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Abstract. A new class of functions called strongly lower semi-continuous 

(SLSC) functions is defined and its properties are studied. It is shown that the 

arbitrary supremum and finite infimum of SLSC functions are again SLSC. 

Using these functions, an induced fuzzy topological space, called s-induced 

fuzzy topological space on a topological space (X, T), is introduced. Moreover, 

some incorrect results on fuzzy topological spaces obtained previously by some 

authors are identified and modified accordingly. Examples of the newly defined 

induced space are given and their various properties are investigated. 

Interrelationships between a fuzzy topological space (X, F) and the s-induced 

fuzzy topological space generated by the crisp members of F are examined. In 

this process, different lower semi-continuities and induced fuzzy spaces 

generated by them have been defined in a general set up and their few properties 

have been studied. 

Keywords: fuzzy topological space; regular F-subset; s-induced fuzzy topological 
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1 Introduction     

In 1968, C.L. Chang [1] put forward the concept of fuzzy topological space as a 

very natural generalization of topological space in the literature, after the 

discovery of fuzzy sets by L.A. Zadeh [2] in 1965, as follows. 

Definition 1.1: Let X be a non-empty set. A family F of fuzzy subsets of X is 

called fuzzy topology on X if  

1. 0, 1  F;   
2. arbitrary suprema of members of F are in F;  

3. finite infima of members of F are in F.  

The pair (X, F) is called fuzzy topological space. The members of F are called 

fuzzy open sets. The complements of fuzzy open sets are called fuzzy closed 

sets. 
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R. Lowen [3], in 1976 suggested an alternative and more natural definition of 

fuzzy topology (called stratified fuzzy topology) for achieving more results 

which are compatible with the general case in topology. Lowen pointed out that 

the above definition of fuzzy topology suffers from a serious drawback, i.e., 

constant functions between fuzzy topological spaces are not necessarily 

continuous, which is in contrary to our perception that all constant functions are 

necessarily continuous in topological spaces. To overcome this difficulty 

Lowen introduced the concept of stratified fuzzy topology making all constant 

functions (and not only 0 and 1) open. Thus the stratified fuzzy topology due to 

Lowen is more general than that of Chang. 

Definition 1.2: Let X be a non-empty set. A family F of fuzzy subsets of X is 

called stratified fuzzy topology on X if  

1. F, where  is a constant function taking the constant value I;  

2. arbitrary suprema of members of F are in F; 

3. finite infima of members of F are in F.  

The pair (X, F) is called stratified fuzzy topological space. The members of F 

are called fuzzy open sets. The complements of fuzzy open sets are called fuzzy 

closed sets. 

There is a natural way to associate a fuzzy topology F on a set X to a given 

topology T on X by means of the collection of all lower semi-continuous (LSC) 

functions from (X, T) to the unit closed interval I = [0, 1]. Weiss [4] called this 

fuzzy topology on X an induced fuzzy topology on (X, T) providing a concrete 

class of examples of the fuzzy topologies. Various properties of fuzzy sets in the 

presence of an induced fuzzy topology were also studied by Weiss, who utilized 

it to prove a generalization to fuzzy sets of the Schauder-Tychonoff theorem, 

which asserts that “every continuous self-mapping of a compact convex subset 

of a locally convex linear topological space has a fixed point”. He further 

proved a revised version of the fuzzy separation theorem of Zadeh for 

appropriate fuzzy subsets of a linear topological space, employing the notion of 

induced fuzzy topology. Thus, induced fuzzy topological spaces may be used as 

a tool to prove the various complicated theorems of fuzzy topological spaces in 

a much easier way.  

In the recent past, the concept of induced fuzzy topological space have been 

further studied by some authors using  stronger forms of LSC functions viz. 

completely LSC and -LSC functions, as well as weaker forms such as -LSC 

etc. In [5], Bhaumik and Mukherjee introduced completely induced fuzzy 

topological space with the help of completely LSC (CLSC) functions and 

Mukherjee and Halder [6] introduced -induced fuzzy topological space with 
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the help of -LSC functions, and various properties of the respective spaces 

were studied. It was observed that the various properties of the completely 

induced fuzzy topological space studied in [7, 8] are based on Theorem 3.2 of 

[5], which states that “a fuzzy subset A in completely induced fuzzy topological 

space (X, C(T)) is open iff for each rI, the strong r-cut r(A) is regular open in 

the topological space (X, T)”. But, incidentally, it has been noticed that the 

above result is not always valid. In fact, the modified version of the theorem 

would be “a fuzzy subset A in completely induced fuzzy topological space (X, 

C(T)) is open iff for each rI, the strong r-cut r(A) is a union of regular open 

sets in the topological space (X, T)”, which is shown in Theorem 3.7 of this 

paper. Actually, Theorem 3.2 of [5] is a consequence of Theorem 1 of [5] which 

states that “the necessary and sufficient condition for a real valued function f to 

be CLSC is that for all aR, the set {xX: f(x) > a} is regular open (or 

equivalently {xX: f(x)  a} is regular closed)”. That this is not true can be 

seen in Note 3.11 of this paper. The modified version of this theorem would be 

“the necessary and sufficient condition for a real valued function f to be CLSC 

is that for all aR, the set {xX: f(x) > a} is a union of regular open sets”. 

