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Abstract. The non-uniqueness in the solution of gravity inversion poses a major 
problem in the interpretation of gravity data. To overcome this ambiguity, 
“a priori” information is introduced by minimizing a functional that describes the 
geometrical or physical properties of the solution. This paper presents a 2D 
gravity inversion technique incorporating axes of anomalous mass concentration 
as constraints. The inverse problem is formulated as a minimization of the 
moment of inertia of the causative body with respect to the axes of the mass 
concentration. The proposed method is particularly applicable to homogeneous, 
linear mass distributions, such as mineralization along faults and intruded sills or 
dikes. Inversions of synthetic and field data illustrate the versatility of the 
implemented algorithm.  

Keywords: density estimation; linear inversion; mineral prospecting; potential field; 
prior information. 

1 Introduction 

In geophysics, the gravity modeling method has been used for a wide range of 
applications, such as tectonic studies [1,2], earth resources exploration [3,4] and 
also in engineering and environmental investigations [5]. Gravity anomalies are 
generated by mass variations in subsurface rock formations. The aim of the 
gravity modeling is to estimate the densities and shapes (i.e. geometry, 
including depth) of the causative bodies. An inversion technique is usually 
employed to obtain a plausible subsurface model whose theoretical response (or 
calculated data) fits the observed data. Therefore, the inversion of gravity data 
constitutes an important step in the quantitative interpretation of gravity 
anomalies [6,7]. 

In two-dimensional (2D) modeling, a causative body with invariant cross-
section along an assumed strike is sought with respect to the gravity data on a 
profile crossing perpendicularly to that strike. One of the possible approaches is 
to divide the subsurface into a large number of rectangular blocks of fixed size 
but of unknown density (see Figure 1). In such case, the density of each block is 
to be determined and the inversion problem is linear, i.e. the data or gravity 
anomalies are linearly related to the model parameters or densities [8,9]. A 
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major difficulty with the inversion of gravity data (and other potential field data, 
such as magnetic field data) is the inherent non-uniqueness of inverse models. If 
a model is found to fit the data, there may be many other models that fit the data 
to the same degree [8-10].  

This paper describes an alternative implementation of the constrained 2D 
gravity inversion that minimizes the moment of inertia of the causative bodies 
with respect to one or several axes passing through them. The approach used 
was proposed by Guillen and Menichetti [11] and by Barbosa and Silva [12,13] 
with a more generalized formulation. Their inverse model is determined by the 
estimate of the central depth and dip of the anomalous sources. We limit our 
approach by using explicit axis positions as a constraint in the inversion 
algorithm. Such constraint is a specific and rather restrictive form of prior 
information. However, the attempt to collapse the anomalous density into a 
single body (or multiple bodies with their respective axes) is more suited for 
recovering localized geological structures, for example in mineral exploration 
(i.e. dikes, sills, etc). This choice of preference will be exemplified by inversion 
of synthetic and field data. 

2 Unconstrained 2D Gravity Inversion 

The subsurface in which the anomalous sources are searched is divided into 
elementary rectangular prisms on the x- and z-axis (of infinite horizontal extent 
in the y-axis, i.e. 2D case). The elementary density contrasts are constant inside 
each prism and can vary individually. With the matrix notation, the vector of 
gravity anomaly d = [di] ; i = 1, 2, …, N with N is the number of data, is given 
by 

 mGd ⋅= , (1) 

where G = [gij] ; i = 1, 2, …, N ; j = 1, 2, …, M is the kernel matrix with gij is 
the contribution of j-th prism to the gravity value on i-th observation point. The 
vector for model parameters that represents the density contrast of the prism is 
m = [mj] ; j = 1, 2, …, M with M is the number of model parameters. The 
number of model parameters is factored as the number of prisms in the direction 
of the x- and z-axis (Figure 1). 

Eq. (1) constitutes the 2D gravity forward modeling, i.e. to calculate the 
predicted gravity anomalies (or theoretical data d) for a known subsurface 
density contrast (or model m). The gravity response of an elementary prism gij 
is obtained from the well-known Talwani’s algorithm, i.e. calculation of the 
gravitational attraction of an arbitrary 2D anomalous body with a polygonal 
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cross-section [10]. In this case, the polygon has four perpendicular sides that 
coincide with the model grids.  
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Figure 1 Illustration of the gravity anomaly data along a profile and associated 
2D section with common x-axis. The subsurface domain on the x- and z-axis is 
discretized into grids representing 2D prisms.  

