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Abstract. The non-uniqueness in the solution of gravity isi@n poses a major

problem in the interpretation of gravity data. Teercome this ambiguity,

“a priori” information is introduced by minimizing functional that describes the
geometrical or physical properties of the solutidimis paper presents a 2D
gravity inversion technique incorporating axes wbmalous mass concentration
as constraints. The inverse problem is formulatedaaminimization of the

moment of inertia of the causative body with resgecthe axes of the mass
concentration. The proposed method is particulapglicable to homogeneous,
linear mass distributions, such as mineralizatiomg faults and intruded sills or
dikes. Inversions of synthetic and field data iitate the versatility of the

implemented algorithm.

Keywords: density estimation; linear inversion; mineral prospecting; potential field;
prior information.

1 I ntroduction

In geophysics, the gravity modeling method has hessu for a wide range of
applications, such as tectonic studies [1,2], easburces exploration [3,4] and
also in engineering and environmental investigati). Gravity anomalies are
generated by mass variations in subsurface roakétons. The aim of the
gravity modeling is to estimate the densities amdpss (i.e. geometry,
including depth) of the causative bodies. An ini@rstechnique is usually
employed to obtain a plausible subsurface modekwltibeoretical response (or
calculated data) fits the observed data. Theretbeejnversion of gravity data
constitutes an important step in the quantitatiméerpretation of gravity
anomalies [6,7].

In two-dimensional (2D) modeling, a causative bodigh invariant cross-
section along an assumed strike is sought withetdp the gravity data on a
profile crossing perpendicularly to that strike.ef the possible approaches is
to divide the subsurface into a large number ofaregular blocks of fixed size
but of unknown density (see Figure 1). In such ctmedensity of each block is
to be determined and the inversion problem is linea. the data or gravity
anomalies are linearly related to the model pararaetr densities [8,9]. A
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major difficulty with the inversion of gravity datand other potential field data,
such as magnetic field data) is the inherent naguemess of inverse models. If
a model is found to fit the data, there may be nahgr models that fit the data
to the same degree [8-10].

This paper describes an alternative implementatbrthe constrained 2D
gravity inversion that minimizes the moment of treof the causative bodies
with respect to one or several axes passing throgm. The approach used
was proposed by Guillen and Menichetti [11] andBlaybosa and Silva [12,13]
with a more generalized formulation. Their invensedel is determined by the
estimate of the central depth and dip of the anousakources. We limit our
approach by using explicit axis positions as a tairg in the inversion
algorithm. Such constraint is a specific and ratrestrictive form of prior
information. However, the attempt to collapse tm®raalous density into a
single body (or multiple bodies with their respeetiaxes) is more suited for
recovering localized geological structures, forragée in mineral exploration
(i.e. dikes, sillsgtc). This choice of preference will be exemplified ihyersion
of synthetic and field data.

2 Unconstrained 2D Gravity Inversion

The subsurface in which the anomalous sources eaelsed is divided into
elementary rectangular prisms on #heandz-axis (of infinite horizontal extent
in they-axis, i.e. 2D case). The elementary density cstdrare constant inside
each prism and can vary individually. With the matrotation, the vector of
gravity anomalyd = [d] ; i = 1, 2, ...,N with N is the number of data, is given
by

d=GI[m, 1)

whereG =[gj];i=1,2,...N;j=1, 2, ...,Mis the kernel matrix witly; is
the contribution of-th prism to the gravity value drth observation point. The
vector for model parameters that represents thsityecontrast of the prism is
m=[m];j=1, 2, ..,M with M is the number of model parameters. The
number of model parameters is factored as the nuoflgisms in the direction
of thex- andz-axis (Figure 1).

Eq. (1) constitutes the 2D gravity forward modelinge. to calculate the
predicted gravity anomalies (or theoretical ddjafor a known subsurface
density contrast (or modeh). The gravity response of an elementary prigm
is obtained from the well-known Talwani’s algorithie. calculation of the
gravitational attraction of an arbitrary 2D anomaldbody with a polygonal
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cross-section [10]. In this case, the polygon lmas perpendicular sides that
coincide with the model grids.
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Figurel lllustration of the gravity anomaly data along affle and associated
2D section with commor-axis. The subsurface domain on theandz-axis is
discretized into grids representing 2D prisms.