Similar modifications are also necessary for -LSC functions and -induced 

fuzzy topological space in [6]. These observations challenge the entire study of 

the CLSC function and -LSC functions together with the induced fuzzy spaces 

generated by them.  

Again, in 1987, Monsef and Ramadan [9] introduced the concept of fuzzy supra 

topology as a generalization of fuzzy topology, and in 1998, Mukherjee [10] 

defined an induced fuzzy supra topological space viz. -induced fuzzy supra 

topological space with the help of -LSC functions. But, modification as 

suggested above is again necessary in respect of Result-4.2 (i) of [10]. 

Thus, it is clear that the properties of different induced fuzzy topological spaces, 

and the induced fuzzy supra-topological spaces mentioned above which were 

introduced after Weiss [4], were not studied correctly and thus need further, in-

depth study. 

The motivation of the present treatise is to search for a stronger version of the 

LSC function that is capable of generating an induced fuzzy topological space 

on a topological space (X, T) and to study the properties of that function as well 

as that of the induced fuzzy topological space in the correct form, and to check 

whether the properties of induced fuzzy topological space studied by Weiss [4] 

are also valid in the present setup or not. Secondly, our aim is to study the 

interrelationships between a fuzzy topological space (X, F) and the newly 

defined induced space on (X, T), where T = F  2
X 

is the crisp part of F.  
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Again, we have seen that all the stronger (or weaker) forms of LSC functions 

(found in the literature) may fail to generate induced fuzzy topological space, 

for example, the regular LSC (RLSC) functions [11], normal LSC (NLSC) 

functions [12], etc. It was observed that only the countable supremum of RLSC 

functions is RLSC but the arbitrary supremum of RLSC functions may not be so 

[7]. With the help of RLSC functions, the authors have introduced a new fuzzy 

topological structure and called it r-countably induced fuzzy topological space 

or rc-induced fts [13]. The authors also investigated the cardinal extension of 

the aforementioned structure [11]. On the other hand, even the finite suprema of 

NLSC functions may not be NLSC. Therefore, the NLSC functions fail to form 

an induced fuzzy topology on a given topological space, although finite infima 

of NLSC functions are NLSC. With the help of NLSC functions a generalized 

fuzzy topology, namely n-infy induced fuzzy topological space, has been 

defined [14] by the authors and its various properties have been investigated. It 

may be seen that the generalized forms of fuzzy topological structures have very 

important applications in many areas of science and technology, such as 

quantum particles physics, particularly in connection with string theory and 

 

theory [15-17].  

To start with, we recall that a function f: XR is LSC at a point x0X, if for 

each  > 0 there exists a neighborhood (nbd.) of x0, say N(x0), such that for all 

xN(x0), f(x) > f(x0)   [18]. Replacing the nbd. by stronger forms of open sets 

we may find various stronger forms of LSC functions. For example, we may 

replace the nbd. by regular open nbd. to obtain completely LSC functions [5], -

open nbd. to obtain the -LSC functions [6], -open nbd. to obtain -LSC 

functions [10], etc. Apart from these, one may take regular F-nbd., co-zero 

nbd. etc. of the point instead of nbd. N(x0). In the present paper, we use regular 

F-nbd. of the point considered to the define strongly LSC function that is 

capable of generating induced fuzzy topological space. By using co-zero 

subsets, another induced fuzzy topological structure may be defined and studied 

in the future. 

2 Strongly Lower Semi-Continuous Function 

Before defining the strongly lower semi-continuous (SLSC) function let us 

recall the following concepts.        

J. E. Mack [19] introduced the concept of regular G-subset and regular F-

subset as follows. 

Definition 2.1. A subset H of a topological space X is called a regular G-subset 

if H is an intersection of a sequence of closed sets whose interiors contain H. 
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Equivalently, if H = i Gi = i clX Gi for iN, where each Gi is open in X, then 

H is a regular G-subset of X. 

Definition 2.2. A subset K of a topological space X is called a regular F-subset 

if K is a union of a sequence of open sets whose closures are contained in K. 

Equivalently, if K = i Fi = i intX Fi for iN, where each Fi is closed in X, then 

K is a  regular F-subset of X. 

It can be easily verified that the complement of a regular G-subset is a regular 

F-subset and vice versa. Also every regular G-subset (resp. regular F-subset) 

being the countable intersection (resp. countable union) of closed (resp. open) 

subsets of X is closed (resp. open) in X. The collection of all regular G-subsets 

(resp. regular F-subsets) of a space X is closed under finite union and 

countable intersections (resp. countable union and finite intersection) [7]. 

As mentioned earlier using lower semi-continuous functions and its stronger 

forms many researchers have attempted to define topologically generated fuzzy 

topological spaces. All these functions can be seen to have been generated from 

a very general setup. With this aim we introduce the concept of S-lower semi-

continuity. The existing LSC functions and other stronger forms come as a 

particular case of the defined generalized function. 

Definition 2.3. Let S be a family of subsets of a given set X equipped with a 

topology T, which is closed under finite intersections and contains X and . 

