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Abstract. The main problem with the inversion of a low velocity medium is the 

application of an appropriate ray tracing method after choosing a suitable model 

parameterization. Block parameterization is not suitable, because it is not 

capable of representing the velocity model well. A large amount of blocks with a 

small grid size are needed to express the model well, but in that case, a ray 

coverage problem will be encountered. A knot-point parameterization model is 

better suited than a block model, because it can express the velocity model well, 

while the number of variables is much smaller. Ray calculation using the pseudo-

bending method is not appropriate for the velocity model because of an 

instability problem at high velocity gradients. The crucial problem of this 

method involves the initial ray-path that is optimized in order to obtain the “true” 

ray, but does not satisfy the Fermat principle. These problems can be solved by 

applying the eikonal-solver method, because this can handle high-velocity 

gradients and does not need an initial ray path. Using a suitable model 

parameterization and appropriate ray tracing method, the inversion can obtain 

good results that fit the desired output. Applying a block model and the pseudo-

bending method will not produce the desired output. 

Keywords: Eikonal-solver method; Fermat principle; knot-point parameterization; low 

velocity structure; pseudo-bending method.  

1 Introduction 

Many current inversion techniques use seismic wave arrival time data to 

estimate subsurface structures [1-3]. This is preceded by an effective model 

parameterization and followed by the selection of an appropriate method of 

theoretical ray calculation acting as a forward modeling. After that, a system of 

equations in the form of a matrix can be formed and its inversion can be 

calculated by various methods. 

When model Parameterization is performed to describe a subsurface structure, 

the chosen number of parameters should not be too high, so as to get a kernel 

matrix that is not too large and doesn’t contain too many zero-value matrix 

components. Until now, parameterizations usually are carried using a block 

model, but a large number of blocks are needed to describe the geological 
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structure well. Therefore, an alternative method to parameterize the model is 

needed. In this study, model parameterization will be conducted using a knot 

point model as well as a block model. So far, the knot point model has been 

applied by few seismologists [4]. Both methods of parameterization will be 

applied to the same subsurface structure, selected according to the criteria 

mentioned above. Miyazawa and Kato [5] noted that using the velocity and 

slowness at knot points will produce different tomography result, unless a 

carefully formulated tomographic problem is applied. We will apply slowness 

parameterization because in the way we will get the linear form of the kernel 

function.  

The next step is the selection of a ray tracing method suitable for the selected 

model parameterization. Application of the pseudo-bending method ([6]) is very 

popular because of its efficiency. However, this method has the disadvantage 

that it needs an initial value (initial trajectory). This will lead to inaccuracies in 

the calculation of the “real” trajectory as well as its traveltime, especially in low 

velocity zones. In addition, there is an instability problem in the ray calculation 

in case of high-velocity gradient structures. In this study, we have analyzed the 

problems of the pseudo-bending method and have found another ray tracing 

method, which does generate an accurate calculation. This method is called the 

eikonal-solver method ([7]), where an initial value (initial trajectory) is not 

required and the problems with high velocity gradients can be overcome. The 

selection criterion for choosing the appropriate method is that is has to satisfy 

the Fermat principle, according to which the rays should avoid low-velocity 

zones. 

The last step is the formulation of the inversion formula using a gradient 

inversion method. The inversion method that we have developed can be applied 

to a highly heterogeneous medium, especially in cases where volcanic seismic 

low-velocity anomalies exist in weak zones and zones of high fluid content. We 

have compared the method with the inversion method that is most commonly 

employed and that uses a block model and pseudo bending method. In this 

article, the superiority of our method will be demonstrated. 

This method has not yet been applied to real data because of the unavailability 

of 2D field data. In the near future, the method will be further developed for 3D 

cases and applied to data of some volcanoes in Indonesia. 



Development of an Inversion Method for Low Velocity Medium 95 
 

2 The Method 

2.1 Model Parameterization 

Model parameterization or definition of estimated variables, preceding the 

inversion process is an essential first step, because if this is not done 

appropriately, the results will not properly describe the subsurface. In other 

words, the inversion result must satisfy the physical and geological principles. 

In the case of parameterization for a subsurface structure, previous geological 

and geophysical studies provide important preliminary data. From these data, 

we do not necessarily need to create a block model; a 1D model or a boundary 

layer model may be is enough. However, in the case of something like a 

volcanic structure, a block model or knot-point model is more suitable, because 

of its heterogeneity, which makes the layers of the structure difficult to define. 

In the block model, the constant velocity or slowness is defined for each block, 

while in the knot-point model, the velocity or slowness is defined at knot point. 

In this study, slowness at a point  zxs ,  in the knot-point model is defined as a 

linear interpolation ([2]) from four knot points around that point, which can be 

formulated as 
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where kiS ,  is the slowness at point  ki zx , .  