Since the gravity observation points are locatdgl anthe earth’s surface along
a profile crossing the anomalous body, the numidemodel parameters is
certainly larger than the number of data. For sutter-determined problems,
the standard minimum-norm solution of the inversebfem is expressed by
[8.9]

m=G'[GG" +Al]"d, 2)

where A is the damping factor, is a unitary matrix and the super-script
denotes matrix transposition. The damping factarsisd to avoid over-fitting,
i.e. unnecessary model solutions that reproducgermintained in the data. The
choice of the damping factor is usually determibgdrial and error. However,
to minimize the ad hoc manner in the choice ofdamping factor, Mendonca
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and Silva [14,15] used a normalization matixsuch thafA can be chosen in
the interval [0, 1]. Th&\ by N diagonal normalization matri? is given by

M =12
D, = [Zl Gisz : 3)
J:

and the Eqg. (2) becomes
m=G D[DGG' D+AI]*Dd. (4)

In order to stabilize the inversion, the singulaue decomposition (SVD)
technique [16] is usually employed to invert thetniman Eg. (2) or its modified
or normalized version as shown in Eq. (4). In tippligation of the SVD
technique, singular values less than a threshdltevare considered negligible
and set to zero such that they are discarded fnensalution calculation. In the
cases described in this paper, singular valuesthess 1@ times the maximum
singular value are neglected, which resulted indgsolutions. However, Eqgs.
(2) and (4) represent the unconstrained 2D grawitgrsion, where the inverse
model tends to concentrate near the earth’s sudiaedo the ambiguity or non-
unigueness problem. This mathematical solution igesy little information
about the true structure. However, such situatiam still be exploited in the
context of an equivalent source for interpolatid,]5] and also for potential
field data transformation [17].

3 Constrained 2D Gravity Inversion

Several authors have introduced prior informatiwo the inversion in order to
restrict the number of solutions and to reflect dlbtual geology of the area. In
such approach, the inversion algorithm producesglesmodel by minimizing
an objective function of the model subject to fligtithe data. For example, Li
and Oldenburg [18] used an objective function thatudes terms penalizing
discrepancies from a reference model and also ragghin three different
spatial directionsX y, 2). It also incorporates a depth weighting function
designed to distribute the density with depth. Thetersion technique has the
ability to construct relatively complex (3D) geologbodies. However, the
inverted models tend to exhibit remarkably smootlodets so that the
determination of rock boundaries is a difficultargretation task.

We consider a class of models most likely encoedtén real geophysical
exploration problems for mineral resources emplgyihe gravity modeling
method. We search for anomalous sources collapgedodies with their axis
defined as “a priori” information. This approachaisimplified implementation
of the more generalized method proposed by Gudieth Menichetti [11] and
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also by Silva and Barbosa [12] that incorporatdy tme center of gravity and
orientation (dip) of the axes as constraints. bu$tef automatically finding the
extent of the anomaly along the predefined axiemation (i.e. the axis’
length), we use the explicit position of the axgsibfining their extreme points
as constraints.

For inversion with a known position of axes, thedsloparameter estimate is
updated iteratively; at theth iteration we have

AmK =W, 'GT[GW,'GT +A 1] (d -Gm¥), (6)
W, is a diagonal weighting matrix and its non-zeengnts are given by
2
Wi = f—j’ (7)
mj + &
Ry = min (r), (8)
l<i<lL

wherer;; is the distance between the center ofjttieelementary prism and the
i-th axis, ande is a small positive number in the order of '1® avoid a
division-by-zero error in Eq. (7) for zero densitpntrast in the model
parameter. The form of Eq. (6) is similar to thdt Ex. (2) for general
minimum-norm solutions of the linear inverse probleEq. (6) gives the
constrained model perturbation that can be useghdate the model parameters
(i.e. density or density contrast) iteratively.Sitva and Barbosa [12], a lengthy
formulation was necessary to evaluate the weightiagyix elements since the
constraints were the center gravity and the diprigntation of the axes.

The algorithm of the proposed method is as follows:

1. Calculation of the standard minimum-norm solution.
The calculation of the minimum-norm solution uskbg. (4) always results
in an acceptable fit of the data. However, the tsmudoes not support the
real subsurface geology nor the predefined comssiaie. the concentration
of mass about the specified axes.

2. Calculation of weighting matriyV.
The components of the matri¥/ evaluated using Egs. (7) and (8) will
control the modulus of the perturbatidim at each iteration. The prisms
close to any axis that have large density con@rsisitnates (in the modulus)
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are assigned small weights, so that the correspgnehrrections will be
large, and vice versa.