Then, a function f: XR is said to be an S-lower semi-continuous function if 

for every x  X and every  > 0, there exists some S  S, which contains x, and 

for every y  S, it follows that f(y) > f(x)  .  

The set SS containing a point xX will be called S–nbd. of x. Also the 

members of S are called S-sets and their complements will be referred to as Sc
-

sets.   

If S be the collection of open, regular open, regular F, -open, etc. subsets of 

X, then the corresponding S-lower semi-continuous (S-LSC) functions are 

termed as lower semi-continuous (LSC), CLSC, -LSC, SLSC etc. functions, 

respectively. 

In this paper, we will study induced fuzzy topological spaces generated by 

SLSC functions where the S-sets are regular F-subsets of X.  
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Definition 2.4. A function f: (X, T)  (R, u) is said to be strongly lower semi-

continuous or SLSC function at a point x0X, if for each  > 0, there exists a 

regular F-nbd. N(x0), such that x N(x0) implies f(x) > f(x0)  .  

Next we define the strongly continuous function as follows. 

Definition 2.5. A function f: (X, T)  (R, u) is said to be strongly continuous at 

a point x0X, if for each  > 0, there exists a regular F-nbd. N(x0), such that x 

N(x0) implies f(x0)   < f(x) < f(x0) + .  

A function f is said to be strongly continuous (respectively SLSC) on the space 

X if the function is strongly continuous (respectively SLSC) at all the points of 

X.  

To start with, we first investigate some properties of the generalized S-LSC 

functions which will be also valid for other forms of LSC functions mentioned 

above.   

Theorem 2.6. The necessary and sufficient condition for a real valued function 

f on X to be S-LSC is that for all aR, the set {xX: f(x) > a} is a union of S-

sets. 

Proof. Let f be an S-LSC function and x0X. Then for each  > 0, there exists 

an S-nbd. S(x0 ) such that for x S(x0), f(x) > f(x0)  . Again let A = {x: f(x) > 

a} and let yA, i.e., f(y) > a. Now, we choose  > 0 such that f(y)   > a. Since 

f is S-LSC, there exists an S-nbd. S(y) of y such that for all xS(y), f(x) > 

f(y)   > a. Thus, for all xS(y), f(x) > a and therefore S(y)  A. Now, yS(y) 

 A, therefore {y}  S(y)  A, i.e., A  S(y)  A and hence A = S(y). 

Thus, A = {x: f(x) > a} is a union of members of S. 

 

Conversely, let {x: f(x) > a} be a union of S-sets for each aR and x0X. For  

> 0, f(x0)   = b (say). So, the set B = {x: f(x) > f(x0)  } is a union of S-sets. 

But x0B, so, there exists at least one S-set, say S0, of the above union which 

contains x0. Thus, for x S0, f(x) > f(x0)  . Hence, f is S-LSC. 

Similarly, it can be proved that for a strongly continuous function f: XR, both 

the sets {xX: f(x) > a} and {xX: f(x) < a} are a union of S-sets.  

The following theorem, which is actually a modification of Theorem 1 of [5], 

follows as a corollary of Theorem 2.6. That Theorem 1 of [5] is not valid can be 

seen in Example 3.11. 
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Theorem 2.7. The necessary and sufficient condition for a real valued function 

f to be CLSC is that for all aR, the set {xX: f(x) > a} is a union of regular 

open subsets of X. 

Corollary 2.8. A function f from a topological space (X, T) into the space (R, 

1), where 1 = {(r,): rR}, is S-LSC function iff the inverse image of any 

open subset of (R, 1) is a union of S-sets. 

Remark 2.9. If f is S-LSC on X, then the set {xX: f(x) ≤ a} is an intersection 

of Sc
-sets. 

Various properties of S-LSC functions are studied in Theorems 2.10  2.14. 

Theorem 2.10. The characteristic function of an S-set of S is S-LSC. 

Proof. Let A  X be an S-set. Let us now define the characteristic function A: 

X  {0, 1} such that  

 A(x) = 1, if xA 

  = 0, if xX  A. 

We are to show that A is S-LSC, i.e., the set B = {x: A(x) > a} is a union of S-

sets for each aR. 

Case-I. If a < 0, then clearly, B = X, which is an S-set and hence can be 

expressed as a union of S-sets. 

Case-II. If 0 ≤ a < 1, then clearly, B = A, which is an S-set and hence is a union 

of S-sets. 

Case-III. If a ≥ 1, then clearly, B = , which is an S-set and hence is a union of 

S-sets. 

In order to show that the newly defined S-LSC function actually induces a fuzzy 

topology on X, we need to verify that the arbitrary supremum and finite 

infimum of S-LSC functions are again S-LSC. Also, the constant functions are 

S-LSC as well. 

Theorem 2.11. The arbitrary supremum of S-LSC functions is S-LSC. 

Proof. Let {f} be an arbitrary family of S-LSC functions from X to R. We 

are to show that g = sup (f) is also S-LSC.  
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Let x0X and  > 0 be given, so g(x0) = sup f(x0). Then there exists some  

such that f(x0) > g(x0)  . Therefore, we can choose  > 0, such that f(x0)   

> g(x0)  . Since, f is S-LSC at x0, there exists an S-nbd. S(x0) such that    

f(x) > f(x0)   for all x S(x0). Therefore, for all x S(x0) we have f(x) > 

f(x0)   > g(x0)  . 