2.2 Pseudo-Bending Method 

This method was developed by Um and Thurber [6], based on the ray path that 

is represented by a linear interpolation from a number of points. This method 

requires an initial trajectory. The initial value is optimized to obtain the final 

trajectory that satisfies the ray equation. This can be done by determining the 

normal direction of the initial ray trajectories followed by the application of the 

Fermat principle. 

Um and Thurber proposed a three-point scheme that is successively renewed 
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The distance R along n


 is obtained by minimization or application of the 

Fermat principle on the traveltime equation. 

 

Figure 1 Illustration of the three-point perturbation scheme in the pseudo-

bending method. 

2.3 Eikonal-Solver Method 

Vidale [8,9] proposed a finite difference approximation to the 2D and 3D 

eikonal equations. Of course, this finite difference scheme is applied to the 

gridded subsurface structure model. Vidale formulation is not accurate for the 

case of a heterogeneous structure because it can cause multipathing effects from 

other waves such as a head wave. Afnimar & Koketsu [7] proposed a scheme to 

solve this problem by applying the Podvin & Lecomte operator [10], and also 

provided illumination for the 2D case and propose a new operator for the 3D 

case with an illumination condition as well. 

The result of the implementation of the above scheme is a travel time at each 

grid point. If it is made its contours, it will get the wavefront. The ray can be 

calculated by tracing it from the station to the source point, considering that the 

ray direction or the wave propagation direction is always perpendicular to the 

wavefront.  
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2.4 Gradient Inversion Method 

The function of seismic wave traveltime t  with respect to the defined 

parameter, in this case the slowness 
kiS ,
 as contained in Eq. (1), is a nonlinear 

problem because of the heterogeneity of the earth structure. In the gradient 

inversion method, a nonlinearity problem can be solved by iteration of the 

linearized form of the traveltime function [1], which starts from an initial 

model. The linearization form is  
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The traveltime derivative with respect to the slowness at a knot point can be 

formulated as a chain derivative, which involve Eq. (1) 
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where zxl ,  is a ray length at  zx, . In order to ensure that the solution of matrix 

Eq. (4) is stable, it is necessary to apply damping 

 

0~ ,kiS . (6) 

The combination of Eqs. (4) and (6) can be written in a more compact form 
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which can be solved by applying the LSQR method [11]. The uncertainty of the 

inversion result is calculated from the square root of the diagonal components of 

the covariance matrix  
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where N is the number of data and M  is number of parameters [12].  

3 Application to Volcano Structure Model 

In this study, we have tried to explore the application of the method described in 

section 2 to, the volcano structure as shown in Figure 2 (left). The shape of this 
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structure occurs uniquely in the volcano, where there are low-velocity 

anomalies associated with magma or fluids or weak zones. 

3.1 Model Parameterization 

To obtain an accurate inversion result, we must first define a suitable model 

parameterization. If the model parameterization is made by using a block 

model, as is mostly the case in tomography, a large number of blocks is needed 

to describe the geological model well. If the block size is 0.5 km, as shown in 

Figure 2 (middle), then the number of variables is 400. This parameterization is 

good enough to describe the model, but because of the large number of 

variables many blocks will not be crossed by rays, which will result many zero 

values in the kernel matrix. In other words, ray coverage will not be good. If the 

block size is enlarged, the number of variables will be reduced but the 

description of the model will be worse. To solve this problem, we propose to 

apply knot-point model parameterization, as shown in Figure 2 (right). With at 

distance between knot-points of 2 km, the number of variables is only 36, 

whereas the model is described much better, as shown Figure 2 (left). Hence, 

this parameterization is very effective compared to the block model. Slowness 

distribution at a certain point is calculated using Eq. (1). 

 

Figure 2 Left: Low velocity model (red). Middle: Parameterizing the model 

using blocks with a size of 0.5 km. Right: Parameterizing the model using knot 

points with distance between points of 2 km. 

3.2 Selection of Ray Tracing Method 

Parameter determination as described above is followed by the selection of a 

suitable ray tracing method. Application of the pseudo-bending method on this 

model will encounter an instability problem, which occurs in the ray calculation 

marked by the dashed white line in Figure 3 (left). This is caused by the large 

velocity gradient. Gradient calculation using Eq. (2) is needed for the 

minimization of the ray trajectory, but because the gradient is large, it will result 

in no solution. A serious problem is the inaccuracy of this method, because it 

does not follow the Fermat principle. For example, rays from a source number 

7, see (Figure 3 left), that should “avoid” low-velocity zones and should pass 
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the high-velocity zones, where the traveltime will be shorter. Likewise rays 

from other source points. Another problem with the method is that it requires an 

initial trajectory. Usually, the initial trajectory is a straight line, as shown in 

Figure 1. If the velocity structure is not too heterogeneous, the trajectory 

optimization performed by this method will get the “real” raypath (the one 

which has the smallest travel time). However, for a very heterogeneous velocity 

structure, which contains low-velocity anomalies, this is not a good method, 

because the selection of the initial trajectory close to the actual trajectory is very 

difficult. As a result, the trajectory obtained will not turn out as expected. 