Since the gravity observation points are located only at the earth’s surface along 
a profile crossing the anomalous body, the number of model parameters is 
certainly larger than the number of data. For such under-determined problems, 
the standard minimum-norm solution of the inverse problem is expressed by 
[8,9] 

 dIGGGm 1][ −λ+= TT , (2) 

where λ is the damping factor, I is a unitary matrix and the super-script T 
denotes matrix transposition. The damping factor is used to avoid over-fitting, 
i.e. unnecessary model solutions that reproduce noise contained in the data. The 
choice of the damping factor is usually determined by trial and error. However, 
to minimize the ad hoc manner in the choice of the damping factor, Mendonca 
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and Silva [14,15] used a normalization matrix D such that λ can be chosen in 
the interval [0, 1]. The N by N diagonal normalization matrix D is given by 
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and the Eq. (2) becomes 

 dDIDGGDDGm 1][ˆ −λ+= TT . (4) 

In order to stabilize the inversion, the singular value decomposition (SVD) 
technique [16] is usually employed to invert the matrix in Eq. (2) or its modified 
or normalized version as shown in Eq. (4). In the application of the SVD 
technique, singular values less than a threshold value are considered negligible 
and set to zero such that they are discarded from the solution calculation. In the 
cases described in this paper, singular values less than 10-6 times the maximum 
singular value are neglected, which resulted in good solutions. However, Eqs. 
(2) and (4) represent the unconstrained 2D gravity inversion, where the inverse 
model tends to concentrate near the earth’s surface due to the ambiguity or non-
uniqueness problem. This mathematical solution provides little information 
about the true structure. However, such situation can still be exploited in the 
context of an equivalent source for interpolation [14,15] and also for potential 
field data transformation [17]. 

3 Constrained 2D Gravity Inversion 

Several authors have introduced prior information into the inversion in order to 
restrict the number of solutions and to reflect the actual geology of the area. In 
such approach, the inversion algorithm produces a single model by minimizing 
an objective function of the model subject to fitting the data. For example, Li 
and Oldenburg [18] used an objective function that includes terms penalizing 
discrepancies from a reference model and also roughness in three different 
spatial directions (x, y, z). It also incorporates a depth weighting function 
designed to distribute the density with depth. Their inversion technique has the 
ability to construct relatively complex (3D) geologic bodies. However, the 
inverted models tend to exhibit remarkably smooth models so that the 
determination of rock boundaries is a difficult interpretation task. 

We consider a class of models most likely encountered in real geophysical 
exploration problems for mineral resources employing the gravity modeling 
method. We search for anomalous sources collapsed into bodies with their axis 
defined as “a priori” information. This approach is a simplified implementation 
of the more generalized method proposed by Guillen and Menichetti [11] and 
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also by Silva and Barbosa [12] that incorporates only the center of gravity and 
orientation (dip) of the axes as constraints. Instead of automatically finding the 
extent of the anomaly along the predefined axis orientation (i.e. the axis’ 
length), we use the explicit position of the axes by defining their extreme points 
as constraints. 

For inversion with a known position of axes, the model parameter estimate is 
updated iteratively; at the k-th iteration we have 

 kkk mmm ∆+=+1 , (5) 
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Wk is a diagonal weighting matrix and its non-zero elements are given by 
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where rij is the distance between the center of the j-th elementary prism and the 
i-th axis, and ε is a small positive number in the order of 10-7 to avoid a 
division-by-zero error in Eq. (7) for zero density contrast in the model 
parameter. The form of Eq. (6) is similar to that of Eq. (2) for general 
minimum-norm solutions of the linear inverse problem. Eq. (6) gives the 
constrained model perturbation that can be used to update the model parameters 
(i.e. density or density contrast) iteratively. In Silva and Barbosa [12], a lengthy 
formulation was necessary to evaluate the weighting matrix elements since the 
constraints were the center gravity and the dip or orientation of the axes.  

The algorithm of the proposed method is as follows:  

1. Calculation of the standard minimum-norm solution.  
The calculation of the minimum-norm solution using Eq. (4) always results 
in an acceptable fit of the data. However, the solution does not support the 
real subsurface geology nor the predefined constraints, i.e. the concentration 
of mass about the specified axes.  

2. Calculation of weighting matrix W.  
The components of the matrix W evaluated using Eqs. (7) and (8) will 
control the modulus of the perturbation ∆m at each iteration. The prisms 
close to any axis that have large density contrast estimates (in the modulus) 
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are assigned small weights, so that the corresponding corrections will be 
large, and vice versa.  