Finally, sup f(x) ≥ f(x). Hence for  > 0, there exists an S-nbd. S(x0) such that 

for all x S(x0), sup f(x) > sup f(x0)  , i.e. g(x) > g(x0)  . Hence g is S-

LSC.  

Theorem 2.12. Finite infimum of S-LSC functions is S-LSC.   

Proof. Let f1, f2 ... fn be a finite collection of S-LSC functions from X to R. We 

are to show that h = inf (fi), i = 1, 2... n is S-LSC. 

Let x0X. Since each fi is S-LSC, for every  > 0, there exists a S-nbd. Si(x0) 

such that fi(x) > fi(x0)  . Again, the intersection of a finite number of S-sets is 

an S-set, so we have i Si(x0), i = 1, 2, ..., n, is an S-nbd. of x0. Now, if x 

iSi(x0), then for all i, fi(x) > fi(x0)  . i.e., inf fi(x) > inf (fi(x0)  ), i.e., h(x) > 

h(x0)  . Hence, h is S-LSC. 

The corresponding results on CLSC, LSC and -LSC functions respectively 

given in [6,10,19] are the corollaries of Theorems 2.11 and 2.12.  

Following Theorems 2.13, 2.14 and 2.15, we show that S-LSC functions are 

also closed under usual addition, multiplication and scalar multiplication 

operations. 

Theorem 2.13. If f and g are two S-LSC functions on a space X, then so is        

f + g.               

Theorem 2.14. If f and g are two S-LSC functions on a space X, then so is f.g. 

Theorem 2.15. If f is S-LSC, then for any positive real number a, af is also     

S-LSC. 

The above theorems can be proved by using standard techniques. 

Next, we study the properties of SLSC functions which are special types of     

S-LSC functions when the S-sets are regular F-subsets of X. That every 

continuous function is SLSC is shown in the example below. 
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Example 2.16. We know that if a function f: XR is continuous, then the set 

{x: f(x) > a}, aR, is a co-zero set (3.5, [20]). Again, every co-zero set is a 

regular F-subset [6].  So, the sets of the form {x: f(x) > a} aR are regular F-

subsets and hence unions of regular F-subsets. Thus f is SLSC.  

Again, since every continuous function is SLSC and every constant function is 

continuous, therefore every constant function is SLSC.  

Note 2.17. Clearly, continuity implies SLSC implies LSC. We cite two 

examples to show that the reverse implications are not true.  

Example 2.18.  Let X = [1, 1] and A = (0, 1]. Then A is a regular F-subset, 

since A = n Fn = n intX Fn , where Fn = [ 1

𝑛
, 1]. Now let us define a function     

f: X  I such that  

 f(x) = 1, if xA 

 = 0, if xX  A. 

So, f is an SLSC function (by Theorem 2.10). Let us now consider an open set 

B of I, given by B = (−1

3
 , 1

3
 ). Therefore, f

 1
(B) = X  A, which is not open in X. 

Hence, f is not continuous. 

Thus, every continuous function is SLSC, but the converse is not true. 

Example 2.19. Let X = {a, b, c} be a set and T = {, X, {a}, {b}, {a, b}} be a 

topology defined on X. Then, the set {a, b} is open but not a regular F-subset, 

since {a, b} cannot be expressed as a union of closed sets. Let us now define f: 

X  I by 

 f(x) = 1, if x{a, b} 

 = 0, otherwise. 

Then f is LSC, because sets of the form {x: f(x) > r} rR, are all open in X. But 

f fails to be SLSC because the set {x: f(x) > 1/2} = {a, b} is not a union of S-

sets. 

Thus, LSC does not imply SLSC. 

Now, we present another characterization of SLSC functions. 
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Theorem 2.20. A function f: X  R is an SLSC function iff f 

 = f, where the 

function f 

(x) = supN(x) infyN(x) f(y), N(x) being a regular F-subset containing 

x. 

Proof. Let f: X  R be an SLSC function. From the construction of f 

,  it is 

clear that, for all xX, f 

(x) ≤ f(x), i.e. 

  f 

 ≤ f (1) 

To prove the reverse relation, we note that for xX and  > 0, there exists a 

regular F-nbd., say N(x), of x such that N(x)  {y: f(y) > f(x)  }. Thus, 

infyN(x) f(y)  f(x)  , which in turn, implies that supN(x) infyN(x) f(y)  f(x)  . 

Since  > 0 is arbitrary, we have supN(x) infyN(x) f(y)  f(x), i.e. f 

(x)  f(x) and 

hence  

 f 

  f  (2) 

From (1) and (2), we have f 

 = f. 

Conversely, let f 

(x) = f(x). Then, by definition, for  > 0, infyN(x) f(y) > f(x)  

, for some regular F-subset N(x) containing x. Thus, f(y) > f(x)   for all 

yN(x). Therefore, for each xX and for  > 0, there exists a regular F-

neighborhood N(x) of x such that for all yN(x), f(y) > f(x)  . Hence, f is 

SLSC.         