Application of inequality constraints on density.
To produce a physically meaningful solution, thegiy contrast of each
prism must satisfy

Mhin = mj = Max- (9)

If at an iterationmy exceeds one of its bounds, then it will be fixedhe
violated bound. Instead of being calculated by E9. and (8), the
corresponding weighty; will be assigned a very large value. The large
value forwj; will force the prism density contrast to be “froZeat the
violated boundary, at least temporarily during fingt few iterations. This
way, the response of the modified parameter estisnatill not fit the
observations, which will in turn trigger the nedgs$or further parameter
perturbation as a function of the misfit.

Calculation of model perturbation and model updgtin

The calculation of Eqgs. (6) and (5) will result ihe density contrast
perturbation and an updated density contrast modspectively. The
iterations continue with the re-evaluation of theigiting matrix\w in step
(2) and so forth. The model will be biased towaadsoncentrated density
contrast estimate close to the axes, which wikliikoutline the causative
bodies.

Inversion of Synthetic Data

To illustrate the utility of the proposed methole tinversion algorithm was
tested on a set of synthetic data. The gravity fwfl the 2D prisms having a

simple geometry and also an irregular form is mldgtly encountered in
mineral exploration (dikes and sills); it was cortguli by Talwani’'s method
[10]. The density contrast of the anomalous bodg.@s gr/cmi. The synthetic
data were contaminated by random noise with a Gaushstribution having
zero mean and a standard deviation of 1.0 milli®&k worked with gravity

anomalies and density contrasts instead of gréelys and densities. Since the
only unknown parameters were the contrasts of tertbie anomalous bodies
were represented by the prisms with non-zero centiithe modeling domain
was decomposed into 40 by 20 blocks with a dimensfdb0 meters in botk-
andzdirection.

In the inversions, we used a subsurface discraizaimilar with the one used
in generating the synthetic data in order to sifpgiie problem. The density
contrast was bounded between 0.0 and 1.0 r/Eigure 2 shows the results
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from the unconstrained inversions of the synthdata corresponding to the
bodies with a simple geometry (horizontal and waitiblocks). Despite the
good fit between the calculated data and the obsdedata, the recovered
causative bodies do not reflect the real geomdttigeosynthetic models (shown
as outline in the model cross-section). The ingerntwdels tend to concentrate
near the surface with a much lower density contthah prescribed in the
synthetic models. Note also the negative densityrast (white colored blocks
at the surface and near the edges) that compendaesnon-zero density
contrast of blocks that are too close to the serfac
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Figure2 Unconstrained inversion results of synthetic dassoeiated with
horizontal block (a) and vertical block (b) synibhanodels. The corresponding
fits between synthetic data (dots) and calculatgd @ine) are shown in the top
panel.

The constrained inversion of the same synthetia, dst giving the axis position
of the presumable anomalous mass, resulted in & meiter geometry of the
inverted models (Figure 3). In inverting each sgtithdata set, the true axis at
the center of the synthetic model was given. Thellef data fit for both the
unconstrained and constrained inversions are alidesitical. However, the
calculated model response from the constrainedrsioe appears to be
smoother, due to the fact that the inverse modielsis irregular than the model
obtained from the unconstrained inversion. Forstirme degree of damping, the
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inversion without appropriate constraint tends verét the data including the
noise present in the data.
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Figure3 The constrained inversion results of synthetic degaociated with
horizontal block (a) and vertical block (b) modelBhe corresponding fits
between synthetic data (dots) and calculated date) (are shown in the top
panel.

We also inverted synthetic data associated withmahous bodies having a
more complex geometry in order to investigate thédity of the inversion
algorithm and the critical choice in setting thésggosition for the constraint.
The inversion without constraint was performed lw# do not present the
results in this paper since the inverse model ébdulsimilar characteristics as
in Figure 2, i.e. no significant physical or geotay structures were obtained.
Figure 4 shows the inversion results for synthetata corresponding to
combinations of dikes and sills with orthogonal amdined crossing axes. This
figure also depicts good agreement between recdvane synthetic models
both in terms of geometry and density contrastwik the previous inversions
of synthetic data, the true axes at the centerhef dynthetic models (both
orthogonal and non-orthogonal) were given as caimtfr (shown as arrows in
Figure 4) in order to simplify the problem.