3. Application of inequality constraints on density.  
To produce a physically meaningful solution, the density contrast of each 
prism must satisfy 

 maxmin mmm j ≤≤ . (9) 

If at an iteration mj exceeds one of its bounds, then it will be fixed at the 
violated bound. Instead of being calculated by Eqs. (7) and (8), the 
corresponding weight wjj will be assigned a very large value. The large 
value for wjj will force the prism density contrast to be “frozen” at the 
violated boundary, at least temporarily during the first few iterations. This 
way, the response of the modified parameter estimates will not fit the 
observations, which will in turn trigger the necessity for further parameter 
perturbation as a function of the misfit.  

4. Calculation of model perturbation and model updating. 
The calculation of Eqs. (6) and (5) will result in the density contrast 
perturbation and an updated density contrast model respectively. The 
iterations continue with the re-evaluation of the weighting matrix W in step 
(2) and so forth. The model will be biased towards a concentrated density 
contrast estimate close to the axes, which will likely outline the causative 
bodies. 

4 Inversion of Synthetic Data 

To illustrate the utility of the proposed method, the inversion algorithm was 
tested on a set of synthetic data. The gravity field of the 2D prisms having a 
simple geometry and also an irregular form is most likely encountered in 
mineral exploration (dikes and sills); it was computed by Talwani’s method 
[10]. The density contrast of the anomalous body is 1.0 gr/cm3. The synthetic 
data were contaminated by random noise with a Gaussian distribution having 
zero mean and a standard deviation of 1.0 milliGal. We worked with gravity 
anomalies and density contrasts instead of gravity fields and densities. Since the 
only unknown parameters were the contrasts of density, the anomalous bodies 
were represented by the prisms with non-zero contrast. The modeling domain 
was decomposed into 40 by 20 blocks with a dimension of 50 meters in both x- 
and z-direction.  

In the inversions, we used a subsurface discretization similar with the one used 
in generating the synthetic data in order to simplify the problem. The density 
contrast was bounded between 0.0 and 1.0 gr/cm3. Figure 2 shows the results 
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from the unconstrained inversions of the synthetic data corresponding to the 
bodies with a simple geometry (horizontal and vertical blocks). Despite the 
good fit between the calculated data and the observed data, the recovered 
causative bodies do not reflect the real geometry of the synthetic models (shown 
as outline in the model cross-section). The inverted models tend to concentrate 
near the surface with a much lower density contrast than prescribed in the 
synthetic models. Note also the negative density contrast (white colored blocks 
at the surface and near the edges) that compensates the non-zero density 
contrast of blocks that are too close to the surface.  

 
Figure 2 Unconstrained inversion results of synthetic data associated with 
horizontal block (a) and vertical block (b) synthetic models. The corresponding 
fits between synthetic data (dots) and calculated data (line) are shown in the top 
panel. 

The constrained inversion of the same synthetic data, by giving the axis position 
of the presumable anomalous mass, resulted in a much better geometry of the 
inverted models (Figure 3). In inverting each synthetic data set, the true axis at 
the center of the synthetic model was given. The level of data fit for both the 
unconstrained and constrained inversions are almost identical. However, the 
calculated model response from the constrained inversion appears to be 
smoother, due to the fact that the inverse model is less irregular than the model 
obtained from the unconstrained inversion. For the same degree of damping, the 
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inversion without appropriate constraint tends to overfit the data including the 
noise present in the data. 

 
Figure 3 The constrained inversion results of synthetic data associated with 
horizontal block (a) and vertical block (b) models. The corresponding fits 
between synthetic data (dots) and calculated data (line) are shown in the top 
panel. 

We also inverted synthetic data associated with anomalous bodies having a 
more complex geometry in order to investigate the validity of the inversion 
algorithm and the critical choice in setting the axis position for the constraint. 
The inversion without constraint was performed but we do not present the 
results in this paper since the inverse model exhibited similar characteristics as 
in Figure 2, i.e. no significant physical or geological structures were obtained. 
Figure 4 shows the inversion results for synthetic data corresponding to 
combinations of dikes and sills with orthogonal and inclined crossing axes. This 
figure also depicts good agreement between recovered and synthetic models 
both in terms of geometry and density contrast. As with the previous inversions 
of synthetic data, the true axes at the center of the synthetic models (both 
orthogonal and non-orthogonal) were given as constraints (shown as arrows in 
Figure 4) in order to simplify the problem.  

Inversions using an incorrect position of the axes were also performed (not 
presented in this paper) to test the sensitivity of the method under such 



 Two-Dimensional Inversion of Gravity Data 9 
 

condition. They resulted in models that are geologically unrealistic, although the 
data misfit may be acceptable. Such kind of results can be used as an indicator 
that the constraints are inappropriate and further adjustment of the axes’ 
positions is still needed.  