3 Strongly Induced Fuzzy Topological Spaces 

In this section, we introduce a generalized induced fuzzy topological space with 

the help of S-LSC functions. Also, as a particular case of this fuzzy topology, 

strongly induced fuzzy topological space, is introduced using the class of SLSC 

functions. Additionally, properties of this space are also studied. We start with 

the following theorem.    

Theorem 3.1. Let (X, T) be a topological space. The family of all S-LSC 

functions from the space (X, T) to the closed unit interval I = [0, 1] forms a 

fuzzy topology on X. 

Proof. Let H be the collection of all S-LSC functions from a topological space 

(X, T) to the closed unit interval I. Now, let t[0,1], then t1XC(X), the set of 

all continuous functions on X. Since all continuous functions are S-LSC, 

therefore t1X H. 
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Let {f} be an arbitrary family of S-LSC functions. Then by Theorem 2.11, we 

have that sup(f) is also an S-LSC function. Hence, sup(f) H. 

Let f1, f2 ... fn H. Then by Theorem 2.12, infi(fi), i = 1, 2 ... n also belongs to 

H. 

Thus, the family H of all S-LSC functions from (X, T) to I satisfies all the 

conditions to be a fuzzy topology. Thus the family H forms a fuzzy topology on 

X. 

The Theorem 3.1 is very important, since it implies that the collection of CLSC, 

LSC, SLSC, etc. functions generate induced stratified fuzzy topologies. The 

aim of this section is to study the spaces induced by SLSC functions.       

Definition 3.2. The fuzzy topology formed by the collection of all SLSC 

functions from a topological space (X, T) to the closed unit interval I is called 

strongly induced fuzzy topological space or s-induced fts in short and is denoted 

by (X, S(T)). 

Now, we cite some examples of this newly defined s-induced fts.  

Example 3.3. Let us consider the uncountable non-discrete P-space S given in 

Gillman and Jerrison (4N, [20]). In S, all points are isolated except for a 

distinguished point s, a nbd. of s being any set containing s whose complement 

is countable. Again, let us consider an nbd. Ga, a of s. Then Ga being a 

clopen (open and closed) set is regular F-subset. Let us define fa : S  R by 

 fa(x)  = 1 if x Ga 

 = 0 if x S  Ga. 

Each fa is the characteristic function of a regular F-subset is SLSC. 

Now, we construct a family H consisting of all fa’s and further let 

     H
 = {rfa: faH, 0 ≤ r ≤ 1, a}. 

Therefore, H
 is a collection of SLSC functions on S, such that  

  0(ϕ), 1(S)H
. 
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Considering an arbitrary family {rfa} of members of H
, we get that  rfa = 

f (say) is defined by 

 f(x) =  r  if x Ga 

      = 0       if xS   Ga. 

Clearly, Ga is open and closed (all the points of S   Ga are isolated points 

and Ga is an nbd. of s) and hence Ga is a regular F-subset. Thus, fH
. 

Lastly, let r1f1, r2f2,..., rnfn H
. Then, 

 i rifi = i ri  if xi Gai 

 = 0      if xS  iGai 

Clearly, i rifi belongs to H
. 

Thus we see that (S, H
) forms an s-induced fts. 

Example 3.4. Let (X, T) be an indiscrete topological space, i.e. T = {, X} and 

let f: (X, T)  I be a continuous function. Since continuous functions from an 

indiscrete space to I must be constant, f is constant. In fact f is SLSC. Let x0X 

and  > 0. Then for all xX, f(x) > f(x0)  . Since X is a regular F-subset, f is 

SLSC. Let F = {f: f is SLSC on X}. Then (X, F) is a fuzzy topological space 

and hence an s-induced fts. 

Example 3.5. Let X be the closed unit interval I = [0, 1]. For each natural 

number n, let us define n: X  I as follows: 

 n(x) = 1 for x[0, 1

𝑛
] 

 = 0 for x( 1

𝑛
 ,1]. 

Let x0I and  > 0 be arbitrary. Then for all x(0, 1

𝑛
), n(x) > n(x0)  . Since 

(0, 1

𝑛
) is regular F, therefore n is SLSC. Now we construct H = {rn: 0 ≤ r ≤ 

1}. Similar to Example 3.3, we can show that H generates a fuzzy topology on I 

and hence {I, H} is an s-induced fts. 
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Definition 3.6. Let  be a fuzzy subset of a set X. Then the crisp subset r() is 

called strong r-cut of  iff r() = {xX : (x) > r} for rI. 

Theorem 3.7. A fuzzy subset  in an s-induced fts (X, S(T)) is open iff for each 

rI, the strong r-cut r() is a union of regular F-subsets in the topological 

space (X, T). 

Proof. Let the fuzzy subset  be open in (X, S(T)). Then S(T) i.e.  is an 

SLSC function. Therefore, for each rR, the set {xX: (x) > r} is a union of 

regular F-subsets, i.e. r() is a union of regular F-subsets.  