Inversions using an incorrect position of the awege also performed (not
presented in this paper) to test the sensitivitytltd method under such
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condition. They resulted in models that are ge@alty unrealistic, although the
data misfit may be acceptable. Such kind of residts be used as an indicator
that the constraints are inappropriate and furthéjustment of the axes’
positions is still needed.
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Figure4 The constrained inversion results of synthetic degaociated with
models having two crossed axes (a) and (b), wittirtkorresponding fits
between synthetic data (dots) and calculated dia&).(The arrows are the axes
given as constraints.

5 Inversion of Field Data

The proposed method was applied to invert fieldvityadata from a private
concession for artisanal gold mining operated blpal community in the
southern part of Sukabumi regency, West Java peeyirindonesia. The
objective of the survey was to delineate the miierd zone associated with an
intrusive dike that is generally denser than itg@inding environment. As a
by-product of the intrusion, the mineralizationttlogcurs in the quartz veins
may contain gold as ore, although usually in venals quantities. The survey
area, measuring only 900 by 600 meters in East-Vé@st North-South
directions respectively, was covered by gravitytietes in grids of 50 by 50
meters. For such a small and localized area, wg pelformed relative
Bouguer gravity measurement, i.e. no tie to théoresj base-station. A simple
constant regional anomaly was substracted fronBtheguer anomaly. Figure 5
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shows the residual anomaly map in a simple loegl Cartesian coordinate
system.
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Figure5 The residual gravity anomaly from the survey afidee modeled data
were from the profile shown by white line crossthg main positive anomaly.

The residual gravity exhibits a dominant positiveomaly in South-West —
North-East direction surrounded by lower and negasinomalies. We inverted
the data from a profile A-A' in nearly North-West South-East direction
crossing the main positive anomaly perpendiculafliye subsurface domain
was divided into 40 by 20 blocks with a dimensidr26 meters in botk- and
zdirection. The results of the unconstrained andstained inversions are
presented in Figure 6. The unconstrained inversiesulted in a diffuse
anomalous source concentrated near the surfaceamijbod fit between the
observed data and the calculated data. After seatteanps, the best result for
the constrained inversion in terms of data fit ematlel continuity was obtained
by using a vertical axis as shown by the blue ariowFigure 6(b). The
difficulty in achieving a good data fit may be cadsby the limited density
contrast for the anomalous body. The boundary @ftiomaly is well resolved,
although the anomalous body is still concentratal the surface. The fact that
the anomalous body does not have an intrusive cteirai.e. is not deeply
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rooted, is intriguing. For such a local anomalysipossible that we covered the
whole intrusive system only partially. The maintiasive body may be located
elsewhere, further to the North-East of the suama.
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Figure6 The unconstrained (a) and constrained (b) invensésnlts of the field
data (dots) with their corresponding calculated et@dsponse (line). The arrow
in Figure 6(b) is the axis given as constraint.

6 Discussion and Conclusion

An inversion algorithm to recover 2D contrast dgndistribution from gravity
data was presented. The algorithm incorporatestr@nts about the directions
of the mass concentration in order to obtain a emtiically stable and
physically and geologically meaningful solution. brder to simplify the
problem, the applied constraint was given explicas the coordinate points of
the axes. The versatility of such constraints smdtgorithm was exemplified by
inversion of synthetic data. The inverse modelscessfully recovered the
synthetic models within an acceptable resolutiohe Thversion of the field
gravity data also resulted in a satisfactory sulasermodel.

The need for rather specific “a priori” informatiosuch as the axis of the
anomalous body, seems restrictive and may proliigt application of the
algorithm in solving real geological exploratioroplems. The experiment with
false constraints or weak “a priori” informationshshown that the applicability
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of the proposed method is not restricted to are#ls avrelatively well-known
geology. Nevertheless, in an exploration prograis iare that little or nothing
is known about the local geology. This suggests tredatively reliable
“a priori” information is usually available to perin inversion modeling
properly using the method proposed in this paper.

From a computational point of view, the numericalpilementation of the
algorithm can be as efficient as other techniquapleying constraints on
model smoothness, depth weightiet. [18]. The minimum-norm (i.e. under-
determined) type of the inverse problem resolutéads to a matrix inversion
whose size is determined by the number of obsemstrather than by the
number of model parameters (prisms or grids). Theeat computational

resources are appropriate to handle such invensiodeling routinely, even
with a large number of grids. The extension of &hgorithm to solve more
complex 3D structures is currently underway base@xsting 3D gravity and
magnetic modeling algorithms [19]. The developmeinthe algorithm for 3D

inversion of magnetic data is crucial since magnelata are used more
frequently in mineral exploration.
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