 
Figure 4 The constrained inversion results of synthetic data associated with 
models having two crossed axes (a) and (b), with their corresponding fits 
between synthetic data (dots) and calculated data (line). The arrows are the axes 
given as constraints. 

5 Inversion of Field Data 

The proposed method was applied to invert field gravity data from a private 
concession for artisanal gold mining operated by a local community in the 
southern part of Sukabumi regency, West Java province, Indonesia. The 
objective of the survey was to delineate the mineralized zone associated with an 
intrusive dike that is generally denser than its surrounding environment. As a 
by-product of the intrusion, the mineralization that occurs in the quartz veins 
may contain gold as ore, although usually in very small quantities. The survey 
area, measuring only 900 by 600 meters in East-West and North-South 
directions respectively, was covered by gravity stations in grids of 50 by 50 
meters. For such a small and localized area, we only performed relative 
Bouguer gravity measurement, i.e. no tie to the regional base-station. A simple 
constant regional anomaly was substracted from the Bouguer anomaly. Figure 5 
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shows the residual anomaly map in a simple local x-y Cartesian coordinate 
system.  

 
Figure 5 The residual gravity anomaly from the survey area. The modeled data 
were from the profile shown by white line crossing the main positive anomaly. 

The residual gravity exhibits a dominant positive anomaly in South-West – 
North-East direction surrounded by lower and negative anomalies. We inverted 
the data from a profile A-A' in nearly North-West – South-East direction 
crossing the main positive anomaly perpendicularly. The subsurface domain 
was divided into 40 by 20 blocks with a dimension of 25 meters in both x- and 
z-direction. The results of the unconstrained and constrained inversions are 
presented in Figure 6. The unconstrained inversion resulted in a diffuse 
anomalous source concentrated near the surface with a good fit between the 
observed data and the calculated data. After several attemps, the best result for 
the constrained inversion in terms of data fit and model continuity was obtained 
by using a vertical axis as shown by the blue arrow in Figure 6(b). The 
difficulty in achieving a good data fit may be caused by the limited density 
contrast for the anomalous body. The boundary of the anomaly is well resolved, 
although the anomalous body is still concentrated near the surface. The fact that 
the anomalous body does not have an intrusive character, i.e. is not deeply 
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rooted, is intriguing. For such a local anomaly, it is possible that we covered the 
whole intrusive system only partially. The main instrusive body may be located 
elsewhere, further to the North-East of the survey area. 

 
Figure 6 The unconstrained (a) and constrained (b) inversion results of the field 
data (dots) with their corresponding calculated model response (line). The arrow 
in Figure 6(b) is the axis given as constraint. 

6 Discussion and Conclusion 

An inversion algorithm to recover 2D contrast density distribution from gravity 
data was presented. The algorithm incorporates constraints about the directions 
of the mass concentration in order to obtain a mathematically stable and 
physically and geologically meaningful solution. In order to simplify the 
problem, the applied constraint was given explicitly as the coordinate points of 
the axes. The versatility of such constraints in the algorithm was exemplified by 
inversion of synthetic data. The inverse models successfully recovered the 
synthetic models within an acceptable resolution. The inversion of the field 
gravity data also resulted in a satisfactory subsurface model. 

The need for rather specific “a priori” information, such as the axis of the 
anomalous body, seems restrictive and may prohibit the application of the 
algorithm in solving real geological exploration problems. The experiment with 
false constraints or weak “a priori” information has shown that the applicability 
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of the proposed method is not restricted to areas with a relatively well-known 
geology. Nevertheless, in an exploration program it is rare that little or nothing 
is known about the local geology. This suggests that relatively reliable 
“a priori” information is usually available to perform inversion modeling 
properly using the method proposed in this paper. 

From a computational point of view, the numerical implementation of the 
algorithm can be as efficient as other techniques employing constraints on 
model smoothness, depth weighting, etc. [18]. The minimum-norm (i.e. under-
determined) type of the inverse problem resolution leads to a matrix inversion 
whose size is determined by the number of observations rather than by the 
number of model parameters (prisms or grids). The current computational 
resources are appropriate to handle such inversion modeling routinely, even 
with a large number of grids. The extension of the algorithm to solve more 
complex 3D structures is currently underway based on existing 3D gravity and 
magnetic modeling algorithms [19]. The development of the algorithm for 3D 
inversion of magnetic data is crucial since magnetic data are used more 
frequently in mineral exploration.  
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