Conversely, let the strong r-cut of a fuzzy set  r() be a union of regular F-

subsets of X. Then for each rR, {xX: (x) > r} is a union of regular F-

subsets. So by Theorem 2.6,  is SLSC and hence S(T). Thus  is open in 

(X, S(T)). 

In a similar way, using Theorem 2.7, it can be proved that the Theorem 3.2 in 

[5] is not true and the modified form of the theorem is given by: 

Theorem 3.8. A fuzzy subset  in a completely induced fts (X, C(T)) is open iff 

for each rI, the strong r-cut r() is a union of regular open subsets in the 

topological space (X, T). 

Corollary 3.9. If r() is a regular F-subset, then  is SLSC but the converse is 

not true, which may be shown by the following example: 

Example 3.10. Let us again consider the uncountable non-discrete P-space as 

taken in Example 3.3. As all the points of S, except a distinguished point s, are 

isolated, for every point qS {s} the set {q} is a regular F-subset of S. But 

their union S {s} is not a regular F-subset of S, as {s} is not a regular G-

subset of S (in fact {s} is not even G, since in a P-space every G is open (4J, 

[20]). Now, let us define a function f: S  R as follows: 

 f(x) = 0, if x = s 

 = 1, otherwise. 

We shall now show that f is SLSC. Let us consider a point qS {s}. Then f(q) 

= 1 and {q} is a regular F-nbd. of q such that for each  > 0, f(x) > f(q)   for 

all x{q}. Again, any subset of S containing s, say G, whose complement is 

countable, is open and closed and hence a regular F-nbd. of s. Clearly for all 

xG and  > 0, f(x) > f(s)  . 
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Thus f is SLSC. But for r > 0, r(f) = {xS: f(x) > r} = S  {s}, which is not a 

regular F-subset of S but is a union of regular F-subsets.  

Note 3.11. The above example also shows that “the necessary and sufficient 

condition for a real valued function f to be CLSC is that for all aR, the set 

{xX: f(x) > a} is regular open” is not true, since the function f defined in the 

above example is also CLSC and {xX: f(x) > a, a > 0} = S  {s} is not regular 

open but is a union of regular open subsets (each point of S other than s is open 

and closed).  

It can be inferred from Mack [21] that the inverse image of a regular F-subset 

under a continuous mapping is again a regular F-subset. Now we define two 

weaker forms of continuous mapping which will be used in the sequel. 

Definition 3.12. A mapping f: X  Y is said to be s-continuous if the inverse 

image of every regular F-subset of Y is open in X. 

Definition 3.13 [13]. A mapping f: X  Y is said to be -continuous if the 

inverse image under f of any regular F-subset of Y is a regular F-subset of X. 

Since, every regular F-subset is an open set, clearly every -continuous 

mapping is s-continuous. 

There is a natural way to associate a fuzzy topology with a given topology and 

vice versa. Let us denote the collection of all topologies and fuzzy topologies on 

a non-empty set X by T(X) and F(X) respectively. On the real line R, we take 

the lower limit topology consisting of the sets of the form {(a, ): aR} 

together with the empty set . The closed unit interval I = [0, 1] will be 

equipped with the subspace topology denoted by Ir.  

Lowen [3] defined two important functors  and  as follows. 

The two mappings : T(X)  F(X): T  (T) and : F(X)  T(X):   (), 

where (T) and () are respectively the set of all continuous functions from 

(X, T) to Ir and the initial topology on X for the family of functions  and the 

topological space Ir. 

It is trivial to check that the members of (T) are actually the lower semi-

continuous functions when considered as from (X, T) to I, where I = [0, 1] is 

equipped with usual topology. 
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In the present setting, (T) will be the set of all strongly continuous functions 

from (X, T) to Ir and thus the members of (T) will be the SLSC functions 

when considered as from (X, T) to I, where I = [0, 1] is equipped with usual 

topology.  

It can be easily seen that the relations between the two functors  and  for LSC 

functions given in Proposition 2.1of [3] are also valid in our present setting for 

SLSC functions. 

In the next two theorems, we discuss the relationships between two topological 

spaces and their corresponding induced spaces via the s-continuity and -

continuity defined above. 

Theorem 3.14. If a mapping f: (X, S(T1))  (Y, S(T2)) is fuzzy continuous, 

then the mapping f: (X, T1)  (Y, T2) is s-continuous. 

Proof. Let f: (X, S(T1))  (Y, S(T2)) be fuzzy continuous mapping and let B be 

a regular F-subset of (Y, T2). 

Now, f
1

(B) = {xX: f(x)B} 

                      = {xX: Bf(x) = 1} (where B is the characteristic function of the 

  crisp set B) 

                    = {xX: Bf(x) > r, 0 ≤ r < 1} 

                    = {xX: (f
1

(B))x > r, 0 ≤ r < 1} 

                    = r(f
1
B). 

B, being the characteristic function of a regular F-subset of Y, is an SLSC 

function, i.e. BS(T2). Therefore, by our assumption, f
1

(B)S(T1). Hence, by 

Theorem 3.7, f
1

(B) = r(f
1
B) is a union of regular F-subsets of (X, T1) and 

hence open in (X, T1). So f is s-continuous. 

In the reverse direction, we have the following theorem. 