 

Figure 3 Left: Application of the pseudo-bending method [6]. Right: 

Application of the eikonal-solver method [7]. 

To overcome the above problems, in this research, we have applied the eikonal-

solver method. The result, as shown in Figure 3 (right), shows that all rays can 

be calculated properly. The high velocity gradient problem can be solved, 

because the calculation method does not involve the velocity gradient, as is the 

case in the pseudo-bending method. Ray trajectories obtained with this method 

can avoid low-velocity zones and pass high-velocity zones. This satisfies the 

Fermat principle, according to which the travel path must pass through a zone in 

the minimum traveltime. 

3.3 Application of Gradient Inversion Method 

As explained in Section 2.4, the concept of this inversion is the minimization of 

the theoretical traveltime and the observational traveltime, which is done 

iteratively starting from initial model to get the optimal final model. In order to 

test the method developed in this study, we have applied to a synthetic data. The 

observational traveltime is the traveltime calculated in the model in Figure 2 

(left). To approach the field conditions, where field data always contain noise, 

the data were added with Gaussian noise. The initial model applied in the 

inversion was 1D model that is commonly used in tomography. It was taken 

from the left or right side of the velocity model in Figure 2, from 2 km/s (on the 

surface) to 6 km/s (at the basement). 
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This synthetic model involves nine source points and nine receivers on the 

surface. Consequently, there are 81 observational data with 36 parameters. 

Gaussian noise with mean level 2.00.0   is included in the observational 

data. To avoid instability in the matrix inversion, norm damping 0.5  was 

applied. The inversion was performed in eight iterations and the solution was 

the result whose RMS traveltime difference between two iterations was small 

enough.  

The inversion result using the observational data without noise is shown in 

Figure 4. The selected result is the fourth iteration, where the RMS value was 

relatively close to the subsequent iteration result. This result could very well be 

close to the desired model. The uncertainty is smaller than 0.3 km/s. The 

biggest uncertainties are at the bottom of the model, because of little ray 

coverage compared to the top of the model. For the data with a noise level of 

0.1, the inversion result, see (Figure 5 middle), still shows the desired output. 

The uncertainty, see (Figure 5 right) is still very good for the low-velocity zone, 

which is about 0.25 km/s. For data with higher noise levels, as in Figure 6, the 

inversion result is less comprehensive compared to the desired output. 

 

Figure 4 Inversion result with damping 0.5  
and Gaussian noise level 

0.0 . Left: RMS values of traveltime residual versus iteration. Middle: 

Inversion result image at the fourth iteration. Right: Uncertainty of inversion 

results. 

 

Figure 5 Inversion results with damping 0.5  
and Gaussian noise level 

1.0 . Left: RMS travel time residual versus iteration. Middle: Inversion result 

image at the third iteration. Right: Uncertainty of inversion result. 
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Overall, the inversion result can successfully reconstruct the low-velocity zones. 

The key of this inversion result is the appropriate model parameterization, 

followed by a suitable method of ray tracing, so the rays can travel through all 

areas between four knot points.  

 

Figure 6 Inversion results with damping 0.5  
and Gaussian noise level 

2.0 . Left: RMS value of traveltime residual versus iteration. Middle: 

Inversion result image at the third iteration. Right: Uncertainty of inversion 

result. 

For comparison, we have also performed an inversion using the same data, but 

now applying block-model parameterization and calculating the rays using the 

pseudo-bending method that is commonly applied in tomography. With model 

parameterization as shown in Figure 2 (middle), the inversion result shown in 

Figure 7 (left) does not approach the desired output. This is probably caused by 

the inappropriate ray calculation, as discussed in section 3.2. Attempting to 

improve the ray coverage, we enlarged the block size to 1 km and 1.5 km; the 

inversion results are shown in Figure 7 (middle and right). The low-velocity 

anomaly in the deep targets could be somewhat resolved, but it doesn’t describe 

the subsurface structure well, because the block size is too large. 

 

Figure 7 Inversion results with block model and pseudo-bending, damping 

0.2
 
and without noise. Left: Inversion result for block size 0.5 km. Middle: 

Inversion result for block size 1 km. Right: Inversion result for block size 1.5 

km. 
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4 Conclusion 

In this study, firstly, an appropriate model parameterization for low velocity 

zones using knot points has been successfully developed. The knot-point model 

reduces the number of inversion variables, but it can describe the subsurface 

structure very well. Secondly, the eikonal-solver method can overcome the 

problems of the pseudo-bending method with, high-velocity gradients and ray 

trajectories that do not conform to the Fermat principle. Thirdly, considering 

these two points, the inversion results of the proposed method can reconstruct 

low-velocity zones well. This is achieved by appropriately describing the 

structure and calculating the precise ray tracing. On the other hand, application 

of the inversion method using a block model and the pseudo-bending method 

doesn’t produce good inversion results. 
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