and 
green lines are for the additional Hamiltonian = 20e fH H  with linear and cubic 

interpolation function, respectively. It can be seen that the energy gap, fidelity, 
mixing probability, and transition probability improve because of the extra 
Hamiltonian. Similar to the previous results, the role of the cubic function is to 
shift and deform the curves along the s  direction, except for the transition 
probability. 

5 Discussion 

We have explored path optimization in AQC for Hadamard gates, given by the 
Hamiltonian Eq.(17) and Eq.(18). We found that the Hamiltonian path is 
optimized for ( ) ( )sgsf −1=  with arbitrary ( )sg . The extra Hamiltonian will 
change the energy landscape and, in turn, may change the accomplishment of 
the adiabatic evolution, either from failure to success or from success to failure. 
Because ( )sh  vanishes at the end of the evolution path, it is easy to set 

( ) ( ) ( )sgsfsh =  [16], but the choice of the extra Hamiltonian may affect the 
successfulness of the adiabatic evolution. 

The cubic interpolation function seems to give a better result for AQC 
implementation of the Hadamard gate, as can be seen from Figure 2. It shows 
some improvement compared to the linear case, especially for the transition 
probability, which in turn may deliver a speed-up. An even better result can be 
obtained by combining different approaches in modifying the evolution path. 

Adding an extra Hamiltonian does not necessarily give a speed-up, as can be 
seen from Figure 1(d). It can seen that the mixing probability for 5=k  (red 
line), 10=k  (blue line), and 20=k  (green line) occur at the end of the 
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evolution, similar to the bare case given by the black line. Nevertheless, we 
found that an extra Hamiltonian can improve the successfulness of AQC by 
modifying the energy landscape, i.e. the energy gap is larger for a larger k , as 
shown in Figure 1(b), and the system will have a greater probability to stay in 
the ground state, as shown in Figure 1(e). Another result is the change of 
fidelity as shown by Figure 1(c), either for better or for worse, depending on the 
extra Hamiltonian. Particularly taking Pauli operator yσ

 
as the extra 

Hamiltonian will decrease the fidelity and is harmful to the success of the 
adiabatic process as well. 

6 Conclusion 

In conclusion, we have shown that the performance of an adiabatic quantum 
computation implementation of a single Hadamard gate does not depend on the 
interpolation functions. Adding an extra Hamiltonian will change the energy 
landscape, i.e. it may influence the success or failure of the adiabatic evolution, 
but it does not provide any speed-up. One can choose an arbitrary path, 
provided that it satisfies the boundary conditions. Nevertheless, a closer look at 
the evolution of the various parameters reveals other factors that may influence 
the adiabatic evolution, which should be elucidated in future work. 

Appendix 

Lagrangian of adding extra Hamiltonian is given by  

 
( )

( ) ( ) ( ) .
4442

= 2222

2

2 gkh

ff

gkh

ff

gkh

ghkf
L

+
++

+
−

+
+−

ɺɺɺɺɺ

λλλ
 (40) 

 After applying the Euler-Lagrange equations, for interpolation function f  

( ) ( )2222

2

4

1

4

1

4
=

gkhgkh

f

f

L

+
++

+
−

∂
∂

λλɺ
 

( )
( )
( ) ( ) ( )

,
22222

=
22332

2

323

2

gkh

ff

gkh

ghk

gkh

ghkfds

d

gkh
ds

d
f

f

L

ds

d

+
−

+
+−

+
++−

+








∂
∂

λλλ

λ

λ

λ
ɺɺɺɺɺ

ɺ

  (41) 

( )
( ) ( ) ( ) ( )

.
2222

=
222323

2

3
gkh

ff

gkh

ghkdf

d
f

gkh

df

d
ff

gkh

df

d
ghkf

f

L

+
−

+
+−−

+
+

+

+

∂
∂

λλλ

λ

λ

λ

λ

λ
ɺɺɺ

ɺɺɺɺ

   

  (42) 
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The interpolation functiong  

 
( )gkh

f

g

L

+
−

∂
∂

2
2

=
λɺ

 

 
( )

( )
( ) ( )

,
22

=
2223

gkh

f

gkh

ghkf

gkh
ds

d
f

g

L

ds

d

+
−

+
++

+








∂
∂

λλλ

λ
ɺɺɺ

ɺ
 (43) 

 
( )

( ) ( )
( )
( )22323

2

3
222

=
gkh

ghkfdg

d
f

gkh

dg

d
ff

gkh

dg

d
ghkf

g

L

+
++−

+
+

+

+

∂
∂

λλ

λ

λ

λ

λ

λ
ɺɺ

ɺɺɺɺ

 

          
( ) ( ) .

22
332

2

gkh

f

gkh

ff

+
−

+
+

ɺɺ

λ
 (44) 

For interpolation function h  

 
( )gkh

kf

h

L

+
−

∂
∂

2
2

=
λɺ

 

 
( )

( )
( ) ( )

,
22

=
2223

gkh

fk

gkh

ghkkf

gkh
ds

d
kf

h

L

ds

d

+
−

+
++

+









∂
∂

λλλ

λ
ɺɺɺ

ɺ
 (45) 

 
( )

( ) ( )
( )
( )22323

2

3
222

=
gkh

ghkkfdh

d
f

gkh
dh

d
ff

gkh
dh

d
ghkf

h

L

+
++−

+
+

+

+

∂
∂

λλ

λ

λ

λ

λ

λ
ɺɺ

ɺɺɺɺ

 

          
( ) ( ) .

22
332

2

gkh

fk

gkh

fkf

+
−

+
+

ɺɺ

λ
 (46) 

Differentiating the eigenvalues with respect to, ,gs f  and ,h we get  

 ,=
2

λ
λ ffgggkhhkghhk

ds

d ɺɺɺɺɺ ++++
 (47) 

 ,=
λ

λ f

df

d
 (48) 
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 ,=
λ

λ gkh

dg

d +
 (49) 

 
( )

.=
λ

λ gkhk

dh

d +
 (50) 

Substititing (47) and (48) into (34) and (35) respectively, we get  

 ( ) 0,=ghkA ɺɺ +  (51) 

where  

 ( )[ ]( ) .= 222 gkhgkhfA +++  (52) 

Substituting (47) and (51) into (43) and (44), and the same procedure for (45) 
and (46), we get  

 0.=fAɺ  (53) 
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