Theorem 3.15. A mapping f: (X, S(T1))  (Y, S(T2)) is fuzzy continuous if the 

mapping f : (X, T1)  (Y, T2) is -continuous. 

Proof. Let f: (X, T1)  (Y, T2) be a -continuous mapping. Also let  be an 

open subset of (Y, S(T2)). Now, for 0 < r <1, 

       r(f
1

()) = {xX: (f
1

())x > r} = {xX: (f(x)) > r} = (f)
1

(r, 1]   
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         = f
1

1

(r, 1] = f
1

(
1

(r, 1]) = f
1

(r()).                                

Now, since S(T2), therefore, r() = {yY: (y) > r} is a union of regular 

F-subsets of Y. Again, since f is -continuous, so f
1

(r()) is also a union of 

regular F-subsets of (X, T1), which in turn implies that f
1

() is SLSC. Hence, f 

is fuzzy continuous. 

Before proceeding further, we recall the concept of initial and final fuzzy 

topology. 

The initial fuzzy topology on X, for the family of fuzzy topological spaces (Ya, 

Fa), aΛ and the family of functions fa: X → (Ya, Fa) is the smallest fuzzy 

topology on X making each function fa fuzzy continuous and is denoted by 

aΛfa
1

(Fa). Similarly, the final fuzzy topology on Y, for the family of fuzzy 

topological spaces (Xa, Fa), aΛ and the family of functions fa: (Xa, Fa) → Y is 

the finest fuzzy topology on Y making each function fa fuzzy continuous and is 

denoted by ∩aΛfa(Fa) [22]. 

Lemma 3.16 [13]. Let X be a set, and let (Y, T) be a topological space and let f: 

X  Y be a map. Then for each SLSC function  on (X, f
1

(T)) and every rI 

(here f
1

(T) is the initial topology on X), it follows that  = r rA, where A = 

r(). 

Lemma 3.17. If f: X  Y is continuous and B is a regular F-subset of Y, then 

f
1

(B) is a regular F-subset of X. 

Proof. Mack [21] proved that the inverse image of a regular G-subset under a 

continuous mapping is again regular G. The lemma follows from this result. 

Next we consider the relationships between the induced fuzzy topology of the 

initial topology on X and the initial fuzzy topology of the induced fuzzy 

topology on Y. For this, we need to define the crisp powerset operators and 

fuzzy powerset operators. 

Definition 3.18. For a given mapping f: X  Y, the crisp powerset operators     

f 


: P(X)  P(Y) and f 


: P(X)  P(Y) are defined by f 


(A) = {f(x): xA} 

and f 


(B) = {x: f(x)B}.  

It may be mentioned here that f 


 is the map adjoint to (in the sense of partially 

ordered set) f 


 [23].   
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Definition 3.19. For a given mapping f: X  Y, the fuzzy powerset operators 

fI


:
 
I
X
  I

Y
 and f 


: I

X
   I

Y
 are defined by fI


()(y) = {(x): f(x) = y} and 

fI


()(x) = (f(x), where  and  are respectively fuzzy subsets of X and Y. 

Theorem 3.20. Let X be a set and let (Y, T) be a topological space. If f: X  Y 

is a mapping, then fI


(S(T))  S(f 


(T)). 

Proof. Let  fI


(S(T)). Then  = fI


 () for some S(T). 

Now, r() = {yY:  (y) > r} is a union of regular F-subset of Y for each rI 

(by Theorem 3.6). So, f 


(r()) is also a union of regular F-subset of X (by 

Lemma 3.17). 

Again, r() = r(fI


 ()) = f
 

(r()) (Lemma 2.2 (i) of [4]), which is a union 

of regular F-subsets of (X, f
 

(T)), since f is continuous. Again by Theorem 

3.7, S(f
 

(T)). 

Hence, fI


(S(T))  S(f 


(T)). 

For the converse we have the following theorem. 

Theorem 3.21. Let X be a set and let (Y, T) be a topological space such that 

every member of T is a union of regular F-subsets of (Y, T). If f: X  Y is a 

mapping, then S(f
 

(T))  fI


(S(T)). 

Proof. Let S(f
 

(T)), so that for each rI, r() = {xX: (x) > r} is a 

union of regular F-subsets of (X, f 


(T)) and thus is open. Therefore, r()f
 


(T). Hence, there exists BrT such that r() = f

 
(Br). Again since BrT, so 

Br is a union of regular F-subsets of (Y, T). 

Let us consider the function : Y  I defined by  = rI rBr. 

We consider the set s()  = {yY: (y) > s}, sI. It follows that 

 s() = r > sBr, which is clearly a union of regular F-subsets of Y. 

Now, f
 

() = f
 

(r rBr)  = r (f
 

(rBr)) (by Lemma 2.2(iv) of [4])    

 = r rf(Br) (by Lemma 2.2(iii) of [4]) 

 = r rA, A = r() 
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 =  (by Lemma 3.16). 

Thus, fI


(S(T)), i.e., S(fI


(T)) implies fI


(S(T)). 

Hence, S(f
 

(T))  fI


(S(T)). 

Theorem 3.22. If fn: (Xn,Tn) →Y, nN are functions from a family of  

topological spaces {(Xn,Tn)} onto a set Y, then S(∩nNfn


(Tn))  

∩nN(fn)I


(S(Tn)), where (∩nN fn


(Tn)) is the final topology on Y. 

Proof. Let λ  S(∩nN fn


(Tn)). 

Then, for each rI, σr(λ) is a union of regular Fσ-subsets in ∩nN fn


(Tn).                                                            

This implies that σr(λ) is a union of regular F-subsets in each  fn


(Tn). Thus 

fn


(σr(λ)) is also a union of regular Fσ-subsets in (Xn,Tn) for each n. 

Now, fn


(σr(λ)) = σr(fn


(λ)) (Lemma 2.2 (i) of [24]). Therefore, σr(fn


(λ)) is a 

union of regular Fσ-subsets of (Xn,Tn) for each nN. So, by Theorem 3.7, 

(fn)I


(λ)S(Tn) for each n. 

Hence λ  (fn)I


(S(Tn)) for each n  N, since fn is onto.  

As a result, λ  ∩nN (fn)I


(S(Tn)). This completes the proof. 

As a particular case, when n = 1, we have the following result.  

Corollary 3.23.  Let (X, S(T)) be the s-induced fts on the topological space 

(X,T). For a set Y, if f: (X, T) → Y is an onto mapping, then S(f 


(T))  

fI


(S(T)), where f 


(T) is the final topology on Y. 

So far, we have discussed some of the important properties of the induced fuzzy 

topological space (X, S(T)) and the nature of relationship between the induced 

fuzzy topological space (X, S(T)) generated by SLSC functions and the 

underlying topological space (X,T). Now, it is natural to ask, when will a fuzzy 

topological space be an s-induced fuzzy topological space? To conclude, we put 

forward the following theorems in this direction. 

Definition 3.24. Let  be a fuzzy subset of a set X. Then the crisp subset t() 

is called a t-cut of  iff t () = {xX : (x)  t} for tI. 
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Theorem 3.25. Let (X, F) be an s-induced fuzzy topological space and T = F  

2
X
 be the crisp members of F. Then the following two statements are 

equivalent: 

For any fuzzy subset  and rI, 

r(clF ()) = {clT (t()) : t < r }is a regular G-subset in X. 

For any fuzzy subset  and pI 

p(intF ()) = {intT (q()) : q > p } is a regular F-subset in X. 

Proof. The theorem can be proved in a similar fashion as Theorem 2.3 of [25]. 

Theorem 3.26. Let (X, F) be a fuzzy topological space and let T = F  2
X
 be 

the crisp part of F. Then the s-induced fuzzy topology S(T) on X is same as the 

fuzzy topology F if for any fuzzy subset  and r, tI
 

 r (clF()) = {clT (t()) : t < r} is a regular G-subset of (X, T). 

Proof. Let  be a closed subset of (X, F) and r  I. Then, by the given condition 

            r() = r(clF()) = {clT (t()) : t < r} is a regular G-subset of (X, T). 

Taking complement, we get X  r() is a regular F-subset of (X,T), i.e. 

1r(1X  ) is a regular F-subset of (X,T), i.e.(1X  ) is open in (X, S(T)), i.e. 

 is closed in (X, S(T)).  

Again, let  be a closed fuzzy subset in (X, S(T)) and rI. Then, by given 

condition     

 r (clF()) = {clT (t()) : t < r} is a regular G-subset of (X, T). 

Since  is closed in S(T), from the given condition, it can be seen that t() is a 

regular G-subset in (X, T) and hence closed in (X, T).  

Thus, clT (t()) = t(), and therefore r(clF()) = {(t()) : t < r} = r(). 

i.e.  = clF(), which shows that  is closed in F. 
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As a consequence, we get F = S(T).  

4 Conclusion 

In this paper, a generalized induced fuzzy topological space has been introduced 

and its properties were investigated. Its importance lies in the fact that some 

induced spaces already prevailing in the literature come as special cases of this 

generalized space. Also some flaws of induced fuzzy spaces already introduced 

by different authors have been detected and corrected accordingly. On the other 

hand, as a particular case of the newly introduced generalized space, a new 

induced fuzzy structure has been defined. The properties of the induced fuzzy 

space generated by the class of SLSC functions have been studied. The 

interrelationships between the fuzzy topology and newly defined induced fuzzy 

topology have been investigated and some interesting results have been 

obtained. The interested researcher may study the space further and find various 

applications of this space. Also, it can be used as a tool to study various 

topological properties in fuzzy setting. Apart from that, other stronger/weaker 

versions of LSC functions may be defined and possible fuzzy topological 

structures or their generalized forms may be studied. Also, the suggestions 

pointed out in this paper regarding some already published results create the 

scope of study of those spaces under the modifications made. Lastly, this paper 

poses some interesting open questions, which pave the way for further study, 

e.g., the equality condition in the Theorem 3.20, 3.21, 3.22 and 3.23 may be 

investigated; different types of functors arising from the different choices of S-

sets and their interrelationship may be worked out, and also the fuzzy concepts 

of this paper can be translated into L-fuzzy setting.   
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